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Key Points:

* Two novel metrics for surface variability display distinct characteristics for high-
lands, maria, and various geological features.

» Topographic spectra spanning 1 to 5000 km identify four roughness characteris-
tic changes that correlate with known crater distributions.

« Frequencies of fine elevation highlight and contrast scale- and terrain- dependent
behaviors between mare and highlands regions.
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Abstract

The lunar surface contains a wide variety of topographic shapes and features, each
with different distributions and scales, and any analysis technique to objectively mea-
sure roughness must respect these qualities. Coarse-graining is a naturally scale-dependent
filtering technique that preserves scale-dependent symmetries and produces coarse el-
evation maps that gradually erase the smaller features from the original topography. In
this study of the lunar surface, we present two surface variability metrics obtained from
coarse-graining lunar topography: fine elevation and coarse curvature. Both metrics are
isotropic, deterministic, slope-independent, and coordinate-agnostic. Fine (detrended)
elevation is acquired by subtracting the coarse elevation from the original topography
and contains features that are smaller than the coarse-graining length-scale. Coarse cur-
vature is the Laplacian of coarsened topography, and naturally quantifies the curvature
at any scale and indicates whether a location is elevated or depressed relative to its neigh-
borhood at that scale. We find that highlands and maria have distinct roughness char-
acteristics at all length-scales. Our topographic spectra reveal four scale-breaks that mark
characteristic shifts in surface roughness: 100 km, 300 km, 1000 km, and 4000 km. Com-
paring fine elevation distributions between maria and highlands, we show that maria fine
elevation is biased towards smaller-magnitude elevations and that the maria—highland
discrepancies are more pronounced at larger length-scales. We also provide local exam-
ples of selected regions to demonstrate that these metrics can successfully distinguish
geological features of different length-scales.

Plain Language Summary

Planetary surface roughness is inherently scale-dependent: a seemingly smooth sur-
face can look rough if you zoom in enough. The converse can also hold: small-scale rough
features can look smooth if you zoom out enough. Therefore, it is important to have a
way to measure surface roughness that accounts for variations in how ‘zoomed in’ we are
looking. In this work we use coarse-graining, an approach that effectively blurs the lu-
nar surface, allowing us to vary the ‘zoom’ level as we are measuring surface variabil-
ity. We present two ways of measuring the scale-dependent variability of the lunar sur-
face: coarse curvature (measures how curved the blurred surface is) and fine elevation
(looks at everything that was removed by the blurring, and measures how much those
smaller features contributed to the topography). Using our approach, we are able to in-
crementally change what is considered ‘small’ and measure how the perception of the
lunar surface changes as we are gradually zooming out of it. Our results highlight the
dichotomy in roughness between the lunar maria and highlands. We also identify four
key length-scales where the roughness changes qualitatively, suggesting a change in the
underlying physical processes that contribute to different kinds of roughness.

1 Introduction

Topographic roughness, which we regard in this work as conveying the extent to
which surface elevation varies at different length-scales, is an important measure in ge-
ological studies of planetary surfaces. Roughness is necessarily a scale-dependent prop-
erty: a cue ball, which appears smooth to the touch, has rough surfaces when viewed at
sufficiently small scales; and when scaled down to the size of a cue ball, Earth’s surface
has similar roughness (Anderson & Anderson, 2010). Kreslavsky and Head IIT (2000)
study the kilometer-scale roughness of the Martian surface and conclude that different
geological features have distinctive roughness characteristics (e.g. Amazonis Planitia and
Vastitas Borealis), and that these characteristics can help with distinguishing the dif-
ferent fundamental processes that produced them. Kreslavsky et al. (2013) calculate the
roughness of the lunar surface and propose that hectometer-scale roughness mainly de-
pends on regolith accumulation and recent modification processes, whereas kilometer-
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scale roughness corresponds to early geological events. Cai and Fa (2020) discover that
lunar surface roughness at meter- to hectometer-scales is dominated by small degraded
impact craters. The comparison of roughness at different length-scales can assist in de-
termining the relative geological age of the planetary surface if given sufficient prior knowl-
edge of the surface roughness formation process (Kreslavsky et al., 2013). In addition

to gaining geological knowledge, roughness can also be used in geological and geomor-
phological mapping.

The goals of this study are to (1) present an objective method based on coarse-graining
to map the surface variability at different length-scales, (2) map the lunar surface topog-
raphy across a wide range of length-scales (1 km - 5000 km) using two different metrics,
and (3) demonstrate the importance of “length-scale” in mapping the surface roughness.

In recent years coarse-graining has proven useful for gaining scale-aware insight into the
energetic structures and pathways of Earth’s oceans (Rai et al., 2021; Storer et al., 2022;
Buzzicotti et al., 2023; Storer et al., 2023; Khatri et al., 2024). Essentially, coarse-graining
smooths out the original surface at different length-scales by convolving the elevation data
with a scale-dependent normalized kernel. In this study, we use the coarse-graining method
to decompose all features on a topographic map to their corresponding length-scales, while
maintaining spatial information. This paper is organized as follows. First, it briefly re-
views previously published roughness mapping methods and introduces the coarse-graining
method. Then the paper presents the scale-dependent surface variability mappings and
wavenumber spectra produced by coarse-graining the lunar surface. Lastly, the paper

ends with a discussion of the coarse-graining method as well as the results it produces.

2 Previous Roughness Metrics

Mapping roughness to different length-scales enables one to separate small-scale
features from the dominant ones so that an equal amount of attention can be given to
geological features of all length-scales. Although there is not yet a standard way of map-
ping topographic roughness at different length-scales nor a standard definition for sur-
face roughness, numerous previous studies provide methods attempting to tackle this prob-
lem on the planetary surface (M. W. Smith, 2014). The following is not meant to be an
exhaustive list, but a brief outline of the various common methods of measuring rough-
ness.

