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Network security plays an increasingly vital role across various domains, particularly in
sensitive areas such as aerospace systems. Examples include computer networks controlling
flight systems and computers securely transmitting classified data. Several security approaches
have been developed in recent years. This paper models network security as a Bayesian attack
graph (BAG), a powerful model to capture the penetration and propagation of attacks in
the network. Most existing defense policies for BAGs are designed for networks with known
vulnerabilities and threats, denoted by a known BAG. However, in practice, the network
vulnerabilities or threats could be presented by a set of BAGs. As attackers become more
intelligent and dynamic, they utilize their resources to execute new or hard-to-detect attacks,
posing uncertainty in network models. Given the uncertainty in the threat model, developing a
robust defense strategy to ensure network security is crucial. This paper formulates an optimal
robust defense policy that maximizes expected accumulated security reward under worst-case
conditions (i.e., against the most aggressive threat model). We provide proof of convergence for
the proposed policy, demonstrating that the optimal policy is computable for any network with
any type of vulnerability. Furthermore, we introduce an efficient matrix-based computation of
the optimal policy through an offline process, which enables real-time implementation during
system operation. Numerical experiments demonstrate the robustness and accuracy of the
proposed policy under various conditions.

I. Introduction

ETWORK security in aerospace systems plays a critical role in safeguarding against cyber threats and ensuring
Noperational integrity. As technology advances, the complexity and interconnectedness of these systems make them
vulnerable to various types of attacks. For instance, malicious actors could exploit vulnerabilities in flight control
systems or intercept classified communications, potentially leading to disastrous consequences such as unauthorized
access, data breaches, or even physical damage. Given the high stakes involved, effective network security measures
are imperative [1-7]. To protect these systems against cyberattacks, various techniques have been developed [8—10].
In particular, firewalls [11, 12] serve as the initial layer of network defense by blocking unwanted traffic but can be
bypassed by advanced attacks. Intrusion detection systems (IDS) [6, 13, 14] help detect threats by monitoring traffic,
though attackers can exploit their weaknesses to trigger false alarms, overwhelming the system. Encryption algorithms
[15] secure data in transit, but determined attackers with sufficient resources may eventually break them.

More advanced security systems go beyond the automatic security checks on a single device (e.g., IDS and firewall)
and consider the system as a network of interconnected components or defended by artificial intelligence (AI) and or
human-AI agents [16-22]. These approaches take into account the connections between elements and with outside
sources to assess the vulnerabilities and derive security solutions [23]. Figure 1 provides a simple illustration of attacks
on air traffic control systems. The connectivity of devices and servers, which are responsible for critical decision-making
in air traffic control, makes them vulnerable to various types of attacks. These attacks target devices connected to
external sources. Such breaches can infiltrate and spread through the network, significantly disrupting air traffic control
operations.

Attack graphs are a powerful class of models that consider the dependencies between the components of a network
for security analyses. The components are modeled as nodes of the graph and the dependencies between them as edges
[24]. In particular, Bayesian attack graphs (BAGs) [25, 26] are a variation of the attack graphs which allow for uncertain
representation of attack propagation in computer networks. BAGs are particularly useful in situations where the system
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Fig. 1 An illustration of potential vulnerabilities in air traffic control systems to cyber attacks, which can
infiltrate the network and disrupt critical decision-making processes.

being modeled is complex and has many interdependent components, allowing for a systematic and comprehensive
analysis of network vulnerabilities and potential attack scenarios [27].

Several defense policies have been developed for the security of networks modeled by BAGs. These methods rely
on full knowledge of the attack model, including network vulnerabilities and attackers’ behavior [16-18]. However,
in practice, the defender might have partial knowledge or uncertainty about the true attack model(s). This is due
to the ever-growing connectivity and evolving attack landscapes, which allow attackers to develop new strategies to
compromise networks. Particularly, the attackers can design sophisticated attacks, target new network components, or
dynamically alter their behavior to maximize damage [28, 29]. Existing defense policies often struggle to adapt to such
complexities, demanding the development of security solutions that yield robust performance given the uncertainty in
the model. This is especially critical in sensitive aerospace systems, where intrusions can severely impact network
security and overall system performance [30].

