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One can write dependently typed functional programs in Coq, and prove them correct in Coq; one can write
low-level programs in C, and prove them correct with a C veri�cation tool. We demonstrate how to write
programs partly in Coq and partly in C, and interface the proofs together. The Veri�ed Foreign Function
Interface (VeriFFI) guarantees type safety and correctness of the combined program. It works by translating
Coq function types (and constructor types) along with Coq functional models into VST function-speci�cations;
if the user can prove in VST that the C functions satisfy those specs, then the C functions behave according
to the user-speci�ed functional models (even though the C implementation might be very di�erent) and the
proofs of Coq functions that call the C code can rely on that behavior. To achieve this translation, we employ
a novel, hybrid deep/shallow description of Coq dependent types.
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1 Introduction
We want to write functional programs, because proving those correct is simpler than proving
imperative pointer programs. After we prove our programs correct, we want to compile and run
them. One can prove programs using Coq, whose logic contains a pure functional programming
language along with the proof theory for proving that those programs satisfy logical speci�cations.
Then one can “extract” the programs to OCaml, and compile and run them. But the OCaml compiler
(written in OCaml) is not proved correct; nor is the OCaml runtime system and garbage collector
(written in C). We want foundational veri�cation, in which the application program and all these
tools can be proved correct in the same machine-checked logic, in theorems that compose together
to make a single end-to-end correctness theorem.

For proved-correct compilation, one can use CertiCoq, a compiler from Coq to C that is veri�ed
in Coq. It composes with the CompCert veri�ed C compiler and the CertiGC veri�ed garbage
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24:2 Korkut, Stark, and Appel

collector (see section 2). Thus, a veri�ed functional program in Coq compiled and executed with
CertiCoq+CompCert+CertiGC can have the desired end-to-end correctness theorem in Coq.1

However, large programs are rarely written in a single language; additional languages are used
for better performance or for capabilities that the primary language lacks. In particular, because
Coq lacks primitive types,2 mutation, and input/output actions, CertiCoq-compiled code must
interact with another language to have those capabilities. Speci�cally (for the CertiCoq back-end
targeting C), Coq code must be able to call C code and C code must be able to inspect and generate
Coq data structures and call Coq code. There are already foreign function interface (FFI) systems to
handle the operational interface between functional languages (ML, Haskell, etc.) and C [Blume
2001; Leroy 1999], or Java-like languages and C [Liang 1999]. Some of these provide APIs for the
functional language to traverse C data structures, others provide APIs for C to traverse the functional
language’s data structures; and all provide APIs for the functional language to call C functions. In
these systems, a type-directed “glue code generator” produces APIs and interface functions. Those
FFIs make a dynamic (operational) connection between the high-level and low-level language; and
some work has even addressed type safety [Tan et al. 2006].
But previous work has not addressed dependently typed high-level languages, and most im-

portantly, has not shown how to connect correctness proofs of high-level client programs with
correctness proofs of low-level primitives. When we prove a functional program correct in Coq’s
proof theory (the Calculus of Inductive Constructions) and we prove a C program correct in a
program logic for C, how does the “glue code” work to connect these proofs together?

We provide a solution to that problem: VeriFFI, a Veri�ed Foreign Function Interface between
Coq and C (Figure 1). Coq program components are proved correct directly in Coq, C program
components are locally proved correct using the Veri�ed Software Toolchain (VST) [Appel et al.
2014], and the connection is made via VST function speci�cations that are generated by VeriFFI.
Compared to some other veri�ed FFI systems (in section 14 we discuss related work), it’s

important that our high-level language is a higher-order dependently typed pure functional language
embedded in a logic (i.e., Coq). “Functional" programming languages with mutation (such as OCaml)
require separation logic for their reasoning on both sides of the FFI [Meijer 2014]; our approach
limits separation logic only to the C side. And (unlike other veri�ed FFI systems) our C language
veri�cation can be done using a powerful and general proof tool, the Veri�ed Software Toolchain.

Contributions
• VeriFFI guarantees both type safety and correctness (except for termination) of the foreign
functions, and supports both data abstraction (C functions on types that are opaque to the
Coq side) and data transparency (C functions on Coq inductive types).

• We achieve this by calculating C function speci�cations (pre/postconditions) from Coq
dependent types; the user can use VST to prove that the C functions satisfy these specs.

• We calculate these specs using a novel hybrid deep/shallow description of Coq types that
allows annotation on each component of a type; the annotations allow analysis and translation
of Coq’s dependent type structure for this and other applications in metaprogramming.

• Our semantic approach and our glue code generators provide language-local reasoning on
the Coq side and the C side without the need for a multi-language semantics.

1Each of these components is veri�ed in Coq to speci�cations that are consistent with each other, but CertiCoq’s composed
end-to-end correctness theorem has not yet been demonstrated. In fact, our work in this paper informs the statement of
that theorem; see section 13.
2Or, to the extent that Coq supports primitive types such as 63-bit integers, the correctness of their implementation can be
proved by considering their operations as foreign functions.
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Fig. 1. Typical usage of VeriFFI. User
writes an interface spec model.v and a
proved-correct client program client.v
in Coq; writes a C program prims.c
that implements the interface; and
proves in verif.v in Coq that the C pro-
gram is correct.

(Clightgen is CompCert’s
front end that parses C
into a Clight AST,
to be veri�able by VST)
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2 Background
CertiCoq3 compiles Coq functions by �rst reifying them into ASTs using MetaCoq [Sozeau et al.

2019], then translating to an untyped intermediate language _ANF [Paraskevopoulou et al. 2021]
and then to CompCert Clight, a high-level intermediate language of the CompCert veri�ed C
compiler [Leroy 2006]. From there, CompCert can compile to assembly language. Each of these
languages—(rei�ed) Coq, _ANF, Clight, Assembly—has a formal operational semantics in Coq. Coq’s
formalization is part of MetaCoq, _ANF’s is part of CertiCoq’s proof, and Clight’s and Assembly’s
are part of the CompCert speci�cation. Each of the translations (as well as each optimization pass
from _ANF to _ANF) is proved correct (semantics-re�ning) with machine-checked proofs in Coq,
with respect to the respective operational semantics.

The �rst phase of CompCert translates C to Clight. Clight programs are readable as C programs—
Clight can be translated to C with an unveri�ed pretty-printer, when it is useful to compile the
output of CertiCoq with an unveri�ed C compiler such as clang or gcc. Hence we will treat C and
Clight as mostly interchangeable.

CertiCoq had a mechanism for external primitive functions written in C, but had no mechanism
for verifying them. CertiCoq’s correctness proof is w.r.t. the Clight operational semantics, but
for program veri�cation (of external C functions) one might want an axiomatic semantics, a
program logic. And there was the additional challenge of reasoning about shared structure in a
garbage-collected heap, and preserving invariants across garbage collections.

The Veri�ed Software Toolchain (VST) [Appel et al. 2014] is a program logic and tool for proving
functional correctness of Clight programs, and of C programs via their translation to Clight. Clight

3There is no single citable work that describes all of CertiCoq. Separate papers describe di�erent parts of the compiler
and runtime: • the workshop paper announcing the beginning of the project [Anand et al. 2017] • CertiCoq’s front end
is MetaCoq via PCUIC [Sozeau et al. 2019] • the veri�ed translation from MetaCoq to its _ANF intermediate language
[Paraskevopoulou and Grover 2021] • the veri�ed shrink-reduction optimization phase [Savary Bélanger and Appel 2017] •
the veri�ed closure-conversion pass [Paraskevopoulou and Appel 2019] • the composition of all _ANF phase veri�cations
[Paraskevopoulou 2020] • the veri�ed code generator [Savary Bélanger et al. 2019] • the CertiGC veri�ed garbage collector
[Wang et al. 2019].
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24:4 Korkut, Stark, and Appel

is an easier language than C for program veri�cation as it has no side e�ects inside expressions.
VST has a formal soundness proof in Coq—that is, if you prove a property of a C program in VST,
then that program running in the operational semantics of Clight will respect that property.

VST is used for the correctness proof of CertiCoq’s garbage collector [Wang et al. 2019], which
is written in C. The Clight code produced by CertiCoq allocates records (from the compilation of
inductive data constructors) on a garbage-collected heap, and from time to time it must call the
garbage collector (g.c.).

The proof of a C function in VST is with respect to a function speci�cation (funspec), that gives
the function precondition and function postcondition, all in higher-order impredicative separation
logic, and all with respect to a set of quanti�ed variables �!G : if the program state before calling 5
satis�es pre(�!G ) and if 5 terminates (in the Clight operational semantics), then the program state
will satisfy post(�!G ).

Combining Coq and C. Now, suppose a Coq function 6 calls a C function 5 ; or more precisely,
a Coq function 6 translated to a Clight function 6c calls a Clight function 5 . From the MetaCoq
semantics of 6 and a CertiCoq correctness theorem for open programs as proposed in section 13,
one would get a Coq proof about the behavior of 6c (subject to an assumption about 5 ’s behavior)
in Clight operational semantics. Given some appropriate funspec for 5 in VST’s logic, the user can
interact with VST to prove correctness of 5 w.r.t. that funspec. Based on the semantic model of
VST funspecs, that gives a Coq proof about the behavior of 5 in Clight’s operational semantics.

VeriFFI’s job will be to say what that funspec should be, and to provide the appropriate de�nitions
and tools tomake this connection.With VeriFFI, the foreign C function could be the garbage collector,
a user-written C function, or a VeriFFI glue-code-generated C function. Any of these functions
manipulate C data structures that are the CertiCoq translations of Coq data structures, as well as
other C data structures that the C functions use internally. An important part of VeriFFI’s job is to
enable both concrete data types (C traversal and construction of Coq Inductive types) and abstract
data types (whose representation is not known to the Coq client).

Data representations. CertiCoq represents Coq values in memory using the same low-level
memory representations as OCaml [Minsky and Madhavapeddy 2022].4 In this discussion, we
assume a 64-bit word size. Unsigned integers = up to 263 � 1 are represented in memory as 2= + 1.
Since all pointers are word-aligned (and thus even numbers), this allows the garbage collector to
distinguish pointers from nonpointers.

Inductive nat := O : nat | S : nat -> nat.

Inductive types such as nat are represented as follows. The O constructor, as the �rst constant
constructor in this datatype, is represented by an unboxed (i.e., tagged as nonpointer) zero, 2 · 0 + 1.
The value S n is represented by a aligned (even) pointer into a
two-word record, where the header (at o�set -1) contains a length
(in this case, 1) and a tag (in this case 0, for the �rst boxed constructor).

