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SUMMARY

Functional principal component analysis has been shown to be invaluable for revealing
variation modes of longitudinal outcomes, which serve as important building blocks for
forecasting and model building. Decades of research have advanced methods for functional
principal component analysis, often assuming independence between the observation times
and longitudinal outcomes. Yet such assumptions are fragile in real-world settings where
observation times may be driven by outcome-related processes. Rather than ignoring the
informative observation time process, we explicitly model the observational times by a gen-
eral counting process dependent on time-varying prognostic factors. Identification of the
mean, covariance function and functional principal components ensues via inverse inten-
sity weighting. We propose using weighted penalized splines for estimation and establish
consistency and convergence rates for the weighted estimators. Simulation studies demon-
strate that the proposed estimators are substantially more accurate than the existing ones in
the presence of a correlation between the observation time process and the longitudinal out-
come process. We further examine the finite-sample performance of the proposed method
using the Acute Infection and Early Disease Research Program study.

Some key words: Functional data analysis; Informative sampling; Missing at random.

1. INTRODUCTION

Longitudinal data have been extensively studied in the literature of statistics. Our research
is motivated by the investigation of the disease progression in HIV-positive patients.

(© The Author(s) 2024. Published by Oxford University Press on behalf of the Biometrika Trust.
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Highly active antiretroviral therapy (HAART) has been shown to be an effective treatment
for HIV in improving the immunological function and delaying the progression to AIDS
(Hecht et al., 2006). Our goal is to study the mean trend and variation mode of CD4 counts,
an indicator of immune function, over time after treatment initiation, which is of major
importance. First, it depicts a whole picture of how the disease evolves over time and thus
provides new insights into the treatment mechanism. Second, it enables the prediction of
disease progression and helps patients manage the disease better. Third, such information
can also be used to design optimal treatment regimes for better clinical outcomes (Guo et al.,
2021).

Parametric random-effect models (Laird & Ware, 1982) and generalized estimating equa-
tion models (Liang & Zeger, 1986) are commonly adopted to fit longitudinal data; see Diggle
et al. (2002) for a comprehensive overview. Though the latter does not need to specify the
parametric distribution of the longitudinal response, it imposes a specific form on the mean
response. To better understand the complexity of real-world data, in Fig. 2(a) we show the
trajectories of CD4 counts at follow-up visits from five randomly selected patients in the
motivating application, where the number and timing of the visits differ from one to the next.
Extracting useful information from such data has become a challenging statistical problem.

Functional data analysis offers a nonparametric means to modelling longitudinal data at
irregularly spaced times. Repeated measurements of a longitudinal response from a subject
are regarded as sparsely sampled from a continuous random function subject to measure-
ment errors. Moreover, the underlying true random function is typically modelled in a
nonparametric manner, thus avoiding the model misspecification suffered in the two afore-
mentioned approaches. To estimate the mean and covariance functions of the underlying
continuous function from sparse observations, existing approaches usually assume that the
observation times are independent of the longitudinal responses and then apply nonpara-
metric smoothing techniques such as kernel smoothing to the aggregated observations from
all subjects; see Yao et al. (2005), Li & Hsing (2010) and Zhang & Wang (2016) for instance.

Yet the independence assumption of the observation times and responses is restrictive in
practice; e.g., patients with deteriorative health conditions may be more likely to visit health
care facilities (Phelan et al., 2017). Without addressing the informative observation time
process, the study results can be biased and misleading (Lin et al., 2004; Sun et al., 2021).
Xuet al. (2024) considered using a marked point process to model the informative visit times
in longitudinal studies. But their work assumes that both the longitudinal outcome process
and the latent process used to define the intensity function of the point process are Gauss-
ian, which may not hold in practice. To address the same issue, Weaver et al. (2023) assumed
that both the intensity function of the point process and the longitudinal outcome process
depend on a positive latent factor. This assumption is slightly restrictive and can hardly be
verified since it implies that the dependence between observation times and the longitudi-
nal outcome can be completely explained through this single latent factor. In this article,
we propose to model the observation time process by a general counting process with an
intensity function, depending on time-dependent confounders. But it should be noted that
the time-dependent confounders can just be functions of the observed outcome themselves.
To account for the effect of the observation time process when estimating the mean func-
tion, we leverage the inverse of the intensity function at each observation time-point as its
weight and then apply penalized B-spline functions to the aggregated observations. This
idea is further extended to estimating the covariance function with the tensor product of
B-spline bases, weighted by a product of the inverse of the intensity functions at the two
time-points, to correct the selection bias of the pairs of observations. Variation modes can
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thus be visualized through an eigendecomposition on the estimated covariance function,
which is referred to as functional principal component analysis.

The proposed functional principal component analysis accounts for the dependence
between the response process and the observation time process via inverse intensity func-
tion weighting. This fills an important gap in the literature as traditional approaches often
assume that response observations are independent of the observation times, which is likely
to be violated in real-world studies. Moreover, we establish consistency and convergence
rates of our proposed estimator when estimating the mean function, covariance function
and functional principal components of a random function. Numerical studies demonstrate
that in contrast to traditional approaches, our approach can yield consistent estimates when
the response observation times are indeed correlated with the underlying response process.

