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Abstract: Single-shot two-dimensional (2D) phase retrieval (PR) can recover the phase
shift distribution within an object from a single 2D x-ray phase contrast image (XPCI). Two
competing XPCI imaging modalities often used for single-shot 2D PR to recover material
properties critical for predictive performance capabilities are: speckle-based (SP-XPCI) and
propagation-based (PB-XPCI) XPCI imaging. However, PR from SP-XPCI and PB-XPCI images
are, respectively, limited to reconstructing accurately slowly and rapidly varying features due to
noise and differences in their contrast mechanisms. Herein, we consider a combined speckle-
and propagation-based XPCI (SPB-XPCI) image by introducing a mask to generate a reference
pattern and imaging in the near-to-holographic regime to induce intensity modulations in the
image. We develop a single-shot 2D PR method for SPB-XPCI images of pure phase objects
without imposing restrictions such as object support constraints. It is compared against PR
methods developed for SP-XPCI and PB-XPCI on simulated and experimental images of a
thin glass shell before and during shockwave compression. Reconstructed phase maps show
improvements in quantitative scores of root-mean-square error and structural similarity index
measure using our proposed method.

1. Introduction

Propagation-based x-ray phase contrast imaging (PB-XPCI) and speckle-based x-ray phase
contrast imaging (SP-XPCI) are two x-ray phase contrast image (XPCI) modalities commonly
employed for dynamically imaging weakly attenuating objects because of their simplistic setups
and relaxed requirement on temporal coherence [1-4]. Often, one would perform two-dimensional
(2D) phase retrieval (PR) on single XPCI images recorded from these imaging modalities to
reconstruct the 2D phase shift distribution in the object (phase object) before converting the
phase object into quantitative measures such as areal density, material composition, and particle
size distribution [2,5, 6]. Broadly speaking, phase retrieval of SP-XPCI images can uniquely
reconstruct well up to a constant large-scale features (e.g., x-ray wavefronts [7]), whereas that of
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PB-XPCI images can reconstruct effectively but not uniquely small-scale features (e.g., material
interfaces [8]) [9]. Moreover, like SP-XPCI imaging, differential-based (DF) XPCI imaging
methods, such as coded-apertures XPCI [10], x-ray grating interferometry XPCI [11, 12] and
analyzer-based XPCI [13] are also limited in accuracy to reconstructing large-scale features. To
leverage the advantages of both SP-XPCI & PB-XPCI to accurately reconstruct objects with
small and large scale features, we developed a combined speckle- and propagation-based phase
retrieval (SPB-PR) technique which will be described herein.

Developing a PR method that can recover phase objects with features (or equivalently, phase
gradients) spanning multiple length scales is widely inspired by the expanding field of research
that uses XPCI to understand material response to sub-shock [4, 6, 14, 15] and shock loading
conditions [16, 17]. These research efforts are important for testing and optimizing material
performance under extreme conditions for space exploration, global defense and fusion energy.
In particular, Inertial Confinement Fusion (ICF) and Inertial Fusion Energy (IFE) science and
technology developments are an exciting area of research as a future source of clean energy [18].
In ICF, a target comprising of a shell filled with hydrogen fusion fuel is irradiated via laser beams
to rapidly heat the outermost layer of the shell (ablator) and generate implosive shock waves
that compress and heat the fusion fuel to thermonuclear conditions [19]. Voids in the ablation
layer, however, collapse under the imploding shock and can seed Rayleigh-Taylor instabilities.
This in turn leads to asymmetric compression and injecting of ablator material into the fuel,
degrading the efficiency of fusion reactions [20]. This has motivated concerted efforts using
XPCI to observe, quantify, and computationally model void collapse with the aim of mitigating
or possibly leveraging its effect in ICF [21,22].

Recently, single x-ray pulse XPCI imaging at X-ray free electron lasers (XFELs) has been
demonstrated studying cavitation dynamics of bubble collapse [23] and water jet break-up [8],
both from pulsed laser interaction with fluids. Successful single-pulse, near-field to holographic
x-ray imaging was demonstrated in both cases by retrieval of dynamic phase and areal density
images. However, all XFEL near-field to holographic imaging share similar challenges and
solutions, such as flat-fielding and noise removal from XFEL SASE sources. Moreover, this
work is imaging a strong planar laser shock in a solid sample compared to the laser induced
bubble or jet break up in fluids. This presents a unique set of challenges, such as a stronger
phase gradients (> 30 radians phase change in this work compared to a few radians in the fluid
examples) [8,23]. As result, multiple length scales and, therefore phase gradients, are created
in the material ranging from slowly varying release wave-induced density gradients to rapidly
varying hydrodynamic instabilities.

In the remainder of this paper, we demonstrate how speckle- and propagation-based XPCI
(SPB-XPCI) can be used to image quantitatively the phase shift due to a shockwave interacting
with a void and comparison to hydrodynamic simulations. Section 2 provides the theoretical
model and numerical implementation of our combined SPB-PR method. This is validated
with simulated and recorded XPCI images of a thin micron glass shell embedded in epoxy
collapsing under a shock wave from the Matter in Extreme Conditions (MEC) instrument at
the Linac Coherent Light Source (LCLS) (see Section 3 for details). In Section 4, phase object
maps reconstructed from SPB-PR are compared with two other proven PR methods used for
PB-XPCI [24] and SP-XPCI [2] imaging, and then concluding with Section 5.

