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Abstract—A major objective in genomics is to design in-
terventions that can shift undesirable behaviors of such sys-
tems (i.e., those associated with cancers) into desirable ones.
Several intervention policies have been developed in recent
years, including dynamic and structural interventions. These
techniques aim at making targeted changes to cell dynamics upon
intervention, without considering the cell’s defensive mechanisms
to interventions. This simplified assumption often leads to early
and short-term success of interventions, followed by partial or full
recurrence of diseases. This is due to the fact that cells often have
dynamic and intelligent responses to interventions through inter-
nal stimuli. This paper models gene regulatory networks (GRNs)
using the Boolean network with perturbation. The dynamic and
adaptive battle between intervention and the cell is modeled as a
two-player zero-sum game, where intervention and the cell fight
against each other with fully opposite objectives. An optimal
intervention policy is obtained as a Nash equilibrium solution,
through which the intervention is stochastic, ensuring the optimal
solution to all potential cell responses. We analytically analyze the
superiority of the proposed intervention policy against existing
intervention techniques. Comprehensive numerical experiments
using the p53-MDM2 negative feedback loop regulatory network
and melanoma network demonstrate the high performance of the
proposed method.

Index Terms—Gene Regulatory Networks, Biological Interven-
tions, Nash Equilibrium, Dynamic Programming.

I. INTRODUCTION

Recent technological advancements in genomics have sig-
nificantly enhanced our understanding of these complex bio-
logical systems. Gene regulatory networks (GRNs) are com-
prised of a number of interacting genes whose interactions
control the ecosystem functioning and various cellular pro-
cesses, such as stress response, DNA repair, and other mech-
anisms involved in complex diseases such as cancer [1–4].
A major goal in genomics is to find intervention strategies
to alter undesirable behavior of these systems, such as those
associated with chronic diseases.

Several intervention strategies have been developed for
the systematic intervention of GRNs. These include dynamic
perturbations [5–10], which aim at providing time-dependent
intervention solutions, and structural interventions [7, 11–15],
which aim at making a single-time change in interactions
between the genes to shift their dynamics properly. Most
existing intervention methods assume that cells are isolated
with no defensive response to selected interventions. However,
cells have highly complex, dynamic, and robust responses
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to abnormality, stress, or external therapies. This is achieved
through internal stimuli controlled by cells, which protect us
against diseases and ensure the proper functioning of cells
by controlling gene activities and protein production. For
unhealthy cells, such as those associated with autoimmune
diseases (e.g., cancer), the cell’s defense mechanisms fight
against itself, which often leads to the uncontrolled prolifera-
tion of cells. To create effective therapeutic solutions, we need
to take into account the defense mechanisms of cells against
interventions and their dynamic responses and willingness to
recur in cancerous conditions.

This paper models GRNs using the well-known Boolean
network with perturbation (BNp) model [2, 16]. The Boolean
networks have shown tremendous success in representing the
causal relationship among genes as well as designing targeted
therapies to alter the system behavior. This paper models the
dynamic and intelligent defensive response of cells to therapies
using a two-player zero-sum game. A non-cooperative game
is previously considered for genomics interventions in [17],
where a commonly centralized intervention is extended to
multiple interventions/therapies without accounting for cell dy-
namic response. By contrast, this paper considers the cell and
intervention as two players with opposite goals; the cell aims
at keeping the cell in an unhealthy condition using its internal
stimuli, whereas the interventionist aims at properly selecting
drugs/therapies that deviate the system from unhealthy states.
Therefore, success for one of the cells and interventionists is
a failure in achieving the other player’s goal.

This paper derives optimal infinite-horizon Nash equilib-
rium intervention policy for GRNs with known system dy-
namics. We show that there is an equilibrium policy for an
interventionist, where any deviation from that leads to more
recurrence of disease and a better cell defensive response.
Unlike most available deterministic intervention policies, the
proposed equilibrium policy is stochastic and guarantees to
achieve the best therapeutic solutions under the most aggres-
sive response of the cells. The optimal Nash equilibrium policy
is computed using the min-max theorem and dynamic pro-
gramming technique. We analytically analyze the difference
between the proposed equilibrium policy and state-of-art in-
tervention methods and describe how the equilibrium solution
can help design interventions and analyze the long-term impact
of therapies on the treatment. The high performance of the
proposed framework in terms of intervention performance and
robustness is demonstrated through comprehensive numeri-
cal experiments using a p53-MDM2 negative feedback loop
network and melanoma cell cycle network. Our future work
includes studying finite horizon cases where interventions are



conducted over a fixed period of time, as well as GRNs with
partially known or unknown regulatory networks.

The article is organized as follows. Section II describes the
regulatory network model. Section III includes formulating the
intervention process as a two-player zero-sum game, followed
by developing an algorithm using dynamic programming for
finding the optimal Nash equilibrium intervention policy. The
analysis of performance and complexity is presented in Sec-
tion IV. Finally, Section V presents results for the numerical
experiments and Section VI contains the concluding remarks.

II. BACKGROUND - REGULATORY NETWORK MODEL

This paper employs a Boolean network with perturbation
(BNp) model [16] for capturing the dynamics of gene regula-
tory networks. This model properly captures the stochasticity
in GRNs, coming from intrinsic uncertainty or unmodeled
parts of systems. Consider a system consisting of d compo-
nents. The state process can be expressed as {xt; t = 0, 1, . . .},
where xt ∈ {0, 1}d represents the activation/inactivation state
of the genes at time t. The state of the genes is affected by a
sequence of internal and external inputs. The genes state are
updated at each discrete time through the following Boolean
signal model:

xt = f(xt−1) ⊕ at−1 ⊕ ut−1 ⊕ nt , (1)

for t = 1, 2, . . ., where {at; t = 0, 1, ...} is an external set of
interventions/therapies, {ut; t = 0, 1, ...} is an internal inputs
controlled by the cell, nt ∈ {0, 1}d is a Boolean transition
noise at time t, "⊕" indicates component-wise module-2 ad-
dition, and f is the network function. Therefore, if nt(j) = 1,
the state of the jth gene at time step t is flipped; otherwise,
it is determined by the network function. The noise process
nt is assumed to have independent components distributed
as Bernoulli(p), where parameter p > 0 corresponds to the
amount of "perturbation" to the Boolean state process. Larger
values of p correspond to more chaotic systems, whereas small
values of p models are nearly deterministic models. It should
be noted that without loss of generality, the rest of paper holds
for a general class Boolean network models and more complex
network function of form f(xt−1,at−1,ut−1,nt).

