

to update the DFA state. Depending on the DFA state, the
monitor returns whether the property holds or is violated.

Table IV in the online appendix gives a complete list
of APs computed to evaluate the properties studied. These
APs yield an understanding of the spatial and temporal
distribution of entities related to ego. For example, ω9 checks
if ego responds to stop signs by evaluating the hasStop and
isStopped APs. hasStop is true iff the set of lanes controlled
by stop signs and lines (stopSignLanes) intersect with the
set of lanes ego is in (egoLanes) is non-empty, which would
indicate that ego is being directed to stop. isStopped is true
iff the set of ego with speed < ϑ (egoStopped) is non-empty,
indicating that ego is stopped.

IV. STUDY
We aim to answer the following research questions:
• RQ#1: What driving properties can SGSM express?
• RQ#2: Can SGSM find safety violations in AV systems?

A. Setup

To evaluate SGSM’s ability to act as an automatic safety
monitor, we need a common execution environment on which
to run several AV systems to monitor.

1) Common Execution Platform: For running the study,
we used the CARLA simulator for urban driving [20], which
is widely-targeted for AV development due to its realistic en-
vironments, complex traffic simulation, and ability to model
a variety of relevant road scenarios. CARLA holds a com-
petition called the Autonomous Driving Leaderboard, which
provides preconfigured scenarios to challenge the community
to create systems that can drive autonomously. The challenge
includes a variety of towns, 10 different scenarios, each one
of them defining a different traffic situation, and a set of
routes. We evaluated the 3 top-ranked systems [38] as of
June 2022, using the provided evaluation routes for Town05,
that includes 2-lane roads and 3-lane highways; 4-lane and
T intersections; traffic lights, stop signs, crossing lanes; and
pedestrians, cyclists, cars and trucks.

We developed an SGG in the form of a Python module
that interfaces with the CARLA API to extract the relevant
entities, their attributes, and compute their relationships with
each other and the road structure. The SGG uses ground truth
information from CARLA to include all entities within a
50m by 50m area horizontally centered on ego and vertically
offset to include 45m ahead of ego. We adopt the default
entity and relationship scheme from prior work on SGs for
AVs [25], [19], enriched with additional information about
which roads and junctions lanes belong to. Our unoptimized
SGG and annotator take on average 288 ms to create a single
SG→ and our monitor takes 67 ms to evaluate all properties on
it using an Intel Xeon Silver 4216 CPU @ 2.10GHz, 128 GB
of RAM, and one Nvidia Titan RTX. While our simulation-
based SGG uses ground truth information to eliminate the
effects of sensor noise in our study, the current trajectory
of SGG research in conjunction with the availability of HD
maps for AV systems is promising for implementation of
SGSM on real-world systems.

2) AV Systems Evaluated: Each AV takes in a list of
waypoints from the route and produces at each frame a
control for steering, throttle, and brake; each system has
different sensors and software. Interfuser [39] consists of
a Deep Neural Network (DNN) with a transformer [40]
architecture, and a controller that generates a set of actions
for ego. It takes 3 images from 3 RGB cameras and a cropped
center image to focus on distant traffic lights, a LiDAR
point cloud, and the GPS coordinates and computes a set
of waypoints, an object density map, traffic light state, stop
sign presence, and if the vehicle is in a junction. These are
fed into the controller to produce the output. TCP [41] takes
in 1 image from an RGB camera, ego’s speed, and the GPS
coordinates and uses a DNN composed of a CNN-based
image encoder using ResNet34 [42], and two GRU [43]
branches for trajectory and control predictions. LAV [44]

consists of a perception DNN, motion planner, and controller.
The DNN consumes 3 images from 3 RGB cameras and a
LiDAR point cloud, and outputs a BEV map which is fed
to the planner along with the next waypoint coordinates to
produce the next 10 future waypoints. The waypoints are
passed to the controller along with a braking signal from a
binary DNN classifier to compute the output.

B. RQ#1. Properties Evaluated

To evaluate SGSM’s ability to encode safe driving prop-
erties relevant to AV systems, we selected 9 properties from
the laws and best practices of the Virginia Driving Code [18].
Laws were selected to yield a set of properties within scope
of current AV systems and diverse in both temporal aspects
required to analyze the property compliance and richness of
the SG structure required to evaluate the APs.