2. XPCl imaging modalities
2.1. PB-XPCI

A generic setup for PB-XPCI is shown in Fig. 1. Spatially coherent monochromatic x-ray plane
waves propagating along the z-axis are focused by a compound refractive lens (CRL) over focal
length Fr.. Cone beam x-rays emerge from the focal point and travel distance R; to an x-ray
transparent object. The object distorts the wavefield of the x-ray beam, which manifests into
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Fig. 1. PB-XPCI, SP-XPCI and SPB-XPCI imaging setups with cone beam x-rays
produced by a compound refractive lens (CRL) in a laser-driven shock compression
experiment. Inset: A 1 pm thick, 40 pm inner diameter SiO; dry air-filled shell
embedded in a photoresist, SU-8. d is the distance from the air/kapton to the SU-8/SiO,
shell interface.

Fresnel diffraction fringes as it travels over distance R and is recorded by the detector over the
r; = (x,y)-plane. These fringes are responsible for the enhanced contrast in PB-XPCI images,
particularly at sample edges and interfaces where the x-ray wavefront is significantly distorted.
Here, PB-XPCI uses free-space propagation of coherent x-rays to create propagation-induced
phase contrast.

Under the operator theory of coherent x-ray imaging, the PB-XPCI image /o (r 1, z) recorded
by the detector at an effective propagation distance z.5 = R1R»/(R; + R>) from the exit surface
of the object located at z = 0 can be related to the object scalar wavefield W (r,, 0) via:

Io(ry, zop) = Iw (o, o) |HPo (11, 0) [ (1)

where
lIIO (rJ_a 0) = eXp (“)DO (rJ_s O)) . (2)

Iw(r1, zep) is the XPCI image in the absence of the object (white field), and i is the complex
number. In arriving at Eq. 1, it is assumed that the wavefield corresponding to Iw (ry, zep) is
sufficiently slowly varying to negligibly perturb the phase object ¢ (r,,0), i is the imaginary

number, and
H=F"exp (l.Zgﬁ"\/kz - ki) F 3)

is the free-space propagator where the paraxial approximation was assumed to invoke the Fresnel
scaling theorem and allow z.; to be included in H [25]. ¥ and F -1 are the forward and
inverse Fourier transforms with respect to spatial axes (x,y) and spatial frequencies kK, =(k,ky),
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respectively. (kx,ky) are Fourier coordinates corresponding to the vectors (x,y) in real space,
k = 2m/A is the wavenumber, and A is the x-ray wavelength.

Propagation-based phase retrieval (PB-PR) aims to solve Eq. 1 (or some other equivalent form,
for example, Kirchhoff’s diffraction formula [26]) to determine ¢ (r,0). Often, however, a
single image is insufficient to uniquely solve for ¢ from Eq. 1, making it an ill-posed inverse
problem [27]. As a result, a number of approaches to convert Eq. 1 into a regularized inversion
have been proposed. These approaches can be divided into approximating H, e.g., linearizing
the transport-of-intensity (TIE) or Fokker-Planck (FP) equation [28-30], and/or Yo (r,,0),
e.g., phase-attenuation duality (PA) [31], contrast transfer function (CTF) [32], projection
approximation [25], object support constraint [33], object smoothness [34], phase/absorption
object constraints [35], single material [36], and two material [37]. Such approximations have
led to analytical, iterative, and deep learning methods for solving Yo (r_,0).

In theory, the validity range of PB-PR is dictated by the approximations made in H and
Yo (ry,0). Butin practice, PB-XPCI images are contaminated with noise that further reduces
their validity range to spatially rapidly varying phase objects (i.e., in the holographic regime when
the Fresnel number F = a/ (ZeﬁﬂWgao(r 1, O)|max) < 1 [38], where a is the characteristic length
scale of the object). This is because /o (r ., z¢p) is approximately proportional to V2 o (r.,0)
for slowly varying phases (see Eq. 11 in [39]). Consequently, for parts of the object where the
phase object is slowly varying and the object is weakly attenuating, the PB-XPCI image intensity
is minimally perturbed and thus easily lost under image noise.

2.2. SP-XPCI

SP-XPCI adds a mask to the PB-XPCI setup in Fig. 1 to generate a high frequency intensity
reference pattern at the detector. z.4 is often strategically reduced (and/or x-ray energy increased)
to minimize propagation-induced intensity contrast. Regular grids, sandpaper and particles are
some examples of masks that have been successfully employed in SP-XPCI [42,43]. When an
object is placed in front of the mask, the reference pattern is distorted. Distortion of the reference
pattern, or speckle-induced phase contrast, is the underlying contrast mechanism that SP-XPCI
relies on to retrieve the phase object.

To relate the phase object to its SP-XPCI image, we begin by expressing the x-ray wavefield
Yo+ (ry, 0) in the presence of both the object (O) and mask (M) as:

Woim(ry,0) =¥o(ry,0)¥y(ry,0), “4)
where
War(re,0) = exp(=Ap(ry,0) +ipp(ry,0)). (5)
Ap (1, 0) is the absorbance of the mask. To arrive at Eq. 4, the projection approximation was
assumed within the object [25].
If oo (ry,0) has a local radius of curvature R > R; (i.e., the object is imaged well within the

near-field regime, F' > 1), and ¢ (r,, 0) contains only high frequencies, then Eq. 1 can be
approximated as [44]:

Towm (v 1, Zeg) = Tw (v, Zeg) [HP04p (v1,0) 7 (6a)

z
~ Iw(ry, Zep) [IM(ri,Zejf) - %ﬁVJ_QOO(rJ_sO) VI (L, Zep) (6b)

where V, = (0/0x,0/0y) is the directional derivative along the (x,y)-plane, and Ips(r ., zZep) is
the image of the mask at the detector plane. If we further assume that D, < 1, then the following
Taylor expansion truncated after the first order can be made:

Z Z
Iy (I'J_ - %Vﬂpo(rl,o),zeﬂ) ~ IM(I'J_,Zeﬁ') - %?VJ_QOO(I'J_’O) : VIM(rJ_’Zeﬁ') @)
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Fig. 2. Validity range of PB-PR (TIE/FP [30,36], Iterative [33-35], CTF/PA [31,32]),
speckle-based phase retrieval (SP-PR) (DF [2, 10-12], Geometric flow [5,40]) and
our proposed SPB-PR method over the Fresnel number (ranging from the near-field to
holographic regime) and absorbance of the object imaged. DF = Differential-based
XPCI methods. FP = Fokker-Planck equation. TIE = Transport-of-intensity equation.
Iterative = Methods that recast Eq. 1 into an optimization problem and apply constraints
on¥p(r,,0)suchasin[41]. CTF = Contrast transfer function. PA = Phase-Attenuation
duality. SPB-PR is the only one that can adequately cover the near-field and holographic
regimes.
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to arrive at:
Zeﬁ'
Losm (Y1, Zef) = Iw (YL, Zeg) I (l'i - Tvﬂﬁo(h, 0), Zeff) . ®)

In Eq. 8, Iosm(ry, zop) is related to Ip(rL, zo5) by a deformation field proportional to
Vipo(r.y,0). This makes SP-XPCI much more sensitive to slowly spatially varying phase
objects than PB-XPCI, which, as mentioned in Section 2.1, is sensitive to V2L<p0 (r.,0). The
basic approach of SP-PR is computing the deformation field using the reference pattern as
control points to perform image registration between I (r_, Zog) and Iopr(ry, Zeg). Then, the
deformation field is integrated to obtain a unique solution up to a constant for o (r,,0) [2,3,45].

When the object is imaged beyond the very near-field regime (i.e., F' > 1), propagation-induced
phase contrast appears in the XPCI image and therefore SP-PR becomes inaccurate. To account
for propagation-induced phase contrast, Wang et al. [46] described a technique for recording an
XPCI image of the object with and without the reference pattern. However, it cannot be used
for single-shot dynamic imaging. Paganin ef al. [5] developed a geometric flow approach to
incorporate free-space induced phase contrast by treating the reference pattern, distorted by a
pure phase object, as a conserved current. Pavlov et al. [40] extended the geometric flow method
to attenuating objects. Another XPCI method similar to SP-XPCI that uses a single absorbing
mask is also able to separate propagation- and speckle-induced intensity contrast [47]. However,
these methods are not valid in the holographic regime (i.e., F < 1) and/or are error-prone to
spatial variations in the white field. The latter can often be removed by normalizing the object
image against the white field. However, this approach can fail to completely remove variations in
the white field due to pulse-to-pulse stochastic variations in x-ray intensity and mean energy [4, 8],
or if the reference object is inseparable from the imaging system [22]. In the next section, we
propose a method that is valid beyond the near-field regime and robust against non-uniform
illuminating and stochastically varying x-ray beam intensity distributions and mean energy [48].

2.3. SPB-XPCI

In this work, we combine the fundamental principles of SP-XPCI and PB-XPCI introduced
in sections 2.1 and 2.2, respectively, to describe our SPB-PR method for retrieving the phase
of a non-absorbing object from a single SPB-XPCI image that contains both speckle- and
propagation-induced phase contrast within and up to the holographic regime. In this case,
SPB-XPCI adds a mask to the PB-XPCI setup, as is the same for SP-XPCI, but in addition z,4 is
set sufficiently large to produce propagation-induced phase contrast (Fig. 1).

wo(ry,0) is assumed to be an analytic function infinitely differentiable, and that there exists
a convergent power series at every point r; in the plane perpendicular to z. Consequently, at
every point r; the phase object can be Taylor expanded and decomposed into rapidly and slowly
varying phase components o, (r,,0) and ¢, (r,,0), respectively:

Yo (rJ_’ 0) = @Yoy (rl_s O) + Pogr (rJ_7 0)’ (9)

such that V"¢o¢(r;,0) = 0 and V"o (r;,0) = V'@o, (r.,0) for n > 2. Substituting Eqs. 9
and 2 into 4 gives the x-ray wavefield immediately after the object:

TO+M(rJ_’O) = lIJM(rJ_s O)TOR (rJ_’O)lPOS (rJ.’O)3 (10)

where Yo, (r1,0) = exp(ipog (ri,0)) and Yo, (ry,0) = exp(ipog (ry,0)).

The key observation to make in Eq. 10 is that W, (r,,0) and ¥, (r,, 0) can be categorized
together as containing only high frequency phase components, while W, (r,, 0) contains only
low frequency phase components. Equation 10 can be re-expressed as:

lP0+M(I.JJO) = lPOR+M(I‘J_’O)‘POS(I'JJ0)7 (11)
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where
lPOR+M (rJ_7 0) = lPOR (rJ_7 O)lPM (rJ_’ 0) (123)
= exp(igog (rL,0) +ipp(ry,0)). (12b)

Substituting Eq. 11 into Eq. 6(a) and assuming ¢ has a local radius of curvature of R > R»,
Eq. 6(a) can be approximated as [44]:

Zeff
loim(ry, Zejf) ~ Iw(ry, Zeﬂ)IOR+M (ll - TﬁVL‘POg (r.,0), Zeﬁ”) (13a)
= IW(rJ_’ Zeﬁ")IOR+M (rJ_ - DJ_’ Zeﬂ”) (13b)
where Zef
€
DJ_ = (Dx’Dy) = TVJ_SDOS (rJ_9O) (14)

is the deformation field that maps Iog+nm (Y1, Zef) t0 Torrs (Y1, Zefp)-

Equation 13(a) represents an alternative expression of Eq. 6(a) to propagating x-ray wavefields.
Equation 6(a) propagates the total x-ray wavefield to the detector plane via the propagator H, while
Eq. 13(a) propagates the rapidly varying components (O and M) via H, then distorts the resultant
image with that of the slowly varying component (Og). In other words, Eq. 13(a) separates
the components of the x-ray wavefield into high phase components responsible for producing
propagation-induced phase contrast (i.e., edge enhancement of the object and generation of
reference pattern), and low frequency phase components (Og) that produce speckle-induced
phase contrast (i.e., distortion of the propagation-induced phase contrast). We also note the
generality of Eq. 13(a), assuming only that ¢ (1, 0) is analytic.