1    0
n

The Coq heap in separation logic. We must describe Coq values in their C representations, using
VST’s separation logic. Trees in separation logic are typically represented as the separated conjunc-
tion of their subtrees, but that can’t work for the usual implementation of an ML-like functional

4There is no need to use OCaml representations, since we do not link with an OCaml system, but we maintain compatibility
because it may be useful in the future.
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language. Consider a program with shared subtrees:
Inductive tree := leaf : tree | node: tree -> tree -> tree.

let x := node leaf leaf in
let y := x in
let p := node x y in ...

2    0 2
1
1

   0
p

Because there is sharing between x and y, we cannot describe this in separation logic as
p 7! node x y ⇤ x 7! node leaf leaf ⇤ y 7! node leaf leaf.

We handle graph structures with sharing using the CertiGraph library [Wang et al. 2019], whose
approach is to describe a graph g in the “propositional” part of Coq, as a mapping from vertex-
numbers to edge-lists (and other information). It is a labeled graph, where each vertex-label includes
the C address of the record representing that vertex (or, for vertices represented unboxed, the
vertex-label has the unboxed value). Then the separation-logic resource (graph_rep g) describing
this graph is the iterated separating conjunction (big-star) of all of its vertices.

CertiCoq uses a generational garbage collector, proved correct using VST [Wang et al. 2019]. That
collector, or any collector, will need a heap-management data structure to keep track of memory
not currently allocated but available for allocation.
In the VST proof of a C program that interacts with the CertiCoq garbage-collected heap, the

separation-logic assertions will usually have these (separated) conjuncts: heap, described by the
graph_rep predicate; (separated from) thread_info predicate comprising the heap-management
data-structure and the stack of frames (a data structure keeping track of local variables pointing
into the heap, following McCreight et al. [2010]) in the function-call stack.5

3 VeriFFI in a Nutshell
Foreign functions are useful when the C code can use better data structures than Coq’s Inductives,
or can use mutable data structures, or can access special machine instructions such as cryptographic
primitives; or when the program needs to do I/O. We illustrate how to write such programs with
VeriFFI using a simple example: 63-bit unsigned integers as a foreign type, with foreign functions
to add (modulo 263) and convert from/to Coq’s natural number type. We use 63-bit integers to leave
space for the 1-bit tag that marks unboxed values for the garbage collector.

3.1 Operational
A typical use of VeriFFI is structured as shown in Figure 1. Coq �le model.v speci�es an interface
(Coq inductive types, foreign abstract types, and foreign functions with their Coq functional models).
Coq �le client.v has a program that uses the foreign functions. Figure 2 shows an example that
uses a C implementation of 63-bit unsigned integers. On the Coq side (Figure 2a, model.v), we de�ne
an API as a Coq module type UInt63, then make the claims in Module C that there are instantiations
of type C.t and functions C.from_nat, C.to_nat, and C.add. The client can use this API in writing
Coq functions (Figure 2b, client.v).

Coq’s execution compiles the �les model.v and client.v via the CertiCoq compiler, producing:

glue.c containing glue code for construction and traversal of Inductives used by the API;
client.c the compilation of the client program.

5There is one more separated conjunct: outliers, data structures outside the garbage-collected heap, to which the heap may
point. These are not essential to the presentation in this paper and we will omit further mention of them.
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24:6 Korkut, Stark, and Appel

Module Type UInt63.
Parameter t : Type.
Parameter from_nat : nat -> t.
Parameter to_nat : t -> nat.
Parameter add : t -> t -> t.

End UInt63.

Module C : UInt63.
Axiom t : Type.
Axiom from_nat : nat -> t.
Axiom to_nat : t -> nat.
Axiom add : t -> t -> t.

End C.

CertiCoq Register [
C.from_nat => �uint63_from_nat�,
C.to_nat => �uint63_to_nat�,
C.add => �uint63_add�
] Include [ �prims.h� ].

CertiCoq Generate Glue
-file �glue� [ nat ].

(a) Coq side, model.v

Definition prog :=
C.to_nat (C.add (C.from_nat 1)

(C.from_nat 2)).
CertiCoq Compile

-file �client� prog.

(b) Coq side, client.v

value uint63_from_nat(
struct thread_info *tinfo,
value n) {

value temp = n;
uint64 i = 0;
while (get_nat_tag(temp) == S) {

i++; temp = get_args(temp)[0];
}
return (value) ((i << 1) + 1);

}

value uint63_to_nat (
struct thread_info *tinfo,
value t) {

uint64 i = ((uint64)t)>>(uint64)1;
value temp = make_nat_O();
while (i) {

if (tinfo->limit - tinfo->alloc < 2) {
value roots[1]={temp};
struct stack_frame fr =

{roots+1,roots,tinfo->fp};
tinfo->fp= &fr;
tinfo->nalloc = 2;
garbage_collect(tinfo);
temp=roots[0]; tinfo->fp=fr.prev;

}
temp = alloc_make_nat_S(tinfo, temp);
i--;

}
return temp;

}

value uint63_add(
struct thread_info *tinfo,
value x, value y) {

return (value) ((uint64)x+(uint64)y-1);
}

(c) C side, prims.c

Fig. 2. Operational View of the FFI: Code in Coq (le�) vs code in C (right).

These components link at C level, with the garbage collector (gc.c) and with user-written prims.c
(Figure 2c) which instantiates the axioms in Module C. The C foreign functions have this API:
/* prims.h */
#include <gc.h>
value uint63_from_nat(struct thread_info *tinfo, value z);
value uint63_to_nat(struct thread_info *tinfo, value t);
value uint63_add(struct thread_info *tinfo, value x, value y);

Each function’s �rst parameter is a thread-info pointer, needed in case the function allocates on the
heap. The remaining arguments correspond to the Coq arguments of the (uncurried) Coq function
type. Each of these may be a concrete Coq type (such as nat) or an abstract Coq type (such as C.t).
Either way, the C parameter type is just value, which is a typedef for void*.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 24. Publication date: January 2025.
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The thread_info parameter describes (among other things) the location of the next allocable
spot in the heap (tinfo->alloc); the end of the allocation space (tinfo->limit); and other data
structures used only by the garbage collector. If limit minus alloc is less than the size of a new
record (including header), then garbage_collect must be called.
All the operations on C.t are foreign functions—it is an abstract data type—so we are free to

choose an e�cient representation. Here, we implement C.t using C’s unsigned 64-bit integers, and
we represent nat as shown in section 2. The functions in prims.c are implemented as follows:

uint63_from_nat: To convert the low-level memory representation of nat to C’s native 64-bit
integer type, we have to count the number of S constructors in the data structure. The
function getting the tag and the one accessing the arguments are glue functions, generated
automatically in glue.c.

uint63_to_nat: uses the (automatically generated) glue function alloc_make_nat_S to allocate a
successor constructor on the heap, as many times as called for by the input argument t (after
its low-order tag bit is stripped o�). It is a precondition of alloc_make_nat_S that enough
space is available; to provably satisfy this precondition, we �rst test limit - alloc. In case a
garbage collection is needed, the local variable temp is a root of the heap, so we need to push
a frame on the stack of frames and copy temp into that frame; then after the collection, copy
back the (possibly forwarded) temp and pop the stack.

add: To add two tagged integers (modulo 263), �rst shift each right to strip the tag; then add;
then shift left and add 1. Or do it more e�ciently, as shown.

3.2 Verification
Previous FFI systems have been able to “glue” at the operational level as described in subsection 3.1;
but VeriFFI can connect speci�cations and proofs. We start by providing a functional model of (in
this example) the UInt63 module type:
Module FM <: UInt63.
Definition t : Type := {z : nat | z < 2 ^ 63}.
Lemma mod63_ok: forall (n : nat), (n mod (2^63) < 2^63).

Proof. intro. apply Nat.mod_upper_bound, Nat.pow_nonzero. auto. Qed.
Definition from_nat (n : nat) : t := (n mod (2^63); mod63_ok _).
Definition to_nat (z : t) : nat := let �(n; _) := z in n.
Definition add (x y : t) : t :=

let �(xn; x_pf) := x in let �(yn; y_pf) := y in ((xn + yn) mod (2^63); mod63_ok _).
End FM.

We model a 63-bit integer as a natural number = accompanied by a proof that = < 263. Then our
de�nition of to_nat is trivial (just project out =), but in the de�nitions of of from_nat and add we
must supply a proof that the result is in range, which we do using an auxiliary lemma mod63_ok.
You can see in the functional model that the behavior of from_nat and add forces the results to be
in range by explicitly doing a modulo operation, which models unsigned integer over�ow.

VeriFFI guarantees that C.t and FM.t are isomorphic and that the operations (such as add) respect
this isomorphism—provided that the user proves certain things about the C program as speci�ed
below. This is su�cient to prove the correctness of the client program. For example, we can prove
that the prog in Figure 2 computes the number 3, or that add is associative.
In the next �ve sections, we will show how VeriFFI represents the rei�ed types of foreign

functions and Coq inductive constructors; how (based on these and on user-supplied functional
models) VeriFFI generates VST funspecs that serve as theorem statements that the user must prove
about the C program implementations. Then in section 9 we complete the UInt63 example:

• the funspec computed for uint63_to_nat;

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 24. Publication date: January 2025.



24:8 Korkut, Stark, and Appel

• the proof that uint63_to_nat satis�es this funspec; and
• the functional correctness proof of the client program, relying on the fact that the foreign
functions satisfy their specs.

4 Graph Predicates Synthesized from Descriptions of Dependent Types
To make a veri�ed FFI that connects proofs across the interface, we need a speci�cation framework
relating Coq data structures to heap-graph vertices. For each Coq inductive type, we must describe
(parametrically) how each data constructor is represented as graph edges emanating from a graph
vertex. To do that, we use the notion of a graph predicate, bundled with its invariants into a Coq
type class:
Class InGraph (A : Type) : Type :=

{ graph_predicate : graph -> outlier_t -> A -> rep_type -> Prop
; has_v : . . . (* CertiGraph-related property of graph_predicate *)
; is_monotone : . . . (* graph_predicate preserved under heap allocation *)
; gc_preserved : . . . (* graph_predicate preserved under g.c.-isomorphism *)
}.