This paper models the uncertainty in network compromises using a set of Markov decision processes (MDPs). Each
MDP represents network security given a specific threat model, capturing the stochastic nature of attack propagation
during the defense process. These models reflect realistic scenarios where the defender has knowledge of the set of
possible attack behaviors but does not know which model the attacker will follow. Given such uncertainty, the paper
develops a robust defense policy that optimizes performance under the worst-case attack scenario. We provide the proof
of convergence for the proposed policy for the general form of BAG with an arbitrary set of threat models, along with an
efficient matrix-form implementation. This policy can be computed offline and deployed in real-time. The numerical
experiments demonstrate the superiority of the proposed policy in terms of robustness and performance.

I1. Attack Penetrations and Propagation through Bayesian Attack Graph

The security of a network comprising n components can be represented using the following graph:
G’ =N 7.8 P%

where N = {1,---,n} represents n components of the network and 7~ denotes the type of components expressing
their security levels. © represents the set of possible threat models, where 6§ € O indicates a specific attack model.
&Y indicates the connection between the components through directed edges used by the attacker, and P is the
set of exploit probabilities under the attack model 8. The nodes are random variables taking in {0, 1}, where 0
indicates an uncompromised component and 1 indicates a compromised one. Each node belongs to one of two types,
77 € {AND, OR}, reflecting the vulnerability type of the i-th device, machine, or computer. An edge (i, j) € &Y signifies
that node i can potentially be compromised via node j in the attack model 8. P¢ contains the exploit probabilities for
the edges, with pfj € P denoting the likelihood of node j being compromised through node i (assuming node i is
already compromised). These exploit probabilities are often derived from the NIST’s Common Vulnerability Scoring
System (CVSS) [31], which quantifies vulnerability severity using numerical scores.

The graph models the probabilistic spread of attacks, which can also be viewed as a Markov process with binary
state variables. The state vector, X = [Xx (1), ...,Xx(n)]7, describes the compromise status of all n nodes in the network
at time step k, where xg (i) is either O (uncompromised) or 1 (compromised). A fully uncompromised network is
represented as x; = [0,0, ...,0]7, while x; = [1,1,..., 1]7 indicates all nodes are compromised. There are 2" possible
states for the vector, noted as x!, ..., x>". The propagation of attacks across the graph depends on several factors, such as



external attack probabilities, internal exploit probabilities between nodes, component types, and mitigation efforts. The
set N2 represents components connected to external sources exposed to direct attack in model 6 with p;.’ denoting the

external exploit probability for arbitrary node j € N . Each internal node (j ¢ N2.) can be compromised through
internal connections propagating attacks. For an arbitrary internal node j, the set D;’ consists of all its incoming

edges that can be utilized to compromise the node. It can be formally defined as D;’ = {i e N|(i, j) € ?}. Internal
components come in two forms: AND nodes are compromised only if all connected nodes are compromised, OR nodes
can be compromised by any single connected compromised node.

A common method to mitigate network compromises involves running advanced firewalls on selected computers or
servers vulnerable to attack. Although this approach is convenient and can be executed remotely, it may not always
effectively eliminate compromises, particularly as some threats can bypass firewalls. To complement this strategy,
applying software patches or updates to vulnerable systems is another method to address network security issues.
However, while patching can close known vulnerabilities, it may not fully resolve the problem, especially when dealing
with persistent threats. Another widely used technique is reimaging, which involves reinstalling operating systems and
software on compromised machines or servers. Although this method is potentially costly and disruptive to network
operations, it has a high success rate in removing compromises. However, if attackers have obtained critical credentials,
such as domain passwords, reimaging may not fully secure the system. In this context, for simplicity, any method of
removing compromises will be referred to as reimaging.

At each time step, the defender selects a subset of nodes to be defended. In line with the modeling approach used in
our previous work [32-34], let a;_; € N denote the subset of nodes chosen for the reimaging process at time step k.
The probability of successfully removing a compromise at any selected node is given by (1 — a), where 0 < @ < 1
represents the probability of an unsuccessful removal. The value of « is influenced by the complexity of the reimaging
process; a more comprehensive reimaging approach results in a smaller @ value. For the attack model 6, the conditional
probability that the jth node is compromised at time step k, given the nodes’ state at time step k — 1, denoted as xz_1,
and the reimaged nodes ax_1 = {iy, ..., i, } C N, can be expressed for AND and OR nodes as:

* AND Nodes:

(ljéuk,l +a'1j€ak,1) pjg + (1 _pJH)

P(xi(j) = 1| Xk-1,2-1,0) = I pfi L @)=t if xg-1(j) =0,
ieDJ‘.’
ljgar +@ljea; ifxe-1(/) = 1,
* OR Nodes:

(ljéak_l + ale(lk_l) Pje + (1 - pjg)

P(xk(j) = 1| Xk-1,a,-1,0) = [1- TI (1 —pf’jlxk,l(,'):l) ]] if xx-1(j) =0,
ieDY

Ligag, + @ljea, if xe-1(j) =1,

Note that P(xx(j) =0 | Xk-1,8k-1,60) =1 = P(x(j) = 1 | Xg—1, ak-1,6).

