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The increasing interconnection of aerospace systems presents significant security challenges.
The protection of these systems must be achieved with minimal disruptions to system opera-
tions while ensuring the desired specifications and network security. This paper presents net-
work security through Bayesian attack graphs (BAGs), a powerful class of models that captures
stochasticity in attacks and their propagation. The security objective involves dynamically de-
fending the network with limited available resources to ensure the network is secure and stop
the propagation of any potential intrusions. Despite the development of several defense and
security solutions for BAGs, these methods mostly optimize specific security metrics without
providing guarantees in terms of violations of practical security constraints, making them un-
safe or inapplicable to sensitive and complex aerospace systems. This paper models security
constraints using temporal logic (TL) specifications. Specifically, we formalize a set of specifi-
cations regarding resource availability, network security, servers’ maintenance requirements,
and more as Linear Temporal Logic (LTL) specifications. An automaton-theoretic approach
is used to compute feasible policies that guarantee the satisfaction of the desired LTL speci-
fications. Since feasible policies achieve different security performances, this paper develops
an efficient security algorithm that selects a policy (among a set of desired feasible policies)
yielding the highest expected lookahead security performance in every horizon of a specified
length. Numerical experiments demonstrate the effectiveness of the proposed framework in
proactively responding to threats and meeting specifications under various conditions.

I. Nomenclature

𝑛 = number of components in the network
x𝑘 = network compromises at time step 𝑘
X = space of all possible network compromises
a𝑘 = defense action at time step 𝑘
𝑋 = space of defense actions or equivalently, the state space of the transition system
𝛼 = defense failure rate
N = BAG nodes
T = type of nodes in BAG
E = directed edges in BAG
P = space of exploit probabilities
D 𝑗 = the in-neighbor (parent) nodes to the 𝑗 th node
𝜌𝑖 𝑗 = exploit probability from component 𝑖 to component 𝑗
𝜌 𝑗 = success probability of external attack on component 𝑗

II. Introduction

COMPUTER networks are the lifelines connecting various components in aerospace systems, from satellites to ground
stations [1–4]. These systems are especially vulnerable due to their interconnected nature [5–9]. These networks

are vulnerable not only to unauthorized access to sensitive data but also to potential disruptions of critical services.
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Malicious actors can exploit vulnerabilities in these systems to compromise data integrity or disrupt operations. There-
fore, there is a critical need for robust solutions that address these security challenges and maintain the integrity and
functionality of aerospace networks.

Several security solutions have been developed in recent years [10–14]. These include machine learning techniques
that can process huge amounts of multi-model data to detect potential attacks and abnormalities in networks [15, 16],
resource optimization techniques to enable monitoring of the vulnerable parts [17–21], as well as defense security
solutions to eliminate the possible threat and prevent the propagation of the attacks [4, 22]. Bayesian attack graphs
(BAGs) are a powerful class of models that provide a model-based and flexible approach to network security. BAGs
depict the intricate dependencies and interconnections between elements of systems, enabling comprehensive security
analyses [23–25]. Specifically, BAGs offer a probabilistic representation of attack penetration and propagation in the
network by considering the security measures in each network component and their vulnerabilities.

Preventing the propagation of attacks into the network, especially to critical components, necessitates proactive and
sequential defense decisions, such as activating firewalls or restoring computers/servers. Several security strategies
have been developed for computer networks modeled by BAGs. These include dynamic risk management for the allo-
cation of monitoring resources [26, 27], inference techniques for inferring network vulnerabilities given the available
data [28–31], defense strategies using reinforcement learning [32, 33], and representation through logic circuits [34].
The current defense solutions are primarily focused on providing security measures that achieve optimal performance
based on specific security metrics. However, in high-stakes aerospace systems, security solutions should not only pro-
vide effective security measures, but also ensure that they adhere to practical security constraints. Violations of these
constraints could potentially put the entire system at risk.

Fig. 1 A diagram illustrating an aerospace network with cybersecurity measures like firewalls and encryption to combat
external attacks and insider threats.

An illustrative example of a network in aerospace applications is shown in Figure 1. This figure consists of multiple
interconnected elements, including a command center, data center, ground station, and satellite, which help operate the
aircraft. The red components demonstrate various types of attacks on this network, including cyber attacks through the
internet, external attacks through USB, printers, or other connected devices, as well as other network components that
might be connected to potentially external sources. Once an attack penetrates the network, it can potentially propagate
among the network elements and put the operation at high risk.

Formal methods is a discipline that provides principled methods to verify systems under complex spatial-temporal-
logical specifications [35]. Such complex specifications are typically formalized by specification languages called
temporal logic (TL). In the last two decades, there has been a significant interest in using temporal logic to synthesize
decision-making policies for complex dynamical systems (e.g., drones [36–38], satellites [39], ground robots [40–42],
networked systems [43, 44]). Overall, a provably correct policy is generated by adopting either an automata-theoretic
approach [45] or an optimization-based approach [46] that results in formal guarantees on desired TL specification.

This paper explores the use of formal methods for network security of systems modeled by BAGs. A set of practical
constraints for network security is considered and formulated using Linear Temporal Logic (LTL) specifications. The
constraints range from resource availability, network security requirements, servers’ maintenance or shutdown, and

2



more. Security policy must ensure that all LTL specifications are met while yielding proper security performance. We
propose a two-step method: 1) the feasibility of security solutions is analyzed via an automata-theoretic approach to
ensure the satisfaction of the desired TL specifications; 2) an algorithm is introduced to select a defense policy from the
set of feasible policies that yields the highest expected security performance. The resulting policy accounts for the latest
network compromises, ensuring adaptability with respect to the attack stochasticity. Using numerical experiments, we
demonstrate the performance of the proposed policies in terms of risk mitigation and upholding the specifications and
compare them with existing security solutions.