A rep_type is a graph vertex, corresponding to the address of a boxed value (represented as
an aligned pointer, last bit 0) or an unboxed integer (represented as 2= + 1, last bit 1). That is,
graph_predicate g x p says that value x of type A is represented at vertex p in graph g.
Of course, each di�erent Coq type A has its own di�erent data representations; hence graph_

predicate is not a single �xed predicate, it is a Coq type class indexed by type A. The VeriFFI system
automatically constructs instances of this type class, and proves automatically (for each instance)
that graph_predicate satis�es the properties speci�ed in the InGraph type class.

For example, consider the inductive type vec, polymorphic lists indexed by length:
Inductive vec (A : Type) : nat -> Type :=
| vnil : vec A O
| vcons : forall n, A -> vec A n -> vec A (S n).

The (type-indexed) graph predicate for this type is,
Instance InGraph_vec (A : Type) (InGraph_A : InGraph A) (n : nat) : InGraph (vec A n) :=
let fix graph_predicate_vec (n : nat) (g : graph)

(x : vec A n) (p : rep_type) {struct x} : Prop :=
match x with
| vnil => match p with repZ z => z = 0 | _ => False end
| vcons arg0 arg1 arg2 =>

exists p0 p1 p2 : rep_type,
@graph_predicate nat InGraph_nat g arg0 p0 /\
@graph_predicate A InGraph_A g arg1 p1 /\
graph_predicate_vec arg0 g arg2 p2 /\
match p with
| repNode v => compatible g v 0 (raw_fields v) [p0; p1; p2] /\

raw_mark v = false /\ raw_color v = 0 /\ raw_tag v = 0
| _ => False
end

end in {| graph_predicate := (graph_predicate_vec n); has_v := . . . ; . . . |}.

One can see that vnil is represented by a constant (z=0), and vcons n h t is represented as vertex
p in graph g, such that p has three out-edges to vertices [p0; p1; p2] (ensured by the compatible
predicate), and those also have (type-class-indexed) graph predicates. Importantly, the conjunctions
are ordinary, not separating, which permits overlap between the graph structures of p0, p1, p2.
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Building such instances is cumbersome and technical, whether or not they involve dependent
types. To build such instances automatically, we implemented generators using MetaCoq. These
generators inspect a particular inductive data type, identify the other inductive types used in that
type, infer the InGraph instances for those types, generate them if they are missing, and prove
the required lemmas about it via Ltac. (In the actual implementation, InGraph is split into two
type classes: graph_predicate is in a separate type class from the lemmas to make it easier to
automatically prove the lemmas for each instance.)

5 Reified Descriptions with Annotations
Graph predicates are the basic building blocks of the function speci�cations of generated glue
code and foreign functions. We want to generate these function speci�cations automatically, but
generating VST speci�cations directly from MetaCoq would be di�cult. MetaCoq operates on the
core language of Coq, and focuses on metatheory rather than easy code generation. The notation-
heavy style of VST speci�cations also make it challenging to generate them from a fully deeply
embedded description.
To get around these problems, we introduce an intermediate representation between MetaCoq

and function speci�cations, tailored to the information we require to state a function speci�ca-
tion – a rei�ed description. We will use metaprogramming to obtain MetaCoq’s representation of
inductive types and constructors to convert them into our representation; then we can generate
the speci�cations we need from our intermediate representation, in pure Gallina. This isolates
metaprogramming to the �rst half of this conversion and simpli�es the speci�cation generation
later.

This rei�ed description is de�ned as:
Inductive reified (ann : Type -> Type) : Type :=
| TYPEPARAM : (forall (A : Type) �(ann A), reified ann) -> reified ann
| ARG : forall (A : Type) �(ann A), (A -> reified ann) -> reified ann
| RES : forall (A : Type) �(ann A), reified ann.

Our description type is parametrized by ann, an annotation type class, whose important instances
will be constructor annotation and foreign function annotation (see section 6 and subsection 8.1).
Thanks to ann, rei�ed descriptions can carry extra information related to every component of the
described type. The rei�ed description type consists of 3 constructors:

• The TYPEPARAM constructor represents type parameters of a function or a constructor. It takes a
higher-order function as an argument, where the function takes a Coq type A as an argument,
along with a guarantee that there is an instance of the ann type class, and returns another
reified description. This way the rest of the description has access to the type parameter
and its annotation instance in the context.

• The ARG constructor represents dependent arguments of a function or a constructor. ARG takes
the type of the argument, a witness that there is a type class instance for that type, and
�nally a higher-order function that takes an argument and returns a reified description.
This argument allows us to express dependently typed arguments since the argument of the
higher-order function can occur in the rest of the description.

• Finally, the RES constructor represents the result type of a function. RES takes the result type
and a witness that there is an annotation instance for that type.

Our representation combines both deep embedding and shallow embedding techniques. The
description that would solve our problems had to be traversable, therefore we de�ned it as an
inductive type, like a deep embedding. In the arguments of each constructor, however, we see the
Coq semantics of the respective concept: for a type parameter, we have a function that takes a
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type parameter, for an argument we have a function that takes an argument, resembling a shallow
embedding.
This approach can be considered a special case of McBride [2010] or Prinz et al. [2022], except

both object and host languages are Coq in our approach. This coincidence enables us to reuse more
features of the host language than solely name binding; we can also annotate the components
of a Coq type with Coq type class instances, we can interpret a Coq type description back to its
corresponding Coq type without extra use of metaprogramming. This allows us to carry values
satisfying a type description in a type-safe way, which we use in section 6 and subsection 8.1 to
achieve re�ection of constructors and foreign functions from their descriptions.
Using the reified type, we can now describe types of functions or constructors. For example,

recall the vec type of section 4; its constructors vnil and vcons are described as:
(* vnil : forall (A: Type), vec A O *)
Definition vnil_reified : reified InGraph :=
TYPEPARAM (fun (A : Type) (InGraph_A : InGraph A) =>

RES (vec A O) (InGraph_vec A InGraph_A O).

(* vcons : forall (A : Type) (n : nat) (x: A) (xs: vec A n), vec A (S n) *)
Definition vcons_reified : reified InGraph :=
TYPEPARAM (fun (A : Type) (InGraph_A : InGraph A) =>

ARG nat InGraph_nat (fun (n : nat) =>
ARG A InGraph_A (fun (x : A) =>

ARG (vec A n) (InGraph_vec A InGraph_A n) (fun (xs : vec A n) =>
RES (vec A (S n)) (InGraph_vec A InGraph_A (S n)))))).

Not only inductive constructor types, but dependently typed foreign function types are described
by reified. For example, the (non-foreign) function length : forall {A : Type}, list A -> nat
can be described as:
Definition length_desc : reified InGraph :=
TYPEPARAM (fun (A : Type) {InGraph_A : InGraph A} =>

ARG (list A) (InGraph_list A InGraph_A) (fun (_ : list A) =>
RES nat InGraph_nat)).

Consuming rei�ed descriptions. We have many useful functions on reified descriptions, such
as the one that calculates a graph_predicate. Here we show a simpler one, that calculates the
(uncurried) argument type of a function, as a nested dependent tuple of the types of all type
parameters and arguments in the description:
Fixpoint args {cls : Type -> Type} (r : reified cls) : Type :=

match r with
| TYPEPARAM k => {A : Type & {H : cls A & args (k A H)}}
| ARG A H k => {a : A & args (k a)}
| RES _ _ => unit
end.

When we need to write a function that needs to quantify over all the arguments that a function
or a constructor takes, we can use args of a reified description to achieve that. For the description
of the length function, this would calculate:
args length_desc = {A : Type & {_ : InGraph A & {_ : list A & unit}}}

We can also write a function that calculates the result type of a function, whose implementation
is similar to args:
Fixpoint result{cls: Type->Type}(r: reified cls)(xs: args r): {A: Type & cls A} := ...
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Now, using args and result, we can write a function that gives us a type that is as close as
possible to the original function or constructor type. In other words, we want to re�ect the type
description to an actual Coq type:
Definition reflect {cls : Type -> Type} (r : reified cls) : Type :=

forall (P : args r), projT1 (result r P).

The type we obtain from this function is an uncurried version of the type of length. A function
of type reflect length_desc would take a nested dependent tuple of all the arguments (and the
annotations for type parameters) and return the same result type. Here is how that function would
be implemented, where the nested tuple is pattern-matched in the parameter to fun:
Definition length_uncurried : reflect length_desc :=
fun �(A; (_; (l; tt))) => @length A l.

The reflect function provides a type-safe way for us to go from the description into the original
function. This will allow proofs by re�ection, ensuring that the function we have �ts the description
we were provided.

Curried vs. uncurried. We have chosen to calculate the uncurried type of a multi-argument
Coq function because the interface to C (and similar low-level languages) is more e�cient and
natural with all arguments at once in the uncurried style. Another reason for this choice is that
the uncurried function type includes the annotation arguments, which are useful (for example) in
calculating the graph_predicate instance from the reified description of a type. In this section we
have instantiated the ann parameters with InGraph, but in the next sections we explain annotations
useful for constructor types and for function types.

6 Constructor Specifications
To compose proofs of Coq programs that build and traverse data structures with proofs of C
programs that build and traverse those same data structures, the VST separation logic function-
speci�cations for construction and projection must be coherent with the Coq constructors. To
accomplish that, we introduce a novel deep and shallow constructor description, derivable automati-
cally from MetaCoq descriptions of inductive data types; and an interpretation of those constructor
descriptions into VST function speci�cations.

Constructor descriptions. The glue code generator (section 7) builds C functions that construct
Coq values, such as alloc_make_vec_vcons.
We calculate formal speci�cations of these functions in VST’s speci�cation language, from the

reified description of the constructors. As usual, reified must be supplied with an appropriate
annotation type. For data constructors, class ctor_ann contains the information we need:
Variant erasure := no_placeholder | has_placeholder | present.
Class ctor_ann (A : Type) : Type := {field_in_graph : InGraph A; is_erased : erasure}.

In section 4, we de�ned the InGraph type class, which consists of a graph predicate and lemmas
about it for a given Coq type. The �rst �eld of the ctor_ann type class is an instance of InGraph for
each �eld of the constructor we want to annotate. This allows us to specify how the values of the
arguments are represented in the heap graph.

The second �eld, is_erased, tells us whether a constructor �eld is erased during compilation: In
CertiCoq, computationally irrelevant values, such as values of type Type or values of kind Prop, are
erased. When they are arguments to constructors or functions, their places are occupied by (unit)
placeholders. Some values are entirely erased in the memory representation, such as parameters of
inductive types.
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Now that we have a ctor_ann type to annotate our reified descriptions with, VeriFFI de�nes a
record that contains all the information we need about a constructor:
Record ctor_desc :=
{ ctor_name : string ; ctor_reified : reified ctor_ann
; ctor_reflected : reflect ctor_reified ; ctor_tag : nat ; ctor_arity : nat }.