II1. Proposed Robust Defense Policy

To effectively secure complex networks, it is essential to develop a strategy that can perform robustly given the
unknown information of the true threat model. In the context of network security, the objective is to determine and
implement the optimal sequence of defensive actions that safeguard the network from potential attacks. The proposed
defense policy must not only meet the network’s security requirements but also effectively respond to potential breaches
that could lead to severe disruptions or catastrophic consequences for the entire system. An optimal defense policy
can be obtained to address the specific characteristics and vulnerabilities of a known attack model. In our previous
work [35], we developed and evaluated optimal policies under both full knowledge of network states and scenarios with
partial observability of network compromises. Those policies, however, consider a known and fully known BAG model,
which limits their application to domains with known and single threat models. Given a finite set of threat models, this
paper focuses on developing robust defense policies that can yield robust security performance despite the uncertainty



of the true threat model. This is crucial because real-world network security involves uncertainty in both the attacker’s
behavior and the network model. Our goal is to create a strategy that maintains proper security, even when the true
attack model is unknown, ensuring better resilience compared to approaches that assume a single, fixed model.

Let O represent the space of threat models, where each 6 € © corresponds to a specific BAG that describes potential
attack propagation within the network. If 6 # ¢’, the models differ in terms of vulnerabilities and attack methods,
meaning the defense strategies for these models could also vary. To simplify, we assume the uncertainty in network
vulnerabilities is captured by a finite set: ® = {#!,...,0™}. The true threat model is unknown, among one of these
possibilities at any given time. Changes in the model over time reflect the evolving nature of adversaries or shifting
attack patterns, which are often difficult to detect. In the next section, we first outline the optimal defense policy for a
single threat model and then introduce a strategy designed to provide robust protection under model uncertainty.

A. Proposed Robust Defense Policy: Markov Decision Process

The attack propagation and penetration in the network with varying or unknown underlying model(s) can be expressed
using unknown MDP, represented by a 6-tuple (®, X, A, P?, R, y), where O represents the possible threat models,
X = {0, 1}" is the state space, A is the defense action space, PO X x AxX,denoted in (IT), (I), is the state transition
probability function such that P(x’ | x, a, 6) represents the probability of moving to state X’ after taking defense action a
in state X under model 8. R : X X A X X — R is a bounded reward function such that R(x, a, x") encodes the reward
earned when defense action a is taken in state x and the system moves to state x’, and 0 < y < 1 is a discount factor.
This paper interchangeably uses defense, and reimaging as forms of security actions to defend the network. The security
action space A includes all possible network components that can be picked for defense/reimaging. The defender aims
to maximally enhance network security; thus, the reward function R(x, a, Xx") measures the improvement in the network
security upon taking action a, transitioning the system from x to x’, while also accounting for the potential cost of the
defense process.

Let 7 : X — A be a deterministic policy, mapping an action to any given state. The optimal defense policy for the
network model 8 € ® can be expressed as:

(%0 = xS | Dy RO 30 xem) [ %0 =X < . M

for all x € X; where the expectation is with respect to attack propagation and penetration under model 6, and IT is the
space of all deterministic policies. Finding the defense policy using dynamic programming or reinforcement learning
approaches leads to solutions that ensure achieving the highest average accumulated rewards under model 6.

Despite the optimality of the policy in (1) for model 6, uncertainty in the true threat model makes the use of a
single policy unreliable. Additionally, the threat model may evolve over time. As a result, a policy optimized for one
model may not perform well for another, and relying on a single model can leave the system, particularly its sensitive
components, vulnerable to significant security risks. This paper derives an optimal robust defense policy that maintains
proper security performance under model uncertainty. Let i : X — A be a robust policy, mapping the state to action
space. The optimal robust policy can be formulated through the following optimization problem:

) @

*(x) = maxmin E
H ( ) MEIl 0O

oo
Z’th(Xl7al7Xl+l) | X0 = X,a0:00 ~ /1,9
t=0

where the minimization is with respect to the threat models, and the maximization is over the policy space. The
minimization ensures that we consider the worst-case probable condition among models © to select a policy for those
specific scenarios. The consideration of the minimum in (2) ensures the robustness of the policy, even if the worst-case
security scenario is encountered in practice.