Finally, we introduce our combined SPB-PR method by minimizing the following three
objective functions using, respectively, Egs. 6(a), 13(a) and 14:

112

fi(¢0) = \/10+1\I/I“(/900) _ \/[?+M
w
2

. 2
logsm (ri —=D1)  losm

+ 1R (o) (15a)

£ D)= 7 - + R, (D)) (15b)
w IW 2
Zoff 0005 ? Zef 0005 A 7|
f3(pos) = |[wx Tﬁ_x_Dx +wy TG_y_Dy 2 (I5¢)

where fy and fo,p is the recorded dark field corrected white field and XPCI image, respectively.
||...II3 is the squared Euclidean 2-norm. D = (D, Dy) is the value that minimizes Eq. 15(b).
R1 and R, are regularization functions weighted by constants 1; and A5, respectively. w, and
wy are space-dependent weight functions that assign values between [0,1] in D, based on the
uncertainty in the XPCI image intensity. For example, regions that are noisy due to low x-ray
photon counts or x-ray scattering have greater uncertainty in D, and are therefore assigned
smaller weights. Explicit dependence on r and z.g since Eq. 15 and hereon will be dropped for
notational simplicity.

Equation 15(a) represents the PB-PR portion of our SPB-PR method by using the PB-XPCI
forward model in Eq. 1. Ideally, minimizing Eq. 15(a) alone reconstructs the phase object.
However, as mentioned in Section 2.1, without sufficient prior information about the object,
Eq. 15(a) is an ill-posed inverse problem. Consequently, we supplement Eq. 15(a) with Egs. 15(b)
and 15(c), the SP-PR portion of our SPB-PR method. Eq. 15(b) determines D, between /p,+m
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and {4, which Eq. 15(c) then integrates with a weighted least squares method to determine ¢ oy
There are many ways to jointly solving Eq. 15(a-c), some of which are discussed in Section 5. In
our work, the following combination of numerical methods were implemented for minimizing the
objective functions: momentum-based gradient descent with R set to an approximation of the
total variation (TV) regularizer (Eq. 15(a)) [49], diffeomorphic demons registration that sets R,
as a high-pass filter regularizer (Eq. 15(b)) [50], and least squares minimization (Eq. 15(c)) [2].
Further details of these numerical methods are described in Section S1 (Supplement 1).

3. Materials and Methods
3.1. Sample

To study the shock-induced microstructural evolution of void collapse in an ICF ablator-type
material, SU-8 photoresist epoxy (1.185 g/cm?; Kayaku Advanced Materials) and SiO, shell
(2.65 g/cm? [51]; Cospheric LLC) were selected as the proxy for the ablator material and
engineered void, respectively (see inset in Fig. 1). While in actual ablators there is no glass
shell, this design enabled higher precision in void placement and fine control over void size.
We performed xRAGE simulations with and without the glass shell, and showed that they both
displayed similar SU-8 behavior during the early stages of void collapse [52]. To fabricate ablator
samples, SU-8 was spin coated to a thickness of 139 um. Then, a 39 + 1.5 um inner diameter
Si0O, shell was placed on top and covered by an additional layer of SU-8. The sample was etched
into a 0.4 mm X 0.2 mm X 2.5 mm cuboid using photolithography. A 300 nm layer of Aluminium
(Al) and 25 pm layer of black Kapton CB was added to the the SU-8 block with d = 61 pm.
Al provided a reflective layer for performing velocimetry measurements. Kapton was used as
an ablator because of its well-known equation-of-state (EOS) and frequent use in laser-driven
shockwave experiments [22,53, 54]. For more details on how these samples were fabricated and
characterized, see [52].

3.2.  Experimental setup

All shock imaging experiments were conducted in the MEC instrument at LCLS. A 527 nm
wavelength, 98 pm super Gaussian (order 5.2) radius, 10 ns long laser pulse was delivered to the
sample with a total energy of 75.2 J to generate a shock wave propagating towards the void. A
single SPB-XPCI image was captured with a 18 keV (0.1% bandwidth) x-ray pulse focused by a
beryllium compound refractive lens (Be-CRL) comprised of 95 individual lenses stacked with an
effective focal length of F;, = 278 mm. The sample was positioned Ry =63.6 mm from the focal
point and a further Ry = 4.669 m downfield was a 50 pm thick LuAg:Ce scintillator coupled to a
2x magnification objective lens and 6.5 um pixel pitch Zyla camera. This produced an effective
pixel size of 44.5 nm and z.yy = 62.7 mm. Dust particles and defects in the Be-CRL formed
speckles on the images, which we used as the reference pattern in lieu of inserting a mask in front
of the Be-CRL as shown in Fig. 1. Further details on the experimental setup can be found in [55].