Table I shows the successful encoding of those properties,
with their relevant statute, a short English summary, and their
encoding using the APs over the SG* composed through the
LTLf formula. Additionally, the number of states in the DFA
is shown as a measure of temporal complexity. We note that
precisely encoding the semantics of the law is challenging.
Returning to the stop sign example, the APs are evaluated
over the LTLf formula to track if isStopped is true at least
once between hasStop becoming true and later becoming
false, indicating that ego stopped while being controlled by
the stop sign. This is a necessary but insufficient specification
to meet the criteria under the law; notably, this does not
check that the vehicle stopped at the stop line rather than
before, nor does it enforce separate stops for successive stop
signs along the same lane.

As ω4,ω7, and ω8 contain a threshold parameter, we
instantiate 3 versions of each, for a total of 15 monitors.
For ω4, S → {5, 10, 15}m

s was chosen to represent parking-
lot, urban, and suburban driving speeds. For ω7, empirical
studies found that lane changes take 4.6s on average with
a std dev of 2.3s and max of 13.3s [45]; thus we select
T → {5, 10, 15}s to represent the average, 2 std dev, and
beyond max. For ω8, we select T → {5, 10, 15}s as the time
to clear the intersection as a left turn across a 4 lane road at
10mph takes 5s, and we allow for a buffer factor of 1⇓3⇔.

TABLE I: Properties implemented in SGL to address RQ#1

ω VA Code English Summary of Property LTLf Formula over SG propositions # DFA
States

ω1 § 46.2-804 Ego vehicle cannot be in the opposing lane G(¬isOppLane) 2
ω2 § 46.2-802 Ego vehicle cannot be out of the road. G(¬isOffRoad) 2
ω3 § 46.2-802 If ego vehicle is in the rightmost lane, then ego vehicle should

not steer to the right.
G(isInRightLane ↑ ¬isJunction

↓ isNotSteerRight)
2

ω4 § 46.2-816 Ego vehicle should not be behind another entity in the same
lane whithin 4 meters while travelling at a speed > S.

G(isNearColl ↓ ¬isFasterThanS) 2

ω5 § 46.2-816 If ego vehicle is between 4 and 7 meters of the closest vehicle
in the same lane and then comes within 4 meters of a vehicle
in the same lane, throttle must not be positive.

G((isSuperNear ↑ ¬isNearColl)↑
X (isNearColl) ↓ X (isNoThrottle))

3

ω6 § 46.2-888 If the ego vehicle is moving and there is no entity in the same
lane as the ego vehicle within 7 meters, and there is no red
traffic light or stop sign controlling the ego vehicle’s lane, then
the ego vehicle should not stop.

G(¬isStopped ↑ ¬(isSuperNear ↔ isNearColl)↑
¬hasRed ↑ ¬hasStop↑
X (¬(isSuperNear ↔ isNearColl)↑

¬hasRed ↑ ¬hasStop) ↓ X (¬isStopped))

2

ω7 § 46.2-804 If ego vehicle is not in a junction, then ego vehicle cannot be
in more than one lane for more than T seconds (N samples).

¬F$[N][isMultipleLanes ↑ ¬isJunction] N+1

ω8 § 46.2-833 Ego vehicle must exit junctions within T seconds (N samples). ¬F$[N][isOnlyJunction] N+1
ω9 § 46.2-821 Once the ego vehicle detects a new stop signal controlling its

lane, it must stop before passing the stop signal.
G((¬hasStop ↑ X (hasStop))

↓ (X (hasStop U (isStopped ↔ G(hasStop)))))
4

We note that while some parameters can be expressed
in SGL, others are reliant on the parameterization of the
underlying SGG. In ω4, ω5, and ω6, we use 4 and 7 meters
as the distance thresholds because these correspond to the
‘near collision’ and ‘super near’ relationship used by prior
AV SGGs [25], [19]. Further, the underlying laws do not
provide concrete values, e.g. the law from ω5 says “[...] a
motor vehicle shall not follow [a vehicle] more closely than

is reasonable and prudent [...]” (emphasis added) [18].