Statistics Rosenburg et al. (2011) map lunar surface roughness, with scales rang-
ing from 17 m to 2.7 km, using median absolute slope, median differential slope, and Hurst
exponents, which describes how slopes scale with length-scale. The authors conclude that
the lunar highlands and the mare plains have different roughness characteristics. They
also find that most of the lunar surface has fractal-like behavior, with a single or two dif-
ferent Hurst exponents over a scale range. The transition typically occurs near the 1 km
scale, implying a significant shift in the surface roughness characteristic, which further
indicates two or more competing surface processes. The Hurst exponent has a median
value of 0.95 at the lunar highlands, implying that highlands small-scale roughness is sim-
ilar to large-scale roughness; whereas, in the maria, the median value of the Hurst ex-
ponent is 0.76, suggesting that roughness at larger scales is smoother compared to rough-
ness at smaller scales.

Three-point Curvature Kreslavsky et al. (2013) calculate the interquartile range
of curvature at several length-scales (115 m, 460 m, 920 m, and 1.8 km) using Lunar Or-
biter Laser Altimeter (LOLA) data along each orbital track. The authors approximate
the curvature by calculating the second derivative using three data points along the or-
bit tracks. The distance between the three points is decided by the chosen scales. Then
the authors compute the interquartile range of curvatures within a certain proximity of
a pixel, and they normalize all pixels’ interquartile ranges by a value for typical high-
lands to obtain topographic roughness maps. Their results show that hectometer-scale
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roughness is controlled by processes that happened more recently (1-2 Ga), and kilometer-
scale roughness is controlled by major geological events that occurred earlier in the his-
tory of the Moon, such as basins, volcanism, and tectonic events. Due to different sets

of processes and time scales, the roughness maps at the hectometer-scale and the kilometer-
scale are poorly correlated.

Morphological Method The morphological method from image processing is used
by Cao et al. (2015) to build lunar surface roughness maps using LOLA Gridded Data
Records (GDRs). The morphological method that controls the scale of the local spatial
regions is the structuring element (SE). SEs can have different shapes, and the size is
determined by the number of GDR. points included. Using SE, the authors smooth the
surface down (erosion) and roughen the surface up (dilation). The authors obtained the
surface roughness by subtracting the morphological opening and closing, which respec-
tively come from the erosion and dilation. The authors discover a strong roughness con-
trast between maria and highlands in their global roughness maps.

Local Fractal Dimension Pardo-Igizquiza and Dowd (2022) use the local frac-
tal dimension to map the surface roughness of the Martian landscape. The roughness
at each point is calculated as the local fractal dimension inside moving windows that are
within the 41 x 41 pixels region centering the pixel of interest. The fractal dimension
of each pixel is estimated using the variogram (Matheron, 1963), a statistical function
that describes the dissimilarity between two random variables separated by a certain dis-
tance. The authors argue that the variogram method is suitable here because fractional
Brownian motion is an appropriate stochastic model for representing natural surfaces.
In this study, the authors find that a Martian landscape can have different roughness char-
acteristics at hectometric and kilometric scales.

Wavelet Leaders Method The Wavelet Leaders Method (WLM), a wavelet-based
multifractal formalism developed by Jaffard (2004), is used to map the lunar surface rough-
ness at different scale ranges (Deliege et al., 2017; Lemelin et al., 2020). The WLM is
an adaptation of the box-counting method in the context of the discrete wavelet trans-
form (Deliége et al., 2017), and it calculates the Holder exponent which compares the-
oretical wavelet and topographic values for each pixel (Jaffard, 2004). The WLM allows
the identification of scale breaks as well as the identification of scaling regimes. It also
indicates if the surface represented by a given pixel tends toward a monofractal or a mul-
tifractal behavior within a given scaling regime. In their study, the Holder exponent quan-
tifies the change of roughness within different scaling regimes — a low exponent value
indicates small changes in roughness, and a large value indicates larger changes. Using
the WLM, Lemelin et al. (2020) find that the roughness shows distinct characteristics
at scale ranges of 330 —659 m, 1.3—21.1 km, 42.2 —168.8 km, based on the distances
measured at the equator. They propose that these characteristic scaling regimes are the
results of past major geological events.

3 Methodology

The properties of many geological features, such as the shape’s perimeter and line
length, change when measured at different scales. Since planetary topography possesses
such an intricate nature, a scale-dependent spectrum is an ideal perspective to quantify
the surface roughness. Kreslavsky et al. (2013) propose several qualities that constitute
a good roughness mapping method: (1) the mapped roughness properly reflects the ac-
tual roughness, (2) the tilt of the surface should not change the roughness value, (3) rough-
ness should be scale-dependent, and (4) the mapping of roughness should be stable. The
discussion above suggests that a physically informative, robust, and isotropic scale-dependent
method is needed when studying surface roughness.
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In this study, we propose two metrics—fine elevation and coarse curvature—to map
surface variability at different length scales. Additionally, we introduce topographic spec-
tra to identify the length scales at which roughness characteristics change. All these met-
rics utilize the scale-dependent coarse elevation produced by coarse-graining.

3.1 The Coarse-graining Method

Commutative coarse-graining (Storer & Aluie, 2023) has been recently utilized in
calculating the global kinetic energy spectrum of the ocean’s surface geostrophic circu-
lation (which is directly tied to sea surface topography) (Storer et al., 2022; Buzzicotti
et al., 2023). This was only possible due to recent works that extended and developed
commutative coarse-graining applications for the sphere (Aluie, 2019). The first intu-
ition of applying the coarse-graining method for mapping lunar surface roughness orig-
inated from the similarity of shapes. The geometrical shapes of many geological features
on the lunar surface — craters, basins, and maria, resemble the geometrical shapes of ocean
surface circulations. Coarse-graining convolves the original surface elevation data h with
a normalized kernel Gy(x) and can be viewed as a locally-weighted moving average. This
process is repeated for every single pixel of interest and at any length-scale of interest.
The coarse elevation, hg, is produced from coarse-graining h at length-scale £:

he(x) = Ge(x) * h(zx), (1)

where *, in the context of this work, is convolution on the sphere (Aluie, 2019), and x
indicates the location on the lunar surface. The convolution process can be intuitively
depicted as blurring the elevation within a region centered at @ with diameter £. The
coarse-graining method employs a low-pass filter that removes features smaller than a

given length-scale £, and the obtained coarse topography contains only features with length-
scales larger than /.