We define the robust state value function corresponding to a given policy u as:

00

Z Y R(Xt, 8, Xr41) | X0 = X, 20.00 ~ 1, 6

V#(x) = minE
0cO pr

, 3

for all x € X. For the optimal robust policy u*, we define the corresponding state-value function as V4 := V*. Similar
to the Bellman operator for average accumulated rewards [36], the robust state-value function for the optimal robust



policy u* holds:
V*(x) = maxminEy |y a0 [R(X,a,X") + yV*(x')]
acA 6€O

: . “)
_ ’ ’ S ’
= ;réeglcrgnelg Z P(x' | x,a,0) [R(x,a,xX") +yV*(x)],
x'eX
for all x € X; where the maximum is over the action space.
The optimal robust policy can also be expressed using the optimal robust state value function V* as:
W'(x) = argmaxmin ) P(x'[x.a,6) [R(x.a,x) +yV*(x)], 5)

€
acA xeX

for all x € X. Note that any V* holding equality expression in (4) for all x € X, corresponds to an optimal robust
policy in (5). In the following sections, the proof of the existence of such a robust policy and a detailed matrix-form
computation of it are provided.

B. Proposed Robust Defense Policy: Notation

In this section, we extend the definitions introduced earlier to a vector and matrix format. Consider the elements of
X arranged in an arbitrary fixed order and labeled as x',x?, ..., x*". This set includes all possible distinct states of the
network, where the ith state is represented by x’. The transition matrix under the defense action a € A and the threat
model 6 is defined as:

(M(’(a))uzP(xf | x',a,0), fori,j=1,...,2", (6)
ij

where (M e(a))ij indicates the element in the ithe row and jth column of the transition matrix. The transition
probabilities are determined by the parameters of the BAG model 6 and can be incorporated into the matrix using
expressions (II) and (II).

We define the vector-from representation of the expected reward function as:

2’1
(Rg)l_ =RYx!,a) = ZP(xj | x',a,0)R (xi,a,xj) ,fori=1,...,2", @)
=1

where the expectation over the next state is taken with respect to transition probabilities to indicate the expected reward
before observing the next state. Finally, we define the vector-form expression for the robust state-value function under
the policy u:

VH = [VH(xD), V(). VR (E)]T ®)

which is a vector of size 2" with the ith element representing V#(x). We represent the robust state value vector under
the optimal robust policy u* as V*, which is equivalent to VA"

C. Proposed Robust Defense Policy: Mathematical Foundation
LetV = [V(1),...,V(2")]T € R be a real-valued vector. We define the robust operator over any given V as:

TRO[Y] = max mi

0 6
max min [Ry +yM° (@)V], ©

where the “max" and “min" operators are applied element-wise, R is the expected reward introduced in (7) and M ¥ (a)
is the transition matrix defined in (6).

Theorem IIL.1 [teratively applying the robust operator in (9) on a given 'V € R?", leads to the optimal robust state
value vector (i.e. V*), which is a fixed-point solution of TR (i.e. V* = TR[V*]).

To establish the proof, we first state the following Banach fixed-point theorem [37], also known as contraction
mapping theorem, which is later used for the argument.

Theorem IIL.2 Banach Fixed-Point (Contraction Mapping) Theorem: Let (X, d) be a complete metric space, and let
@ : X — X be a contraction mapping on X, i.e., there exists a constant 0 < k < 1 such that for all x,y € X, we have
d(®(x),D(y)) < k-d(x,y). Then, ® has a unique fixed-point x* € X.



Validating the Robust Operator as a Contraction Mapping: Let R*" be the space of all real-valued vectors of
dimension 2. Consider the distance metric d : R?" x R?" — R as the maximum absolute difference between the
corresponding components of two vectors V;,V, € R%" (i.e. Lo-norm) as:

d(Vi, V) = e (A, [V1(D) = V(D). (10)

.....

It is well-known that (R%", d), is a complete metric space. To show that 7R in (9) is a contraction mapping, let V;, V5
be arbitrary vectors in R?". We want to show that:

d (TR TR < k- d(Vi, V) (a1

for some 0 < k < 1.
Let ‘W, = TR°[V}] and ‘W, = TRO[V%]. Then:

d(Wi. Wy) = niax [ W4 (i) = W (0)
(12)

2” 2n
— 2" 0 0 Y : 0/ 0 .
= max Imax min | R} <x>+yZ_](M <a))ij Vi(j)| - maxmin |RY () + ;(M (a))ij M|,

where R (i) is another representation of (RY)..
The following holds for an arbitrary choice of functions; however, for specificity, consider the functions fi, f>, f,
defined over A as:

2n
fi(@) = min |R () + Z (M”<a>)ij Vi(j)|, fora e A,

(13)
f(@) = min R0<l>+yZ(M"<a>) V()| fora e A,

F(@) = fi(a) - fo(a), forac A.