The network function in GRNs is often expressed through
either a Boolean logic model or a pathway diagram model [7,
18, 19]. The logic model represents the complex relationships
between genes using operators such as AND, OR, XOR, and
NOT, while the pathway diagram model parameterizes the
suppressive and activating interactions between the elements
to represent the system dynamics. These two models have been
successful in representing temporal changes in gene activities
and capturing complex relationships among genes.

III. PROPOSED INTERVENTION POLICY

In unhealthy or cancerous cells (e.g., those associated with
autoimmune diseases), cells continuously fight against them-
selves through internal stimuli. This self-harm is often due to
mutations, stress, or other unknown factors and, in most cases,
leads to changes in gene activity and excessive proliferation
of cancerous cells. Since cells contain complex and dynamic

defense mechanisms, fighting against them through inter-
vention is extremely challenging. In practice, most existing
interventions provide only a short-term reduction in cancerous
cell proliferation, as the cells find new ways to fight against
the interventions and proliferation recurs. This paper models
the defense mechanism of cells and their dynamic response to
therapies, and develops an optimal intervention policy given
the cell’s defensive response. In this section, we first outline
the model for representing the battle between the intervention
and the cell, followed by developing the optimal intervention
policy.

A. Battle of Cell and Interventionist - Two-Player Zero-Sum
Game

This paper models the battle between the cell and interven-
tionist, as a two-player zero-sum game [20–22]. This can be
characterized by a tuple ⟨X ,A,U , Ra, T ⟩, where X = {0, 1}d
is the state space, A is the action (e.g., intervention) space,
U is the internal cell control (i.e., internal stimuli) space,
T : X ×A×U ×X is the state transition probability function
such that p(x′ | x,a,u) represents the probability of moving
to state x′ according to the external and internal inputs a and
u in state x. Ra : X ×A×U×X denotes the reward functions
for an interventionist, where Ra(x,a,u,x′) denotes the im-
mediate shift from the cancerous states (i.e., reduction in cell
proliferation) if the system moves from state x to state x′ after
the intervention a and the internal cell response u. The cell
aims at increasing cell proliferation in cancerous cells, while
the interventionist aims at reducing cell proliferation. Thus, the
the reward for the cell Ru takes negative of the interventionist
reward function, i.e., Ru(x,a,u,x′) = −Ra(x,a,u,x′).

B. Optimal Nash Equilibrium Policy

This paper focuses on stationary Markov Nash equilibria
in GRNs modeled by the infinite-horizon discounted Markov
game. Let πa(a | x) denote the stationary (Markov) interven-
tion strategy, which specifies the probability of action a ∈ A
in any given state x ∈ X . Let also πu(u | x) be the cell policy,
specifying the probability of input u ∈ U in state x ∈ X . We
define the expected value function of interventionist and cell
under the joint stochastic policy (πa, πu) as:

V a
πa,πu(x) = E

[∑
t≥0

γtRa(xt,at,ut,xt+1) | a0:∞ ∼ πa,

u0:∞ ∼ πu,x0 = x

]
,

V u
πa,πu(x) = E

[∑
t≥0

γtRu(xt,at,ut,xt+1) | a0:∞ ∼ πa,

u0:∞ ∼ πu,x0 = x

]
,

(2)
for x ∈ X , where 0 < γ < 1 is a discount factor that indicates
the importance of early-stage rewards compared to future ones,
a0:∞ = {a0,a1, . . . , a∞} and u0:∞ = {u0,u1, . . . ,u∞} are
the sequence of interventions and cell stimuli over an infinite
horizon (i.e., from the initial time step 0 to infinity). It can be
seen in (2) that the state values for the cell and interventionist



are intertwined. In fact, the solution of a Markov game is
different from a Markov Decision Process (MDP) since the
optimal performance of each agent is controlled not only by
its own policy but also by the choices of both cells and
interventionists in the game. Using the fact that cell and
interventionist reward functions are negative of each other,
we have V a

πa,πu(x) = −V u
πa,πu(x) for any x ∈ X . The joint

optimal policy π∗ = (πa
∗ , π

u
∗ ) is a Nash equilibrium policy,

which satisfies [23]

V a
πa
∗ ,π

u
∗
(x) ≥ V a

πa,πu
∗
(x) and V u

πa
∗ ,π

u
∗
(x) ≥ V u

πa
∗ ,π

u(x), (3)

for any π = (πa, πu) and x ∈ X . The optimal Nash
equilibrium policy is the policy that the cell and interven-
tionists do not have any incentive to deviate from their
policies. This policy can be obtained using the min-max
theorem in matrix form zero-sum games [24]. Let Va

πa,πu =

[V a
πa,πu(x0), . . . , V a

πa,πu(x2d)]T be the vector-form of the
state value function associated with policy (πa, πu). One can
define the optimal Nash equilibrium policy as:

(πa
∗ , π

u
∗ )=argmax

πa
argmin

πu
Va

πa,πu =argmin
πu

argmax
πa

Va
πa,πu .