In this study, the graded top-hat kernel is chosen for G¢(x) (Storer et al., 2022):

Gg(m):%(l—tanh(ll](%— ))) @)

In Eq. (2), A is a normalization factor that ensures G¢(x) can be integrated to unity on
the sphere. We use geodesic distance, y(x), to compute the length-scale £ between any
location & on the Moon’s surface and the location where coarse-graining is being per-
formed. Using the geodesic distance preserves the distance between two points on a sphere
while working with the Cartesian/lat-lon data. We use the graded top-hat kernel because
of its well-defined characteristic length-scale £, but other kernels that have well-defined

length-scales can also be used.

Coarse-graining has several qualities that make it a favorable method for mapping
planetary surface roughness. First of all, coarse-graining can map the surface variabil-
ity to different length-scales. Since the kernel used in coarse-graining is determined by
the geodesic distance between two locations on the surface rather than the number of
grid points between two points, the roughness at the equator and the polar regions will
not be discriminated as the result of projecting a sphere onto a rectangular grid. Coarse-
graining filters the entire global lunar surface at the same time, removing the need for
tapering or detrending that would otherwise be required to apply e.g. Fourier analysis
on a smaller region. Additionally, since coarse-graining produces a global map of the fil-
tered fields using only local information, it also allows for regional analysis from the global
maps, unlike spherical harmonics, which are unable to produce regional analyses due to
the necessarily global nature of the basis functions (Aluie et al., 2018; Buzzicotti et al.,
2023). When coarse-graining the elevation data, the outputs are still elevation data, which
ensures that the physical meaning of the original data is preserved. Moreover, the coarse-
graining method is deterministic, meaning that the resulting coarse elevation would be
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the same each time the method is performed. In addition, the coarse-graining method

is isotropic; for example, when there is an oval-shaped feature on the surface, the wavenum-
ber spectrum of squared coarse elevation is independent of the direction that oval is point-
ing.

3.2 Scale-Dependent Metrics of Topography
3.2.1 Coarse Topography and Topographic Spectra

Since a normalized kernel is used, the spatial average of coarse elevation will be con-
served across all filtering length-scales (Figure S2) (Aluie, 2019). Therefore, when eval-
uating how h; changes with respect to £, we use the notion of cumulative spectrum &;:

Ee = |hel?, (3)

Intuitively, the notion of squared elevation is an analogy to the energy of the coarse-grained
geostrophic flow at length-scales larger than £. Sadek and Aluie (2018) show, in fluid me-
chanics, coarse-graining can be used to extract the energy content at different length-
scales, and the resulting quantity is called the filtering spectrum, E(k,), where filtering
wavenumber k; = 1/£. In the case of coarse-graining lunar topography, the filtering spec-
trum is obtained by differentiating £ with respect to ky:

Blk) = g {ek =~ &, @

where E(k;) is achievable because of Parseval’s theorem. The filtering spectrum is a gen-
eralization of the traditional Fourier spectrum, as coarse-graining offers a way to mea-

sure energy distributions without relying on a Fourier transform. The filtering spectrum
yields the Fourier spectrum with a specific choice of filtering kernel (e.g., the Dirichlet
kernel (Rivera et al., 2014)), which is often unsuitable for bounded domains or for spa-
tially local analysis. Sadek and Aluie (2018) determine E(k;) as meaningful by identi-
fying that G;’s scaling agrees with that of the traditional Fourier spectrum (where Fourier
analysis is applicable). More discussion about this filtering spectrum can be found in Sadek
and Aluie (2018). In the following text, when producing regional or global spectra, we

use {---) to denote that a spectrum is spatially averaged over regions.

3.2.2 Fine-Scale Elevation

The first metric we use to map the surface variability at length-scale £ is the fine
elevation h)(z), defined as: _
hy =h — hy, (5)

where h is the elevation model from LOLA GDR. h} contains features smaller than ¢ due
to the linearity of convolution (Aluie, 2019). It is worth noting that some authors use
the term “detrended topography” for “fine elevation”, and a non-linear analog of fine el-
evation of the Moon was introduced previously by Kreslavsky et al. (2017), where the
detrended elevation of each location is calculated as the difference between its elevation
and the median elevation of all pixels within a certain radius (Kreslavsky, 2023). There
are also studies that use the variance of detrended topography to quantify the hillslope
roughness, which would be equivalent to using (h})? (Doane et al., 2023, 2021).

How hj, quantifies small-scale variability becomes clear from the identity (Eyink,
2005; Aluie, 2017),

hy(x) = h(x) — he(x) = — / d’r Ge(=r) [(x + 1) — h(x)], (6)

in a two-dimensional flat space. Recall that the kernel G¢(—r) in Eq. (2) is symmetric,
such that G¢(—r) = Gy(r), and it is approximately a Top-hat function with values 1
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within |r| < £/2 and zero for larger |r|. Therefore, the right-most term of Eq. (6) shows
that hj(x) is a spatial average of the increment [h(x +r) — h(x)] within a circular re-
gion, which is centered at x with a diameter £ (Aluie et al., 2022). Increments such as
h(x+r)—h(x) in Eq. (6) are well-known in the mathematics literature (e.g., the sub-
ject of functional analysis) to quantify the differentiability of a function as the separa-
tion distance r is varied (Strichartz, 2003; Evans, 2010; Sogge, 2017; Krantz, 2019; Zhao
& Aluie, 2023).

In terms of interpreting the sign of hj, if the actual surface is higher (lower) than
the coarse elevation, hj, would be positive (negative), indicating the small scale feature
is above the surface, a “protrusion” (“indentation”). When there is a tilt on the surface,
the coarse-graining method will treat the tilt as a very large feature, and since the sur-
face tilt is larger than the filtering length-scale £ and hj, contains no information larger
than £, surface tilt will not affect hj, satisfying Kreslavsky’s second requirement for rough-
ness metrics.