The following inequalities derived from the properties of the maximum operator, hold for the general functions with the
same domain fi, f», f = (f1 — f2) where the maximum operator is defined over their domains (in this case A):

max{f (@) + f2(a)} <max(f (@)} +max{fa(a)} = max{f(a)+fo(a)} -~ max{f2(a)} < max{f(a)}

14
max(f1(2)} ~ max( ()} < max{fi(a2) ~ H(@)} < max|{fi(a) -~ fa)}] o

=
f=h-r
Without loss of generality, f; and f> can be swapped, redefining f = (f> — f1) and updating the inequalities accordingly:

max{f(a)} — max{fi(a)} < max{f2(a) - fi(a)} < max |{/2(a) - fi(a)} (15)

=
similar to (14) ae

Combining the results of (14) and (15) one can prove that:
| gg{fz(a)} —max{fi(a)}| < max H{fi(a) - fa(@)}]. (16)

Substituting the functions fi, f> from (13) into the last expression (i.e. 16), we can conclude that:

.
max min |RY (1) + ¥ Z(M%)) Vi(/)| - maxmin |RY () + ;(Mf'(a))ij V()

)

.
< max Imin |RY (i) + Z (M%), Vit | - min |RIG) +y jz; (M%), V2



Given an arbitrary a € A, we now define the functions g;, g2, g over ® as:

g1(0) = RO +y Y (Me(a))l_j V(j)|, foro €O,

(18)

: i :
82(0) = RO +y Y (Mg(a))ij W(j)|, foro €O,
7= |

g(0) = 5;2(9) - g1(0), for9 € ©.

The following inequalities hold for arbitrary functions defined over the same domain. Here, we focus on inequalities
arising from the properties of the minimum operator, that are applied generally to arbitrary functions g, g», and
g = &> — g1, with the minimum taken over their shared domain (in this case ©):

min{g(6)}+min{g1(6)} < min{g(6) +21(6)} = min{g1(6)} ~ min{g(6) + 1(6)} < ~min{g(6)}

=  min{g(0)} - mln{gz(9)}< mm{gz(G) g1(0)} = max{g1(9) 22(0)} (19)
g=(g2—-81)0€0O

= glelg{gl @)} - glelg{gz(e)} < rggg{gl (0) —g2(0)} < max [{g1(0) — g2(0)}I.

In the second line, the minimum operator is replaced with the negative maximum operator, while the third line applies
the maximum operator alongside the properties of the absolute value. Without loss of generality, g; and g, can be
swapped, redefining ¢ = (g1 — g2) and updating the inequalities in (19) accordingly:

i 10y MIR{2(6)) — min(g1(6)) < max{(2(0) - £1(60)) < max {g2(6) - g1 (0)}]. 0)

By combining the results of (19) and (20), it can be shown that:
| glelg{gl )} - %rlelg{gz(G)}l < max {g1(0) — g2(0)}|. (21)

Substituting the functions g1, g» with the given a € A from (18) into the last expression (21), the following result
holds:

o i
min [RY (1) +y ]Zl (@), V)| - min [RY) +y jZl (M), V2
_ 22)
2m 2
< max||RY (1) +y ]Zl (M0@), Vit |- R +y ; (M @), Va0
By combining the inequalities in (17), (22) with the notation_ introduced in (12), we obtain:
d(Wi, Wh) = max |max min |R (i) +y Z (M (a)) Vi(j)| - max min |R (i) +y i (M"(a)) A
i=1 [aeA 0O = aeA €O =
o 2 o -
< miax (ma%(glag)i y ; (M0@), Vith -~ ; @), %(j))
2m 2z 2m 2
= max | y max max {; (@) i)~ %(j)|}) < max (y max max {Zl (1)), miax 1) - %(m})
= max (Vgg};lugagl}la;c V() —%(M) <y max [V () - Va()l,
(23)

where the last line holds because the rows of the transition matrix consist of non-negative values that sum to one for each
row i (i.e., Z?Z] (Mg(a))ij = 1). For k = v, the inequality in (23) shows that d(7R°(V}), TR (V) < k - d(Vi, V5).