Along with the name, tag, and arity of a constructor, we include the reified description of a
constructor, in the ctor_reified �eld. Using dependently typed records, we include the �eld ctor_
reflected, the reflected version of the reified description we just included in the record.

Here we can see some example ctor_desc values for the vnil and vcons constructors of the vec
inductive type:
Definition vnil_desc : ctor_desc :=
{| ctor_name := �vnil�
; ctor_reified := . . . (* like vnil_reified but with ctor_ann annotations *)
; ctor_reflected := fun �(A; (_; tt)) => @vnil A
; ctor_tag := 0; ctor_arity := 0 |}.

Definition vcons_desc : ctor_desc :=
{| ctor_name := �vcons�
; ctor_reified := . . . (* like vcons_reified but with ctor_ann annotations *)
; ctor_reflected := fun �(A; (_; (n; (x; (xs; tt))))) => @vcons A n x xs
; ctor_tag := 1; ctor_arity := 3 |}.

VeriFFI’s glue code generator de�nes a type class that allows easy transition from the real
Coq constructor for an inductive type, into the ctor_desc for that constructor; and we can de�ne
instances for every constructor we generate descriptions for:
Class Desc {T : Type} (ctor_val : T) := { desc : ctor_desc }.
Instance Desc_vnil : Desc @nil := {| desc := vnil_desc |}.
Instance Desc_vcons : Desc @cons := {| desc := vcons_desc |}.

Desc does not come with a guarantee that the reified description matches the real Coq value.
However, describing the wrong constructor in the Desc instance means the veri�cation of the
function speci�cations will fail later, so it can’t lead to unsoundness.

Constructor descriptions are generated automatically; their generation is implemented mostly in
MetaCoq and Ltac.

7 Operational Glue Code Generation
CertiCoq Generate Glue generates C-language data-structure traversal and constructor functions
for a user-speci�ed set of Coq Inductive types:
CertiCoq Generate Glue [ vec , nat ].

For instance, for the vec type, VeriFFI generates these functions:
value make_vec_vnil(void) { return (value) 1; }

value alloc_make_vec_vcons
(struct thread_info *tinfo, value arg0, value arg1, value arg2) {

value *argv = tinfo->alloc;
argv[0] = (value) 3072; argv[1] = arg0; argv[2] = arg1; argv[3] = arg2;
tinfo->alloc = tinfo->alloc + 4; return argv + 1;

}

Unboxed constructors, such as vnil, are represented as (odd) integers. Boxed constructors, such
as the vcons, are represented as pointers to memory locations that store the constructor arguments.
This memory can exist either within the CertiCoq runtime’s garbage-collected memory region (the
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CertiCoq heap) or as “outliers” in the C heap. The alloc_make_vec_vcons function uses the thread-
info to �nd the next unused word of the g.c. allocation space tinfo->alloc. It is a precondition of
this function that at least 4 words of space are available (for the header, the length index, the head,
and the tail); prior to calling the function, this precondition may be tested by a quick comparison,
or established (if that fails) by calling the garbage collector.
VeriFFI formally speci�es and veri�es the C code of these glue functions. For each glue code

function, VeriFFI generates a VST funspec from the constructor description (ctor_desc), and then
automatically produces a VST correctness proof. We will not show the details of glue-code funspecs,
but we explain VST funspecs for foreign functions in subsection 9.1.

Discriminating Coq constructors. For each Coq inductive type, VeriFFI generates a C function
that allows the user to determine which Coq constructor had been used to create a given value. For
example, for the vec type, the function would be:
size_t get_vec_tag(value v) {
if (is_ptr(v)) /* that is, if v is an even number */

switch (((size_t*)v)[-1]&255){ /* fetch header, mask out all but constructor tag */
case 0: return 1; default: /* unreachable */;
/* there would be more cases if more boxed constructors than vcons */ }

else switch (v >> 1) { /* strip off the tag bit */
case 0: return 0; default: /* unreachable */;
/* there would be more cases if more unboxed constructors than vnil */ }

}

This function returns the tag of the constructor used to create this value, an index based on the
order in which the Coq Inductive listed the constructor names.

Extracting arguments of a Coq constructor. Given a Coq value of an inductive type, to access
its constructor arguments, we have a C function that works on values of any inductive boxed
constructor:
value *get_args(value v) { /* this function can always be inlined */

return (value *) v;
}

E�ectively this casts a pointer into an array of values, so the arguments of an arity-n constructor
can be accessed with get_args(v)[0], ..., get_args(v)[n-1].

Calling Coq closures. The CertiCoq compiler represents Coq functions as closures at runtime,
which consist of a function-pointer and an environment-pointer. To call these from C, one must
fetch the code-pointer, fetch the environment pointer, and pass the environment as one of the
arguments to the code-pointer function. We have a C function that implements this protocol:
value call(struct thread_info *tinfo, value clo, value arg) {

value f = ((struct closure *) clo)->func;
value envi = ((struct closure *) clo)->env;
return ((value (*)(struct thread_info *, value, value)) f) (tinfo, envi, arg);

}

8 Foreign Function Specifications
When proving correctness of a Coq program that calls functions implemented in C and proved
correct in VST, the VST function speci�cation must be coherent with an appropriate Coq functional
model. In this chapter we show how to generate a coherent VST function speci�cation from a
rei�ed function description. Coherence on the Coq side is assured by re�ection. Coherence on the
C side is assured by a Coq proof using VST’s program logic.
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8.1 Foreign Function Descriptions
Foreign functions may use Coq inductive types and also user-de�ned foreign types such as 63-bit
integers or packed strings that are not (e�ciently) expressible in Coq inductive types. Since reified
descriptions allow us to annotate every component of a function type, we can de�ne an annotation
type that contains additional information about the foreign types we may need to use.
A user of our system will de�ne their foreign types and foreign functions as axioms in Coq. In

section 3 we showed axioms stating the existence of a C representation and operations on 63-bit
unsigned integers; and the corresponding functional model FM:

Module C : UInt63.
Axiom t : Type.
Axiom from_nat : nat -> t.
Axiom to_nat : t -> nat.
Axiom add : t -> t -> t.
End C.

Module FM <: UInt63.
Definition t : Type := {n : nat | n < 2^63}.
Definition from_nat (n : nat) : t := ...
Definition to_nat (x : t) : nat := ...
Definition add (x y : t) : t := ...
End FM.

The C module contains Coq axioms for the foreign types and Coq axioms for foreign functions
that may use these foreign types. These functions will be realized by C functions through the FFI.
The user must justify all these axioms by de�ning a type C.t and Coq functions C.from_nat (etc.)
such that an isomorphism between modules C and FM can be proved.

To connect the functional model to the C type in a reified description of a foreign function such
as add, we provide an annotation to reified. For constructor descriptions we instantiate the ann
parameter with ctor_ann, and for functions, with foreign_ann:
Class foreign_ann (model : Type) : Type :=

{ foreign : Type
; foreign_in_graph : ForeignInGraph model foreign
; foreign_iso : Isomorphism model foreign
}.

This provides a link between the model type and the foreign type, as well as the graph_predicate
representation of the foreign type and an isomorphism between the two types. This isomorphism is
needed for user-level proofs about the behavior of the foreign function, which acts on the foreign
type as if it were acting on the model type.

The foreign type (such as C.t) has a graph_predicate that’s (typically) a single vertex, in contrast
to the graph predicate for the functional model FM.t which is (in our example) a Peano chain of
unary constructor graph vertices. To connect these, in a way that the Coq type class system can
properly instantiate the foreign_in_graph component of a foreign_ann, we use the following type
class:
Class ForeignInGraph (model foreign : Type) : Type := model_in_graph : InGraph model.

Here, the model_in_graph �eld is the (single-vertex) graph_predicate of the foreign (representation)
type, masquerading as a graph_predicate of the model type; this helps us guide typeclass resolution
in the presence of isomorphisms.

The isomorphism class is standard:
Class Isomorphism (A B : Type) : Type :=

{ from : A -> B
; to : B -> A
; from_to : forall (x : A), to (from x) = x
; to_from : forall (x : B), from (to x) = x
}.
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For nonforeign (transparent) types, we de�ne the isomorphism transparently as the identity, so
the user can use this fact in Coq correctness proofs. For abstract (opaque) types, we cannot let the
user assume that the type is interchangeable with its functional model, only isomorphic:
Definition transparent {A : Type} �{IG_A : InGraph A} : foreign_ann A :=

{| foreign := A; foreign_in_graph := IG_A; foreign_iso := Isomorphism_refl |}.

Definition opaque {A B : Type} �{IG_A : ForeignInGraph A B} �{Iso : Isomorphism A B}
: foreign_ann A :=

{| foreign := B; foreign_in_graph := IG_A; foreign_iso := Iso |}.

In practice, we typically instantiate foreign_isowith the identity isomorphism, Isomorphism_refl.
That’s because the isomorphism is there more to enforce opaqueness than to relate two di�erent
representations. Relating di�erent representations is done in VST funspecs by graph_predicate
instances, as section 9 will explain.
As we will show, from a reified description, we can produce a VST funspec that speci�es the

correctness of the C function with respect to the functional model (e.g., FM.add) operating on
the InGraph representations. Therefore, every type Axiom is justi�ed by an InGraph representation
predicate, and every foreign function Axiom is justi�ed by a VST funspec and proof.

9 A Verified Foreign Function Interface
Using these reified descriptions of constructor types and of foreign-function types with functional
models, VeriFFI sets up the framework for combining C code and Coq code. To relieve the user from
boilerplate, it automatically generates the header �le prims.h (containing C function prototypes)
that informs prims.c (written by the user, containing C functions).

For each Coq inductive type, VeriFFI generates "glue" operations that allow C code to construct
and traverse it. On the veri�cation level, VeriFFI de�nes predicates for the representation of Coq
data types, as well as proofs of general operations on these datatypes. It hence helps the user to
preserve an abstraction barrier allowing mostly language-local reasoning.