This paper is organized as follows: Section III presents the network model using a Bayesian attack graph. Sec-
tion IV details a Markov Decision Process (MDP) representation of the network security model. Section V covers
the definitions of linear temporal logic (LTL), Büchi automaton, transition system, desired specifications, and product
automaton. Section VI discusses the optimal defense strategy among a set of feasible paths in the product automaton,
describes the proposed algorithm, and introduces the proposed recursive defense policy, which yields the highest secu-
rity performance among the selected set. Finally, Sections VII and VIII provide numerical examples and concluding
remarks, respectively.

III. Network Security Model
The systems often contain a wide range of interconnected components that attackers can penetrate from external

sources and propagate among the elements. Some of the common components of networks are as follows:
• Servers: These devices are the backbone of the network, handling critical services and data. Due to their central

role, meticulous security is necessary to ensure uninterrupted operation.
• Critical Data Devices: These devices store sensitive or vital data, making them prime targets for attackers. Reg-

ular security checks are essential to mitigate the risk of data breaches and ensure data integrity.
• User Hosts and Devices: These devices play a crucial role in network security, often connected directly to external

sources and servers. They are the primary line of defense, preventing attacks from propagating.
• Routers: Routers connect network components and can be vulnerable to attacks that propagate through other

connections, transmitting these attacks to other network elements.
The penetration and propagation of network compromises are modeled using Bayesian attack graphs (BAGs) [47].
BAGs are a powerful class of models that capture stochasticity and uncertainty in attack and attack propagation. The
nodes of the BAG specify different components in the network, and directed edges specify the connection between
different components that can be utilized for the propagation of attack. The weights of each edge specify the probability
of attack transmissions, which depends on the type of nodes (e.g., server, data center, user hosts, enterprise servers, etc.)
and the security measures in that device. The external attack can be penetrated into the network through components
connected to external sources. The external attacks and internal transmissions are modeled through exploit probabilities,
which denote the probability that the attack can be successful in compromising the node.

Mathematically, a BAG can be defined by the following tuple:

G = (N ,T , E ,P),

where N = {1,⋯, 𝑛} corresponds to the components of the network, T represents the types of nodes, and E represents
the set of directed edges. We assume that each node belongs to two types: the AND nodes, such as admin servers, and
OR nodes, such as SQL servers and user hosts. Each edge (𝑖, 𝑗) ∈ E is associated with a 𝜌𝑖 𝑗 ∈ P , which shows the
probability of exploit through that edge, and 𝜌 𝑗 ∈ P denotes the probability of success of the external attack on node 𝑗 .

IV. Markov Decision Process Representation of Network Security
In this section, we represent network security over the Bayesian attack graph through the Markov decision process.

In line with the modeling approach used in our previous work [33], the MDP state can be expressed using a vector,
denoted by x𝑘 = [x𝑘(1), ..., x𝑘(𝑛)], encapsulating the compromised status of all 𝑛 components of the network. Here,
x𝑘(𝑖) takes values of either 0 or 1, with x𝑘(𝑖) = 1 indicating compromise of the 𝑖th component at time step 𝑘 , and
conversely for x𝑘(𝑖) = 0. The possible network compromises can be expressed through the following 2𝑛 different state
vectors: {x1,⋯, x2

𝑛

}. Attack penetration and propagation rely on factors such as the internal and external exploit prob-
abilities (i.e., 𝜌 𝑗 and 𝜌𝑖 𝑗 ), node types, and defense strategy. The exploit probabilities are often computed according to
the NIST’s Common Vulnerability Scoring System (CVSS), which characterizes the severity of vulnerabilities through
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numerical scores [48]. Fig. 2 depicts the translation of a 6-node BAG into binary strings, representing status changes
within the transition dynamics of an MDP.

Fig. 2 Translation of collective BAG nodes compromise status into an MDP.

Defense is achieved through restoration, resetting, reimaging, or other means that can eliminate threats at different
components of the network. Let a𝑘−1 ⊂N be a subset of nodes selected for defense in time step 𝑘 . Such defense could
often partially eliminate the threats due to the complexity of attack types that might not be eliminated through restoring
(i.e., stolen logging or credentials). This paper considers the success probability of attack removal as (1 − 𝛼), where
0 ≤ 𝛼 ≤ 1 represents the unsuccessful rate of attack removal. The value 𝛼 depends on the complexity of the attack and
reimaging procedure; a more comprehensive defense corresponds to a smaller value 𝛼. Let x𝑘−1 be the current state
of network compromises. The likelihood of compromise for node 𝑗 at the time step 𝑘 upon taking the defense action
a𝑘−1 = {𝑖1, ..., 𝑖𝑟} ⊂N can be expressed as:

• AND Nodes:

𝑃(x𝑘( 𝑗) = 1 ∣ x𝑘−1, a𝑘−1) = (1 𝑗∉a𝑘−1 + 𝛼1 𝑗∈a𝑘−1)[𝜌 𝑗 + (1 − 𝜌 𝑗) ∏
𝑖∈𝐷 𝑗

𝜌𝑖 𝑗1x𝑘−1(𝑖)=1] , (1)

• OR Nodes:

𝑃(x𝑘( 𝑗) = 1 ∣ x𝑘−1, a𝑘−1) = (1 𝑗∉a𝑘−1 + 𝛼1 𝑗∈a𝑘−1)[𝜌 𝑗 + (1 − 𝜌 𝑗)[1 − ∏
𝑖∈𝐷 𝑗

(1−𝜌𝑖 𝑗1x𝑘−1(𝑖)=1)] ] , (2)

where the likelihood is presented if the type of the 𝑗 th node is AND and OR. AND nodes exhibit resilience against
single-parent threats, as compromising an AND node typically necessitates exploits at all of its parent (in-neighbor)
nodes. In contrast, the OR nodes can be compromised by just one of their parent nodes being compromised. Higher
exploit probabilities and higher external attack frequencies make networks more vulnerable to security breaches. The
probability of the 𝑗 th state variable being uncompromised can also be expressed as: 𝑃(x𝑘( 𝑗) = 0 ∣ x𝑘−1, a𝑘−1) =
1 − 𝑃(x𝑘( 𝑗) = 1 ∣ x𝑘−1, a𝑘−1).