This establishes that the robust operator 7R° is a contraction mapping. According to Theorem I11.2, there exists a
unique fixed point V* for the robust operator 7R in the space R?". This fixed point V* is the optimal robust state value
vector V*. We now show that starting from any initial vector V € R?", the sequence Vi1 = 7RO[V], generated by
iteratively applying the robust operator, converges to V*. Since 7R is a contraction mapping with constant x € [0, 1),
for any two consecutive iterates Vy4; and Vy, we have:

max (Vi (1) -V*(i)| = max }|7'R°[(vk](i) - TRV <« max }lka(w - V()|
beey 2l [ ..,20 i L,2n

i€ ie{l,...,2 {1,

By applying this inequality recursively, we obtain:

o X, Vi () = V(D) < K [max, | [Vo(i) = V7 (D)

k+

Since k € [0, 1), as k — oo, kk*1 — 0. This implies that the sequence V converges to V*:

lim max [Vi(i))-V*(i)|=0

k—ooie{l,..., n}
Thus, the iteratively computed values converge to the optimal robust state value vector V*, thereby proving Theorem
I.1.

D. Proposed Robust Defense Policy: Implementation

For a specific network, let ® denote the set of threat models. At each step, an attack occurs using a fixed or varying
threat model(s) that is unknown to the defender. Following the attack, the defender takes defensive actions based on the
system states and compromises, aiming to maintain the long-term security of the system. The defense policy specifies
which parts of the network require reimaging.

The proposed robust policy consists of both offline and real-time components. The offline component involves
computing the proposed robust policy for the network, which can be achieved using the iterative process established in
Theorem III.1. We can start with an initial vector Vy € R?" (e.g., Vy = [0, - - - ,0]7) and recursively apply the robust
operator 7R°. This process is defined as Vi1 = 7 R°[V], continuing until the maximum difference between the value
vectors in two consecutive iterations falls below a small pre-specified threshold: max%n [Viet1 () = Vi (i)| < €. The
optimal robust policy u* can then be derived from the state value function Vi1, which is sufficiently close to the
optimal robust state value function.

The time complexity of the value iteration method (offline step) is of order O (|A| x |®] x 2% x L), where 2%"* arises
from the transition matrices involved in (9), and L represents the number of iterations required before termination. In
contrast, real-time action selection occurs in O(1) time, as it involves a single lookup in the optimal robust policy vector
to determine the action corresponding to the current state of the network.

IV. Numerical Experiments

This section presents numerical experiments to evaluate the performance of the proposed defense policy. All results
are averaged over 100 independent runs. The experiments are conducted on a network comprising 10 components,
under various threat models. In the first set of experiments, the threat models differ based on the external attacks applied
to the network. The performance of the proposed defense policy is compared against methods that assume a single
threat model or employ random action selection. In the second set of experiments, the threat models involve similar
external attacks but vary in their internal attack paths and corresponding propagation probabilities. Evaluations across
both scenarios demonstrate the robustness of the proposed method in maintaining network security under diverse attack
conditions.

First Set of Threat Models: Various External Attacks
The first set of experiments considers three different threat models, as illustrated in Figure 2. The network may be
subjected to one of three types of external attacks, which are unknown to the defender in advance. These correspond
to three distinct models: Model 1 (6'), Model 2 (62), and Model 3 (6%). Consequently, the space of threat models
is defined as ® = {#', 6%, 6}. The security reward is designed to reduce the number of compromised components.
Thus, the negative of the number of network compromises in the next time step is considered as the reward, defined as:
R(x,a,x') = - Z;le Iy (j)=1. The reward ranges from 0 to —10, where 0 indicates no component is compromised, and
—10 indicates that all nodes are compromised.



Attacker
Model 1

Fig. 2 Network represented by 10-node BAG. Three possible attacker models are presented, leading to three
possible network models © = {8, 6%, 3}.

The network vulnerabilities across the models are distinguished by their superscript indices. In this set of experiments,

for any i, j € {1,...,n}, the internal network vulnerabilities are identical across the three models. In other words,
pf)j1 = sz = pl.g;, so we use p;; to represent these common values: pip =0.7, p14 = 0.6, p25s = 0.6, p36 = 0.55, p39 =

0.7, p47=0.7, p58§=0.7, ps2 =0.7, pg7=0.7, 094 =0.6, p9g =0.7, 0108 =0.7, p109 =0.4. The external exploit probabilities
for each attack type are as follows: for Attack Type 1, plg ' =0.65 and p39 = 0.6; for Attack Type 2, ,01‘92 =0.65 and

p% = 0.55; and for Attack Type 3, p¢° = 0.6 and pf = 0.55.
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Fig. 3 Average security reward under different defense policies for BAGs with: a) the true network represented
by model 1, b) the true network model is uniformly selected at each time among models 1 to 3.