Primitive functions that do not use the CertiCoq heap—such as uint63_add—are straightforward
to specify and prove in VST. It is standard in VST (independent of VeriFFI) that the user may
supply (for each abstract type) a representation relation that relates the functional model of a type
(such as Coq nat) to its layout in the C program’s data-structure memory. In VeriFFI’s use of VST,
this representation relation takes the form of a custom graph_predicate show how, for example,
63-bit integers or packed bytestrings are represented as single vertices in the graph; the purpose
of foreign_in_graph (subsection 3 is to correctly index Coq’s type-class resolution to select that
graph_predicate.
But VST function-speci�cations and proofs get more complicated once we have to refer to the

CertiCoq heap: we have to ensure that certain invariants are kept. A key contribution of this paper
is in both stating these invariants in an abstract way and ensuring that reasoning is independent of
the implementation of these invariants.

The conditions of the garbage-collected heapwill typically appear as the separation logic predicate
full_gc g t_info roots ti gv, describing the current state of the data graph g, a thread info t_info,
the roots, the address of the thread info ti, and the global variables gv. It further comes with a
whole list of consistency conditions.

To reason about the graph, we will use propositional6 statements on the existence of certain
Coq values in the graph; for example, graph_predicate g n p states that the natural number n is
represented in the graph g at position p : rep_type. This graph_predicate statement is di�erent

6Recall that vertex-in-graph is a “pure propositional" predicate, while graph-in-heap is a separation-logic predicate.
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Definition uint63_to_nat_spec : ident * funspec :=
DECLARE _uint63_to_nat
WITH gv : gvars, g : graph, roots : roots_t, x : {_: FM.t & unit},

p : rep_type, ti : val, t_info : thread_info
PRE [ thread_info; int_or_ptr_type ]

PROP (@graph_predicate FM.t g (projT1 x) p)
PARAMS (ti, rep_type_val g p)
GLOBALS (gv)
SEP (full_gc g t_info roots ti gv; mem_mgr gv)

POST [ int_or_ptr_type ]
EX (p� : rep_type) (g� : graph) (roots�: roots_t) (t_info�: thread_info),
PROP (@graph_predicate nat g� ( FM.to_nat (projT1 x) ) p�;

gc_graph_iso g roots g� roots�;
frame_shells_eq (ti_frames t_info) (ti_frames t_info�))

RETURN (rep_type_val g� p�)
SEP (full_gc g� t_info� roots� ti gv; mem_mgr gv).

Lemma body_uint63_to_nat : semax_body Vprog Gprog f_uint63_to_nat uint63_to_nat_spec.
Proof. ... Qed. (* this theorem states that the function body satisfies its spec *)

Fig. 3. Specification and proof of uint63_to_nat: Most parts will be identical in any specification interacting
with Coq data structures; only the highlighted parts are specific to uint63_to_nat. The type of x in the
WITH clause (which is isomorphic to FM.t) comes from the args function’s trivial uncurrying of a 1-argument
function. FM.t is the dependent product {n: nat | n<2^63}, so the PROP part of the precondition ensures
the upper bound on n. The graph_predicate (at the typeclass instance for FM.t) ensures p is actually an
unboxed integer, i.e., it chooses that constructor of the rep_type inductive datatype. Therefore rep_type_val
g p is a 64-bit integer value. In the postcondition, the graph_predicate instance for nat ensures that p� is a
pointer to a Peano natural number in the graph g�. (Not shown are two arguments of full_gc that are not
essential to the explanations in this paper: permission-share for the graph, and an outlier set.)

for each Coq datatype, using type classes that VeriFFI generates automatically as explained in
section 4. To be able to use this statement in the presence of garbage collection, it must be invariant
under graph isomorphism, so we use the gc_preserved component of InGraph.
As long as we stay at this abstraction level, the proofs work straightforwardly in VST. For

example, the proof of uint63_to_nat_spec proceeds by stepping through the propositions while
keeping certain invariants about the graph g (see subsection 9.2). During each step of the loop, the
garbage collector might run, producing new graph g�, proved isomorphic to g by the speci�cation
of the garbage_collect function.

9.1 VST Function Specification
Based on the reified description of the type and functional model of uint63_to_nat, VeriFFI

computes a VST function speci�cation:
Definition uint63_to_nat_spec : ident * funspec := fn_desc_to_funspec uint63_to_nat_desc.

That is, this aspect of glue code generation is not simply a “script” in Python or Ltac, it can be
calculated and reasoned about within the logic. With a bit of automatic simpli�cation, this particular
funspec comes out as shown in Figure 3. As in any VST funspec, the WITH clause quanti�es over all
the logical (Coq) variables to be shared between precondition and postcondition. If the caller of
this function can �nd any instantiation of the WITH variables for which the precondition is satis�ed,
then the function will guarantee to satisfy the postcondition with the same instantiation.
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In this case, the WITH variables are (gv) the C program’s static global data addresses; (g) the
graph; (roots) all the pointers in the stack-of-frames, i.e., live local heap-pointer variables of
currently stacked function calls; (x) the functional model of the input to the function; (ti) the
pointer to the heap-management data-structure; and (t_info) a description of the contents of the
heap-management data structure.

We choose C.t to be equal to FM.t; that is, we instantiate foreign_iso with the identity isomor-
phism. The purpose of having an opaque isomorphism was just to prevent clients from performing
uint63 operations on nat values, or vice versa.
The C function uint63_to_nat converts between two very di�erent number representations in

the C memory. This di�erence in representations is manifest in the function-spec by the choice of
two di�erent instances of the InGraph typeclass, that is, graph_predicate instantiations for FM.t
and nat respectively in precondition and postcondition. When these de�nitions are unfolded, it
gives the VST speci�cation of a function that must convert a 63-bit integer (with tag bit) to a chain
of Peano S constructors.

In detail, this function’s precondition says,

PRE [ thread_info; int_or_ptr_type ] the C function takes two arguments: a pointer
to a thread-info data structure, and a heap-value (a word that may be either an odd integer
or a word-aligned pointer).

PROP(. . . ) the input-argument graph-vertex p corresponds to the input functional-model
value x as described above.

PARAMS(ti, rep_type_val g p) The values of the C function parameters are the address
of the thread-info struct and the C representation of the graph-vertex p. A rep_type such as p
can be one of three things: a boxed vertex in the graph (repNode v), an outlier, or an unboxed
vertex in the graph (repZ z). The function rep_type_val translates this representation to a C
value; in this case the graph_predicate instance in the PROP part of the precondition has
forced p to be a repZ, a C integer value.

SEP(full_gc g . . . , mem_mgr . . . ) The graph is indeed represented in memory as
a separation-logic “resource,” with the garbage-collector’s heap-management data structure.
Separately, the malloc/free memory manager (mem_mgr) is also in the heap, in case the C
program needs to use it for non-Coq data.

The postcondition says,

POST [ int_or_ptr_type ] the C function returns a heap-value.
EX p� g� roots� t_info� there will exist some graph vertex p� representing the newly

created nat, a new graph g� (resulting from possibly garbage-collecting the graph g as well
as adding the new vertex p�), and new roots and thread-info (since garbage collection may
have forwarded the old roots).

PROP(. . . ) the new vertex p� is the root of a data structure in graph g� representing the
new nat; the new graph g� contains an isomorphism of the old graph g; and the stack of
frames is the same (modulo forwarding of root-pointers by the g.c.).

RETURN(rep_type_val g� p�) the C function’s return value is the address in memory for
graph vertex p�.

SEP(. . . ) the new graph g� is represented in memory, along with the representation of the
updated g.c. management data t_info� and the malloc-free memory manager.

The VST funspec that VeriFFI generates says, “the C function implements its functional model.”
You can see the functional model in the PROP clause of the postcondition; in this case, it is
FM.to_nat. That is, the new graph vertex p� is supposed to be a representation (in the g.c. graph) of
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the functional model applied to the input argument x. (The projT1 applied to x is an artifact of the
degenerate uncurrying of a 1-argument function.)

Most of the predicates used here may be found in any function speci�cation that interacts with
CertiCoq/VeriFFI data structures: C globals, a graph, roots of the graph in the C “stack of frames”,
permission-share for the heap, the address and contents of the thread-info structure. Whenever we
interact with (CertiCoq-compiled) Coq code we require full_gc, ensuring wellformedness of the
current state. In more detail, full_gc g t_info roots ti gv contains

• the spatial representation of the thread-info and the graph;
• C global variables used by the collector;
• several wellformedness and compability conditions on the graph, e.g. that there are no
backwards pointers and the graph is coherent with the roots and outliers.

9.2 An Example Proof
We repeat here from Figure 2 the C implementation of uint63_to_nat that constructs a Peano
natural number by wrapping = heap-allocated S constructors around an O constructor:
value uint63_to_nat (struct thread_info *tinfo, value t) {

uint64 i = ((uint64)t)>>(uint64)1; /* strip off the tag */
value temp = make_nat_O(); /* create the base case */
while (i) {

if (tinfo->limit - tinfo->alloc < 2) { /* test whether we need to garbage-collect */
value roots[1]={temp}; /* register the root-pointer temp */
struct stack_frame fr = {roots+1,roots,tinfo->fp};
tinfo->fp= &fr;
tinfo->nalloc = 2; /* state the need for 2 words */
garbage_collect(tinfo);
temp=roots[0]; tinfo->fp=fr.prev; /* fetch temp back and pop the frame stack */

}
temp = alloc_make_nat_S(tinfo, temp); /* wrap an S constructor around temp */
i--;

}
return temp;

}

The user must then use VST to prove that this C function (whose abstract syntax in Coq we call
f_uint63_to_nat) satis�es the uint63_to_nat_spec—a lemma of the form,
Lemma body_uint63_to_nat : semax_body Vprog Gprog f_uint63_to_nat uint63_to_nat_spec.
Proof. ... Qed.

Proof. We start by proving that the initial value of temp contains a representation in graph g of
the natural number 0, that is, graph_predicate g 0 p. Calling make_nat_O provides us with a vertex
p satisfying this condition. Behind the scenes, p will simply be a leaf in the graph, represented by
repZ; this information is abstracted from the user.
For the while loop, we require a loop invariant. This one states that there exists v : rep_type,

m : nat, g� : graph, thread info t_info�, and a set of roots� such that mn, v is the nat representa-
tion of n in graph g� (graph_predicate g� m v), the new graph and forwarded roots are isomorphic
to the old graph and original roots (gc_graph_iso g roots g� roots�), and all the g.c. invariants
hold on the new state (full_gc g� t_info� roots� ti gv).