3.2.3 Large-scale Topographic Curvature

Coarse curvature, V2hy, is the Laplacian of the coarse elevation, hg, in spherical
coordinates:

- 1 a o 9?1 —
V2hg = ﬁ tan(g)% =+ @ —|—se(32 (9)@] h,g., (7)

where R is the radius of the Moon, # is latitude, and ¢ is longitude. The Laplace oper-
ator is the divergence of the gradient, and the Laplacian represents the local curvature

of a multivariable function. A previous study by Grieve et al. (2016) concludes that the
length-scale can affect the measurement of curvature for different geological features. By
applying the Laplacian operator to the coarse elevation, we obtain scale-dependent coarse
curvature that describes surface roughness. Coarse curvature is chosen for four reasons:
(1) different from a first-order derivative, the Laplacian is independent of the slope, (2)
the Laplacian has the physical meaning as curvature, (3) when computed in spherical
coordinates, the Laplacian has no latitude bias (vs. computing on pixel/Cartesian co-
ordinates), same as hj, and (4) as the length-scale increases, small features disappear from
the coarse curvature, obeying the intuition of scale-dependency.

The Laplacian indicates deviation from the local average, and the “local” here means
that the curvature represents properties within a very small domain. It is worth noting
that although the deviation is only reflected within a small domain, what goes into that
small domain is implicitly controlled by the filtering length-scale. While the magnitude
of the Laplacian quantifies the extent of curvature, the sign of the Laplacian indicates
whether a point is curving upward or downward within the small domain. More details
on interpreting the Laplacian of a 2D scalar function can be found at Figure S1 in the
Supplemental Material.

3.2.4 Illustration of Topographic Metrics

Figure 1 shows a lunar equator segment being coarse-grained at selected length-
scales. As the filtering length-scale increases, the coarse segment becomes smoother and
ignores features smaller than the filtering length-scale [1(a)]. Correspondingly, the fine
elevation adopts features with larger and larger length-scales, which overpowers the fea-
tures of smaller length-scales [1(b)]. It is worth noting that since coarse-graining is scale-
dependent, a location can have both positive and negative fine elevation, depending on
the filtering length-scale. For example, the central peak boxed in the top panel is not
distinctive at £ = 1 km but has positive hj between £ = 5 km and £ = 10 km. At { =
20 km and larger, the location at the central peak shows negative hj. This pattern also
explains why the coarse-graining method considers the crater floor to be a larger feature
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Figure 1. Demonstration of Metrics A slice at the Moon’s equator is selected to demon-
strate the coarse-graining method. In (a), the black curve (mostly overlaps with £ = 1 km)
marks the original elevation, h, and the colored curves indicate the coarse elevation, he. (b) plots
the fine elevation, hj, at the corresponding length-scale £. In (c), the black curve marks the 1D
original curvature, and the colored curves plot the 1D coarse curvature, V2ke. For better visual-
ization, the plotted original and 1 km curvature (black and orange lines) were smoothed with a

five-point moving average. One degree at the lunar equator is approximately equivalent to 30 km.
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Figure 2. Topographic Spectra (a) the spatially averaged cumulative spectrum (&) (Eq. 3)
and (b) the spatially averaged filtering spectrum <E(kg)> (Eq. 4), as a function of ¢, is compared
with the filtering spectrum from spherical harmonics (Wieczorek, 2024). Note that the two panels
use different horizontal axes.

compared to the crater rim in Figure 4 and 10 — the rim has a large diameter, but it-
self is rather narrow.

Similar to the coarse elevation, as the filtering length-scale increases, the coarse cur-
vature gradually approaches zero, ignoring features smaller than the filtering length-scale
[1(c)]. For example, the two small troughs boxed in the top panel have large curvature
magnitudes, and as £ increases, the corresponding curvature magnitudes decrease. At
¢ = 10 km, the coarse curvature omits these two small troughs and approaches zero.
Similar to the gradient, which emphasizes small-scale features, the Laplacian is also sen-
sitive to small-scale features. This explains why the original curvature and VZhs—1xm
segments have more fluctuations. In the coarse curvature panel, the two troughs have
positive curvature since all their surrounding points have higher elevations, and the peak
has negative curvature since it is higher than its surrounding points.

The cumulative spectrum of the entire lunar surface, computed using Eq. 3, and
its corresponding filtering spectrum, computed using Eq. 4, are plotted in Figure 2. The
cumulative spectrum of the entire lunar surface (£;) decreases as the filtering length-scale
increases [2(a)], and Jensen’s inequality guarantees that it is a monotonic decrease (Sadek
& Aluie, 2018). This decrease corresponds to an overall smoothing of the surface. The
filtering spectrum of the entire lunar surface (E(k;)) is plotted in Figure 2(b). Filter-
ing spectra from coarse-graining and from spherical harmonics show general agreement,
with the spherical harmonics one being slightly steeper at smaller length-scales (£ < 10km).
It has been shown (Sadek & Aluie, 2018) that when using a 1st-order kernel such as the



one adopted in our work, filtering spectra cannot decay faster than k—3 and higher or-
der kernels are needed to detect steeper spectra.

The slope of the log-log E (k) curve is related to the change in & when moving from
a larger length-scale to a smaller length-scale. A change in the spectral slope implies some-
thing special happens to h; at the corresponding length-scales, at which the surface rough-
ness characteristics have changed; for example, the length-scale corresponding to a flat-
ter slope is more dominant. With such qualities, the spectral slope (Figure 7) can help
with identifying scale breaks of the Moon’s surface roughness. Moreover, it is generally
appreciated in the turbulence literature that spectral slopes reflect the smoothness of a
field (see Fig. 1 in (Aluie, 2017) and the associated discussion), with steeper spectral scal-
ing implying smoother (or, broadly, less turbulent) fields (Aluie et al., 2022). The slopes
of spectra can also help identify what type of noise signal is present.

3.3 Data

This study uses the global elevation model from LOLA GDR, downloaded from the
NASA Planetary Data System (Neumann, 2010). The models with resolution of 4 pix-
els per degree, 16 pixels per degree, and 64 pixels per degree (approximately 7.6 km, 1.9 km,
and 0.5 km equatorial grid-spacing respectively) are selected to map the global topographic
roughness of the lunar surface. Utilizing higher-resolution topographies (128 pixels per
degree and 256 pixels per degree) is possible but is computationally expensive for global
topographic roughness.