V. Problem Formulation for Network Security under Temporal Logical Specifications
This paper utilizes linear temporal logic specifications to express security constraints and derive provably correct

security policy. We will first provide the syntax and semantics of the LTL language, and then describe the key elements
of the proposed approach.

A. An overview of Linear Temporal Logic (LTL)
The syntax of LTL is built recursively over a set of atomic propositions 𝐴𝑃 as follows:

𝜙 ∶= 𝑎𝑝∣¬𝑎𝑝∣𝜙 ∧ 𝜓∣𝜙 ∨ 𝜓∣𝜙𝑈𝜓∣𝜙 → 𝜓∣𝑋𝜙∣𝐹𝜙∣𝐺𝜙 , (3)

where 𝜙 and 𝜓 are LTL formulae, and 𝑎𝑝 ∈ 𝐴𝑃 is an atomic proposition. An LTL formula can contain the combination
of Boolean operators such as negation (¬), conjunction (∧), and disjunction (∨) as well as the temporal operators until
(𝑈), implication (→), next (𝑋), eventually (𝐹), and always (𝐺). The semantics of LTL are defined over words 𝑤 from
the alphabet 2𝐴𝑃 , i.e., the words consisting of sequences of symbols from the power set of atomic propositions. The
infinite trajectories of the system is represented by words. An in-depth discussion of the syntax and semantics of LTL
can be found in [35].

An LTL formula has a corresponding graph representation, called Büchi Automaton.
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Definition V.1. (Büchi Automaton) A Büchi automaton is a tuple B = (𝑄B, 𝑞B0,Σ,ΔB, 𝐹B), in which 𝑄B is a finite set
of states, 𝑞B0 is the initial state, Σ is an alphabet, ΔB ∶ 𝑄B × Σ → 𝑄B is a transition function, and 𝐹B ⊆ 𝑄B is the set
of accepting states.

An accepting state 𝑞 ∈ 𝐹B is non-blocking if ΔB(𝑞) ≠ ∅. Accordingly, 𝐹∗B ⊂ 𝐹B denotes the set of all non-blocking
accepting states of B. Σ = 2𝐴𝑃 defines the alphabet. Words from Σ𝜔 , the set of all infinite words from Σ, are accepted
by a Büchi automaton if the states in 𝐹∗B are visited infinitely often. Set of all such words forms the language of a Büchi
automaton, i.e., 𝐿B. There exists a Büchi automaton B𝜙 accepting the exact language that satisfies 𝜙 (i.e., the language
𝐿B𝜙 = {𝑤∣𝑤 ⊧ 𝜙}) for each formula 𝜙 over 𝐴𝑃.

B. Transition System
We represent the possible sets of available security actions of the defender and their transitions using the transition

system. A general definition of a transition system is as follows:

Definition V.2. (Transition System) A Transition System is a tuple 𝑇 = (𝑋, 𝛿,𝑂, 𝑜), in which 𝑋 is a finite set of states,
𝛿 ∶ 𝑋 → 2𝑋 is a transition function, 𝑂 is a set of observations and 𝑜 ∶ 𝑋 → 𝑂 is an observation map.

In our setting, the elements of the tuple are as follows:
• 𝑋 is the set of possible defense actions that can be taken;
• 𝛿 denotes the transition relationship between the actions (e.g., the security action a 𝑗 can be performed right after

the security action a𝑖; a self-loop on a𝑖 ∈ 𝑋 indicates the feasibility of consecutively taking the action a𝑖 .
• 𝑂 is the set of observations that is identical to 𝑋 .
• 𝑜 is an identical mapping, i.e., for all a𝑖 ∈ 𝑋 , we have 𝑜(a𝑖) = a𝑖 .
Figure 3 provides an illustrative example of a transition system. On the left plot, you can see a network with server

‘a’ and device ‘b’, where user device ‘b’ is susceptible to external attack. There are three possible actions: a1: reimage
‘a’, a2: reimage ‘b’, a3: no reimaging. The transition system consisting of three nodes is presented in Fig. 3(b) (i.e.,
𝑋 = {a1, a2, a3}). Edges between nodes indicate the feasible transitions from one security action to another, reflecting
the sequential nature of the security process (i.e., 𝛿(a1) = {a2, a3}, 𝛿(a2) = {a1, a2, a3}, 𝛿(a3) = {a1, a2, a3}). It
can be seen that the self-loop edges at nodes a1 do not exist since the consecutive reimaging of the server is not
permitted. As mentioned above, the set of observations is 𝑂 = {a1, a2, a3}, and the identical observation mapping is
𝑜(a1) = a1, 𝑜(a2) = a2, 𝑜(a3) = a3.

(a) Simple network (b) transition system

Fig. 3 (a) A simple network with two components: a server ’a’, and user host ’b’; (b) the transition system with
an action space of size three, a1 ∶ restoring the server, a2 ∶ restoring the user host, a3 ∶ no restoring.

C. Specifications
In this section, we describe the network constraints and how they can be upheld during the defense process. These

constraints indicate the desired specifications that should be met by the security policy. Some of the security constraints
that can be considered are as follows:
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• Server Restorations: This specification dictates that servers should not be reimaged in fewer than 𝑑1 consecu-
tive steps to maintain operational continuity. This ensures the prevention of continual disruptions in network
operations due to disruptions to critical network components.

