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Abstract 

The genetic blueprint for the essential functions of life is encoded in DNA, which is translated into proteins—the engines driving 

most of our metabolic processes. Recent advancements in genome sequencing have unveiled a vast diversity of protein families, but 
compared with the massive search space of all possible amino acid sequences, the set of known functional families is minimal. One 

could say nature has a limited protein ”vocabulary.”A major question for computational biologists, therefore, is whether this vocabulary 

can be expanded to include useful proteins that went extinct long ago or have never evolved (yet). By merging evolutionary algorithms, 
machine learning, and bioinformatics,we can develop highly customized ”designer proteins.”We dub the new subfield of computational 
evolution, which employs evolutionary algorithms with DNA string representations, biologically accurate molecular evolution, and 

bioinformatics-informed fitness functions, Evolutionary Algorithms Simulating Molecular Evolution. 
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Antecedents of EASME 

EAs model evolution, using selection, reproduction, and mutation 

to find solutions to optimization and design problems. In 2006, 

Banzhaf et al.proposed a bold new idea—that progress in this field 

had slowed, but that it could continue to improve by incorporating 

more of the nuances of the natural world [1]. We propose a 

new approach to solving biological problems, EASME, which will 

merge computational evolution (CE) with molecular-level bioin-

formatics.While in-silico evolution often purposely abstracts away 

from nature, EASME encodes the full complexity of molecular 

evolution. What is novel to the field of CE today is the realized 

ability tomodel actual DNA chromosomes, encoding actual genes, 

and their downstream proteins in the context of realistic fitness 

evaluations and structure predictions. 

Defining the problem 

Proteomic applications are a primary target for EASME. Proteins 

are sentences written with an alphabet of 20 amino acids. Many 

proteins exceed 1000 characters in length, so the search space 

of possible proteins is vast. Most string permutations would be 

unstable and non-functional, and thus, the search space of pos-

sible proteins exists as a few tiny islands within a vast “sea 

of invalidity.” Within that sea exists an archipelago of possible 

functional proteins, and only a small region of those is occupied 

by the proteins that actually evolved (see Fig. 1). EASME aims to 

expand the set of extant proteins by colonizing new islands in the 

sea of invalidity. 

The EASME approach employs CE to achieve this end. Recent 

advancements in machine learning (ML) have led many to claim 

Figure 1. The search space of proteins—a vast sea of invalidity contains a 

handful of islands containing functional proteins, only a small subset of 
which have likely been evolved by nature. 

that complex biological problems, most notably protein folding, 

are essentially ”solved.”With this being the case, one may wonder 

why our focus remains on CE. ML does have a place in the pursuit 

of EASME, but our reasoning for focusing on CE is 2-fold—one, we 

agree with Banzhaf that models drawing on evolution would be the 

best way to study and fast forward evolution; and two, ML falls 

short in a key area. 

Where ML falls short 
In truth, the advances of ML have not yielded a fundamental 

understanding of de novo protein folding, as was discussed in ”De 

novo protein folding on computers. Benefits and challenges” by 

Barry Robson [2]: 

...AlphaFold does not solve, or seek to solve, the folding problem. 

It ”reasons” from what is ultimately biological data, not from 

fundamental laws of chemical physics. 

Importantly, ML models will always be limited by their training 

sets, which are restricted to the archipelago of extant functional
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Figure 2. EASME exists at the intersection of CE, computational biology, and molecular evolution, drawing on the strengths of all three to solve problems. 

proteins (and usually represent some small subset of those). The 

current state of many areas of AI could be defined similarly— 

while astounding advancements have surely been made in the 

field of deep learning, and this has yielded very impressive results 

in some cases; these results are ultimately facsimiles of what is, 

not a true understanding of why it is. 