LOLA is an altimeter on the payload of NASA’s Lunar Reconnaissance Orbiter space-
craft (D. E. Smith et al., 2010) and is designed to precisely measure the distance from
the spacecraft to the lunar surface and incorporate precision orbit determination. LOLA
has 5 beams and operates at 28 Hz, with a nominal accuracy of 10 cm (D. E. Smith et
al., 2010). The LOLA GDR is a gridded dataset that includes the elevation model of the
lunar surface, obtained from binning and averaging the calibrated measurements from
LOLA. We confirm that in this LOLA data, the elevation is relative to a geoid and has
an area average of O(10~%), and so our cumulative spectra are objective.

3.4 Data Downsampling to Filter at Very Large Scales

Applying coarse-graining to the entire sphere can be computationally expensive,
especially when the data resolution is high and the filtering length-scales are large. To
save computation time, it is wise to use data with lower resolutions when filtering at larger
length-scales. Since coarse-graining is a deterministic method, when using data with dif-
ferent resolutions, the filtered result of the lower resolution is a compressed version of
that of the higher resolution. Figure S2 in the Supplemental Material shows that when
using elevation data at different resolutions, the spatial average of £ converges, as seen
in the overlapping curves. The slight differences between curves are insignificant and can
be attributed to numerical errors. The coarse curvatures of all three resolutions are less
aligned at their corresponding smaller length-scales. These discrepancies are the result
of computing the gradient without sufficient sampling. We avoid this potential numer-
ical error by using finer resolution for smaller length-scales: 64 pixels per degree reso-
lution for £ = 1 — 20 km, 16 pixels per degree for £ = 30 — 100 km, and 4 pixels per
degree resolution for £ > 100 km. It is worth noting that since the Laplacian is sensi-
tive to small-scale features, and topography with higher resolution contains more details,
the coarse curvature at the polar regions is prone to have higher curvature magnitudes
due to finer data sampling.
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3.5 Comparison with Previous Methods

The above qualities of the coarse-graining-based methods can complement many
previous roughness mapping methods. Median absolute slope, median differential slope,
and Hurst exponent, used by Rosenburg et al. (2011) are statistical methods that only
reflect certain statistical patterns of roughness. In addition, the Hurst exponent is an
estimated slope from line-fitting, and the line-filtering is segmented to multiple ranges
by breakover points (Shepard et al., 2001). The three-point curvature (Kreslavsky et al.,
2013) samples the surface too sparsely compared to a smooth kernel. The morpholog-
ical method (Cao et al., 2015) uses is limited to small length-scales because a fixed grid
size is susceptible to potential projection distortion at large length-scales. The local frac-
tal dimension method in Pardo-Igizquiza and Dowd (2022) uses a fixed window size, thus
the result is not a purely scale-dependent roughness. The Hélder exponent is computed
using WLM with the third-order Daubechies wavelet (Lemelin et al., 2020), and since
the third-order Daubechies wavelet is not symmetric, the resulting Hélder exponent val-
ues can potentially have a directional component. In addition, Hélder exponents only
provide a general estimate of surface roughness rather than a precise pixel-to-pixel rough-
ness value, and it is also susceptible to the distortion of spherical coordinates at large
length-scales.

R-Plots R-plots, a common tool for quantifying crater distributions, can be loosely
viewed as the proportion of the surface area covered by craters of various sizes (Robbins
et al., 2018). It is important to recognize that while R-plots and the spectra presented
here are related, direct comparisons are non-trivial, and may be confounded by charac-
teristics other than crater area. This is because the filtering spectra do not only mea-
sure craters, but all geological features (e.g. rills/rimae), and further do not only mea-
sure the area of the features, but also their intensity (e.g. doubling the depth of craters
while preserving their area would modify their spectral signal but not the R-plot). While
a peak in the R-plot may indicate a peak at the corresponding scale in the spectrum from
the increased frequency of features at the given scale, it is neither a necessary nor suf-
ficient condition. The presence of a peak in one that is absent in the other may provide
insight into the quality of the features (e.g. a peak in the spectrum that is absent in the
R-plot may indicate non-crater features at that scale).

4 Results

By coarse-graining the entire lunar surface at different length-scales, surface vari-
ability at each length-scale can be disentangled. Figure 3 shows the coarse elevation cor-
responding to £ = 10 km, 50 km, 100 km, and 300 km. The coarse elevation contains
all features with length-scales greater or equal to the filtering length-scale. It is worth
noting that since the top-hat kernel used in coarse-graining is not sharp-spectral (that
is, the Fourier transform of the kernel has energy at all scales, just much less energy at
scales smaller than the filter size), the feature length-scales in the coarse elevation are
not clean-cut. However, features smaller than the filtering length-scales are preferentially
removed. Many small craters in hy—igrm [3(a)] are absent in hy—sorm [3(b)], while Ay—100km
[3(c)] features mainly large craters and many basins. At £ =100 km, the concentric fea-
tures of Mare Orientale are still distinguishable due to its large diameter. hy—300xm [3(d)]
highlights the overall geology of the lunar surface — the highlands and the maria. In ad-
dition to the simple contrast of high and low lands, the basins are still visible but lost
all the inner details and clear boundaries.

4.1 Fine Elevation

Figure 4 shows the fine elevation at £ = 10 km, 50 km, 100 km, and 300 km. h,_;gxm
[4(a)] represents small-scale surface features that are almost uniform in the highlands
and very sparse in the maria. At £ = 10 km, the roughness only distinguishes itself be-
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100 km, and (d) £ = 300 km. The box in (a) marks an example of some small craters. The box in

(c) marks the location of the Mare Orientale.
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tween maria and highlands without involving clear crater figures. In h}_., . [4(b)], the
edges of small craters are visible. Some unique details within the maria and basins start
to appear, such as inside the Mare Orientale. In h,_;q0., [4(c)], the raised rims of craters
and some basins are marked as positive roughness, embodied in the red circles. The con-
centric features of the Mare Orientale are well-mapped. In hj_5;..,, [4(d)], the raised
rims of all craters and basins are marked with red circles, indicating a protrusion from
the surface. The floor of craters and some basins are filled with negative fine elevation,
indicating an indentation in the surface. These negative floors are not prevalent in the
small length-scale fine elevation maps because the crater floor is a larger-scale feature
compared to the crater rim.