C. RQ#2. Violations Observed

As described in RQ#1, we derive 15 properties from
the Virginia Driving Code and use SGSM to implement a
monitor for each property. We ran each AV system through
the 10 evaluation scenarios of the CARLA leaderboard and
separately evaluated all 15 properties at a rate of 2Hz.

Table II shows how many of the 10 routes resulted in a
violation for each AV system for each of the 15 properties.
Note that since the properties are defined as global properties,
we track only the first violation, for a maximum of 10
possible violations per AV system per property. We find that
the number of violations ranges from 51 for TCP to 72 for
Interfuser (over 150 possible violations). Fig. 4a shows an
instance of Interfuser violating ω1; as the road curved to the
right, Interfuser did not steer right enough and drifted into
the opposing lane. Fig. 4b shows LAV violating ω2, turning
left through a junction too sharply, exiting the junction into
the median between two lanes. While this is not off of the
road bed, the SGG denotes it as off road because it is not
part of a defined lane of traffic. Fig. 2 shows TCP violating
ω9 over a series of frames. TCP approaches a junction with a
marked stop line, but it does not stop and enters the junction.

The property violation statistics also give insights into
the driving style of the AVs. None of the AVs violated ω4,
meaning that they maintained sufficient follow distance from
lead vehicles. However, we also see that Interfuser and TCP
violated ω6 over more than half the routes, i.e., they stopped
in the middle of the roadway. While we do observe 9 cases
where this stoppage is unjustifiable, in 4 other cases we
observe that the AV is stopping due to a stopped vehicle

ahead of it but farther than the 7 meters prescribed in ω6,
and in the remaining 4 cases there is a traffic light that
is transitioning out of red. This highlights the difficulty in
concretizing the parameters used in the specification given
the imprecise definitions in the driving manual; 7 meters may
be acceptable depending on circumstances. This is further
shown in the performance across the parameterizations of
ω7 and ω8. As T increases, the specification is more relaxed
which leads to fewer violations; e.g. TCP reduces from 8
violations to 0 under ω8 when T is increased from 5 to
10. Although TCP eliminates all violations, Interfuser and
LAV do not improve as rapidly. This may point to different
AV’s optimizations; they likely did not optimize for junction
crossing times, and instead may have prioritized moving
cautiously through a junction leading to slower transits.

Overall, the study highlights three features of SGSM.
First, it showcases how it enabled the specification and
monitoring of driving properties that included entities like
lanes, vehicles, and traffic signals; their attributes like speed
and color; and their relations like is in, controls, and opposes.
Second, it shows how SGSM can be parameterized to support
a rich set of property types, from stateless to temporal,
over propositions that are easily accessible through the scene
graph. Third, it provides evidence of SGSM’s generality as
per its direct application to monitor three distinct systems.

D. Threats of validity

In this work we showed the feasibilty of implementing an
SG-based monitor and its utility for checking safety property
specifications based on driving rules. The external validity of
our results, however, is bounded by our use of simulation
to create the SGs using ground truth data. Working in
simulation enabled us to construct an SGG module that
generates accurate SG representations of the world to judge
the cost-effectiveness of the framework as a whole, but we
recognize that it will be necessary to consider SGGs using
various sensor types and in the wild. Moreover, CARLA
suffers from the simulation-reality gap [46], so deploying
the approach in the real world will be necessary to assess its
generalizability. Similarly, more complex operational domain

(a) Interfuser violates ω1. Missed road curve, crossed into opp. lane. (b) LAV violates ω2. Left turn missed lane and drove into median.

Fig. 4: Interfuser and LAV safety violations.
TABLE II: Count of Routes (10 total) with Property Violations by AV System to address RQ#2

Property ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 Total
System S=5 S=10 S=15 T=5 T=10 T=15 T=5 T=10 T=15
InterFuser 3 0 10 0 0 0 3 9 10 5 5 10 5 5 7 72
TCP 6 0 10 0 0 0 2 6 5 3 3 8 0 0 8 51
LAV 6 1 10 0 0 0 3 2 8 6 5 10 6 1 7 65
Total 15 1 30 0 0 0 8 17 23 14 13 28 11 6 22 188

properties should be specified and checked. The internal
validity of our results are related to our implementation of
SGSM, and to overcome this threat we released an artifact.