Where evolutionary algorithms can help 

When it comes to uncovering the why of something, evolution-

ary computation holds a unique advantage. This was succinctly 

observed in D’Angelo et al.’s 2023 paper ”Identifying patterns in 

multiple biomarkers to diagnose diabetic foot using an explain-

able genetic programming (GP)-based approach,” in which GP— 

a type of EA employing complex representations—was used to 

diagnose diabetic foot [3]. Not only did the team’s GP approach 

outperformML,but the decisions the programproducedwere easily 

comprehensible by human operators. 

Evolutionary algorithms simulating 

molecular evolution 

As computing power continues to increase, complex simulations 

of evolving biochemical systems are approaching feasibility, even 

on desktop computers. This has been demonstrated most recently 

in “Modeling the emergence of Wolbachia toxin antidote protein 

functions with an evolutionary algorithm” [4], a project in which 

researchers drove forward evolution of two specific, interacting 

proteins involved in cytoplasmic incompatibility. This project 

specifically modeled a simple two-protein network, rewarding 

tight binding interactions between a toxin and antidote. That 

paper provides proof of concept that more complicated protein 

networks might be modeled and cascading co-evolutionary 

effects and evolution of novel domains can be tracked within 

those systems. In another article, ”Molecular dynamics simulation 

of an entire cell” by Stevens et al., an entire minimal cell was 

simulated in silico [5]. With the computing power to simulate 

ever more complex biochemical systems and protein–protein 

interactions now at our disposal, we see a clear path toward 

modeling protein–protein co-evolution on the level of 2–100 

discrete protein interactions, provided that each individual 

interaction can be expressed in code. Furthermore, through the 

continued development of this burgeoning field—leveraging the 

biomimicry of EAs,ML, and state-of-the-art hardware (see Fig. 2)— 

we discern that uncovering fundamental grammar structures 

and syntax of our DNA and proteins is now possible and that 

generative AI in the form of EASME can rewrite novel useful 

proteins.
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Figure 3. Ways to employ EASME. 

The path forward 

EASME represents a specific effort to focus on expanding the set of 

extant proteins. The core EASME algorithm, once developed, can 

run in a few distinct ways (see Fig. 3). First, EASME can evolve a 

random sequence toward a known consensus sequence (“unknown 

to known”). In this context, the desired outcome is to reconstruct 

sequence clusters that went extinct during the process of evolu-

tion. Selective fitness is implemented by pushing the evolution 

toward a known protein sequence family. EASME outputs sam-

ples of Pareto optimal sequences from theoretical evolutionary 

intermediates, effectively recovering extinct sequence variants. 

Howmuch the EASME generated sequenceswould differ from real 

historical intermediates is unknowable without ancient genomes. 

However, the utility of generated sequences can be tested, mea-

sured, and linked to a corresponding successful discovery rate. 

The second way to run EASME is known to unknown, where  a  

known entity is forward evolved into the future by implementing 

a selection regimen that drives toward a desired characteristic 

phenotype. This methodology outputs Pareto optimal sequences 

that may have never evolved yet and is effectively a fast forward 

button on evolution into the future. While this approach would 

undoubtedly producemany false positives,wet labworkwill allow 

us to test and validate designed proteins while simultaneously 

honing a given enzyme’s fitness function. Biologically measuring 

the ratio of valid to invalid protein outputs would allow us to 

optimize the design process (and even if that ratio is low, it will still 

be orders of magnitude faster than natural evolution, a process 

which plays out on evolutionary timescales). To achieve both 

these ends, EASME will employ EA and GP models supplemented 

with ML where appropriate. 

The authors are currently exploring several initial EASME 

projects and building an initial toolkit for open-source usage 

of EASME. An extended version of this paper is available on 

arXiv.org [6]. We plan to document the progress of the EASME 

field at https://aub.ie/easme. We welcome contributions from 

any researchers with an interest in this field. 

Key Points 

• The set of proteins produced by nature is minuscule 

compared to the search space of all possible proteins. 

• AI algorithms capable of efficiently exploring this search 

space are now emerging. 

• We propose a new AI framework, driven by evolutionary 

algorithms, capable of searching this space. 

• The potential biotechnological impacts of this field are 

almost limitless. 
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