In this paper, we compare the performance of the proposed policy with dynamic programming policies for all
three possible network models. Clearly, these models are not known in practice, so if we aim to select the policy
corresponding to one of these three models, there is always a possibility that the policy for the non-true model is being
implemented. By contrast, the proposed policy does not require any knowledge about the true model of the network.
Moreover, the proposed policy can be utilized in cases where the network model might vary over time, reflecting shifts
in vulnerabilities or attacker behavior. This is particularly common in adversarial conditions, where attackers aim to
dynamically target nodes to maximize damage to the network.

Figure 3(a) expresses a case where model 1 is the true threat model. Since this is unknown to the defender, we
perform the optimal dynamic programming policies for all models in defending model 1. Fig. 3(a) shows that the DP
method for the true model (i.e., model 1) yields the highest average reward, i.e., the best security performance. This
is due to the fact that this policy is derived to yield the best average performance for this threat model. However, the
DP policies for model 2 and model 3 perform significantly poorly once applied to model 1 since these policies are not
derived to maximize security performance for model 1. Therefore, given no knowledge of the true model, there is a huge
risk of choosing among the security policies in practice. By contrast, the proposed robust defense policy has performed
better than the DP policies for models 2 and 3. As expected, the robust defense policy performs worse than the DP
policy for model 1, as actions are taken with respect to the worse case performance of the network. Therefore, the
robustness of the proposed policy comes from the fact that no matter what the true network model is, the proposed
policy prevents extreme damage to the network security, which might be possible once using the DP policies for an
untrue network model. Finally, one can see that the random policy outperforms the DP policies for the wrong model,
which again demonstrates the risk of performing the wrong policy in network security.

Figure 3(b) demonstrates a case with complex and time-varying behavior of the attackers, where the true network
model is randomly selected at each time step. This expresses the case where the attacker might switch its behavior
at any given time. Since no single model represents the network model at all times, we can see that the DP policies
corresponding to each of the three models perform poorly. In particular, the DP for model 1 performs similarly to
a random policy, and the other two DP policies also fluctuate and show unstable performance. Again, it should be
emphasized that given the lack of knowledge about the true model, any of the three performances shown in Fig. 3 is
possible to achieve if the defender aims to pick one of the three DP policies. This could cause a significant risk in
network security (e.g. if the DP for model 1 is performed). However, one can see a more stable performance of the
proposed robust defense policy, indicated by the red curve. This policy holds relatively good security results, and it
becomes better than another method after 30 steps while not requiring any knowledge of the network model.

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

Expected Loss per Step

Dynamic Dynamic Proposed Random
Programming Programming Method
for Model 2 for Model 3

Defense Method

Fig. 4 Expected loss in security reward per step under different defense policies when model 1 is the true
network model.

10



In the third experiment represented in Figure 4, we show the expected loss of different policies compared to the best
achievable performance. Model 1 is considered as the true network model. The best achievable performance in this case
corresponds to the DP policy for model 1, which is referred to as baseline. The increase in the number of compromises
per step by different policies with respect to the baseline policy is shown in Figure 4. It can be seen that the proposed
policy yields the lowest expected loss in security reward, compared to DP for model 2 and model 3, as well as random
policy. This indicates the robustness of the proposed policy, which prevents achieving the worst-case performance due
to the lack of knowledge about the true model.

Second Set of Threat Models: Various Internal Attacks
In the second set of experiments, a new threat model space is explored. Here, we assume a fixed external vulnerability at
the edge nodes N2, (those exposed to external resources), while the attacker can adopt different propagation strategies
within the network, as shown in Figure 5. The figure illustrates a scenario where the network is exposed to one of four
potential threat models, though the defender does not know which one will be active during execution. These four
distinct models are: Model 1 (81), Model 2 (82), Model 3 (63), and Model 4 (6%), forming the threat model space as
0 = {0',6%, 6%, 6*}. The security reward remains consistent with that of the previous experiments.

Attacker
Model 4

Attacker
Model 2

Fig. 5 A 10-node BAG network with four possible threat models, represented as © = {6', 62, 6%, 6*}.