V. RELATED WORK
Prior work has built specialized monitors for AV software

subcomponents such as trajectory prediction [47], collision
avoidance [48], or interfaces between AV components such
as the CAN bus [15], [49] or through ROS topics [50].
These efforts include propositions over simple types, e.g.,
“disengaged cruise control” or “traveled for 2 seconds”. Prior
work has also examined monitoring end-to-end systems.
Desai et al. propose using observable trajectories to monitor
path following and safety buffers using signal temporal logic
(STL) [51]. Stamenkovich et al. use system-independent
runtime monitors that observe only the external inputs and
outputs to check properties specified in LTL [14]. Morse
et al. [52] characterize spatial relationships between sensed
objects and robot behaviors, by using graph representations
and First Order Logic (FOL), that can be used for runtime
monitoring. However, these techniques assume there is a
mapping from the sensed inputs to the semantics of the APs.

The introduction of machine-learned components to pro-
cess multi-dimensional sensors complicate the design of
monitors due to the black-box nature of such components
and their ability to perform previously separate subtasks end-
to-end. Grieser et al. provide a mechanism for monitoring
a limited set of safety properties based on LiDAR point
clouds [53], however, it is not generalizable to other sen-
sors or properties. Work in shielded reinforcement learning
aims to learn [54] or enforce [55] safety properties for
agents specified in temporal logic and has shown to increase
robustness of learned behaviors. But again, extracting the
APs used in the specification requires either limiting the
propositions to those already consumed by the agent or
additional effort to extract the relevant semantics, both of
which limit generalizability. Anderson et al. try to overcome
this issue by introducing Spatial Regular Expressions for
pattern matching over perception streams containing spatial
and temporal data, leveraging object detection networks [56].

Nonetheless, it can only reason about relationships given by
bounding box overlap, and misses richer types of relation-
ships like proximity between entities or traffic semantics.

Another line of related research has explored different
ontologies in the AV domain [57] for scenario-based testing
[58], [59] and for situation assessment and decision making
[60], [61], [62]. The main limitation of these approaches,
however, is that the ontologies are completely tied to the
SUT, thus only encoding the information needed by the
system and making them nongeneralizable. Our previous
work on SGs for AV testing [19] demonstrated the utility
of SGs as a basis for measuring coverage of nontemporal
properties, but does not provide a mechanism to express and
automatically check the rich properties studied here. Closer
to our abstraction, Majzik et al. envisioned using a graph-
based ontology of the environment with STL to monitor
system performance [63], but defines no properties for self-
driving cars. Our work extends and formalizes this notion
with: a spatial-relation graph that can be computed from
external, system-independent inputs, a graph-semantics logic
DSL and LTLf that can specify safety-critical properties;
and we demonstrate that this approach can automatically find
property violations at runtime for AV driving systems.

VI. CONCLUSION
Ensuring that AVs’ behaviors abide by safe driving prop-

erties is key to their successful deployment. Specifying and
monitoring such properties, however, is challenging as they
depend not just on the AV but also on related entities
that influence its behavior but are not readily accessible.
This paper introduces SGSM, a framework to support the
specification of safe driving properties and their automatic
synthesis into an AV runtime monitor. It provides a general
mechanism based on scene graphs to abstract relevant entities
from sensor inputs and a domain-specific language to enable
property specification over those graphs. The study shows
the expressiveness of the DSL for specifying real driving
properties and the generality of the monitoring mechanism
through its application to 3 off-the-shelf AV systems where
it uncovers various driving violations.