(4)
According to (3), any pair of (πa, πu) that attains the supre-
mum and infimum in (4) constitutes a Nash equilibrium. It is
impossible or computationally challenging to go through all
possible policies to find the optimal policy in (4). We define
the s-simplex ∆s as:

∆s = {[v1, ..., vs] ∈ Rs : v1 + v2 + ...+ vs = 1, vi ≥ 0} ,

for i = 1, 2, ..., s. The search space for policy πa contains
2d simplexes of size |A|, meaning 2d × ∆|A|. Similarly, the
search space for the policy of the cell is 2d ×∆|U|, which is
also a large continuous space. In the following paragraphs, we
describe a dynamic programming approach to find the optimal
Nash equilibrium policy in a two-player zero-sum game, which
resembles the dynamic programming solution for MDPs.

For any state value function V : X → R, we define the
state joint actions value function for the interventionist as:

Qa
V(x,a,u) = Ex′|x,a,u [Ra(x,a,u,x′) + γV(x′)], (5)

for x ∈ X ,a ∈ A and u ∈ U , where QV(x, ., .) can be
regarded as a matrix in R|A|×|U|, and the expectation with
respect to the next system state. The Q-value specifies the
expected reward for the interventionist if the joint actions
(a,u) are selected at state x and the policy associated with
the state value function V is followed afterward.

We define the Bellman operator T ∗ by solving a matrix
form zero-sum game for QV(x, ., .) as the payoff matrix, i.e.,
for any x ∈ X , one can define

(T ∗V)(x) = Value[Qa
V(x, ., .)]

= max
πa

min
πu

|A|∑
i=1

|U|∑
j=1

πa(ai|x)πu(uj |x)Qa
V(x,ai,uj).

(6)

The Bellman operator defined in (6) consists of
Value[QV(x, ., .)] and can be computed using linear
programming techniques [25–27].

The Bellman operator T ∗ is γ-contractive in the L-norm
and the unique solution to the Bellman equation corresponds
to the optimal value function, i.e., V∗ = T ∗V∗ [28, 29].
The value iteration algorithm, described later in this section,
provides a recursive procedure to find the fixed-point solution
of the Bellman operator in (6).

We define the joint action transition matrix of size 2d × 2d

associated with actions (a,u) as:

(M(a,u))ij=P
(
xt=xj | xt−1=xi,at−1=a,ut−1=u

)
=p||f(x

i)⊕ a⊕u⊕xj ||1(1− p)d−||f(xi)⊕ a⊕u⊕xj ||1 ,
(7)

for i, j = 1, . . . , 2d, where P (.) is the probability mass func-
tion, p is the Bernoulli noise parameter, ||.||1 is the absolute
L-1 norm of a vector, f(xi)⊕ a⊕u is the noise-free predictive
state of genes in the next time step, and ||f(xi)⊕ a⊕ u⊕xj ||1
measures the number of flips caused by noise if the system
moves from state xi to state xj . The computation of the
transition matrix in (7) requires full knowledge of the system
dynamics (i.e., network function) and the intensity of the
Bernoulli noise, p. It should be noted the cell and intervention
spaces, as well as the temporal changes in genes’ activities, are
all accounted for in the computation of the transition matrices
corresponding to each pair of (a,u) ∈ A× U .

Let Ra(a,u) be a matrix-form of the interventionist reward
function associated with control inputs a and u expressed as:

(Ra(a,u))ij = Ra
(
xi,a,u,xj

)
, for i, j = 1, ..., 2d. (8)

Meanwhile, for joint action (a,u), we define the expected
interventionist reward function, which can be expressed in a
vectored form as Ra

a,u = [Ra(x1,a,u), · · · , Ra(x2d ,a,u)]T .
The ith row of this vector can be calculated according to the
controlled transition matrix in (7) and the matrix-form reward
function in (8) as:

Ra(xi,a,u) = Ex′|xi,a,u[R
a(xi,a,u,x′)]

=
2d∑
j=1

Ra(xi,a,u,xj)

× P (xt = xj | xt−1 = xi,at−1 = a,ut−1 = u)

=
2d∑
j=1

(Ra(a,u))ij (M(a,u))ij ,

for i = 1, .., 2d. The vector-form of expected interventionist
reward function, Ra

a,u, can be computed in a compact form
as:

Ra
a,u = (Ra(a,u)⊙M(a,u))12d×1, (9)

for a ∈ A and u ∈ U , where ⊙ is hadamard product and
12d×1 is a vector of 2d with all elements 1.

Using the controlled transition matrix and the vector-form
reward function, the Q-values defined in (5) for any given state
value function V can be calculated as:Qa

V(x1,a,u)
...

Qa
V(x2d ,a,u)

 = Ra
a,u + γM(a,u)V, (10)

for a ∈ A, and u ∈ U .



Algorithm 1 Optimal Nash Equilibrium Intervention Policy

1: Intervention reward function Ra(xi,a,u,xj), controlled transition matrix M(a,u) for a ∈ A,u ∈ U , threshold ϵ > 0.

2: Matrix-form intervention reward function: (Ra(a,u))ij = Ra(xi,a,u,xj), for a ∈ A,u ∈ U , and i, j = 1, ..., 2d.

3: Vector-form intervention reward function: Ra
a,u = (Ra(a,u)⊙M(a,u))12d×1, for a ∈ A,u ∈ U .

4: Set V′ = 02d×1.

5: repeat

6: V = V′.

7:

Qa
V(x1,a,u)

...
Qa

V(x2d ,a,u)

 =
[
Ra

a,u + γM(a,u)V
]
, for a ∈ A and u ∈ U .

8: Bellman Operator: V′(xi) = Value[Qa
V(xi, ., .)], for i = 1, ..., 2d — Eq. (4)

9: until maxi∈{1,...,2d} |V(i)−V′(i)| < ϵ

10: V∗ = V′.

11:

Qa
V∗(x1,a,u)

...
Qa

V∗(x2d ,a,u)

 = Ra
a,u + γMT (a,u)V∗, for a ∈ A, u ∈ U .

12: For any given x ∈ X , use linear programming approach over Qa
V∗(x, ., .) to obtain πa

∗(.|xi) and πu
∗ (.|xi).