• Data Server Reimaging: Each data server should be reimaged at least once every 𝑑2 time-steps to minimize the
risk of data breaches. By prioritizing these devices, organizations can safeguard sensitive information and prevent
unauthorized access.

• Server Maintenance: Each server must undergo regular defense processes at least once every 𝑑3 time-steps to
ensure the network’s overall health and reliability. This specification helps maintain the integrity of network
infrastructure and prevents potential vulnerabilities from compromising network security.

We formalize such constraints through LTL specifications. Considering the example problem in Fig. 3(a), let 𝐴𝑃 =
{a1, a2, a3} be the set of atomic prepositions. Along with LTL semantics and syntax, the following are examples of
LTL specifications that can be expressed for the network:

• After reimaging server ‘a’, the server must not be reimaged for at least ‘2’ consecutive steps in a row to prevent
the disruption of system operations: 𝐺(a1 → (¬Xa1 ∧ ¬XXa1)).

• All devices should at some point receive necessary defense: 𝐹(a1) ∧ 𝐹(a2).
• Server ‘a’ should receive a security check at least every four steps: 𝐺(¬(¬a1 ∧ ¬Xa1 ∧ ¬XXa1 ∧ ¬XXXa1)).
These specifications collectively ensure the desired constraints for the network security system. A wider range of

constraints can be defined and formulated in LTL format.
A Büchi automaton for the example described above is provided∗ in Fig. 4. The nodes of this automaton specify

the possible system conditions at any given time. The initial node is specified by ‘init’. The edges specify the set of
actions that can lead to the transition from one node to another. The states indicated by double circles are the accepting
states that need to be visited infinitely often to guarantee the satisfaction of the desired LTL specification (i.e., Büchi
acceptance criteria).

Fig. 4 Büchi automaton for the following specification: 𝐺(a1 → (¬Xa1 ∧¬XXa1))∧𝐹(a1)∧𝐹(a2)∧𝐺(¬(¬a1 ∧
¬Xa1 ∧ ¬XXa1 ∧ ¬XXXa1)).

∗The Büchi automaton figure is generated using LTL 2 BA: fast translation from LTL formulae to Büchi automata http://www.lsv.fr/ gastin/ltl2ba/.
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D. Product automaton
A product automaton is an essential representation that encodes all feasible transitions of the transition system that

ensures the satisfaction of the desired LTL specification. To this end, the formal definition is as follows:

Definition V.3. (Product automaton) Given a transition system 𝑇 = (𝑋, 𝛿,𝑂, 𝑜), and a Büchi automaton
𝐵 = (𝑄B, 𝑞B0,Σ,ΔB, 𝐹B), we define the product automaton as a tuple 𝑃 = 𝑇 × 𝐵 = (𝑋𝑃 , 𝑃𝑖𝑛𝑖𝑡 ,Δ𝑃 , 𝐹𝑃), where

• 𝑋𝑃 = 𝑋 ×𝑄B is a finite set of states;
• 𝑃𝑖𝑛𝑖𝑡 = 𝑋 × 𝑞B0 ⊆ 𝑋𝑃 is the set of initial states;
• Δ𝑃 ∶ 𝑋𝑃 → 2𝑋𝑃 is the transition function such that for any two states, 𝑝 = (𝑥, 𝑞) ∈ 𝑋𝑃 and 𝑝′ = (𝑥′, 𝑞′) ∈ 𝑋𝑃 ,

we have: 𝑥′ ∈ 𝛿(𝑥) , and ΔB(𝑞, 𝑜(𝑥)) = 𝑞′;
• 𝐹𝑃 = (𝑋 × 𝐹B) ⊆ 𝑋𝑃 is the set of accepting states.

An accepting state 𝑝 ∈ 𝐹𝑃 is non-blocking if Δ𝑃(𝑝) ≠ ∅. Accordingly, 𝐹∗𝑃 ⊂ 𝐹𝑃 denotes the set of all non-blocking
accepting states of 𝑃. Satisfactory policies are found by using the product automaton and finding accepting trajectories
on it. Similarly to the Büchi acceptance criteria, the acceptance criteria for the product automaton also involve visiting
the states in 𝐹∗𝑃 infinitely often. To represent infinite trajectories with the acceptance condition, we will consider the
following structure. Any infinite trajectory over the product automaton will be described in H†-prefix-suffix form, where
the prefix considered in this format is a finite trajectory of non-repeating nodes that reaches a state in 𝐹∗𝑃 in at most
𝐻 time steps and its corresponding suffixes are all trajectories from the visited accepted state to an element of the set
𝐹∗𝑃 in at most 𝐻 time steps. Overall, once the prefix part of the trajectory is realized, repeating each of the suffixes at
consecutive 𝐻-steps will ensure visiting a state in 𝐹∗𝑃 infinitely often. By planning every 𝐻 step, we narrow the set of
all accepting trajectories to the policies with a H-prefix-suffix form.

VI. Obtaining an Efficient Defense Strategy from a Desired Set of Paths in the Product
Automaton

After defining all feasible security policies of H-prefix-suffix form, the next step is choosing the one yielding the
highest security performance in a 𝐻-lenght horizon given the latest information (e.g., network compromises). To this
end, we propose a systematic method.

Let the security performance be characterized by the reward function 𝑅 ∶ X × 𝑋𝑃 ×X → R, where 𝑅(x, (a, 𝑞B), x′)
indicates the security gain when the network compromises move from state x to x′ under defense action a (disregarding
𝑞B ∈ 𝑄B). Note that the costs of actions are also incorporated in the reward.