3.3. Simulation

Ideally, SPB-PR, SP-PR and PB-PR are assessed and compared on experimental XPCI images.
However, their true phase object maps (ground truths) are not known. Thus, we generated highly
realistic synthetic XPCI images for the purposes of testing our SPB-PR method. First, the sample
was modeled as a 1 pm thick, 40 jum inner diameter SiO; shell embedded in a 0.2 mm diameter,
0.1746 mm long cylindrical block of SU-8 photoresist material. Deposited on the circular surface
facing the laser beam is a 300 nm thick layer of Al and 25 um thick layer of Kapton CB ablator.
The shell is centered on the rotating axis of the cylinder and d = 55.2 pm. Low density dry-air
(1 x 1078 g/cm? [56]) surrounded the sample.
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Laser shock compression of the sample was simulated using the XRAGE radiation-hydrodynamics
code [57] while assuming axisymmetric flow around the rotating axis of the SU-8 cylinder. EOS
models were obtained from the SESAME EOS library [58] (for SiO; and Al) and Livermore EOS
library [59, 60] (for SU-8 and Kapton). xRAGE outputted a time sequence of volumetric density
maps for each material with a pixel size 0.1 pm. To save computation time, the volumetric density
map for Al was not outputted and assumed to be vacuum. At a given time step, each material
volume density map was multiplied by their attenuation coefficient and refractive index decrement
tabulated from XOP [61]. The maps were summed and Abel transformed to calculate ¥ (r,,0),
then propagated with a 31.2 um standard deviation Gaussian x-ray beam to the detector plane
at Zog = 62.7 mm using the angular spectrum method to simulate its XPCI image [25]. These
images were blurred with a pseudo-Voigt function to account for the point spread function
(PSF) at MEC-LCLS, which includes the scintillator, finite source size and partial degree of
transverse coherence of the x-ray beam (further details provided in Section S2 (Supplement
1)) [62]. Finally, added to the images was 5% Gaussian noise (compared to ~ 3% noise measured
from experimentally recorded white fields).

To generate a speckled reference pattern, Wy, (r,, 0) was simulated assuming the projection
approximation from a computer-generated 84.5 nm thick vacuum-filled container with a 10%
volume packing density of 1.6(x) um X 1.6(y) um X 2.0(z) um ellipsoidal SiO, particles
randomly distributed. Wy, (r,0) was multiplied with W (r_, 0) but the container of particles
was not included in the XRAGE simulations since it was not in the path of the drive laser used for
shock compression.

Although the SU-8 was modeled as a cylinder instead of a cuboid, the material response around
the void is expected to be the same. Release waves reflecting off the SU-8 boundary for either
sample geometry would not have reached the void when x-ray images were recorded during first
shock wave arrival at the void. In addition, the imaging field-of-view (FOV) is much smaller than
the radius of the cylindrical sample. Consequently, the SU-8 thickness along the x-ray direction
for both the simulated and experimental object is approximately constant.

3.4. Image processing and analysis

XPCI images were dark field subtracted using recorded images of the detector dark current. Other
image processing methods described in Section S3 (Supplement 1) were employed for SP-PR,
PB-PR and SPB-PR. These include: (1) reversing image blur, (2) normalizing against the the white
field, (3) smoothing circular aperture, (4) aligning the speckle pattern between o4 (YL, Zef)
and Ips(ry, zof) for PB-PR, (5) solving Eq. 15(c) over a circular aperture, (6) removing higher
order Fresnel fringes and slowly varying intensity variations, (7) phase unwrapping, (8) offsetting
reconstructed phase object by a constant, and (9) suppressing Fourier component of the phase at
the Nyquist frequency.

The purpose for some of these image processing methods were to correct for the shot-to-shot
stochastic variation in total photons, travelling direction and mean energy generated through self-
amplified spontaneous emission at LCLS [48]. To elaborate, recordings of the x-ray transverse
beam profile are broadly single peak-shaped [11]. Consequently, shot-to-shot stochastic variations
in total photons and travelling direction translate to changes in peak amplitude and position,
respectively. To correct for these variations, Io+am (Y1, Zef) and Iy (r o, Zof) Were normalized
against the white field, Iw (r ., zof). Iw (L, Z¢f) Was approximated by fitting Zernike polynomials
to Ipr(ry, zep) [63]. Since Ioip (Yo, Zef) and Iw (r ., z.5) were recorded with different x-ray
pulses that have different peak amplitudes and positions, there are slowly varying intensities in
the white field corrected Jo4as (Y1, Zep).

We observed that slow variations in x-ray intensity become rapid oscillations in ¢¢ close to the
Nyquist frequency when minimizing fi (not shown). We suppressed these high frequencies by
applying a median filter, as described in Section S3 (Supplement 1). Conversely, slow variations
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in x-ray intensity become low frequency variations in ¢, when minimizing f> and f3 due to
the assumption in demons registration that intensity does change between Io,ps (¥, zof) and
Ip(ry, zef). Consequently, XPCI images were divided by their Gaussian blurred version with a
standard deviation of 20 pixels. This value was chosen to be much larger than the speckle size of
the speckle pattern.

Stochastic variations in the x-ray mean energy causes the Be-CRL lens to vary in magnification
and therefore expands/contracts the speckle pattern from its center. As a consequence, a spherical
phase front is added to ¢o. Therefore, knowing a priori that the x-ray mean energy globally
distorts the speckle pattern, Ip;(ry, z.;) Was one of many recordings chosen whose speckle
pattern best aligned with that of Ip.as (T, Zo) in the unshocked SU-8 region of the object where
it is not distorted by the object.