Given that the Bellman operator is a γ-contraction mapping
for the Markov game, one can start from any arbitrary V
and iteratively apply Vt+1 = T ∗[Vt] for t = 0, 1, ... until a
fixed-point solution is contained. The fixed-point solution is an
optimal Nash equilibrium solution for the Markov game. Let
V0 = [0, · · · , 0]T be the initial value vector with all elements
0. At iteration r of value iteration, one needs to find Vr+1

from Vr as:

Vr+1(x
i) = Value[Qa

Vr
(xi, ., .)], for i = 1, ..., 2d, (11)

where QV(x, ., .) consists of Q-values at state x and all joint
pairs of (a,u). In practice, the iterations continue till the
time that the maximum difference between elements of value
vectors in two consecutive iterations falls below a small pre-
specified threshold, i.e., maxi∈{1,..,2d} |VT (i)−VT−1(i)| < ϵ.

Let V∗ be the fixed-point solution obtained by the value
iteration method. One can compute Qa

V∗(., ., .) as:Qa
V∗(x1,a,u)

...
Qa

V∗(x2d ,a,u)

 = Ra
a,u + γM(a,u)V∗, (12)

for a ∈ A and u ∈ U .
The optimal policy for cell and interventionist can be

represented as a matrix saddle point problem involving the
following matrix for any x ∈ X :

π∗(.|x) = (πa
∗(.|x), πu

∗ (.|x))

= argmax
πa

argmin
πu

|A|∑
i=1

|U|∑
j=1

πa(ai|x)πu(uj |x)Qa
V∗(x,ai,uj),

(13)
where πa(.|x) ≥ 0, πu(.|x) ≥ 0, and

∑|A|
i=1 π

a(ai|x) = 1

and
∑|U|

j=1 π
u(uj |x) = 1. The optimal policy can be easily

obtained using linear programming techniques for matrix
Qa

V∗(x, ., .), for x ∈ X . The existence of a Nash Equilibrium
in a two-player zero-sum game is guaranteed by the Minimax
theorem [30]. The entire process of the proposed Nash equi-
librium intervention policy is provided in Algorithm 1. The
complexity of each iteration of Algorithm 1 is O(22d×A×U),
since for each state, all possible joint cell and intervention
actions need to be considered.

The detailed iterative steps of computation of the opti-
mal Nash equilibrium intervention policy are provided in
Algorithm 1. The process requires a full knowledge of the
transition probabilities, which means the knowledge about the
system dynamics and Bernoulli process noise, representing
the system’s stochasticity. The process resembles the dynamic
programming for MDP, with the key difference that the actions
are defined as joint intervention and cell response, and the
bellman operator is applied iteratively as the minimax operator
in (6), which can be achieved through linear programming.

To better understand the optimal Nash equilibrium policy,
consider the following simple example consisting of a single
component:

xt = xt−1 ⊕ at−1 ⊕ ut−1, (14)

where the state transition is deterministic. The state space
is X = {x1 = 0,x2 = 1}, the intervention space is
A = {a1 = 0,a2 = 1}, and the cell action space is
U = {u1 = 0,u2 = 1}. The cell aims at keeping the
gene state at x = 1, whereas the interventionist aims at
reducing the activation of the gene (i.e., keeping the gene
at state x = 0). This can be reflected in the following
interventionist reward functions: Ra(x,a,u,x′ = 0) = 1 and
Ra(x,a,u,x′ = 1) = −1. Under no intervention, the cell can
keep the gene at x = 1 using positive and no stimuli at state
x = 1 and x = 0, respectively. Also, under no cell action,



the interventionist can keep the gene at x = 0 using no and
positive intervention at state x = 1 and x = 0, respectively.
However, when there is both intervention and cell action,
neither the interventionist nor the cell can always keep the
gene at its desired state using a deterministic policy. The best
choice for both of them is to use the Nash equilibrium policy,
which in this scenario is choosing random actions. Despite
its randomness, any deviation from this Nash policy by the
interventionist will help the cell to gain more and more returns
of the undesirable condition.

To enable the implementation of the proposed intervention
policies in real biological settings, future studies should ad-
dress several key practical considerations during genomics
intervention. Firstly, the proposed strategy relies on direct
access to all genes’ states, which, in practice, are only partially
observable through noisy gene expression data. Meanwhile,
measuring cell stimuli may not be possible in practice, and
limited knowledge might be available about the possible cell
defensive responses. Furthermore, the complexity of genomics
systems often introduces uncertainty in the pathways of gene
regulatory networks. Finally, the scalability of such an ap-
proach to large gene regulatory networks is crucial in real-
world implementations of these policies. By systematically
addressing these challenges, future studies can pave the way
for the practical implementation of such stochastic intervention
policies in real experimental settings.

IV. PERFORMANCE ANALYSIS AND COMPARISON WITH
STATE-OF-ART METHODS

This section analyzes the performance of the proposed Nash
equilibrium intervention policy with conventional intervention
policies and the system without interventions. For the system
with no intervention (i.e., A = {0}), the cell can aggressively
push the system to the undesirable states. The cell policy in
this case can be expressed as:

ϑa=0(x)=argmin
u∈U

[Ra
a=0,u+γM(a = 0,u)Va=0], for x ∈ X .

(15)
where Va=0 = minu∈U

[
Ra

a=0,u + γM(a = 0,u)Va=0

]
.

Most existing intervention strategies are deterministic,
meaning they assume the cell has no defense mechanism
against the interventions [5–10, 31–34]. This assumption
allows the agent to naively decide about the deterministic
interventions at various states. In this case, the Markov game
is modeled through the Markov decision process with a
single agent/player. The MDP can be defined as ⟨X ,A,U =
{0}, T̃ , Ra⟩, where transition probability T̃ : p(x′ | x,a,u =
0) represent the probability of next state given the intervention
a and no cell response u = 0.