Let x𝑘 be the current network compromises at time step 𝑘 , and 𝑣𝑘 be the current state of the product automaton.
The past sequence of defense actions can be used to compute the current state of the product automaton, denoted by 𝑣𝑘 .
Performing a graph search, the feasible paths from 𝑣𝑘 to a state in 𝐹∗𝑃 with a maximum length of 𝐻 can be expressed
as Ψ(𝑣𝑘) ∶= Ψ(𝑣𝑘 , 𝐻), where all paths in Ψ(𝑣𝑘) are either prefixes or suffixes of a desired H-prefix-suffix policy. Let
𝜓 = {𝜓0, ..., 𝜓𝐻′−1} ∈ Ψ(𝑣𝑘), where 𝐻′ < 𝐻, be a single path for an 𝐻 horizon. The best (highest expected reward)
among all such policies in Ψ(𝑣𝑘) at time step 𝑘 can be obtained as a result of the following optimization problem:

𝜓∗𝑘 =argmax
𝜓∈Ψ(𝑣𝑘)

𝐸

⎡⎢⎢⎢⎢⎣

𝐻′−1
∑
ℎ=0

𝛾ℎ𝑅(x𝑘+ℎ, 𝜓ℎ, x𝑘+ℎ+1) ∣ x𝑘
⎤⎥⎥⎥⎥⎦
, (4)

where the maximization is over Ψ(𝑣𝑘) at time step 𝑘 , and 𝛾 ∈ (0, 1] is the discount factor prioritizing the short-term se-
curity over the future horizon, and the expectation takes into account the stochasticity in the state and defense processes.
The solution in (4) yields the optimal finite-horizon defense policy, ensuring the maximum average accumulated reward
over that horizon.

Learning the above policy given the current network compromises x𝑘 provides a set of actions for the next 𝐻′
steps and ensures the feasibility of the solution. However, the policy is optimal given the horizon, and the information
about the network compromises at time step 𝑘 . As defense actions are taken, the stochasticity of the process might
lead to different network compromises, which can be taken into account to adjust the policy further. Therefore, this
paper performs optimal sequential defense policy that adapts itself given the latest network compromises and ensures
satisfying the specification in an infinite horizon.

†In the context of this paper, 𝐻 is a pre-defined parameter provided by the user.
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We further expand the expectation in (4) to compute the following policy:

𝜓∗𝑘 =argmax
𝜓∈Ψ(𝑣𝑘)

[
𝐻′−1
∑
ℎ=0

𝛾ℎ ∑
x𝑘+ℎ ,x𝑘+ℎ+1

𝑝(x𝑘+ℎ, x𝑘+ℎ+1 ∣ x𝑘 , 𝜓0∶ℎ)𝑅(x𝑘+ℎ, 𝜓ℎ, x𝑘+ℎ+1)], (5)

where the joint distribution of the states is used instead of expectation in (4) and the optimization solution ensures
selecting the path with the highest expected accumulated reward.

The posterior distribution of the network compromises at time step 𝑘 + ℎ, ℎ > 0, given the last observation x𝑘 and
following 𝜓 can be expressed as:

𝚷𝜓
𝑘+ℎ∣𝑘(𝑖) = 𝑃 (x𝑘+ℎ = x

𝑖 ∣ x𝑘 , 𝜓0∶ℎ) , 𝑖 = 1, ..., 2𝑛, (6)

where the distribution of network compromises at time step 𝑘 can be expressed as:

𝚷𝜓
𝑘∣𝑘(𝑖) = 1x𝑖=x𝑘 , 𝑖 = 1, ..., 2

𝑛, 𝜓 ∈ Ψ(𝑣𝑘), (7)

with the indicator 1x𝑖=x𝑘 assigns 1 to a single element of the posterior distribution.
We define the transition matrix 𝑀(a) under the defense action a as:

(𝑀(a))𝑖 𝑗 = 𝑃(x𝑘 = x𝑖 ∣ x𝑘−1 = x 𝑗 , a𝑘−1 = a) =
𝑛

∏
𝑙=1
(𝜂 𝑗

𝑙,a 1x𝑖(𝑙)=1 + (1 − 𝜂 𝑗
𝑙,a)1x𝑖(𝑙)=0) , (8)

for 𝑖, 𝑗 = 1, . . . , 2𝑛; where 1x𝑖(𝑙)=1 is the indicator, taking 1 if x𝑖(𝑙) = 1 and 0 otherwise, and

𝜂 𝑗
𝑙,a = (1𝑙∉a + 𝛼1𝑙∈a)[𝜌𝑙 + (1 − 𝜌𝑙)∏

𝑟∈𝐷𝑙

𝜌𝑟𝑙1x 𝑗(𝑟)=1]1N𝑙=AND

+ (1𝑙∉a + 𝛼1𝑙∈a)[𝜌𝑙 + (1 − 𝜌𝑙)(1 − ∏
𝑟∈𝐷𝑙

(1 − 𝜌𝑟𝑙1x 𝑗(𝑟)=1))]1N𝑙=OR.

(9)

Note that 1N𝑙=AND is 1 if the 𝑙th node type is AND and 0 otherwise. The transition probabilities in (8) and (9) are
derived from the conditional probabilities for AND and OR nodes in (1) and (2).