Before the while loop, the loop invariant is easily satis�ed by using the postcondition of the �rst
two commands (assigning i and temp) and re�exivity of graph isomorphism. Similarly, it is very
straightforward in VST to prove that the loop postcondition implies the function postcondition.
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In the loop body, we �rst check whether we still have enough space on the heap and call the
garbage collector if we do not. The correctness proof for CertiGC’s garbage_collect handles, among
other things, the stack of root-frames starting at tinfo->fp and the establishment of an isomorphic
graph g� with enough headroom, which still satis�es full_gc g� t_info� roots� ti gv and in
which constructions that were saved in the roots are preserved. In this case, those constructions
include temp, which was saved in the topmost frame.

In the loop body after the g.c. test, a new S constructor is allocated by calling alloc_make_nat_S,
whose precondition is that tinfo->limit - tinfo->alloc � 2, which has been established by the
if-statement. Afterwards, i is decreased by 1. The loop invariant is then reestablished, using the
postcondition of the funspec for alloc_make_nat_S and transitivity of the isomorphism predicate.

VeriFFI Support. To assist with proofs such as the one shown here, VeriFFI provides a library of
g.c.-graph isomorphism properties for use in proofs of foreign functions and provides VST-Floyd
[Cao et al. 2018] tactical provers for common patterns such as those used here.

Automatically generated glue functions (that construct and traverse Inductive types) are proved
fully automatically by a tactic that uses some of the same techniques as shown here. Note that,
di�erent to this section, these glue functions go below the abstraction barriers – and hence the
proofs have to go below these abstraction barriers and to technical graph manipulations as well:
For example, to prove alloc_make_nat_S correct, it has to be proven that the newly generated graph
still satis�es all the wellformedness conditions in full_gc g� t_info� roots� bnti gv.

10 Proving Client Programs Correct Using Functional Models
VeriFFI uses functional models in Coq as speci�cations of (foreign) functions (operating on foreign
abstract types). Recall that the functional model and the actual C representation are connected by
isomorphism (section 8). In our example, the functional model of 63-bit int is a range-bounded
Peano natural number (a dependent product type), and the functional models of the operations
are Coq functions on that type. Proofs of correctness properties of client programs can make use
of these functional models. For example, one can easily prove that the prog of Figure 2, which
converts 1 and 2 to C.t, then adds them, then converts back, results in 3.
Here we show how, using functional models in a client-side proof, one can show that C.add is

associative:

Lemma add_assoc : forall (x y z : nat),
C.to_nat (C.add (C.from_nat x) (C.add (C.from_nat y) (C.from_nat z))) =
C.to_nat (C.add (C.add (C.from_nat x) (C.from_nat y)) (C.from_nat z)).

Proof.
intros x y z.
(* Step 1: VeriFFI tactic to unpack isomorphisms between C representation and FM *)
props to_nat_spec. props add_spec. props from_nat_spec. foreign_rewrites.
(* Proof goal is now,

FM.to_nat (FM.add (FM.from_nat x) (FM.add (FM.from_nat y) (FM.from_nat z))) =
FM.to_nat (FM.add (FM.add (FM.from_nat x) (FM.from_nat y)) (FM.from_nat z)) *)

(* Step 2: an ordinary Coq proof about the functional model *)
unfold FM.add, FM.from_nat, FM.to_nat.
unfold proj1_sig.
rewrite <- !(Nat.Div0.add_mod y z), <- !(Nat.Div0.add_mod x y), <- !(Nat.Div0.add_mod).
f_equal; apply Nat.add_assoc.
all: apply Nat.pow_nonzero; auto.

Qed.
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11 A Second Example: Packed Bytestrings
In this section, we give another example of a foreign function that manipulates an abstract type.
The Coq string type is de�ned as a list of ascii, each of which is record of 8 booleans:
Inductive ascii := Ascii : bool->bool->bool->bool->bool->bool->bool->bool->ascii.
Inductive string := EmptyString : string | String : ascii -> string -> string.

Each String constructor is represented as three 64-bit words (a header and two pointers); each Ascii
constructor is nine words, in which each boolean is an unboxed constructor, with 1 representing
true and 3 representing false. In all, 96 bytes per ����� character.

As a foreign type with foreign functions, we can provide a packed bytestring representation, in
which each character occupies one byte, as in OCaml [Minsky and Madhavapeddy 2022, Chapter
23, “string values”]. The header tells the number of 8-byte words, and the last byte of the last word
tells how many bytes in that word are meaningful. The special tag 252 indicates that none of the
words in the record are pointers—none should be traversed by the garbage collector—so they don’t
need to use the last bit of each word to distinguish pointers from integers.

“interface”
2 252

i  n  t  e  r  f  a  c
e              (1)

The CertiCoq code generator cannot manipulate the contents of a packed string, because it is
not built using ordinary inductive data types. Instead, we can implement it as an abstract datatype,
with operations implemented in C and speci�ed using VeriFFI.

11.1 Description of the pack Function
With the type bytestring, the user has chosen a functional model for that type, as a vehicle for
describing the functional models of its operations: FM.bytestring := string. Now the user provides
a Coq type for pack : string -> C.bytestring, as well as a functional model FM.pack. The type of
FM.pack is completely determined by the type of pack, as string -> FM.bytestring, which is to say
string -> string; but what function of that type should it be? Since bytestrings are intended to be
an isomorphic (but more e�cient) representation of strings, the most straightforward speci�cation
choice is the identity function: FM.pack (x : string) : FM.bytestring := x. Unlike C.bytestring
and C.pack, which are opaque to the Coq-side client, FM.bytestring and FM.pack are transparent
de�nitions so the client-side proofs can reason about behavior.

With all these components user-speci�ed, VeriFFI automatically generates the rei�ed description:
Definition pack_desc : fn_desc :=

{| type_desc := ARG string _ (fun _ : string => RES FM.bytestring _)
; foreign_fn := C.pack
; model_fn := fun �(s; _) => FM.pack s
; f_arity := 1
; c_name := �pack�
|}.

Using VeriFFI’s args function (presented in section 5), we can compute the argument type of
pack. That is, args pack_desc = {_ : string & unit}. This is isomorphic to string, as we would
expect. And therefore, model_fn pack_desc (shown as a �eld of pack_desc) simply applies FM.pack
to its argument, modulo the type isomorphism.

So, the functional model FM.bytestring is simply string, and the functional model FM.pack is sim-
ply the identity function. In proofs of the Coq client functions that call pack returning results of type
C.bytestring, one can use the functional model as a reasoning principle by isomorphism between
C.bytestring and FM.bytestring, but the Coq-side client does not knowwhether type C.bytestring
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is equal to FM.bytestring (and hence it cannot possibly know whether C.pack=FM.pack). As we will
explain, in the VST proofs, we do choose C.bytestring := FM.bytestring and C.pack := FM.pack.

11.2 Implementation of the pack Function
We have a hand-written C implementation of the pack function that works as follows:

(1) Traverse the string to calculate its length len.
(2) Test that at least = = 1 + d(len + 1)/8e words are available in the g.c. “nursery”.
(3) (If not, save live pointers into the stack-of-frames, call the garbage collector, fetch live

pointers from the stack-of-frames.)
(4) Reserve = words of space in the nursery (by adjusting the heap management data structure).
(5) Traverse the string again, translating records-of-8-booleans into bytes, and storing those

bytes into the new space.
(6) Store the header word and trailer bytes (as in the “interface” example).

This function is a bit tricky, because during the traversal at step 5, the heap-management data
structure is not coherent with the graph (because one record has been removed from the former
but not yet added to the latter). No native Coq function would ever read from the graph during
such an incoherence. The proof takes care to accommodate this slightly relaxed invariant.

11.3 Specification of the pack Function
As usual, VeriFFI computes the VST funspec for pack from the reified description and functional
model, producing something equivalent to the following:
Definition pack_spec : ident * funspec :=

DECLARE _pack
WITH gv : gvars, g : graph, roots : roots_t, x : {_: string & unit},

p : rep_type, ti : val, t_info : thread_info
PRE [ thread_info; int_or_ptr_type ]

PROP (@graph_predicate string g (projT1 x) p)
PARAMS (ti, rep_type_val g p)
GLOBALS (gv)
SEP (full_gc g t_info roots ti gv; mem_mgr gv)

POST [ int_or_ptr_type ]
EX (p� : rep_type) (g� : graph) (roots�: roots_t) (t_info�: thread_info),
PROP (@graph_predicate bytestring g� (FM.pack (projT1 x)) p�;

gc_graph_iso g roots g� roots�;
frame_shells_eq (ti_frames t_info) (ti_frames t_info�))

RETURN (rep_type_val g� p�)
SEP (full_gc g� t_info� roots� ti gv; mem_mgr gv).

This funspec is much like the one described in subsection 9.1, and only the highlighted parts
di�er: the abstract type is bytestring rather than C.t, and the functional model is string rather
than nat. And as in that example, although bytestring has a very di�erent representation than
string, this di�erence is not re�ected in the foreign_iso component of the InGraph class, which is
just an identity isomorphism. The di�erence in representations is accomplished by using di�erent
type-class instances for graph_predicate in the precondition (where it is for string) and in the
postcondition (where it is for bytestring). Recall that graph_predicate describes how a Coq type
is laid out in the graph; the bytestring instance uses just a single graph-vertex containing all the
bytes of data, whereas the string instance uses a chain of Ascii constructors. And even though
bytestring is convertible with string, typeclass resolution is by name, not by value.
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The user must then use VST to prove that the hand-written C function satis�es pack_spec. The
proof is hundreds of lines long. The remark above that "this function is a bit tricky" translates to
extra work proving that this trickiness is done correctly.

12 Programs with Mutation or E�ects
12.1 Mutable Arrays
Purely functional data structures are easier to reason about than imperative data structures. However,
they are inherently ine�cient for some use cases [Ben-Amram and Galil 1992; Okasaki 1999;
Pippenger 1996; Ponder et al. 1988], therefore we inevitably need mutable data structures.
Mutable data structures à la OCaml break purity, which is why we only want to allow them in

a controlled way. One way to implement them without breaking purity is to implement them as
monadic e�ects, following the Haskell tradition [Peyton Jones and Wadler 1993; Wadler 1992]. This
way, e�ectful programs are expressed as monadic actions but their e�ects are not executed until
the execution is invoked, which keeps values pure.

A simple monadic interface for a single monomorphic (on element type elt) mutable array can
be de�ned as such in Coq:

Module Type Array.
Parameter M : Type -> Type.
Parameter pure : forall {A : Type}, A -> M A.
Parameter bind : forall {A B : Type}, M A -> (A -> M B) -> M B.
Parameter set : nat -> elt -> M unit.
Parameter get : nat -> M elt.
Parameter runM : forall {A : Type} (len : nat) (init : elt), M A -> A.