The control transition matrices perceived by the interven-
tionist for the MDP are (M(a,u = 0)ij = p(x′ = xj |
x = xi,a,u = 0), for i, j = 1, ..., 2d and a ∈ A. The
immediate reward under this naive cell response assumption
can also be represented by Ra(x,a,u = 0,x′). We put
the intervention reward into a matrix (Ra(a,u = 0))ij =
Ra(xi,a,u = 0,xj), for i, j = 1, ..., 2d and a ∈ A. We
define Ra

a,u=0 = (Ra(a,u = 0) ⊙ M(a,u = 0))12d×1,
for a ∈ A. Since the interventionist perceives itself as the

only agent/player, the best policy for the interventionist is
deterministic and it is the fixed-point solution of the following
Bellman optimal equations:

Vu=0 = max
a∈A

[
Ra

a,u=0 + γM(a,u = 0)Vu=0

]
, (16)

where the maximum is applied row-wise. The fixed-point so-
lution Ṽ = 0 in (16) can be obtained using the Value Iteration
algorithm by iteratively applying the Bellman operator starting
from an arbitrary initial state vector. Upon computation of the
fixed point solution Vu=0, the naive intervention policy can
be obtained as:

µa(x) = argmax
a∈A

[Ra
a,u=0+γM(a,u = 0)Vu=0], for x ∈ X .

(17)
Given that µa is the naive interventionist policy under the

non-defensive cell, we aim to analyze how the cell responds to
this naive policy. This analysis provides the rationale behind
the early success of the conventional intervention, followed
by cell domination and recurrence of the disease in the long
term. The best defense policy for the cell against a known and
deterministic intervention policy µa in (17) can be formulated
as:

µu(x) = argmin
µ

E
[ ∞∑

t=0

γtRa(xt,at,ut,xt+1) | x0 = x,

a0:∞ ∼ µa,u0:∞ ∼ µ

]
,

(18)
where the minimization occurs across the entire cell policy
space, which has a cardinality of |U|2d . Determining µu by
exhaustively considering all potential policies is computa-
tionally demanding. However, it can be accomplished using
the dynamic programming approach outlined below, which
provides an efficient solution.

Let Ra(µa,u) be a matrix of size 2d × 2d associated
with intervention policy µa and cell control input u with the
element in the ith row and jthe column as (Ra(µa,u))ij =
Ra(xi, µa(x

j),u,xj). The control transition matrix under
intervention policy a ∼ µa can be expressed as:

(M(µa,u))ij = P
(
xt = xj | xt−1 = xi,

at−1 = µa(x
i),ut−1 = u

)
,

(19)

for i, j = 1, ..., 2d and u ∈ U . Using (9), the vector-form
reward function under cell action u and intervention policy
µa can be expressed as:

Ra
µa,u =

 Ra(x1, µa(x
1),u)

...
Ra(x2d , µa(x

2d),u)


= (Ra(µa,u)⊙M(µa,u))12d×1,

(20)

for u ∈ U . The optimal cell policy in response to naive
intervention can be obtained using the Value Iteration method
as:

µu(x) = argmin
u∈U

[Ra
µa,u + γM(µa,u)V

∗
µa,µu

], for x ∈ X ,

(21)



where V∗
µa,µu

is a fixed-point solution of the following
Bellman equation:

V∗
µa,µu

= min
u∈U

[
Ra

µa,u + γM(µa,u)V
∗
µa,µu

]
. (22)

Here, we compare the performance of the proposed Nash
equilibrium policy and the naive intervention policy in terms
of the state value function and the steady state probability. The
difference in expected discounted rewards if the system starts
at state x ∈ X and follows the optimal Nash equilibrium pol-
icy (i.e., (πa

∗ , π
u
∗ )) and the naive intervention policy (µa, µu)

can be expressed as:

e(x) = V∗
µa,µu

(x)−V∗
πa
∗ ,π

u
∗
(x). (23)

As described in (3), any deviation by the interventionist from
the optimal equilibrium policy results in fewer accumulated
rewards, meaning that the cell can find ways to recur the
system to cancerous/unhealthy conditions. The deviation oc-
curs if the optimal stochastic intervention policy, πa, differs
from the naive intervention policy, µa, which can also be
expressed if πa

∗(µa(x) | x) < 1, for at least one x ∈ X .
In this case, e(x) < 0 for one or more x ∈ X , meaning that
the interventionist’s deviation from the optimal equilibrium
policy will ultimately give the cell an opportunity to increase
its profit (e.g., increase cancerous cell proliferation). On the
other hand, it can be shown that the expected return of
intervention is smaller than that of the Nash equilibrium policy,
i.e., Va

µa
∗,µ

u
∗
≤ Va

πa
∗ ,π

u
∗

. The performance of these policies is
demonstrated in the numerical experiments.

We can also analyze the performance of the proposed
intervention policy in terms of the steady-state probability. Let
X u ⊂ X be the subset of undesirable states (more information
is provided in the numerical experiment section). The steady-
state probability indicates the long-term state visitation of
systems in desirable and undesirable conditions. Let’s start
with the no intervention case, where the system is under the
cell policy ϑu defined in (15). The steady-state probability
under this policy can be expressed as:

Π∞
ϑu

(j) = lim
t→∞

P (xt = xj | ϑu,a = 0), j = 1, ..., 2d, (24)

where Π∞ specifies the long-term probability of the visitation
of various states. One can compute Π∞

ϑu
as a unique solution

of the following equations:

Π∞
ϑu

(i) =
2d∑
j=1

(M(ϑu,a = 0))ji Π
∞
ϑu

(j),
2d∑
i=1

Π∞
ϑu

(i) = 1.

(25)
Similarly, the steady-state probability under the naive inter-

vention policy, i.e., (µa, µu), is the solution to the following
equations:

Π∞
µa,µu

(i)=
2d∑
j=1

(M(µa, µu))ji Π
∞
µa,µu

(j),
2d∑
i=1

Π∞
µa,µu

(i)=1.