We benchmarked our SPB-PR algorithm against two PR algorithms inspired by those suc-
cessfully used in SP-XPCI [2] and PB-XPCI [24]. The first of these inspired techniques is by
Morgan et al. [2]. They used cross-correlation to calculate the speckle displacement field between
SP-XPCI images with and without an object before performing least squares 2D integration of
the displacement field to calculate . The second is by Wittwer et al. [24], who developed a
constrained alternating projection approach to calculate ¢ from PB-XPCI images. Its novelty
lies in calculating ¢ directly, rather than indirectly by calculating Wo (r,,0). This allows
phases > 2r to be recovered without phase unwrapping. To fairly assess our SPB-PR method, [2]
and [24] were modified to remove any differences in performance due to the use of different
numerical methods. For Morgan et al. [2], we switched from cross-correlation to diffeomorphic
demons registration used in our SPB-PR method for minimizing f> [50]. For Wittwer et al. [24],
we replaced the alternating projection approach with the momentum-based gradient descent used
in our SPB-PR method for minimizing f;.

Phase maps reconstructed from simulated XPCI images were assessed using the normalized
root-mean-square error (RMSE) as a pixel-by-pixel measure of accuracy, structural similarity
index measure (SSIM) to quantify how well structural features were reconstructed (further details
are provided in Section S4 (Supplement 1)), and reconstruction time (RT) to measure the time
taken from pre-processing the XPCI images to reconstructing a single 844 pixel x 844 pixel phase
object. MATLAB® with the Image Processing” and Parallel Computing™ toolboxes were used
to run all custom-developed phase reconstruction algorithms on a PC using a Intel Core Xeon
W-10855M (6 Core, 12 MB, Cache, 2.80 GHz to 5.10 GHz, 45W, 12 CPUs), NVIDIA Quadro
RTX 3000 w/6GB (36 GB shared memory) GDDR6 with 64GB, 2x32GB, DDR4 2933MHz
Non-ECC memory [64].

4. Results and Discussion
4.1.  Comparison of synthetic and experimental XPC| images

Dark field corrected synthetic and experimental XPCI images of SiO; shell embedded in SU-8,
along with their corresponding XPCI image of their mask, are shown in Figs. 3(c) and 3(d),
and that of the same object shock compressed are displayed in Figs. 3(e) and 3(f), respectively.
Immediately apparent is that the speckle pattern in the experimental image appears slightly
smaller with sharper features than in the synthetic image. There are also features interspersed
throughout the speckle pattern in the experimental image (one of which is marked by a blue
arrow in Fig. 3(b)) that does not belong to the object but are likely from defects in the Be-CRLs.
However, Aloisio et al. [43] showed that the size and contrast of the speckle pattern negligibly
affect the accuracy of registering images. Thus, we expected that D, was computed with similar
accuracy for both the synthetic and experimental images.

We noted three other major differences between the synthetic and experimental XPCI images,
these are located at the: (1) ablation front, (2) reflective layer and (3) secondary shocks. An
explanation on possible sources of these differences is provided in Section S5 (Supplement 1).
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Fig. 3. 62.4 um x 62.4 um dark field corrected XPCI images of a 1 pm thick, 40 pm
inner diameter SiO; shell embedded in SU-8 (a, b) before and (c, d) after laser
shock-induced compression. Each XPCI is accompanied with their speckle-only image,
Ipg (v, zo). XPCI images in (a,c) are simulated using xRAGE [56], and (b,d) are
recorded at MEC-LCLS. The primary and secondary shocks are moving from top to
bottom. Blue arrow in (b) is pointing at a defect in the Be-CRL. Numbers in (c) label:
(1) Ablation front, (2) Reflector, (3) Secondary shock fronts, (4) Primary shock front,
(5) Jet and (6) Cavity lobes. Green arrow in (d) is pointing at a secondary shock.

Notwithstanding these differences, the main features of a shock-void interaction are realistically
represented in the synthetic XPCI image, including the: (1) Fresnel fringes of the primary
shock front, which indicates the three-dimensional (3D) primary shock front profile is correctly
simulated, (2) acceleration of a plasma jet ahead of the incident shock front, and (3) early formation
of cavity lobes as a result of baroclinic vorticity induced by the orthogonal pressure gradient
across the shock front and density gradient across the void/SU-8/SiO, shell interfaces [21]. Thus,
these features were the focus of benchmarking our SPB-PR method against the other two PR
methods.

Images from Fig. 3 were pre-processed as described in Section 3.4 before performing SP-PR,
PB-PR and SPB-PR. Their pre-processed images are displayed in Section S6 (Supplement 1).