End Array.

Here we have a monad type, followed by return and bind functions for monadic values. We also
have operations for assigning a value to an index in the array, and getting the value at an index in
the array. Finally, we have a runM function, which takes the length of the array and a default value
for unde�ned indices, executes a monadic action, and returns the �nal result. The runM function
has local mutation but is externally pure; a client of runM cannot tell if it has local mutation inside.7

C Implementation. We de�ne a Coq module for the foreign types and functions for mutable arrays:

Module C <: Array.
Inductive M : Type -> Type :=
| pure : forall {A : Type}, A -> M A
| bind : forall {A B : Type}, M A -> (A -> M B) -> M B
| set : nat -> elt -> M unit
| get : nat -> M elt.

Axiom runM : forall A (len : nat) (init : elt), M A -> A.
End C.

7Launchbury and Peyton Jones [1994], in their presentations of the ST monad in Haskell, also achieve the local mutation
and external purity but for a more versatile interface that allows creating multiple mutable references in the same monad.
In their approach, a clever trick based on rank-2 types forbids mutable references to escape the monad. In our approach, we
never expose the mutable reference as our monad only operates on one monad. Our approach is more similar to that of
Sakaguchi [2020], but we forgo the intrinsic guarantees about indices for the sake of simplicity and use a default element
instead.
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We implement operations in the mutable array monad as a free monad with extra constructors for
the operations.8 The only foreign function in this module that will be backed by a C implementation
is runM.

We will elide the full C implementation of runM here, although we will provide an explanation in
prose. In the C implementation of runM, we create a block in the CertiCoq heap with the length len,
traverse the monadic action of the inductive type C.M, and return the result. When we see a set
action, we want to �nd the right slot in the array and assign the new value in that slot. However, we
have to notify the garbage collector when we update a mutable reference, because the generational
garbage collector operates on the assumption that older records never point to newer records,
unless the addresses of those references are recorded in a remembered set [Lieberman and Hewitt
1983].

A Functional Model and Correctness. As in subsection 3.2, we will de�ne a functional model for
mutable arrays and discuss how its C implementation and its client programs can be veri�ed.

Following the Haskell tradition [Peyton Jones and Wadler 1993], we de�ne the functional model
of the monad M as a function from the state to a pair of a result and the new state. In the state, we
model the array with a linked list, and get/set the element at a particular index functionally.
Given that the only foreign function in the C module is C.runM, we only have to generate and

prove a VST spec about C.runM. There is nothing particularly special about C.runM, we can generate
a fn_desc for it, compute a VST spec using fn_desc_to_funspec, and attempt to prove it correct.
However, we have not yet done the VST proof that the C function satis�es this funspec.

In section 10 we proved properties about client Coq programs of integers, now we want to do the
same for client Coq programs of mutable arrays. In the example below, we prove that �rst setting
an index of an array to a value and then getting the value at that index, gives the same �nal result
(but not the same state). Our proof once again resembles that of Swierstra and Altenkirch [2007],
since we use the functional semantics in our functional model to reason about mutable state:
Lemma set_get :

forall (n len : nat) (bound : n < len) (init : elt) (to_set : elt),
(C.runM len init (C.bind (C.set n to_set) (fun _ => C.get n)))

= (C.runM len init (C.pure to_set)).
Proof.

intros n len bound init to_set.
(* Step 1: VeriFFI tactic to unpack isomorphisms between C representation and FM *)
props runM_spec. foreign_rewrites.
props bind_spec. props pure_spec. foreign_rewrites.
props set_spec. props get_spec. foreign_rewrites.
(* Proof goal is now,

(FM.runM len init (FM.bind (FM.set n to_set) (fun _ => FM.get n)))
= (FM.runM len init (FM.pure to_set)) *)

(* Step 2: an ordinary Coq proof about the functional model *)
...

Qed.

12.2 Programs with Input/Output
We can use the same free monad idea for expressing e�ectful programs. For instance, we can
extend the bytestring example with an e�ectful interface to print bytestrings from stdout and

8Technically, Coq’s module system does not allow inductive types and their constructors to act as �elds outlined by a
Module Type. In the actual implementation, we declare the inductive type and its constructors with di�erent names and
later create aliases.
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read bytestrings from stdin. We will follow the same recipe: �rst de�ne a Module Type that has a
monadic type and monadic actions, then de�ne a C module that has an inductive type to represent
the free monad.
We diverge from that recipe here, as we cannot have an equivalent of runM for this monad—as

our monadic actions here depend on the real world and therefore are not pure. Each call to runM
would have to create a di�erent “outside world” to interact with. Therefore, we will not expose
runM to the Coq side. We will implement it in C, and we will call it only once from the C side. Since
there is no Coq reference to runM, we will have to write the VST speci�cation of it by hand. Writing
this speci�cation and proving it requires dealing with side e�ects using VST, which is quite capable
of accommodating proofs about e�ectful C programs. We leave the VST speci�cation and proof of
runM as future work.
This choice also a�ects how we prove properties about client programs. When we stated the

set_get lemma about mutable arrays, we claimed the equivalence of two monadic actions, by calling
C.runM on both of those programs, then asserting that they were equal using Coq’s standard equality
=. However, there is no runM function for the e�ectful monadic actions. To state the equivalence of
monadic actions in the absence of runM, we de�ne our own relation that states the equivalence of
two monadic programs. We need the new relation to exist both in the C module and FM module in
Coq, therefore it makes sense to add it to the interface. We add
Parameter same_behavior : forall {A : Type}, M A -> M A -> Prop.

to the Module Type we de�ne for bytestrings. While we do not need to provide a C implementation
for this function, we will have an Axiom for it in the C module and a functional model de�nition
for it in the FM module. We can then state the equivalence of two monadic programs using this
relation. Here we state that a program that prints two bytestrings sequentially behaves the same as
a program that appends those two bytestrings and prints it once:
Lemma print_steps :

forall (a b : C.bytestring),
C.same_behavior (C.bind (C.print a) (fun _ => C.print b))

(C.print (C.append a b)).

In the proof of this lemma, we can rewrite the calls to the components from the C module to their
counterparts in the FM module. Once we get to a proof goal entirely about the functional model, we
can proceed with the proof as if it is about a purely functional program.
Although we present a simple, inductive interface in this section for presentation purposes,

we believe our system can express other styles of monadic interfaces described in the literature.
FreeSpec [Letan et al. 2021] allows e�ects to be represented modularly, while interaction trees [Xia
et al. 2019] allow reasoning about possibly nonterminating e�ectful programs through a coinductive
interface. Nigron and Dagand [2021] and Carnier et al. [2024] pave an alternative path for reasoning
about e�ects, in which custom monads get domain-speci�c reasoning with custom program logics.

13 Soundness
Assuming that the CertiCoq compiler is correct, then the VeriFFI system is sound. In this section
we explain the basis for that claim, and how (in future work) it could be proved.

We rely primarily on the veri�ed-in-Coq soundness of the Veri�ed Software Toolchain [Appel
et al. 2014]. Here we explain the VST soundness theorem informally. Suppose one has a set of
functions named 80, 81, . . . , 8=�1 with function-bodies (including headers) 50, . . . , 5=�1 and funspecs
B0, . . . , B=�1. We collect the funspecs into a context � = [(80, B0); . . . ; (8=�1, B=�1)] . Suppose we prove
the correctness of each function individually:

semax_body � 59 (8 9 , B 9 ) that is, � ` {pre(B 9 )}59 {post(B 9 )}
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such as the lemma body_pack mentioned in subsection 9.2. Whenever a function-body 59 calls some
function named 8: , the correctness proof can assume the speci�cation (8: , B: ) for that function
found in assumption � (even if 9 = : , i.e., recursion is supported by VST’s step-indexed semantic
model). Suppose the initial state when calling function 50 satis�es the precondition pre(B0). Then
executing function 50 in the operational semantics of CompCert C will not crash, and if it terminates,
the resulting state will satisfy the postcondition post(B0). VST is a logic of partial correctness, and
does not prove termination—this is a limitation of higher-order impredicate program logics based
on step-indexed models (such as VST and Iris [Jung et al. 2018]), but in return one gets powerful
reasoning about pointers, function-pointers, and recursion.

When using VeriFFI, we have:
• The top-level Coq function60 that has internal functions6=+1, . . . ,6=+< , all of which are clients
of foreign functions named 81, . . . , 8= ; that is, the 81, . . . , 8= are free variables of 60. Function 60
is compiled by CertiCoq into a C function 50 with auxiliary functions 5=+1, . . . , 5=+<0 , which
are not internal to 50 because they have been hoisted to top level after closure conversion;
and<0 may di�er from< because of optimizations and transformations by the CertiCoq
compiler.

• C functions 51, . . . , 5= with names 81, . . . , 8= . These functions have functional models 61, . . . ,6=
from which VeriFFI automatically generates funspecs B1, . . . , B= as described in subsection 9.1.

• One garbage_collect function written in C, and the auxiliary functions it calls.
We generate the funspecs of the 51, . . . , 5= from their functional models 61, . . . ,6= , using

fn_desc_to_funspec (for user-written C functions) or in a related way for glue-code-generated
C functions that allocate data constructors. We generate a funspec B0 from function 60 using
fn_desc_to_funspec. We do not need funspecs for 5=+1, . . . , 5=+< because the proof of correctness
of CertiCoq relates those functions to 50 using direct operational-semantic methods.

From the CertiCoq compiler-correctness claim, we hypothesize, semax_body � 50 (80, B0). The
CertiCoq team has not yet completed this correctness proof: the entire front-end is proved correct in
Coq [Sozeau et al. 2019], the entire _ANF back-end is proved correct in Coq [Paraskevopoulou 2020;
Paraskevopoulou et al. 2021], the code generator is proved correct, but the composed end-to-end
theorem is still under construction.