In this set of experiments, the external network vulnerabilities are identical in all four models. Specifically, for any
i € NP, the vulnerabilities are equal across the models, so ,01.9l =p 1.9 = pfﬁ, and we denote this common value (without
a superscript) as: p; = 0.65, p3 = 0.6, and p1¢ = 0.55. The internal exploit probabilities exhibit both similarities and
differences across the models. In scenarios where a node has two outgoing edges and the attacker selects one, the
exploit probability on that chosen edge increases. In particular, we assume that the attacker’s success rate becomes 1 if
it sacrifices the other attack paths and focuses on exploiting a single edge. We use p;; to denote the common internal
exploit probability, distinguishing any differing values across models with appropriate superscripts. Common internal
network vulnerabilities, represented by p;;, are specified as follows: p25=0.6, p47=0.7, p5§=0.7, ps2 =0.7, pg7=0.7.
The varying vulnerabilities within the network are outlined as follows:

Pl = ply =07y = ply = 0.6, = ply = 1.p% = pY = 0.55,p% = pfs = 1,05y = pfy = 0T.pfy = pf; =
0.6, pgg = pgg = 0.7, pgg = pgg = 1, Py = Plog = 0.7, plg = g = 0.4 plyg = plog = 1.

Table 1 presents the results when the underlying model is one of the four models in ® and remains fixed throughout
the defense process, although the defender is unaware of the true model. It can be seen that the dynamic programming
policies associated with different threat models behave differently. In particular, performing dynamic programming
policy associated with a model that does not match the true threat model can lead to significantly poor defense
performance, as indicated by the number of compromises. It can be seen that the proposed policy consistently performed
well compared to other model-specific policies. This indicates the importance and applicability of the proposed policy,
without the need for assuming a single model, while the model-specific models can have poor performance if applied to
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a wrong model.

Table1 Comparison of Proposed Method and Dynamic Programming Methods for Different Underlying Models
with respect to the average number of compromises.

Underlying Model | Proposed Policy DP Model 1 DP Model 2 DP Model 3 DP Model 4
Model 1 2.8468 + 0.7142 2.7936 + 0.7398 | 5.288 +£0.2648 | 3.755 +0.5124
Model 2 2.9532 + 0.7159 | 3.5760 + 0.5965 5.7232 £ 0.1562 | 5.1722 + 0.1717
Model 3 2.8654 £ 0.7663 | 3.1924 + 0.6606 | 2.8694 + 0.6004 3.1888 + 0.5888
Model 4 2.7078 £ 0.6931 | 2.2758 + 0.8233 | 2.7976 + 0.7350 | 2.91 +0.6461

Figure 6 represents the final analysis, which examines the impact of varying the underlying threat models during the
defense process. At each step, there is a probability p that the attacker switchs to a new random threat model in the
subsequent state. This process can be characterized as a Bernoulli random variable with parameter p. When p =0,
the underlying model is selected randomly at the beginning of a trajectory. As p increases, the frequency of model
switching also rises, reaching a scenario where p = 1 signifies that the threat model is chosen randomly at each step.
The comparison encompasses our proposed robust method, the average results of the dynamic programming method
across all models, and the performance of random action selection at each step. The findings indicate that relying on a
single threat model and adapting actions accordingly is generally not effective, despite some BAGs being more or less
representative of the overall attacks. In this setting, random action selection yields slightly better average outcomes.
However, our proposed robust methods consistently outperform both the single-model approach and random selection.

IEl Proposed Robust Policy
Single Threat Model Policies
Random

3.8
3.6
3.4
3.2

3.0

2.8
2.6 I
0.0

0.25 0.5 0.75 1.0
Switch probability rate (p)

Average Number of Compromises

Fig. 6 Average number of compromises across varying threat model switching rates (p), comparing the proposed
robust defense, single threat model DP approach, and random defense policies for BAGs.

V. Conclusion
In conclusion, this paper develops a robust network security policy for networks with unknown threat models
characterized by Bayesian Attack Graphs (BAGs). We introduce an optimal robust defense policy that maximizes
expected accumulated rewards under worst-case scenarios, taking into account the uncertainty of network models
and dynamic attacker behavior. The proof of the convergence of the proposed policy under any arbitrary network
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and threat models is provided. Numerical experiments confirm the effectiveness of the proposed policy, showing its
robustness across different threat models. The results demonstrate that our approach outperforms both single-threat
model strategies and random defense policies. Additionally, we present a matrix-form implementation of the proposed
policy, allowing for efficient offline computation and real-time implementation.
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