4.2. Phase retrieval of SiO» shell before shock compression

An xRAGE-simulated SiO, shell phase map is shown in Fig. 4(a). This corresponds to the
XPCI image in Fig. 3(a) and from which phase maps are reconstructed with SP-PR, PB-PR and
SPB-PR (Figs. 4(b-d)). SP-PR reconstructs the void well, but not the SiO; shell. This is expected
since the SiO; shell is dominated by propagation-induced phase contrast. Starting from a zero
phase initial guess, both PB-PR and SPB-PR improve on reconstructing the SiO; shell. However,
PB-PR fails to reconstruct the void because, as mentioned in section 2.1, for weakling attenuating
objects it is much less sensitive to slowly-varying features. Others such as Wittwer et al. [24]
and [35] were able to overcome this insensitivity by imposing object support constraints but this
is not applicable to heterogeneous phase maps. On the other hand, SPB-PR is able to reconstruct
both the void and shell. Line profiles crossing the center of their phase maps along x (Fig. 5(a))
and y (Fig. 5(b)) further shows that SPB-PR overall combines the advantages of both SP-PR and
PB-PR in reconstructing both features well.
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Similarly, for phase maps reconstructed from the experimentally recorded XPCI image in
Fig. 3(b) of a SiO, shell (Figs. 4(e-g)), SP-PR accurately reconstructs only the void, PB-PR
reconstructs well only the SiO; shell, and SPB-PR reconstructs both the shell and void. However,
from their line profiles plotted in Fig. 5(c,d), the SU-8 phase on the left and right side of the SiO,
shows a difference of up to ~1 radian. This represents the low frequency variations that can be
seen in the reconstructed phase maps. Given that ~1 radian corresponds to a ~15 pum variation in
thickness across the SU-8 block, which is much larger than that measured using high resolution
x-ray computed tomography [52], the low frequency variations are likely reconstruction artifacts
rather than physical features of the sample. A potential source of this inaccuracy lies in the
high frequency features that includes the reference speckle pattern and SiO, shell. These are
significantly blurred by the PSF. Since it is difficult to deconvolve the PSF in the presence of image
noise, errors are introduced into D |, which translates into low frequency artifacts in the phase
object. Finally, the phase at the center of the void reconstructed from the experimental XPCI
image match much more closely than from the simulated XPCI image to the xRAGE-simulated
phase. A larger pixel size used in the simulation than in the experimental XPCI image may have
made it difficult to detect the smaller shifts in the speckle pattern particularly towards the center
of the void in the presence of noise.

4.3. Phase retrieval of SiO» shell under shock compression

The synthetic SiO, shell in Fig. 4(a) was shock compressed using XRAGE and its resultant phase
map is displayed in Fig. 6(a). Reconstruction of this phase map from its XPCI image (Fig. 3(c))
was performed using SP-PR, PB-PR and SPB-PR (Figs. 6(b-d)). As expected, SP-PR fails to
reconstruct small-scale features including the reflective layer, shock front and SiO, shell but
reconstructs large-scale features including the void and shocked region of SU-8. On the other
hand, PB-PR reconstructs small-scale features including the SiO, shell and, when the range of
phase values on the color map is narrowed to the SiO; shell in Figs. 6(h-k), jetting material.
Again, SPB-PR reconstructs both the small- and large-scale features.

A closer inspection of the jetting material by plotting a horizontal line profile across it shows
SPB-PR in close agreement with XRAGE (Fig. 7(a)). Similarly, a vertical line profile crossing
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Fig. 5. Line profiles along (a) x and (b) y crossing the center of the phase maps in
Figs. 4(a-d). Line profiles along (c) x and (d) y crossing the center of the phase maps
in Figs. 4(a,e-g).

the center of the phase maps reveals the shocked SU-8 region is most accurately reconstructed by
SPB-PR. However, all three PR methods reconstruct poorly the ablation front. This is due to the
fact that where the ablation front produces a thick horizontal dark Fresnel fringe in its XPCI
image, it also produces secondary bright and dark horizontal Fresnel fringes that are outside
the x-ray beam’s FOV. Generally, the number of fringes increases with phase steepness. As
an example, the vertical line profile of the phase map simulated by XRAGE in Fig. 7(c) shows
that the shock front has a much larger phase gradient than the SiO; shell. As a result, in the
corresponding XPCI image (Fig. 3(c)), more Fresnel fringes are produced by the shock front
than by the SiO; shell. Following on from this reasoning, the absence of the secondary fringes
caused the PR methods to underestimate the phase steepness across the ablation front.

Bright and dark patches in the reconstructed phase maps can be seen, which are marked
by a red arrow in Figs. 6(k) and 6(n), respectively. These are caused by having set the TV
regularization parameter 4; too high and thus over-smoothing the phase object. Because of this,
its XPCI image does not sufficiently match in intensity to the recorded XPCI image. When these
two images are registered, D, is non-zero. As a consequence, bright/dark patches are formed and
become increasingly bright/dark each time D, is computed since D, never converges to zero.

As a final comparison, the three PR methods were tested on an experimentally recorded XPCI
image of a shock compressed SiO; shell (Fig. 3(d)). The reconstructed phase maps are shown in
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Fig. 6. (a) 62.4 um X 62.4 um simulated laser-shock compressed SiO; shell phase
map corresponding to the XPCI image in Fig. 3(c). PR performed on Fig. 3(c) using
(b) SP-PR, (c) PB-PR and (d) SPB-PR. PR performed on Fig. 3(d) using (e) SP-PR,
(f) PB-PR and (g) SPB-PR. (h)-(n) correspond to (a)-(g) but with the grayscale color
map range selected to emphasize phase values in front of the shock front. Red and blue
dotted lines represent x and y line profiles, respectively, plotted in Fig. 7.

Figs. 6(e-g) and line profiles across them in the x and y directions are shown in Figs. 7(c) and
7(d), respectively. The relative performance between the three PR methods are similar to when
they were applied to the synthetic XPCI image of a shock compressed SiO, shell. SP-PR again
fails to reconstruct the rapidly varying features including the SiO; shell, jet and lobes, but both
PB-PR and SPB-PR are able to reconstruct them. However, SPB-PR can reconstruct as well the
shock front and shocked region of the SU-8. Even so, there is still a significant discrepancy
between SPB-PR and xRAGE in the shocked regions of the SU-8 (compare the phase values
between 10 pm and 35 pm in Fig. 7(d)). This discrepancy may be because xRAGE did not
account for laser plasma instabilities, which affects the shock front profile. On the other hand,
the pseudo-Voigt function may not have been a sufficiently accurate estimate of the PSF for
deconvolving the Fresnel fringes, leading to SPB-PR overestimating the phase in the shocked
regions of the SU-8. It would be pertinent in future experiments to directly measure the PSF
experimentally using, for example, the slanted-edge method [65].
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Fig. 7. Line profiles along (a) x and (b) y crossing the center of the phase maps in
Figs. 6(a-d). Line profiles along (c) x and (d) y crossing the center of the phase maps
in Figs. 6(a,e-g).