The predictive posterior distribution of network compromises in (6) can be expressed using the transition matrices
following 𝜓 as:

𝚷𝜓
𝑘+ℎ+1∣𝑘 = 𝑀(𝜓

ℎ)...𝑀(𝜓0)𝚷𝜓
𝑘∣𝑘 , (10)

Note that for 𝜓𝑖 = (a𝑖 , 𝑞𝑖B) ∈ 𝑋𝑝 , we define 𝑀(𝜓𝑖) = 𝑀(a𝑖). The predictive posterior can also be computed recursively
as:

𝚷𝜓
𝑘+ℎ+1∣𝑘 = 𝑀(𝜓

ℎ)𝚷𝜓
𝑘+ℎ∣𝑘 , (11)

Similarly, the joint distribution of network compromises in two consecutive times 𝑘 + ℎ and 𝑘 + ℎ+ 1 can be expressed
as:

𝑀(𝜓ℎ)𝑇 ⊙ (11×2𝑛 ⊗𝚷𝜓
𝑘+ℎ∣𝑘) , (12)

where “⊗ ” is the Kronecker product, and ”⊙” denotes the component-wise multiplication of two matrix.
For a given state 𝜓𝑙 = (a, 𝑞B) ∈ 𝑋𝑃 , the matrix-form of the reward function can be expressed as:

(R(𝜓𝑙))𝑖 𝑗 = 𝑅 (x 𝑗 , 𝜓𝑙 , x𝑖) , for 𝑖, 𝑗 = 1, .., 2𝑛. (13)

Then, given (5) and (10)-(13), the desired optimal policy at time 𝑘 can be expressed as:

𝜓∗𝑘 =argmax
𝜓∈Ψ

[
𝐻′−1
∑
ℎ=0

𝛾ℎ∥[𝑀(𝜓ℎ)𝑇 ⊙ (11×2𝑛 ⊗𝚷𝜓
𝑘+ℎ∣𝑘)]⊙R𝑇(𝜓ℎ)∥

1
],

s.t. 𝚷𝜓
𝑘+ℎ+1∣𝑘 = 𝑀(𝜓

ℎ)𝚷𝜓
𝑘+ℎ∣𝑘 , ℎ = 0, ..., 𝐻 − 1.

(14)

Upon selecting the best path among the 𝐻-length feasible paths of desired format, the corresponding defense action
sequence should be applied to the system over the next 𝐻′ horizon as: [a𝑘 , ..., a𝑘+𝐻′−1], where
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(a) Simple network (b) transition system

Fig. 5 (a) A computer network consisting of ten nodes/components; (b) the transition system consisting of three
actions, a1 ∶ restoring node 1, a2 ∶ restoring node 2, a3 ∶ no restoring.

𝜓∗𝑘 = [(a𝑘 , 𝑞B𝑘
), ..., (a𝑘+𝐻′−1, 𝑞B𝑘+𝐻′−1)]. Performing such policies every 𝐻 (or 𝐻′) step to reach a trajectory of

the form H-prefix-suffix, ensures the specification is upheld while optimizing for security rewards. The last network
compromises upon performing the policy can be used to select the policy on the next horizon. Starting from x0, and
considering an initial state of 𝑃 for the automaton, based on the search space definition, the goal in the first 𝐻 steps
is to reach a non-blocking accepting state, termed a desired prefix in the H-prefix-suffix format. For the repetition of
suffixes, let x𝑘+𝐻 be the network state at time step 𝑘 + 𝐻 and 𝑣𝑘+𝐻 be the corresponding accepting state of 𝑃 at time
𝑘 + 𝐻. Then, we can use Ψ(𝑣𝑘+𝐻) and compute the optimal path according to the new initial posterior distribution
𝚷𝑘+𝐻∣𝑘+𝐻(𝑖) = 1, x𝑖 = x𝑘+𝐻 . The selection of the best path among H-prefix-suffix guarantees meeting specifications
over an infinite horizon. Note that when the optimal path length is smaller than the pre-specified value 𝐻, re-planning
occurs after 𝐻′ time steps, where 𝐻′ < 𝐻.

The detailed steps of the proposed security framework are provided in Algorithm 1. The transition system and spec-
ifications (Büchi automaton) are used to compute the product automaton for the network. The feasible paths/policies
are computed according to the initial status of the automaton. During the execution, given the posterior distribution of
the network compromises, the expected security reward of each feasible path of the desired format is computed, and the
policy with the maximum expected security rewards in a horizon is followed. The selected action sequence is applied
to the network, and specification is not violated over a finite or infinite horizon. The network compromises at the end
of the horizon can be used for the selection of the next best sequence of actions among the same feasible paths.

The desired path finder algorithm (offline step) worst-case time complexity with a modified Depth-first search (DFS)
is𝑂(∣𝑋𝑃 ∣𝐻+1), as it obtains all simple paths of maximum length 𝐻 starting from every node 𝜈 ∈ 𝑋𝑃 and ending in a non-
blocking accepting state in 𝐹∗𝑃 . Since generating the presumable trajectory requires calculating the next step posteriors,
the time complexity of choosing an optimal path for the next 𝐻 steps in the online step is 𝑂(∣𝑋𝑃 ∣𝐻 × 𝐻 × 22𝑛). This
represents the worst-case complexity; however, the implementation can be optimized based on the graph’s structure
and the specific problem conditions.

VII. Numerical Experiments
The numerical experiments in this section assess the performance of the defense strategy. The experiment is run

on a network comprising 10 nodes, shown in Figure 5(a). The network contains three AND nodes and seven OR nodes.
The nodes 1, 2, 3, and 10 are under external attacks. The network vulnerabilities indicated by 𝜌𝑖 𝑗 are considered as:
𝜌12 = 0.7, 𝜌14 = 0.6, 𝜌25 = 0.6, 𝜌36 = 0.55, 𝜌39 = 0.7, 𝜌47 = 0.7, 𝜌58 = 0.7, 𝜌62 = 0.7, 𝜌87 = 0.7, 𝜌94 = 0.6, 𝜌98 = 0.7, 𝜌10 8 =
0.7, 𝜌10 9 = 0.7, with the external attack probability as: 𝜌1 = 0.65, 𝜌2 = 0.6, 𝜌3 = 0.2, 𝜌10 = 0.6. A uniform prior
is considered for the initial network compromise. Also, the reimaging miss-rate is set as 𝛼 = 0.1. All results of the
numerical experiments are averaged over 100 independent runs/trajectories.