In Figure 5, we use the South Pole—Aitken basin as an example to demonstrate that
the coarse-graining method can separate small length-scale features from the original to-
pography, and the length-scale is consistent even in the Polar region. The large inden-
tation of the South Pole-Aitken basin due to impact is eliminated in hj_550.,, [5(b)].

As a result, the rim details of the basin as well as the smaller craters inside the basin
are emphasized. It is worth noting again that since the coarse-graining method uses the
geodesic distance, the hj at the polar regions would have the same meaning as the ones
at the low-latitude regions.

4.2 Coarse Curvature

Figure 6 plots the coarse curvature at £ = 10 km, 50 km, 100 km, and 300 km.
At each filtering length-scale, the coarse curvature emphasizes the change of the surface,
making it an ideal tool to detect crater rims or other small-scale features. Since the coarse
elevation contains only features larger than the filtering length-scale, the coarse curva-
ture keeps omitting small-scale surface changes when the filtering length-scale increases.
V2hg=10km [6(a)] highlights how the highlands are densely covered by small craters while
the maria are substantially smoother. In V2hs—s0xm [6(b)], small craters are removed,
and the surface is dominated by large craters and lunar basins. In V2hs—300km [6(d)],
the boundary of the South Pole—Aitken basin is roughly marked by positive curvature.
As the length-scale increases, concentrated high curvature regions would appear in some
crater centers. These high curvature regions are the results of flattening the raised rim,
causing the adjacent crater floor to elevate and leaving the crater center being the low-
est part. In addition to crater centers, the curvature magnitudes are also higher in the
polar regions, for the reason discussed in subsection 3.4.

4.3 Wavenumber Filtering Spectra and Scale Breaks

The log-log slope of <F(kg)> curve can help with identifying scale breaks of the Moon's
surface roughness (Figure 7). A scale break is the length-scale, at which the character-
istics of the surface roughness change. Overall, the total spectral slope is almost iden-
tical to the spectral slope of the highlands while significantly different from the spectral
slope of the maria. This implies that the roughness characteristics of the lunar surface
are dominated by the highlands.

Based on the slopes, we identify four important scale breaks: 100 km, 300 km, 1000 km,
and 4000 km. We also identify 1.5 km to be interesting since the mare slope and the high-
land slope cross at this length-scale. However, more fine elevation measurements at length-
scales smaller than 1 km are needed to ensure 1.5 km is a scale break rather than a nu-
merical artifact when computing the derivative.

These scale breaks can be explained by the total crater area (provided in Robbins
(2019)), that is the area of all craters with a specific diameter (length-scale). The total
crater area has a wide peak that is centered near £ = 100 km, a narrower peak near £ =
1000 km, and a spike at the largest length-scale, accounting for the South Pole—Aitken
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Figure 5. South Pole—-Aitken Basin (a) the original elevation map, h and (b) the fine ele-
vation, hj, at £ = 300 km. View from the South Pole.

basin. Both highland and mare slopes reach a plateau near £ = 100 km, matching the
total area of large craters. The more negative mare slope near £ = 100 km length-scale
indicates that the maria have fewer large craters compared to the highlands. In the range
of £ = 300—1000 km, the mare slope presents a narrower peak that matches the total
crater area curve. The 300 — 1000 km range includes the lunar basins that essentially
constitute the maria; thus, the mare slope crosses the highland slope at £ = 300 km and
becomes less negative. Since the basins are absent in the highlands, the highland slope
shows no correlation with this range. The total spectral slope crosses zero and becomes
positive at £ = 3700 km, slightly shorter than 4000 km, and the slope starts to decrease
at £ = 4500 km, slightly larger than 4000 km. This 4000 km scale break can be explained
by the huge cluster of lunar maria at the center of Figure 8. If treating the center clus-
ter of lunar maria as a single feature, it would have a length-scale range of 3000—4000 km.
At large length-scales near 4000 km, which is almost half of the Moon’s circumference,
the flattening of total and highland spectra reflects the compactness of the lunar surface
as a sphere. We truncate the mare spectrum and slope at £ = 1000 km due to its lack

of physical significance and to prevent the mare filtering spectrum from being unduly
influenced by coarse-graining edge effects, which can cause highlands surface informa-
tion to leak into the maria regions.
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Although the South Pole—Aitken basin has the largest surface area, its diameter
does not match any of the identified scale breaks (as shown in Figure 7). This mismatch
can be attributed to basins not having a perfect circular shape. If basins do not have per-
fect circular shapes, the coarse-graining method considers the basin to have a range of
length-scales instead of a single length-scale, and the importance of a single length-scale
is debilitated. Therefore, the South Pole—Aitken basin contributes to the increase of the
highland slope in the range of £ = 2000 — 3000 km instead of at a mere single value
like £ = 2500 km. In addition, the general shape of the far side highland, which has sim-
ilar length-scales as the South Pole—Aitken basin, could also contribute to the range of
£ = 2000 — 3000 km (Garrick-Bethell et al., 2010). Similarly, the slopes not reflecting
the two small peaks on the total crater area curve between 100 km and 1000 km could
be attributed to the same reason. On the other hand, the effect of non-circular shape
on the wavenumber spectrum is less pronounced for smaller craters due to their small
length-scales — if the actual range of length-scale is within 20% of the fitted diameter,
then the smaller crater would have a narrower range.
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Figure 7. Regional Topographic Spectra (a) (E(kg)) correspond to the maria (red),
highlands (blue), and the entire lunar surface (dashed black). (b) spectral slopes of the three
<E(ke)> in (a) as well as the sum of all circular areas of craters whose diameter is £. The crater
diameters are the circle fit results produced by Robbins (2019). The dotted vertical lines mark

£ = 300 km and 4000 km. We use in total 42 different length-scales to construct the spectrum.