4.4. Numerical comparison between PB-PR, SP-PR and SPB-PR

A quantitative comparison of PB-PR, SP-PR and SPB-PR using the RMSE and SSIM metrics
defined in Section S4 (Supplement 1), as well as the RTs, are presented in Table 1. SPB-PR
produces the lowest RMSE and highest SSIM values followed by SP-PR then PB-PR. This
is consistent with how closely they match visually to the ground truth in Fig. 4. The same
trend is also observed for the SiO; shell during shock compression with SPB-PR producing
the highest quality reconstruction in terms of RMSE and SSIM followed by SP-PR and PB-PR.
Their RMSE and SSIM maps were also computed and are shown in Section S7 (Supplement
1). These calculations exclude the ablation front (see Fig. S3 (Supplement 1)). The reason
is, as mentioned in Section 4.3, the secondary Fresnel fringes created by the ablation front
were recorded outside the x-ray beam profile. For this work, we were not testing these PR
methods for their ability to reconstruct phases with parts of the Fresnel fringes occluded from the
field-of-view. RTs for SP-PR are approximated to the nearest minute while that of PB-PR and
SPB-PR were approximated to the nearest half hour increment. The additional time to reconstruct
the phase object with SPB-PR in comparison to SP-PR and PB-PR varies because of how often
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the condition for minimizing f> and f3 is met. This is shown in Section S8 (Supplement 1) where
f> and f3 are minimized more frequently when reconstructing the shocked SiO; shell compared
to the unshocked SiO, shell.

Object PR method RMSE (rad) | SSIM | RT (hour)
SiO; shell SP (Fig. 4(b)) 0.79 0.70 0.02
PB (Fig. 4(c)) 1.30 0.68 1.5
SPB (Fig. 4(d)) 0.30 0.91 1.5
Shocked SiO; shell | SP (Fig. 6(b)) 7.20 0.90 0.02
PB (Fig. 6(c)) 15.72 0.74 1.5
SPB (Fig. 6(d)) 3.48 0.94 2

Table 1. RMSE, SSIM and RT measures of reconstructed SiO, shell phase maps before
and during laser-shock compression. SSIM is in the range [-1 1], where SSIM=1 and
SSIM=-1 represent perfect and poor matching to the ground truth [66].

5. Conclusions and Outlooks

Herein, we developed SPB-PR for recovering the phase of non-absorbing objects from single
XPCI images containing both speckle- and propagation-induced x-ray phase contrast. This
algorithm leverages both the sensitivity of the former and latter to slowly and rapidly varying
features, respectively, to recover object-induced phase shifts spanning over a range of size features.
We successfully demonstrated this capability on an XRAGE-simulated XPCI image of a SiO,
shell before and during laser shock-induced compression. It outperformed two state-of-the art
PR methods that use either only the speckle- or propagation-induced x-ray phase contrast by
achieving lower RMSE and higher SSIM values. We reproduced the capability of SPB-PR on
XPCI images recorded at the MEC instrument at LCLS of the same experiment simulated by
xRAGE. But, like other differential-based methods, it is susceptible to reconstruction artifacts
from unwanted distortions in the reference pattern between its recordings with and without the
object. It also worth noting that while SPB-PR was derived under the assumption of a pure
phase object, it worked well on weakly attenuating objects. This shows potential for the future
use of SPB-PR to better understand and constrain material models for void collapse [21,67],
IFE/ICF ablator defect simulations [68, 69], as well as other shock-related phenomena such as
high explosive detonation [70,71].

Our PR method is underpinned by the objective functions in Eqs. 15(a)-15(c), where a
combination of numerical methods were implemented for minimizing the objective functions
(Section 2.3). The focus of this work was to show that solving Eqs. 15(a)-15(c) simultaneously
improves PR compared to solving only Eq 15(a) (i.e., PB-PR methods) or Eq 15(b-c) (i.e.,
SP-PR methods). However, it would be valuable to investigate other combinations of numerical
methods that may achieve greater accuracy and computational speed. This may include, for
example, roughness penalties for R (higher order TV [72], BM3D [73], DnCNN [74]), numerical
frameworks for solving f; (ADMM [75,76], Curvature filter [77]), Poisson noise models [78,79],
and image registration methods [80,81]. Egs. 15(a)-15(c) could also be implemented in a multi-
objective optimization algorithm that finds a set of Pareto-optimal solutions. Each solution is
optimized for a specific metric, for instance, quantitative accuracy and structural information [82].
Moreover, Pareto optimality provides a more definitive stopping criteria than setting an arbitrary
value for the maximum number of iterations, as was employed in our work. This may help
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mitigate the formation of dark patches as described in Section 4.3.

Finally, the technique introduced here of partitioning the object into slowly and rapidly
varying components for retrieving the phase object, can be applied to other differential-based
XPCI imaging modalities with significant propagation-induced phase contrast and dark field
contrast [2, 83,84]. Foams, for example, are widely regarded as a leading solution to scaling
up fusion target manufacturing to be used in a fusion power plant [85, 86]. However, the
microstructures of foam is very inhomogeneous, inducing a combination of x-ray attenuation,
refraction and small angle scattering. These introduce considerable uncertainties and challenges
to modeling implosions because they can seed instabilities and turbulence, which degrades
compression and target yield. This work can potentially be incorporated into dark field imaging
methods to resolve sub-pixel size features and develop microstructure parameterizations in
models and validating against experiments.
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