(26)
The Nash equilibrium policy is stochastic, meaning that the
transition matrix needed for the computation of the steady state
probability belongs to the probability of actions. Given the

Nash equilibrium policy (πa
∗ , π

u
∗ ), the steady state distribution

can be computed as:

Π∞
πa
∗ ,π

u
∗
(i) =

2d∑
j=1

∑
a∈A

∑
u∈U

(M(a,u))ji

πa
∗(a|xj)πu

∗ (u|xj)Π∞
πa
∗ ,π

u
∗
(j),

(27)

where
∑2d

i=1 Π
∞
πa
∗ ,π

u
∗
(i) = 1. We can compute the steady-state

probability of undesirable states under no-intervention, naive
and Nash equilibtrim policies according to their steady-state
distribution as:

lim
t→∞

p(xt ∈ X u | ϑu) =
2d∑
i=1

1xi∈XuΠ∞
ϑu

(i),

lim
t→∞

p(xt ∈ X u | µa, µu) =
2d∑
i=1

1xi∈XuΠ∞
µa,µu

(i),

lim
t→∞

p(xt ∈ X u | πa
∗ , π

u
∗ ) =

2d∑
i=1

1xi∈XuΠ∞
πa
∗ ,π

u
∗
(i),

(28)

where 1xi∈Xu takes 1 if xi contained in set X u, and 0
otherwise. The next section includes the numerical experi-
ments examining the changes in steady-state probability under
different policies.

V. NUMERICAL EXPERIMENTS

In this section, the performance of the proposed intervention
policy is assessed through two well-known gene regulatory
networks: the p53-MDM2 Boolean network model and the
melanoma regulatory network. The parameters used through-
out the numerical experiments are provided in Table 1. All
results are averaged over 100 runs, where, for each run, an
initial state of genes is selected randomly from all possible
states. The random initial state represents the cell at different
initial conditions, which aids in the efficient analysis of the
performance of the proposed intervention policy. The proposed
intervention policy is trained offline. During online execution,
at any given time, the policy recommends an intervention
based on the true genes’ state. Cell internal stimuli are applied
simultaneously as interventions, which shift the genes’ state.
Subsequently, the next intervention in the next time step is
performed based on the state values of the genes. It should
be noted that the sequential performance of interventions
is similar to most well-known intervention techniques. Our
proposed intervention policy is stochastic and accounts for
the cell response, whereas existing approaches fail to consider
such dynamic and intelligent cell responses.

A. P53-MDM2 Negative Feedback Loop Network

The p53-MDM2 negative feedback loop gene regulatory
network is responsible for suppressing the tumor in humans
and represents the cell response to stress signals that might
cause genome instability [35, 36]. This network includes four
genes, ATM, p53, WIP1, and MDM2. The diagram for the
network is shown in Fig. 1, where solid arrows represent the



activating rules and blunt arrows demonstrate the suppressive
rules. This Boolean model in (1) can be represented for this
systems as [37, 38]:

f(xt) =


0 0 −1 0
+1 0 −1 −1
0 +1 0 0
−1 +1 +1 0

xt, (29)

where xt = [ATMt, p53t,WIP1t,MDM2t], and v maps the
element of the vector v greater than 0 to 1 and others to 0.

Fig. 1: The pathway diagram for the p53-MDM2 Boolean network.

TABLE I: Parameters used in numerical experiments.

Parameter Value

Number of genes, d 4, 10

Disount Factor, γ 0.95

Process noise, p 0.05

Value Iteration Stopping threshold, ϵ 0.05

Initial State x0 ∼ Uniform{x1....,x2d}

The p53-MDM2 system in the normal condition spends
most of its time in the "0000" state, meaning that all genes
are in inactivated states. In cancerous conditions, the system
tends to show more gene activation, which often lead to
uncontrolled proliferation of cells. These activities are due
to internal stimuli within the cell, known as stress responses.
Here, we consider the following internal stimuli for the cell’s
action space:

U={u1=[0 0 0 0]T ,u2=[1 0 0 0]T ,u3=[1 1 0 0]T }, (30)

where u1 corresponds to no-stress input, u2 alters the state
value of the ATM gene, and u3 is capable of simultaneously
flipping the state values of ATM and p53 genes. The impact
of the cell control input is also investigated in the following
paragraphs.

Intervention is critical for controlling cell proliferation in
cancerous conditions and bringing the system closer to the
normal condition (i.e., reducing the activation of genes). The
intervention is achieved through the available drugs/therapies,
which is expressed through the following intervention space:

A = {a1 = [0 0 0 0]T ,a2 = [1 0 0 0]T ,a3 = [0 1 0 0]T }. (31)

Given that the objective is to prevent the activation of the
genes, the intervention reward function can be expressed as:

Ra(x,a,u,x′) = −5||x′||1, (32)

where ||x′||1 counts the number of genes activation in the
state vector x′. The activation of each gene has a re-
ward of -5, leading to the intervention reward taking in
{−20,−15,−10,−5, 0}. The interventionist aims to maxi-
mize the accumulated intervention rewards by keeping the
system in the "0000" state, while the cell with the opposite
reward aims to increase the activation of the genes and move
the system close to the "1111" state.

The optimal Nash equilibrium policy given the Bernoulli
process noise p = 0.05, and the policy parameters γ = 0.95
and ϵ = 0.05 is shown in Fig. 2. The blue bars represent the
probability of each intervention (i.e., intervention policy), and
the red bars indicate the cell policy. It can be seen that the Nash
equilibrium policy is stochastic, meaning that the intervention
and cell take actions according to the action probabilities
indicated in Fig. 2. The action probabilities are different at
various states; for instance, in state 16, the intervention and
cell do not select a1 and u1, whereas, in state 1, all cell and
intervention actions have non-zero probabilities.