REFERENCES

[1] R. Bellan, “Cruise inches into waymo’s territory in
the phoenix area,” Aug 2023, accessed on 02.07.2024.
[Online]. Available: https://techcrunch.com/2023/08/08/cruise-inches-
into-waymos-territory-in-the-phoenix-area/

[2] ——, “Cruise and waymo win robotaxi expansions
in san francisco,” Aug 2023, accessed on 02.07.2024.
[Online]. Available: https://techcrunch.com/2023/08/10/cruise-and-
waymo-win-robotaxi-expansions-in-san-francisco/

[3] A. Marshall, “Uber video shows the kind of crash self-driving
cars are made to avoid,” Mar 2018, accessed on 02.07.2024.
[Online]. Available: https://www.wired.com/story/uber-self-driving-
crash-video-arizona/

[4] N. Board, “Collision between vehicle controlled by developmental au-
tomated driving system and pedestrian. nat. transpot. saf. board, wash-
ington, dc,” USA, Tech. Rep. HAR-19-03, 2019. URL https://www.
ntsb. gov/investigations . . . , Tech. Rep., 2019.

[5] B. Templeton, “Tesla in taiwan crashes directly into
overturned truck, ignores pedestrian, with autopilot on,”
Forbes, Jun 2020, accessed on 02.07.2024. [Online]. Available:
https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-
taiwan-crashes-directly-into-overturned-truck-ignores-pedestrian-
with-autopilot-on/?sh=20a7458f58e5link

[6] N. E. Boudette and N. Chokshi, “U.s. will investigate tesla’s
autopilot system over crashes with emergency vehicles,” New York

Times, Aug 2021, accessed on 02.07.2024. [Online]. Available: https:
//www.nytimes.com/2021/08/16/business/tesla-autopilot-nhtsa.html

[7] R. Bellan, “A waymo self-driving car killed a dog in
‘unavoidable’ accident,” Jun 2023, accessed on 02.07.2024. [Online].
Available: https://techcrunch.com/2023/06/06/a-waymo-self-driving-
car-killed-a-dog-in-unavoidable-accident/

[8] A. Roy and H. Jin, “California regulator probes crashes involving gm’s
cruise robotaxis,” Aug 2023, accessed on 02.07.2024. [Online]. Avail-
able: https://www.reuters.com/business/autos-transportation/gms-
cruise-robotaxi-collides-with-fire-truck-san-francisco-2023-08-19/

[9] T. Victor, K. Kusano, T. Gode, R. Chen, and
M. Schwall, “Safety performance of the waymo rider-
only automated driving system at one million miles,” Tech.
Rep., February 2023, accessed on 02.07.2024. [Online].
Available: https://storage.googleapis.com/sdc-prod/v1/safety-report/
Waymo-Safety-Methodologies-and-Readiness-Determinations.pdf

[10] L. Zhang, “Cruise’s safety record over 1 million
driverless miles,” Apr 2023, accessed on 02.07.2024.
[Online]. Available: https://getcruise.com/news/blog/2023/cruises-
safety-record-over-one-million-driverless-miles/

[11] H. Araujo, M. R. Mousavi, and M. Varshosaz, “Testing, validation,
and verification of robotic and autonomous systems: A systematic
review,” ACM Trans. Softw. Eng. Methodol., vol. 32, no. 2, mar 2023.
[Online]. Available: https://doi.org/10.1145/3542945

[12] N. Mehdipour, M. Althoff, R. D. Tebbens, and C. Belta, “Formal
methods to comply with rules of the road in autonomous driving:
State of the art and grand challenges,” Automatica, vol. 152, p.
110692, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0005109822005568

[13] K. Watanabe, E. Kang, C.-W. Lin, and S. Shiraishi, “Runtime mon-
itoring for safety of intelligent vehicles,” in Proceedings of the 55th

annual design automation conference, 2018, pp. 1–6.
[14] J. Stamenkovich, L. Maalolan, and C. Patterson, “Formal assurances

for autonomous systems without verifying application software,” in
2019 Workshop on Research, Education and Development of Un-

manned Aerial Systems (RED UAS). IEEE, 2019, pp. 60–69.
[15] A. Kane, O. Chowdhury, A. Datta, and P. Koopman, “A case study

on runtime monitoring of an autonomous research vehicle (arv)
system,” in Runtime Verification: 6th International Conference, RV

2015, Vienna, Austria, September 22-25, 2015. Proceedings. Springer,
2015, pp. 102–117.