The defense can be applied on nodes 1 and 2 through reimaging or restoring. The space of defense action can be
expressed as follows:

𝑋 = {a1 = {1}, a2 = {2}, a3 = {}}. (15)

The defender’s transition system has three nodes, where corresponding actions and components are described in
Fig. 5(b). The following desired specifications are considered for the network: 1) After reimaging of node ’1’, this
node must not be reimaged for at least ’2’ consecutive steps in a row: 𝐺(a1 → (¬Xa1 ∧¬XXa1)); 2) devices in node 1
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Algorithm 1 Defense Policy Optimization with Linear Temporal Logic Specifications for Bayesian Attack Graphs
Inputs: Defense action space 𝑋 , number of network components 𝑛, transition matrices 𝑀(a), desired specifi-
cations Φ, horizon 𝐻, transition system 𝑇 , initial network compromises x0, security reward function (R(a))𝑖 𝑗 ∶
𝑅(x𝑖 , a, x 𝑗).

Offline Step
1: Construct Büchi automaton 𝐵 from Φ.
2: Compute the product of Büchi automaton 𝐵 and the transition system 𝑇 to obtain the product automaton 𝑃.
3: Obtain 𝐹∗𝑃 ⊂ 𝐹𝑃 , the non-blocking accepting states of 𝑃.
4: For all 𝑣 ∈ 𝑋𝑃 compute: Ψ(𝑣) = Ψ(𝑣, 𝐻).
Online Step: Real-time Defense
5: Initial network compromises, x0, initial product automaton state 𝑣0, and 𝑘 = 0.
6: repeat
7: 𝚷𝑘∣𝑘(𝑖) = 1x𝑖=x𝑘 , 𝑖 = 1..., 2

𝑛.
8: 𝑉(𝜓) = 0, 𝜓 ∈ Ψ(𝑣).

9: for 𝜓 = [𝜓1, ..., 𝜓𝐻′] ∈ Ψ(𝑣) do
10: for ℎ ∈ {0, ..., 𝐻′ − 1} do

11: 𝑉(𝜓) = 𝑉(𝜓) + 𝛾ℎ ∥[𝑀(𝜓ℎ)𝑇 ⊙ (11×2𝑛 ⊗𝚷𝜓
𝑘+ℎ∣𝑘)]⊙R(𝜓ℎ)∥

1

12: 𝚷𝜓
𝑘+ℎ+1∣𝑘 = 𝑀(𝜓

ℎ+1)𝚷𝜓
𝑘+ℎ∣𝑘

13: end for
14: end for
15: 𝜓∗𝑘 = argmax𝜓∈Ψ(𝑣𝑘)𝑉(𝜓)

16: Take security actions [a𝑘 , ..., a𝑘+𝐻′−1] following 𝜓∗𝑘 , update 𝑣𝑘+𝐻′ (states of the automaton) accordingly, and
get the last network compromises x𝑘+𝐻′ .

17: 𝑘 ← 𝑘 + 𝐻′

18: until stopping criterion is met

and node 2 should at some point receive necessary defense: 𝐹(a1) ∧ 𝐹(a2); 3) node 1 should receive a security check
at least every four steps: 𝐺(¬(¬a1 ∧ ¬Xa1 ∧ ¬XXa1 ∧ ¬XXXa1)).

The entire specification can be represented as follows: 𝐺(a1 → (¬Xa1 ∧ ¬XXa1)) ∧ 𝐹(a1) ∧ 𝐹(a2) ∧𝐺(¬(¬a1 ∧
¬Xa1 ∧ ¬XXa1 ∧ ¬XXXa1)). The Büchi diagram and product automaton are constructed given the transition system
and specifications.

We compare the performance of the proposed method with two common defense policies in network security: 1)
Dynamic programming (DP), which provides the infinite horizon defense solution as a form of Markovian policy. This
policy does not account for specification, but it is guaranteed to yield the highest expected security results. 2) Greedy
defense policy includes taking the defense action that yields the best expected security solution in the next time step.
Our proposed defense policy approach is similar to a finite-horizon dynamic programming solution in the sense that
both methods utilize an 𝐻-step lookahead to propose a policy. For the proposed method, the best solution is then
selected from a subset of all possible policies that can uphold the given specifications.

In the first result shown in Figure 6, the average accumulated reward, or equivalently negative of the average number
of compromises, for three methods are presented. One can see that dynamic programming yields the lowest average
accumulated reward since its search space is for all policies rather than a set of feasible policies similar to our method.
The Greedy policy performed worse than DP but was slightly better than our method. This comes from the Greedy
policy’s lack of lookahead consideration. Finally, the proposed policy has shown more fluctuation and higher average
compromises, which results from the restrictions that are imposed by the proposed method to ensure specifications are
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met.

Fig. 6 Average number of compromises per step obtained by different defense policies.

To better understand the shortcomings of existing approaches to account for specifications, Figure 7 represents the
average number of violations of four specifications per time step. In practice, these specifications are hard constraints
that should not be violated during decision-making. The Markovian aspects of the DP policy prevent accounting
for such constraints defined over time, which can be seen in the largest violation in Figure 7. In fact, 1.75 out of 4
constraints are violated at each step, which indicates the unsuitability of such policy in practice. Meanwhile, the better
performance of the DP method in terms of an average number of compromises can also be justified using this. Similar
to DP, the Greedy policy violates the specifications, while it is less than the DP method. As expected, the proposed
method yields zero violation of the constraints since the defense policy is only selected among the existing paths in
the product automaton. Therefore, the larger number of compromises by the proposed method in Figure 6 comes with
guaranteeing upholding the specifications during the defense process.

Fig. 7 Average number of violations of specifications per step for different defense policies.

