Briefings in Bioinformatics, 2024, 25(5), bbae360

https://doi.org/10.1093/bib/bbae360
Opinion Article

OXFORD

Evolutionary algorithms simulating molecular evolution:
a new field proposal

James S.L. Browning Jr.(), Daniel R. Tauritz (!, John Beckmann ([5)%*

1Department of Computer Science and Software Engineering, Samuel Ginn College of Engineering, 3101 Shelby Center, Auburn, AL 36849-5347, United States
2Department of Entomology and Plant Pathology, Auburn University College of Agriculture, 301 Funchess Hall, Auburn, AL 36845, United States

*Corresponding author. Department of Entomology and Plant Pathology, Auburn University College of Agriculture, 301 Funchess Hall, Auburn, AL 36845,
United States. E-mail: beckmann@auburn.edu

Abstract

The genetic blueprint for the essential functions of life is encoded in DNA, which is translated into proteins—the engines driving
most of our metabolic processes. Recent advancements in genome sequencing have unveiled a vast diversity of protein families, but
compared with the massive search space of all possible amino acid sequences, the set of known functional families is minimal. One
could say nature has a limited protein "vocabulary.” A major question for computational biologists, therefore, is whether this vocabulary
can be expanded to include useful proteins that went extinct long ago or have never evolved (yet). By merging evolutionary algorithms,
machine learning, and bioinformatics, we can develop highly customized ”designer proteins.” We dub the new subfield of computational
evolution, which employs evolutionary algorithms with DNA string representations, biologically accurate molecular evolution, and
bioinformatics-informed fitness functions, Evolutionary Algorithms Simulating Molecular Evolution.
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Antecedents of EASME

EAs model evolution, using selection, reproduction, and mutation
to find solutions to optimization and design problems. In 2006,
Banzhaf et al. proposed a bold new idea—that progress in this field
had slowed, but that it could continue to improve by incorporating
more of the nuances of the natural world [1]. We propose a
new approach to solving biological problems, EASME, which will
merge computational evolution (CE) with molecular-level bioin-
formatics. While in-silico evolution often purposely abstracts away
from nature, EASME encodes the full complexity of molecular
evolution. What is novel to the field of CE today is the realized
ability to model actual DNA chromosomes, encoding actual genes,
and their downstream proteins in the context of realistic fitness
evaluations and structure predictions.

Defining the problem

Proteomic applications are a primary target for EASME. Proteins
are sentences written with an alphabet of 20 amino acids. Many
proteins exceed 1000 characters in length, so the search space
of possible proteins is vast. Most string permutations would be
unstable and non-functional, and thus, the search space of pos-
sible proteins exists as a few tiny islands within a vast “sea
of invalidity.” Within that sea exists an archipelago of possible
functional proteins, and only a small region of those is occupied
by the proteins that actually evolved (see Fig. 1). EASME aims to
expand the set of extant proteins by colonizing new islands in the
sea of invalidity.

The EASME approach employs CE to achieve this end. Recent
advancements in machine learning (ML) have led many to claim
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Figure 1. The search space of proteins—a vast sea of invalidity contains a
handful of islands containing functional proteins, only a small subset of
which have likely been evolved by nature.

that complex biological problems, most notably protein folding,
are essentially "solved.” With this being the case, one may wonder
why our focus remains on CE. ML does have a place in the pursuit
of EASME, but our reasoning for focusing on CE is 2-fold—one, we
agree with Banzhaf that models drawing on evolution would be the
best way to study and fast forward evolution; and two, ML falls
shortin a key area.

Where ML falls short

In truth, the advances of ML have not yielded a fundamental
understanding of de novo protein folding, as was discussed in "De
novo protein folding on computers. Benefits and challenges” by
Barry Robson [2]:

...AlphaFold does not solve, or seek to solve, the folding problem.
It "reasons” from what is ultimately biological data, not from
fundamental laws of chemical physics.

Importantly, ML models will always be limited by their training
sets, which are restricted to the archipelago of extant functional
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Figure 2. EASME exists at the intersection of CE, computational biology, and molecular evolution, drawing on the strengths of all three to solve problems.

proteins (and usually represent some small subset of those). The
current state of many areas of Al could be defined similarly—
while astounding advancements have surely been made in the
field of deep learning, and this has yielded very impressive results
in some cases; these results are ultimately facsimiles of what is,
not a true understanding of why it is.