[16] M. Mauritz, F. Howar, and A. Rausch, “Assuring the safety of
advanced driver assistance systems through a combination of simu-
lation and runtime monitoring,” in Leveraging Applications of Formal

Methods, Verification and Validation: Discussion, Dissemination, Ap-

plications: 7th International Symposium, ISoLA 2016, Imperial, Corfu,

Greece, October 10-14, 2016, Proceedings, Part II 7. Springer, 2016,
pp. 672–687.

[17] K. Leach, C. S. Timperley, K. Angstadt, A. Nguyen-Tuong, J. Hiser,
A. Paulos, P. Pal, P. Hurley, C. Thomas, J. W. Davidson, et al., “Start:

A framework for trusted and resilient autonomous vehicles (practical
experience report),” in 2022 IEEE 33rd International Symposium on

Software Reliability Engineering (ISSRE). IEEE, 2022, pp. 73–84.
[18] “Virginia code title 46.2 chapter 8 - motor vehicles, regulation of

traffic.”
[19] T. Woodlief, F. Toledo, S. Elbaum, and M. B. Dwyer, “S3c: Spatial se-

mantic scene coverage for autonomous vehicles,” in 2024 IEEE/ACM

46th International Conference on Software Engineering (ICSE ’24).
ACM, 2024.

[20] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the

1st Annual Conference on Robot Learning, 2017, pp. 1–16.
[21] J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. A. Shamma, M. S.

Bernstein, and L. Fei-Fei, “Image retrieval using scene graphs,” in
2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2015, pp. 3668–3678.
[22] X. Chang, P. Ren, P. Xu, Z. Li, X. Chen, and A. G. Hauptmann, “A

comprehensive survey of scene graphs: Generation and application,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.
1–1, 2021.

[23] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com/facebookresearch/detectron2, 2019.

[24] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

[25] A. V. Malawade, S.-Y. Yu, B. Hsu, H. Kaeley, A. Karra, and M. A.
Al Faruque, “roadscene2vec: A tool for extracting and embedding road
scene-graphs,” Knowledge-Based Systems, vol. 242, p. 108245, 2022.

[26] J. Li, H. Gang, H. Ma, M. Tomizuka, and C. Choi, “Important object
identification with semi-supervised learning for autonomous driving,”
pp. 2913–2919, 2022.

[27] A. Prakash, S. Debnath, J. Lafleche, E. Cameracci, G. State,
S. Birchfield, and M. T. Law, “Self-supervised real-to-sim
scene generation,” in 2021 IEEE/CVF International Conference

on Computer Vision (ICCV). Los Alamitos, CA, USA: IEEE
Computer Society, oct 2021, pp. 16 024–16 034. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.01574

[28] A. Silberschatz, H. Korth, and S. Sudarshan, Database systems con-

cepts. McGraw-Hill, Inc., 2005.
[29] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, and D. Vrgoč,

“Foundations of modern query languages for graph databases,” ACM

Computing Surveys (CSUR), vol. 50, no. 5, pp. 1–40, 2017.
[30] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM

Transactions on software engineering and methodology (TOSEM),
vol. 11, no. 2, pp. 256–290, 2002.

[31] T. Reinbacher, M. Függer, and J. Brauer, “Runtime verification of
embedded real-time systems,” Formal methods in system design,
vol. 44, pp. 203–239, 2014.

[32] S. Pinisetty, P. S. Roop, S. Smyth, N. Allen, S. Tripakis, and R. V.
Hanxleden, “Runtime enforcement of cyber-physical systems,” ACM

Transactions on Embedded Computing Systems (TECS), vol. 16,
no. 5s, pp. 1–25, 2017.

[33] H. Jiang, S. Elbaum, and C. Detweiler, “Reducing failure rates
of robotic systems though inferred invariants monitoring,” in 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2013, pp. 1899–1906.

[34] A. Pnueli, “The temporal logic of programs,” in 18th Annual Sympo-

sium on Foundations of Computer Science (sfcs 1977). ieee, 1977,
pp. 46–57.

[35] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces,” in IJCAI’13 Proceedings of the

Twenty-Third international joint conference on Artificial Intelligence.
Association for Computing Machinery, 2013, pp. 854–860.