The impact of the horizon used by the proposed method is considered in this section. Horizon 4 is considered the
smallest value since it guarantees to reach the accepted state in the product automaton and to circle that state for a
long period. Since this horizon also specifies the lookahead aspect of the defense process by the proposed policy, we
investigate the impact of the horizon on security performance. The results are compared with the optimal finite-horizon
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Table 1 Average number of compromises and violations per step for proposed policy and finite-horizon dy-
namic programming method with different horizons.

Method 𝐻 = 4 𝐻 = 4 𝐻 = 6 𝐻 = 6
#Compromises #Violations #Compromises #Violations

Formal Method 2.417 0 2.594 0
Finite Horizon DP 2.161 1.8 2.152 1.8

𝐻 = 8 𝐻 = 8 𝐻 = 10 𝐻 = 10
#Compromises #Violations #Compromises #Violations

Formal Method 2.537 0 2.477 0
Finite Horizon DP 2.120 1.8 2.107 1.8

Fig. 8 (a) Average compromises and (b) average specification violations per step across different defense methods for
specifications of varying complexity.

dynamic programming, which optimally accounts for security reward over the entire policies. The average number of
network compromises for both methods is presented in Table 1. The number of violations by the proposed policy is
zero at all conditions since the feasible path is achievable for horizons larger than 4. As the horizon gets larger, the
performance of the proposed method becomes slightly worse. This comes from the fact that the re-planning takes place
after performing the actions on the horizon. Thus, for smaller horizons, such re-planning occurs more often, leading
to defense actions that are more aligned with the network compromises. For the finite horizon DP policy, one can see
the improvement in defense performance as the horizon length increases. This comes from more lookahead aspects of
the policy to account for future network crises when selecting defense action. However, one can see that such better
security performance comes with a high cost of 1.8 out of 4 violations of constraints at each step. Thus, the results
further indicate the capability of the proposed policy to find the security solution that guarantees holding specifications
and achieving proper security performance.

In the final experiment, we analyzed three distinct specifications, each imposing a different level of constraints on
reimaging actions: minimal, moderate, and high. The minimal constraint specification is represented as: 𝐹(a1)∧𝐹(a2).
This ensures that both nodes a1 and a2 must receive necessary defense actions at some point within the planning horizon.
There are no restrictions on the order or timing of these actions. The moderate constraint specification adds limitations
on the reimaging process, requiring that once a node is reimaged, it cannot be reimaged again in the subsequent step.
This can be expressed as: 𝐹(a1) ∧ 𝐹(a2) ∧ 𝐺(a1 → ¬Xa1) ∧ 𝐺(a2 → ¬Xa2). The high-constraint specification
introduces additional rules, focusing on more stringent requirements for reimaging node a1. It mandates a minimum
two-step delay before a1 can be reimaged again and requires that a1 is reimaged at least once every four steps. This
specification can be written as: 𝐹(a1) ∧ 𝐹(a2) ∧𝐺(a1 → (¬Xa1 ∧ ¬XXa1)) ∧𝐺(a2 → ¬Xa2) ∧𝐺(¬(¬a1 ∧ ¬Xa1 ∧
¬XXa1 ∧ ¬XXXa1)).
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In the final experiment, we evaluate the infinite-horizon dynamic programming approach, our proposed Formal
method (with 𝐻 = 4), as well as the Greedy and Random algorithms. The evaluation focuses on two metrics: the average
number of compromises the network experiences over 36 time-steps and the average number of specification violations
for each method. Figure 8(a) illustrates the average number of compromises. As expected, the DP approach, explicitly
designed to minimize compromises over an infinite horizon, achieved the best performance with an average of 2.25
compromises. The Greedy algorithm performed slightly worse, while our proposed Formal method kept compromises
below 2.4 under low and moderate constraint levels. However, under highly constrained specifications, the number of
compromises for our method increased slightly to 2.66. The Random algorithm demonstrated the weakest performance,
averaging 2.66 compromises. The DP, Greedy, and Random methods displayed insensitivity to changes in specification
complexity, maintaining consistent compromise rates regardless of the imposed constraints.

Figure 8(b) depicts the average number of specification violations. Under minimal constraints, almost all meth-
ods adhere to the specification, ensuring at least one reimaging action per node within the horizon. However, even
under these light constraints, the DP approach occasionally violates the specification. The strength of our proposed
method becomes evident as the complexity of the specification increases: it ensures zero violations, regardless of the
constraints. In contrast, other methods, particularly DP and Greedy, show a significant increase in violations under
stricter constraints. For highly constrained specifications, these approaches average more than one violation per time
step. Interestingly, the Random approach sometimes results in fewer specification violations, although this is achieved
at the cost of a higher number of compromises due to its lack of strategic decision-making.

In summary, the results of this experiment demonstrate the advantages of our proposed Formal method. It guar-
antees adherence to constraints on action sequences and dependencies, with zero specification violations across all
scenarios. When constraints are minimal, its performance is closer to DP, as the method has greater flexibility. How-
ever, as constraints tighten, our approach diverges to satisfy the constraints and maintain compliance. In contrast,
non-formal methods like DP and Greedy do not explicitly account for constraints. Although the number of compro-
mises remains consistent regardless of specification complexity, the number of violations increases significantly as
the constraints become stricter. This highlights the importance of integrating formal methods into decision-making
processes for scenarios with complex constraints.

VIII. Conclusion
This paper develops a defense policy for the security of networks modeled by Bayesian attack graphs (BAGs) with

a set of practical security constraints. Our approach utilizes linear temporal logic specifications to formally represent
critical system requirements, including resource limitations, network security, and maintenance needs. By constructing
a product automaton and employing Linear Temporal Logic (LTL), we compute feasible defense policies that guarantee
adherence to these constraints. Furthermore, we developed an efficient defense policy that selects the policy among a
set of feasible policies with a specific format, yielding the highest expected lookahead security performance in every
horizon of length 𝐻. Numerical experiments validate the effectiveness of our framework in terms of meeting security
specifications and security performance.
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