4.4 Highland hj v.s. Mare h;

We selected ten 5 x 5 degree boxes in the highland region and ten 5 x 5 degree
boxes in the mare region (locations marked in Figure 8) as sampled locations to com-
pare distributions of fine elevation for highlands v.s maria. For a fair comparison, all boxes
are centered on the equator to ensure a consistent surface area. Figure 9 (a) plots the
frequency of having a particular fine elevation value within the region at a selected length-
scale. It is worth noting that the distribution of mare hj at £ = 30 km and £ = 100 km
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grayed areas indicate lunar maria, produced by (Nelson et al., 2014). To illustrate the scale of
lunar maria, the geodesic distance is 3032 km between the two white dots, 4093 km between the
two black triangles, and 3591 km between the two blue squares.

are almost identical. This implies that most of the geological features within the selected
mare regions have length-scales smaller than 30 km. At £ = 1 km, 5 km, 30 km, and
100 km, the selected mare regions have narrower frequency curves and higher frequen-
cies near h' = 0, which indicates that they are smoother than the selected highland re-
gions at these length-scales. In addition, at each length-scale, having frequency curves
with smaller spreads indicates that the range of hj, at the selected mare region is smaller
than that of the selected highland region. The above two discrepancies between high-
land and mare regions are more pronounced at larger length-scale. The spectral slopes
of the highland and mare regions [7(b)] deliver the same message that the filtering spec-
trum of the highland region grows faster as the length-scale increases. In addition, both
selected highland and mare regions tend to have more positive hj than negative hj; this
implies that more roughness features are “protrusion”.

4.5 Local Roughness Maps of Selected Geological Features

Korolev basin The fine elevation and coarse curvature of the Korolev basin at £ =
1 km, 10 km, and 50 km are shown in Figure 10. hj_,,,. [10(c)] does not show the Ko-
rolev basin boundary clearly and only displays small-scale roughness features that are
almost uniformly distributed throughout the region. This pattern is not directly visible
in the original elevation map. The inside of the Korolev basin and adjacent craters have
lower hj, thus they are slightly smoother than their surrounding terrain. The crater rims
are slightly rougher than all other areas. Some of the crater rims have positive hj on one
side and negative h; on the other side, indicating that one side of the rim is slightly higher
out of the surface than the other side. In V2hs—1gm [10(d)], the rims of small craters and
some crater peaks are marked by negative curvature. The outside of the Korolev basin
is more densely covered by small craters compared to its inside. At £ =10 km [10(e)],
the positive rim and negative floor of craters start to appear in hj. The crater peaks are
also marked by positive hj, for example, Korolev C crater and Korolev M crater. At this
length-scale, the roughness difference between the inside and outside of the Korolev basin
is more pronounced, with the inside of the basin being smoother; however, the bound-
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Figure 9. Fine Elevation Distributions The distributions of hj in selected highland (H)
and mare (M) regions (a) at length-scales £ = 1 km, £ = 5 km, £ = 10 km, and £ = 100 km; (b)
at length-scales { = 30km and £ = 100 km. The locations of the sampled highland and mare
regions are marked in Figure 8. Thick lines indicate the average across all samples, while thin

transparent lines denote individual samples.

ary of the Korolev basin is still unclear. V2hs—10xm [10(f)] highlights the larger craters,
and compared to smaller craters, these larger craters are more uniformly distributed in-
side or outside the basin. As the length-scale increases, the curvature is computed at a
larger domain; therefore, most crater floors are filled with negative curvature because
the crater floor seen as a whole is lower than its surrounding terrains. In hj_.g,.. [10(g)],
the basin rim is visible, and the details on some smaller craters are omitted, as smaller
features are overpowered by the larger features. When the filtering length-scale increases,
the positive dots that represent crater peaks eventually disappear, for the reason discussed
in Figure 1. In VZhs—s50xm [10(h)], details of craters are absent and the boundary of the
Korolev basin is pronounced. The basin rim is marked by negative curvature, and the
basin floor adjacent to the rim is marked by positive curvature. VZhs—sorm also exhibits
several high curvature crater centers, as discussed in Figure 6.

Montes Caucasus Figure 11 shows the fine elevation of Montes Caucasus at £ =
1 km, 5 km, and 20 km. At £ =1 km [11(b)], the surface of Montes Caucasus has sim-
ilar roughness characteristics as the terrain outside of the adjacent maria. At £ =5 km
[11(c)], the ridges of Montes Caucasus are more pronounced, as characterized by greater
positive and negative hj. The map of hj_gpk,, [11(d)] resembles the general topography
of Montes Caucasus. The positive b’ indicates hill-like features while the negative hj in-
dicates valley-like features. At £ =1 km and 5 km, the ray-like impact ejecta of Aris-
tillus crater (lower left corner) is visible. The wrinkle ridges inside Mare Serenitatis (lower
right corner) are visible in h}_¢,, and h}_,g,,, while absent in h}_,, . At £ =20 km,
the roughness of the wrinkle ridges is higher on the eastern side. The crater peak of Eu-
doxus (top right) is highlighted at £ =1 km and 5 km. It is worth noting that Eudoxus
crater peak has both positive and negative hj, because the peak consists of a group of
small hills instead of a single peak. Calippus crater floor (near the highest part of Montes
Caucasus) has similar hj as the surrounding Montes Caucasus terrain at £ = 1 km and
5 km, unlike Eudoxus or Cassini. The floor of Cassini crater (west of Montes Caucasus)
is flooded, as it has similar roughness characteristics as the surrounding mare. Inside Cassini
crater, there is a hilly ridge area in the eastern part, and the hilly ridge feature is vis-
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ible in h}_,,,, and hj_, .. The walls of Cassini are narrow and outside the crater rim,
there is a wide outer rampart. These features of narrow walls and wide outer rampart
exist at all three length-scales. The nearby lunar mare has intruded into Montes Cau-
casus, especially in the southern parts. The evidence of intrusion exists in hj at all three
length-scales, implying that the intrusion parts and the mountains have different rough-
ness characteristics. These maps of hj, help with identifying features that are not so ob-
vious on the original topography map, such as impact ejecta, crater peak, and hilly ridge
areas.