[36] S. Zhu, G. Pu, and M. Y. Vardi, “First-order vs. second-order encod-
ings for ltlf-to-automata.”

[37] F. Fuggitti, “Ltlf2dfa,” March 2019.
[38] E. A. F. CARLA Team, Intel Autonomous Agents Lab and

AlphaDrive, “Autonomous driving on carla leaderboard,” accessed
on 02.07.2024. [Online]. Available: https://paperswithcode.com/sota/
autonomous-driving-on-carla-leaderboard

[39] H. Shao, L. Wang, R. Chen, H. Li, and Y. Liu, “Safety-enhanced
autonomous driving using interpretable sensor fusion transformer,” in
Conference on Robot Learning. PMLR, 2023, pp. 726–737.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, !. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[41] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao, “Trajectory-guided
control prediction for end-to-end autonomous driving: A simple yet
strong baseline,” Advances in Neural Information Processing Systems,
vol. 35, pp. 6119–6132, 2022.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2016.
[43] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint

arXiv:1406.1078, 2014.
[44] D. Chen and P. Krähenbühl, “Learning from all vehicles,” in CVPR,

2022.
[45] T. Toledo and D. Zohar, “Modeling duration of lane changes,” Trans-

portation Research Record, vol. 1999, no. 1, pp. 71–78, 2007.
[46] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap: The

use of simulation in evolutionary robotics,” in European Conference

on Artificial Life. Springer, 1995, pp. 704–720.
[47] A. Farid, S. Veer, B. Ivanovic, K. Leung, and M. Pavone, “Task-

relevant failure detection for trajectory predictors in autonomous
vehicles,” in Conference on Robot Learning. PMLR, 2023, pp. 1959–
1969.

[48] C. Luo, R. Wang, Y. Jiang, K. Yang, Y. Guan, X. Li, and Z. Shi, “Run-
time verification of robots collision avoidance case study,” in 2018

IEEE 42nd Annual Computer Software and Applications Conference

(COMPSAC), vol. 1. IEEE, 2018, pp. 204–212.
[49] R. Wang, Y. Wei, H. Song, Y. Jiang, Y. Guan, X. Song, and X. Li,

“From offline towards real-time verification for robot systems,” IEEE

Transactions on Industrial Informatics, vol. 14, no. 4, pp. 1712–1721,
2018.

[50] J. Huang, C. Erdogan, Y. Zhang, B. Moore, Q. Luo, A. Sundaresan,
and G. Rosu, “Rosrv: Runtime verification for robots,” in Runtime

Verification: 5th International Conference, RV 2014, Toronto, ON,

Canada, September 22-25, 2014. Proceedings 5. Springer, 2014,
pp. 247–254.

[51] A. Desai, T. Dreossi, and S. A. Seshia, “Combining model checking
and runtime verification for safe robotics,” in International Conference

on Runtime Verification. Springer, 2017, pp. 172–189.
[52] C. Morse, L. Feng, M. Dwyer, and S. Elbaum, “A framework for

the unsupervised inference of relations between sensed object spatial
distributions and robot behaviors,” in 2023 IEEE International Con-

ference on Robotics and Automation (ICRA), 2023, pp. 901–908.

[53] J. Grieser, M. Zhang, T. Warnecke, and A. Rausch, “Assuring the
safety of end-to-end learning-based autonomous driving through run-
time monitoring,” in 2020 23rd Euromicro Conference on Digital

System Design (DSD). IEEE, 2020, pp. 476–483.
[54] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and

U. Topcu, “Safe reinforcement learning via shielding,” in Proceedings

of the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.
[55] B. Könighofer, J. Rudolf, A. Palmisano, M. Tappler, and R. Bloem,

“Online shielding for reinforcement learning,” Innovations in Systems

and Software Engineering, pp. 1–16, 2022.
[56] J. Anderson, G. Fainekos, B. Hoxha, H. Okamoto, and D. Prokhorov,

“Pattern matching for perception streams,” in International Conference

on Runtime Verification. Springer, 2023, pp. 251–270.
[57] M. Zipfl, N. Koch, and J. M. Zöllner, “A comprehensive review on

ontologies for scenario-based testing in the context of autonomous
driving,” in 2023 IEEE Intelligent Vehicles Symposium (IV), 2023, pp.
1–7.