In fact, CertiCoq’s end-to-end compiler correctness theorem for open programs (i.e., with foreign
functions as free variables), has not yet even been stated. Our work here provides the framework for
doing so, and suggests that the proof should follow VST’s semantic method for stapling together a
collection of semax_body proofs of mutually recursive higher-order functions. That is, the CertiCoq
theorem should relate the Coq function 60 to the operational behavior of the generated code
50, subject to assumptions about the operational behavior of the # primops. We can talk about
operational behavior in this way because VST’s semax_body predicate is a shallow-embedded
de�nition stating properties of a CompCert Clight operational-semantic execution—not, for example,
an inductive de�nition which could only be proved by a certain set of Hoare-logic proof rules.
Now, for every one of these functions we need a semax_body proof of its correctness w.r.t. its

funspec.
• The garbage_collect function was proved correct by Wang et al. [2019] using VST.
• The proof of semax_body � 50 (80, B0), relying on related proofs for 5=+1, . . . , 5=+<0 , will be a
consequence of CertiCoq compiler correctness, as described above.

• The semax_body proofs of 51, . . . , 5= are done using the Veri�ed Software Toolchain’s VST-Floyd
proof automation system. For those of the 59 that allocate or discriminate data constructors,
whose C functions were generated fully automatically by VeriFFI glue code, VeriFFI generates
these VST-Floyd proofs automatically using an Ltac script. For the 59 functions whose C

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 24. Publication date: January 2025.



24:26 Korkut, Stark, and Appel

functions are written by hand by the user, the VST-Floyd proofs are done interactively by the
user, with assistance from VST-Floyd.

All these semax_body proofs can be tied together using VST’s semax_func constructor lemmas
[Appel et al. 2014, page 207] into a single program-correctness proof.

Total correctness vs. partial correctness. The source function 60 provably terminates (because it
type-checks in Coq); and the functional models 61, . . . ,6= are total functions (because they are
expressed as functions in Coq). However, the VeriFFI+CertiCoq proof of the whole program will
not guarantee termination, because VST’s program logic is a Separation Hoare logic of partial
correctness. This is not a defect of VeriFFI; it is inherent in compiling Coq to any computer
architecture with a �xed number of address bits (e.g., 64-bit addresses). The Coq function that
computes Ackermann’s function on Peano natural numbers is a total function, but compiled to
RISC-V it will inevitably run out of memory even on smallish inputs.

14 Related Work
14.1 Verified FFI Systems

Melocoton [Guéneau et al. 2023] allows users to write programs in a toy subset of OCaml and a
toy subset of C and reason about both sides and their interactions. Users can verify their OCaml
code in an OCaml program logic, and their C code in a C program logic, where both program
logics are de�ned on top of Iris, a separation logic framework embedded in Coq. Following the
conventional way of verifying interoperability through a combination of languages [Matthews and
Findler 2007; Perconti and Ahmed 2014], Melocoton de�nes operational semantics and program
logics for C, OCaml, and their combination, a “multi-language semantics”. The user does not have
to interact with the combined language and its program logic, but the combined program logic is
essential to tie the separate parts together. Melocoton does not include a veri�ed garbage collector,
but it has reasoning based on a nondeterministic model of a garbage collector.
In contrast to Melocoton, VeriFFI allows users to write programs in all of Gallina and almost

all of C. The user can reason about their Coq programs directly in Coq, which is already a logic
and proof assistant and therefore easier to reason in, and about their C programs in Coq via the
Veri�ed Software Toolchain [Cao et al. 2018], a separation logic framework embedded in Coq.

For VeriFFI we did not have to develop a combined language and a combined program logic for
two languages; it has a simpler architecture than Melocoton because of the languages it is based on:
Coq is both our language of reasoning, and the source and implementation language of our compiler.
On the other end of the spectrum, C is both the target language of our compiler and the language of
our foreign functions. This coincidence means our multi-language programs can just be “plugged
together," as both the compiler output of our Coq code and our foreign functions are in C. Hence,
all of our reasoning about foreign functions can be achieved within the Veri�able C program logic.
VeriFFI is also based on a veri�ed garbage collector, CertiGC, whose heap graph representation is
essential in how VeriFFI reasons about the representation of Coq values in memory, and whose
implementation can be linked to compiled to Coq programs.
Cogent [Cheung et al. 2022] allows one to write functional programs in the HOL logic, that

type-check in HOL and can be proved correct in HOL; but that also type-check in a much more
restrictive �rst-order linear type system—that is, no nested higher-order functions, no sharing of
data structures. These �rst-order linear programs are compiled to C code that (because linear) can
use malloc/free, and do not require a garbage collector. Although that is a reasonable trade-o� to
make, it severely restricts the expressiveness of the functional language.

CakeML [Kumar et al. 2014] is a compiler for a subset of Standard ML, veri�ed in the HOL4 proof
assistant. Guéneau et al. [2017] integrate Characteristic Formulae, a separation logic for stateful
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ML programs, into CakeML. This system supports foreign functions as well, but ultimately this
system reasons about ML, the higher-level side of the two languages interacting via the FFI. Hence,
it is possible to write speci�cations on how the foreign function is used in ML, but there is no
mechanism to verify that the foreign function is implemented correctly. In comparison, VeriFFI
allows both reasoning about the higher-level side, since it is just Coq code, and the lower-level side,
since VST’s separation logic and C program logic is available.
Œuf [Mullen et al. 2018] is another veri�ed compiler project from Coq to C. Œuf can compile

a subset of Gallina, with no user-de�ned types, dependent types, �xpoints, or pattern matching.
In comparison, CertiCoq can compile all of Gallina. Œuf’s compiler correctness theorem allows
the shim (wrapper code in C that executes the compiled Coq program) to be veri�ed using VST,
but it does not have a story about how Coq programs can call C programs, or regarding the
speci�ed/veri�ed attachment of a garbage collector.

14.2 Other Compilers and FFI Systems
Foreign function interfaces achieve interoperability by having one language mimic the calling
conventions of the other language [Matthews 2008]. For FFI systems where the lower-level language
is C, having C types exposed to the higher-level language is common. While exposing base C types
like int, void, and pointers su�ces for most cases, it is possible to encode more complicated C
types such as structs and unions into the higher-level language. Blume [2001] presents an example
of this for Standard ML and Yallop et al. [2018] demonstrate a di�erent design for OCaml. In these
approaches, the glue code generators catch discrepancies between the types of foreign functions
and their higher-level representations. VeriFFI does not expose the C types to Coq, but it would be
possible to implement a library that does so, and prove properties about it.

Some FFI systems expose the value representation of the higher-level language to the lower-level
language. OCaml’s values are represented in C with the value type [Leroy 1999], which CertiCoq
and VeriFFI reuse. Similarly, Java’s JNI [Liang 1999] achieves interoperability by exposing the
higher-level language’s values to the lower-level language, where the user has access to C types
such as jstring and jobject for Java strings and objects.

Furr and Foster [2005] explore static checks to ensure that foreign functions do not violate type
safety in OCaml, and in later work, Java’s JNI [Furr and Foster 2006, 2008]. Their work involves
automatic inference of higher-level language types from foreign function implementations in C,
and therefore is easier than VeriFFI to apply in larger codebases. In comparison, VeriFFI guarantees
type safety as a corollary of correctness. In a similar line of work, Tan et al. [2006] add static and
dynamic checks to ensure that foreign code does not violate memory safety or Java’s type safety.

Lööw et al. [2019] describe veri�ed system calls for CakeML, but they make no claim regarding
support for data structures, inductive data types, glue code generation, representation predicates,
or a program logic for proving correctness of their foreign functions.
VeriFFI can be used to implement particular data types more e�ciently and bring compiler

optimizations on a case-by-case basis to CertiCoq compiled code. For example, Baudon et al. [2023]
and Elsman [2024] present a technique called “bit-stealing" to represent algebraic data types using
less space, and implement a compiler that uses this technique in all data types. While CertiCoq
does not use this technique in its representation of Coq values, it is possible to implement a foreign
type that makes this optimization for a particular type, and prove it correct using VeriFFI. One
useful example would be an integer type that has one constructor that carries a 63-bit integer and
another constructor that carries a big integer. Since constructor payloads di�er in their boxities,
we do not need boxed constructors and constructor headers to distinguish between the machine
and big integers.
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15 Future Work
Proofs about Programs with Mutation and Input/Output. Our mutable array monad is implemented
as described in subsection 12.1, our glue code generator supports working interoperation of the
Coq and C sides, and VeriFFI generates appropriate VST funspecs. In future work we will complete
the VST proof of this monad’s runM function. Our input/output monad is implemented as described
in subsection 12.2, but the VST speci�cation for its runM function (unexposed to Coq to keep purity)
cannot be generated. In future work we will state the VST speci�cation for this C function, and
complete the VST proof.

Persistent, Internally Mutable Data Structures. In a functional language one can have “persistent”
data structures that present a purely functional interface but mutate themselves internally for
e�ciency [Conchon and Filliâtre 2007, §2.3]. It may be possible to support this by writing a graph_
predicate that permits multiple graph representations of the same Coq value.

End-to-End Soundness. We plan to work with the CertiCoq team to specify and verify the correctness
of open Coq expressions, that is, programs that call external functions—following the methodology
explained in section 13. Based on that—using the VST semantic model of the function speci�cation in
terms of the Clight operational semantics—it should be straightforward to build a machine-checked
proof of soundness for VeriFFI.

Retargeting. The Coq formalizations described in sections 4, 5, 6, and 8 are entirely independent of
the target language, so this work could be retargeted to CertiCoq’s WebAssembly back end [Meier
et al. 2024].

16 Conclusion
For a (dependently) typed functional language to interact with a low-level language, at least one
language must be taught how to traverse the data structures of the other, and master the calling
conventions of the other; and, for veri�cation, to reason over the gap. Our glue code generator
allows C to traverse (and build) Coq data structures; allows C functions to support Coq calling
conventions; and allows C functions to be proved correct with respect to Coq functional models.
Our program logics on both sides are very rich and expressive: Coq (the CiC logic) is a widely
used and well-established logic for reasoning about functional programs written in that logic;
our system for specifying and verifying across interfaces permits both concrete data types (C
traversal/construction of Coq inductive constructors) and abstract data types (C representations
unachievable in pure Coq).

Proofs in VST that foreign functions satisfy their funspecs are often long and tedious. If only there
were a way to automatically synthesize proofs of C functions from their Coq functional models!
But there is such a way: it’s called CertiCoq, which compiles Coq functions into certi�ed-correct C
code. This is the right way to do it for most functions. But for functions (such as pack) operating
on data types whose representations cannot be described e�ciently by Coq constructors, or whose
algorithms cannot be e�cient enough as functional programs on such constructors, we need a way
to write highly tuned C programs by hand and prove them correct using VST’s powerful program
logic. And that way is VeriFFI, the Veri�ed Foreign Function Interface.
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