Where evolutionary algorithms can help

When it comes to uncovering the why of something, evolution-
ary computation holds a unique advantage. This was succinctly
observed in D’Angelo et al.’s 2023 paper "Identifying patterns in
multiple biomarkers to diagnose diabetic foot using an explain-
able genetic programming (GP)-based approach,” in which GP—
a type of EA employing complex representations—was used to
diagnose diabetic foot [3]. Not only did the team’s GP approach
outperform ML, but the decisions the program produced were easily
comprehensible by human operators.

Evolutionary algorithms simulating
molecular evolution

As computing power continues to increase, complex simulations
of evolving biochemical systems are approaching feasibility, even

on desktop computers. This has been demonstrated most recently
in “Modeling the emergence of Wolbachia toxin antidote protein
functions with an evolutionary algorithm” [4], a project in which
researchers drove forward evolution of two specific, interacting
proteins involved in cytoplasmic incompatibility. This project
specifically modeled a simple two-protein network, rewarding
tight binding interactions between a toxin and antidote. That
paper provides proof of concept that more complicated protein
networks might be modeled and cascading co-evolutionary
effects and evolution of novel domains can be tracked within
those systems. In another article, "Molecular dynamics simulation
of an entire cell” by Stevens et al., an entire minimal cell was
simulated in silico [5]. With the computing power to simulate
ever more complex biochemical systems and protein-protein
interactions now at our disposal, we see a clear path toward
modeling protein-protein co-evolution on the level of 2-100
discrete protein interactions, provided that each individual
interaction can be expressed in code. Furthermore, through the
continued development of this burgeoning field—leveraging the
biomimicry of EAs, ML, and state-of-the-art hardware (see Fig. 2)—
we discern that uncovering fundamental grammar structures
and syntax of our DNA and proteins is now possible and that
generative Al in the form of EASME can rewrite novel useful
proteins.
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Figure 3. Ways to employ EASME.

The path forward

EASME represents a specific effort to focus on expanding the set of
extant proteins. The core EASME algorithm, once developed, can
run in a few distinct ways (see Fig. 3). First, EASME can evolve a
random sequence toward a known consensus sequence (“unknown
to known”). In this context, the desired outcome is to reconstruct
sequence clusters that went extinct during the process of evolu-
tion. Selective fitness is implemented by pushing the evolution
toward a known protein sequence family. EASME outputs sam-
ples of Pareto optimal sequences from theoretical evolutionary
intermediates, effectively recovering extinct sequence variants.
How much the EASME generated sequences would differ from real
historical intermediates is unknowable without ancient genomes.
However, the utility of generated sequences can be tested, mea-
sured, and linked to a corresponding successful discovery rate.
The second way to run EASME is known to unknown, where a
known entity is forward evolved into the future by implementing
a selection regimen that drives toward a desired characteristic
phenotype. This methodology outputs Pareto optimal sequences
that may have never evolved yet and is effectively a fast forward
button on evolution into the future. While this approach would
undoubtedly produce many false positives, wet lab work will allow
us to test and validate designed proteins while simultaneously
honing a given enzyme’s fitness function. Biologically measuring
the ratio of valid to invalid protein outputs would allow us to
optimize the design process (and even if that ratiois low, it will still
be orders of magnitude faster than natural evolution, a process
which plays out on evolutionary timescales). To achieve both
these ends, EASME will employ EA and GP models supplemented
with ML where appropriate.

The authors are currently exploring several initial EASME
projects and building an initial toolkit for open-source usage
of EASME. An extended version of this paper is available on
arXiv.org [6]. We plan to document the progress of the EASME
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field at https://aub.ie/easme. We welcome contributions from
any researchers with an interest in this field.

Key Points

e The set of proteins produced by nature is minuscule
compared to the search space of all possible proteins.

¢ Alalgorithms capable of efficiently exploring this search
space are now emerging.

e We propose a new Al framework, driven by evolutionary
algorithms, capable of searching this space.

e The potential biotechnological impacts of this field are
almost limitless.
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