[58] F. Klueck, Y. Li, M. Nica, J. Tao, and F. Wotawa, “Using ontologies
for test suites generation for automated and autonomous driving func-
tions,” in 2018 IEEE International Symposium on Software Reliability

Engineering Workshops (ISSREW), 2018, pp. 118–123.
[59] F. Wotawa, J. Bozic, and Y. Li, “Ontology-based testing: An emerging

paradigm for modeling and testing systems and software,” in 2020

IEEE International Conference on Software Testing, Verification and

Validation Workshops (ICSTW), 2020, pp. 14–17.
[60] S. Ulbrich, T. Nothdurft, M. Maurer, and P. Hecker, “Graph-based

context representation, environment modeling and information ag-
gregation for automated driving,” in 2014 IEEE Intelligent Vehicles

Symposium Proceedings, 2014, pp. 541–547.
[61] M. Hülsen, J. M. Zöllner, and C. Weiss, “Traffic intersection situation

description ontology for advanced driver assistance,” in 2011 IEEE

Intelligent Vehicles Symposium (IV), 2011, pp. 993–999.
[62] M. Buechel, G. Hinz, F. Ruehl, H. Schroth, C. Gyoeri, and A. Knoll,

“Ontology-based traffic scene modeling, traffic regulations dependent
situational awareness and decision-making for automated vehicles,” in
2017 IEEE Intelligent Vehicles Symposium (IV), 2017, pp. 1471–1476.

[63] I. Majzik, O. Semeráth, C. Hajdu, K. Marussy, Z. Szatmári, Z. Micskei,
A. Vörös, A. A. Babikian, and D. Varró, “Towards system-level
testing with coverage guarantees for autonomous vehicles,” in 2019

ACM/IEEE 22nd International Conference on Model Driven Engineer-

ing Languages and Systems (MODELS). IEEE, 2019, pp. 89–94.

APPENDIX

TABLE III: Intermediate variables used in APs

Name SGL expression
egoLanes relSet(Ego, isIn)
egoRoads relSet(egoLanes, isIn)
egoJunctions relSet(egoRoads, isIn)
oppLanes relSet(egoLanes, opposes)

offRoad
filterByAttr(egoLanes, kind,
εx : x = offRoad)

rightLanes relSet(egoLanes, toRightOf)
steerRight filterByAttr(Ego, steer,εx : x > 0)
inEgoLane relSetR(egoLanes, isIn) \ {Ego}
nearColl relSet(inEgoLane, near coll)
superNear relSet(inEgoLane, super near)
egoFasterS filterByAttr(Ego, speed,εx : x > S)
noThrottle filterByAttr(Ego, throttle,εx : x < ϑ)
tLights filterByAttr(G, kind,εx : x = trafficLight)

redLights
filterByAttr(tLights, lightState,
εx : x = Red)

trafLightLns relSet(redLights, controlsTrafficOf)
stopSigns filterByAttr(G, kind,εx : x = stopSign)
stopSignLanes relSet(stopSigns, controlsTrafficOf)
egoStopped filterByAttr(Ego, speed,εx : x < ϑ)
juncRoads relSetR(egoJunctions, isIn)

TABLE IV: Atomic Propositions

Atomic Prop. SGL expression
isJunction |egoJunctions| > 0
isOppLane |oppLanes| > 0
isOffRoad |offRoad| > 0
isInRightLane |rightLanes| = 0
isNotSteerRight |steerRight| = 0
isNearColl |nearColl| > 0
isFasterThanS |egoFasterS| = 1
isSuperNear |superNear| > 0
isNoThrottle |noThottle| = 1
isMultipleLanes |egoLanes| > 1
hasRed |trafLightLns ↗ egoLanes| > 0
hasStop |stopSignLanes ↗ egoLanes| > 0
isStopped |egoStopped| = 1
isOnlyJunction |egoRoads \ juncRoads| = 0