The steady-state probabilities under the Nash equilibrium
and no intervention policy are shown in Fig. 3. For the system
under no intervention, the cell is capable of optimally using its
internal stimuli to keep the genes activated, meaning that the
cell stresses the system through internal stimuli to spend its
time in state 16 (i.e., x16 = [1, 1, 1, 1]T ). This can be seen as
a large red bar in state 16, indicating the system spends 70%
of the time in this state under no intervention. The steady-
state probability under the Nash equilibrium policy is shown
by blue bars. In this case, the state distribution has shifted
significantly compared to the no-intervention case, and other
states have been visited more frequently. This corresponds to
the visitation of states with less activation of genes, which
is an undesirable condition. In particular, the steady-state
probability for state 16 has been reduced from 0.7 to 0.08,
demonstrating the successful intervention outcome in response
to the cell’s aggressive policy of putting the system in a
cancerous condition.

In this part, the performance of the proposed intervention
policy is compared with the robust intervention policy [39].
This policy is widely used in systems biology when the system
behavior is uncertain. In particular, the uncertainty comes from
the cell’s dynamic defensive response, which causes system
behavior to change over time. Fig. 4 represents the average re-
ward obtained by the following four policies: the Nash policy,
naive intervention, no intervention, and robust intervention. It
can be observed that the robust intervention policy outperforms
both naive and no-intervention policies due to the adaptability
inherent in such policy, considering possible uncertainties in
the system model (i.e., dynamic cell responses). However,
the proposed intervention policy, which takes into account
the long-term impact of therapies and dynamic cell stimuli
responses, surpasses the performance of the robust intervention
policy. This superiority is evident in both short-term and long-



Fig. 2: The probability of intervention (blue) and cell (red) actions in different states under the proposed Nash equilibrium policy.

Fig. 3: The steady state probability under the proposed Nash
equilibrium policy and no intervention policy.

term behavior, as indicated by significantly higher average
rewards obtained under the proposed policy.

In this part of the numerical experiments, the performance of
the proposed intervention policy is compared with the naive
intervention policy, which is obtained under the assumption
of a non-responsive cell. Fig. 5 shows the naive intervention
policy, where the deterministic intervention and cell actions are
indicated in blue and red, respectively. One can see that the
action a1 = [0000]T in state 1 is selected by the interventionist
because, under the assumption of no response from the cell,

Fig. 4: Average reward over time obtained by different policies.

the interventionist perceives that the system stays in the "0000"
state upon taking this action. However, in reality, the cell
has an intelligent response and takes action u3 = [1100]T

to activate as many genes as possible. From the equilibrium
perspective, one can compare the Nash policy in Fig. 2 with
the naive policy in Fig. 5 as follows: the naive intervention
policy in Fig. 5 can be seen as a policy deviated from the
Nash policy shown in Fig. 2. As noted in (3), the Nash policy
is the policy that neither the intervention nor the cell has



Fig. 5: The naive intervention policy obtained under non-responsive cell assumption (blue) and cell defensive policy (red).

Fig. 6: The average gene activation obtained under optimal Nash
equilibrium, naive intervention, and no intervention policies.

any incentive to deviate from. Therefore, as the intervention
deviates from Nash, this provides the opportunity for the cell
to find a better policy and enhance its profit. Therefore, the
profit that the cell achieves in activating more cells under the
naive intervention policy is the same profit that the intervention
loses while deviating from the Nash policy.

To better understand the consequences of naive intervention
without accounting for cell response in the recurrence of

Fig. 7: The average gene activation obtained by various policies
under three different cell and intervention spaces.

cancerous conditions, Fig. 6 illustrates the activation of genes
in a steady state under various policies. Three policies are
presented: Nash equilibrium, naive intervention, and no inter-
vention. All four genes are mostly in an activated state under
no intervention, as a result of the cell’s aggressive response in
activating all genes. For the system under the Nash equilibrium
policy, gene activation has been significantly reduced by about
50%. Interestingly, gene activation is similar to no intervention
under the naive intervention, demonstrating how cell response



Fig. 8: Optimal Nash equilibrium policies for systems with low (p = 0.001) and high (p = 0.2) levels of stochasticity.

Fig. 9: Average total gene activation under the proposed Nash
equilibrium and naive intervention policy with respect to the system
stochasticity.

can nullify the impact of the naive intervention policy. There-
fore, cells can fight against naive intervention and fully return
the system to cancerous conditions, while under the Nash
equilibrium and stochastic policies, a significant reduction in
gene activation has been obtained.

The impact of the intervention and cell space on the

performance of various policies is investigated in this part
of numerical experiments. Three sets of action spaces are
considered here. The first set consists of the full intervention
and cell space indicated in (30) and (31). The second set’s
intervention space does not include a3 = [0100]T , and the
cell space in the third set does not include u3 = [1100]T .
Fig. 7 shows the results of various policies in terms of gene
activation. Under the first set of action spaces, the Nash policy
has reduced the activation of all genes in steady-state. For the
second set with no a3 in the intervention space, the reduction
in activation is only visible for ATM, whereas the other three
genes remain mostly activated. This is due to the control
power in intervention given a smaller intervention space,
which impacts the overall performance of the intervention
process (i.e., leading to a more overall activation of genes). For
the naive intervention and no intervention policies, the results
show the dominance of the cell in activating all genes, similar
to the first action set. Finally, for the third set of action space,
which corresponds to the scenario with limited cell stimuli, a
more significant reduction in the activation of p53, WIP1, and
MDM2 can be seen for Nash and naive intervention. Large
activation can only be seen in ATM due to the u2 cell control
that can directly control the ATM gene. One can also see much
better performance of the naive intervention policy for the third
action set, demonstrating that the naive intervention policy
obtained under the non-responsive cell assumption becomes
more effective in domains with fewer cell action spaces.



Fig. 10: (a) The pathway diagram for the melanoma regulatory network; (b) the desirable and undesirable steady state probability under no
intervention, naive intervention, and Nash equilibrium policies.