Rima Ariadaeus and Rima Hyginus In Figure 12, both Rima Ariadaeus (center
right) and Rima Hyginus (center left) are most visible in VZhs—1xm [12(b)]. Both rilles
have clear edges marked by negative curvature. We can see Hyginus crater on top of Rima
Hyginus, and Silberschlag crater joins Rima Ariadaeus by a small ridge. Rimae Tries-
necker (bottom left corner) is also accented by the coarse curvature. Because it is shal-
lower and narrower, Rimae Triesnecker has smaller curvature magnitudes than Rima Ari-
adaeus and Rima Hyginus. In V2hy—14m, some irregularly shaped areas have higher cur-
vature variations, indicating a higher surface roughness. In V2hy—sgm [12(c)], both Rima
Ariadaeus and Rima Hyginus are less detailed, and Rimae Triesnecker is barely visible.
At £ = 5 km, the curvature starts to emphasize small craters. At £ = 20 km [12(d)],
both Rima Ariadaeus and Rima Hyginus are smoothed out and hardly have any curva-
ture. Rimae Triesnecker is completely omitted because £ = 20 km has exceedingly sur-
passed the length-scale of this feature. Small craters are also downplayed, and the large
craters are highlighted. These maps of V2h, help with identifying small-scale and high-
curvature features, such as rilles and small craters, from the original topography.

5 Conclusion

Coarse-graining is a simple yet powerful tool that can be integrated into various
investigations on the topographic roughness properties of a spherical surface. The ex-
amples in this paper demonstrate that coarse-graining is especially useful when apply-
ing scale-dependent filters in the spherical coordinate, when a continuous wavenumber
spectrum is desired, or when regional analysis is needed.

The coarse-graining method avoids projection distortions by utilizing the geodesic
distance — it is not only scale-dependent but also maps the characteristics of both the
polar region and the equator equally. The two metrics, fine elevation and coarse curva-
ture, can be computed at any length-scale as long as the length-scale is shorter than the
circumference of the sphere. The coarse-graining method is not sensitive to the resolu-
tion of input elevation data; thus, lower-resolution data can be used to map roughness
at a large length-scale. Depending on the length-scale of interest, one can choose the ap-
propriate resolution to conserve computational time. The implementation of the coarse-
graining method is also highly parallelizable, making it computationally inexpensive. In
addition, the coarse-graining method preserves the physical meaning of the original data.
Lastly, the coarse-graining method is both deterministic and isotropic, ensuring robust
mapping of roughness.

In this study, we have demonstrated that two surface variability metrics — fine el-
evation and coarse curvature — obtained through the coarse-graining method can help
map lunar surface topography at a range of length-scales. Decomposing topography into
different length-scales enables researchers to distinguish and characterize the fundamen-
tal processes in the creation of different geological units. By considering the fine eleva-
tion maps of the Korolev basin and Montes Caucasus regions, we demonstrate how dif-
ferent geological features can have distinct roughness characteristics across scales. The
second metric used in this paper is the coarse curvature V2h,, which computes the Lapla-
cian of the coarse elevation. V2h; emphasizes small-scale changes in the coarse eleva-
tion and is a decent tool to highlight any sudden change in the surface topography. Plots
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of V2hy near the Korolev basin as well as Rima Hyginus and Rima Ariadaeus demon-
strate how rilles, crater rims, and crater peaks are highlighted in V2h,. Lastly, while it
is possible to also create a spectrum for the coarse curvature, we exclude it in this study,
due to the complexity of the Laplacian.

Since it is possible to obtain the fine elevation at any length-scale within the plan-
etary diameter, we can obtain a continuous filtering spectrum with respect to the length-
scale. The slope of the log-log filtering spectrum can help identify scale breaks — length-
scales corresponding to shifts in roughness characteristics. In this study, we have iden-
tified 100 km, 300 km, 1000 km, and 4000 km as the important length-scales among lu-
nar surface features. Rosenburg et al. (2011) identify a scale break near 1 km when com-
paring lunar surface roughness of length-scales shorter than 3 km. A scale break near
30 km was identified by Yokota et al. (2014) using both synthetic and observational data.
This finding matches with the 30 km length-scaled we noticed. Three scale break inter-
vals, 330-659 m, 1.3-21.1 km, and 42.2-168.8 km, are also suggested by Lemelin et al.
(2020) using Holder exponents. The 42.2-168.8 km scale break ranges coincide with the
100 km scale break we discovered using the coarse-graining method. We also identified
1.5 km to be an interesting length-scale; however, more roughness measurements with
length-scales smaller than 1 km are needed to assert 1.5 km as a scale break.

Data Availability Statement

The data required to reproduce the results presented here will be made available
through a Zenodo archive upon acceptance. The source code for the coarse-graining soft-
ware FlowSieve (Storer & Aluie, 2023) has been archived on Zenodo https://doi.org/
10.5281/zenodo.7818192. More information on the coarse-graining software, includ-
ing installation and tutorials, can be found at https://flowsieve.readthedocs.io/
en/latest/index.html.

A temporary shared folder containing all relevant data and scripts is available for
the review process, and can be accessed at
https://rochester.box.com/s/nnlzxksa9zylwtnbgh48ndbecetjfxh7. Upon accep-
tance, these documents will be made available through a public archive.
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Figure S1. (a) shows the synthetic data that has both concave and convex shapes. The gra-
dient also points to the direction of the greatest ascent; therefore, we see sources and sinks cor-
responding to the synthetic data curving down or up. (b) shows the divergence of the gradient,
which is the Laplacian, that measures how much the scalar function locally behaves like a sink or
source. Having a negative Laplacian means that this point is higher than its neighboring points,
and having a positive Laplacian means that this point is lower than its neighboring points. As a
result, the Laplacian will be positive near a minimum and negative near a maximum. The sign
and magnitude together allow the coarse curvature to preserve the physical meaning of the sur-
face.
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Figure S2. Compare (a) ke, (b) &, and (¢) VZhe of the entire Moon surface in the 1—100 km
length-scales range using elevation data with resolutions of 64 pixels per degree, 16 pixels per
degree, and 4 pixels per degree. The overlapping curves indicate a convergence across data res-
olution. The slight differences are due to numerical errors and the difference across elevation

models.