The impact of the system stochasticity on the proposed
Nash equilibrium intervention policy is investigated in this
part. Fig. 8 represents the Nash policy under two different
stochasticity levels: 1) the small noise case corresponds to the
Bernoulli process noise p = 0.001 and is indicated by the
light colors; 2) a larger noise modeling more chaotic systems
is associated with p = 0.2 and denoted with darker colors. It
can be seen that the Nash policy is different under these two
settings; for instance, the probability of taking intervention a1

in state 1 is larger under the small noise, coming from more
chaotic activities under larger noise which demands taking
other actions more often.

Meanwhile, the total gene activation in a steady state for
five different levels of stochasticity is represented in Fig. 9. It
can be seen that the results of the Nash policy are consistently
similar in all conditions, demonstrating the robustness of the
Nash policy with respect to the level of stochasticity. In fact,
chaotic systems, i.e., those with larger levels of noise, can be
perceived as scenarios where decision-making becomes more
challenging for both cells and interventionists, resulting in
similar performance regardless of changes in the noise level.
Additionally, the performance of the Naive intervention policy
decreases as the noise level increases. This reduction is due
to the difficulty of cell response to naive intervention under
chaotic systems.

B. Melanoma Regulatory Network

In this part of the numerical experiment, we analyze the
performance of the proposed policy using the melanoma
regulatory network [34, 40]. This network consists of complex
interactions between genes and the signaling pathway that con-
trols various cellular processes, including cell growth, differen-

tiation, apoptosis, and migration. The regulatory relationships
for this network are presented in Fig. 10(a), where the system
consists of 10 genes. The genes represented in the state vectors
are, in order: WNT5A, pirin, S100P, RET1, MMP3, PHOC,
MART1, HADHB, synuclein, and STC2. Dysregulation of the
network can lead to the uncontrolled growth of melanocytes
and the development of melanoma. Key genes within these
networks, such as WNT5A, play critical roles in melanoma
development and progression.

Several signaling pathways such as Ras, B-Raf, MEK,
PTEN, phosphatidylinositol-3 kinase (PI3Ks), and Akt, have
been implicated in the development and progression of
melanoma. This paper focuses on a widely researched Boolean
network model of melanoma with 10 genes [34], known for its
application in deriving dynamic interventions. The 10 genes
in the melanoma regulatory network in Fig. 10(a) lead to
210 = 1, 024 gene states. The Boolean function in this case
can be expressed as [34]:

f(xt) = [f1(xt), f2(xt), ..., f10(xt)]
T

=



(S100P ∧ MMP3 ∧ PHOC) ∨ (MMP3 ∧ PHOC)
(WNT5A ∧ S100P ∧ MMP3) ∨ (WNT5A ∧ S100P ∧ MMP3)

MART1
(WNT5A ∧ pirin ∧ RET1) ∨ (pirin ∧ RET1)

(RET1 ∧ synuclein) ∨ synuclein
(RET1 ∧ MART1) ∨ (RET1 ∧ MART1 ∧ STC2)

MART1
(WNT5A ∧ MMP3) ∨ (MMP3 ∧ synuclein) ∨ (WNT5A ∧ MMP3 ∧ synuclein)
(RET1 ∧ MART1 ∧ STC2) ∨ (RET1 ∧ MART1 ∧ STC2) ∨ MART1

S100P


.

(33)
The activation of WNT5A has been explicitly linked to the

development of metastatic conditions. Utilizing antibodies to
bind to WNT5A and block it from activating its receptor has
shown to be effective in deriving intervention. In particular,



reducing the activation of the WNT5A gene helps prevent
melanoma from metastasizing and achieving a desirable out-
come [40]. Consequently, the reward function for intervention
can be formulated as follows:

Ra(x,a,u,x′) = −5x′(1), (34)

which refers to the reward value of -5 for activation of
WNT5A.

The internal cell stimuli space is U = {u1,u2,u3}, where
u1 corresponds to no stimuli, and u2 and u3 represent
stimuli over the S100P and MMP3 genes, respectively. For
the intervention space, we consider A = {a1,a2}, where a1

represents no control and a2 represents intervention over the
PHOC gene.

Fig. 10(b) represents the steady state probability for the
system under the Nash equilibrium policy, the naive inter-
vention, and the no intervention policies. The blue and red
bars represent the desirable (i.e., inactivated WNT5A) and
undesirable states (i.e., activated WNT5A). It can be seen
that under no intervention, the system spends most of its time
in undesirable states. For the naive intervention, there is a
reduction in undesirable states compared to the no intervention
cases. However, the highest reduction in undesirable states can
be seen under the proposed Nash equilibrium policy, which
most effectively reduces the steady state of undesirable states
towards desirable ones.

VI. CONCLUSION

This paper developed an optimal intervention policy for
gene regulatory networks with responsive cells. The GRNs
are modeled using the Boolean network with perturbation,
and the dynamic and adaptive battle between intervention
and cells is modeled as a two-player zero-sum game. Most
existing intervention policies are incapable of taking into
account cell responses to the intervention, leading to early
and short-term success of interventions, followed by partial or
full recurrence of diseases. By contrast, this paper develops an
optimal Nash equilibrium intervention policy that ensures the
best possible intervention solutions under any cell response.
We analytically analyze the superiority of the proposed in-
tervention policy against existing intervention techniques. A
comprehensive numerical experiment using the p53-MDM2
negative feedback loop regulatory network and the melanoma
network demonstrates the high performance of the proposed
method.

Our future research will investigate a more realistic context
for genomics intervention, including the partial observability
of genes’ states through gene-expression data, the lack of
partial knowledge about cell stimuli (or responses), and the
pathway of the gene regulatory networks. Meanwhile, we will
study the scalability of the proposed policy to larger networks
consisting of several genes. These studies will aim at enabling
the real-world application of such policies in real experimental
settings.
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