2. BaASIC SET-UP

2.1. Functional principal component analysis and the observation time process

Suppose that X is a random function defined on a compact set I ¢ R. Let L*(I) denote
the collection of measurable square-integrable functions on I. Furthermore, we assume that
fHIE{XZ(Z)}dt < o0o. Let u(t) = E{X(©)} and C(s,1) = cov{X(s), X(¢)} denote the mean
function and the covariance function of X, respectively. Then we can define the covariance
operator C: L*(I) — L*(I) that satisfies (Cf)(r) = fH C(s,)f (s)ds for any f € L*(I). It
follows from Mercer’s theorem that there exists an orthonormal basis (¢;); of L*(I) and a
sequence of nonnegative decreasing eigenvalues (k;); such that C(s, 1) = Zj’i 1 K@i ($); (D).
The eigenfunctions of C, the g;, are also referred to as functional principal components
of X. In fact, X admits the Karhunen—Lo¢ve expansion X (1) = u(z) + Z ~1¢ji(1), where

fH{X (1) — n(0)}g;(1) dt is called the jth functional principal Component score of X
and satisfies [E(gj¢x) = djckj, where 8 = 11if j = k and 0 otherwise. The expansion
is useful to approximate an infinite-dimensional random function because approximating
X (1) by u(t) + Zp 1 §i9;(?) yields the minimal mean squared error when using an arbitrary
orthonormal system consisting of p functions for any p € N*. Additionally, functional prin-
cipal component analysis enables us to understand variation modes of this random function,
as it displays the greatest variations along with the directions of principal components.

In practice, a fully observed trajectory of a random function may not be accessible due to
various practical hurdles and is only observed at sparsely and irregularly spaced time-points.
To describe the irregularly spaced observation time process for observing X;(7), let the set
of visit times be 0 < #;1 < -+ < t;,; < T, where m; is the total number of observations and
7 denotes the predetermined study end time. Therefore, the domain of the random function
X() is T = [0, ]. In stark contrast to the regular time setting, the observed time-points
are allowed to vary from one subject to another. Let X;; = X;(#;) + €;; denote the noisy
observation of the ith random function at time #;;, where €;; is the measurement error. Our
primary interest is to perform functional principal component analysis from observations
{(Xj:j=1,....m, i = 1,...,n}. Yao et al. (2005) and Li & Hsing (2010) addressed this
problem under the assumption that the observed time-points are independently and iden-
tically distributed, and X, 7; and m; are independent of each other for subject i. However,
in practice, whether or not there exists an observation at one particular time-point often
depends on the response process. Therefore, analysis of such data requires assumptions on
the mechanism for the observation time process.
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2.2. Informative observation times

Let N;(¢) be the general counting process for the observation times; that is, N;(f) =
Zfil I(t; <1t) for t € [0,7]. We use an overline to denote the history; e.g., Xi(H) =
{Xi(w): 0 < u < t}is the history of the stochastic process X until time 7 for the ith subject.
It is possible that the dependence between the longitudinal outcome and the observation
times can be explained by merely using functions of the observed outcomes. Next, we focus
on a more complicated scenario, where an auxiliary process is also involved in inducing the
dependence of the outcome and observation times. In addition to the response process, we
also observe a covariate process Z;(¢) that is related to X;(¢) and N;(¢), which can be multi-
variate, time independent or time varying. Let Y? S(t) = {X;i(s): dN;(s) = 1,0 < s < 1}
and N;(f) = {N;(s): 0 < s < 1} be the history of observed variables and observation times
through ¢, respectively. We denote the observed history of variables for subject i at time ¢ as
0i(t) = {X’?bs(t—), Ni(t—), Z?bs(t—)}, where 7— indicates the time up to, but excluding 7. We
use F; to denote the filtration generated by O;(¢) and X;(¢), and E{dN;(?) | F};} denotes the
estimated number of observations made in [z, 7 + d7), given the observed history up to ¢ for
the ith subject. Let A{z | O;(¢)} = E{dN;(?) | O;(?)}/dt denote the conditional intensity func-
tion of N;(7) given the observed history up to ¢, but not including . For the above notation,
we suppress i to denote their population counterparts. In practice, the irregular observation
times can be due to a number of reasons that may be related to subjects’ responses, in which
case, we say that the observation times are informative. In this case, ignoring the observa-
tion time process leads to biased results for the response variable. Similar to the missing data
literature, we require a further assumption to identify the mean and variance functions of
X (¢) under an informative observation time process.

Assumption 1. Suppose that

(i) E{dN«(0) | Oi(0), Xi(n)} = E{dN;(¢) | O;(1)}, and
(1) Az ] Oi(H)} > 0 almost surely fori =1, ...,n.

Assumption 1(i) implies that the observed history collects all prognostic variables that
affect the observation time process. This is plausible when O;(7) includes the past observed
responses YObS(Z—), historical observation pattern N (1—) and past observed important aux-
iliary confounder process 7Obs(t—) that is related to both the observation time and response.
Assumption 1(ii) suggests that all subjects have a positive probability of visiting at any time ¢.
Assumption 1 is key toward identification (see § 2.3 below); however, it is not verifiable based
on the observed data and thus requires careful consultation of subject matter knowledge.

2.3. Identification via inverse intensity function weighting

We show that Assumption 1 leads to the identification of w(7), C(z,5) and ¢;(r) by
providing a brief outline of the proof below, while a detailed proof is deferred to the
Supplementary Material. First, by the law of total expectation, we have, for any 7 < t,

E[X ()2~ | O} AN (0)] = EIX (0A~ {1 | OOYE(AN (1) | F;}] = p(n) dt.
Weighting by A~ !{z | O(#)} serves to create a pseudo-population in which the observation

time process is no longer associated with X'(¢), as if the observed responses were sampled
completely at random. Thus, 1(¢) is identifiable.
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Next, assuming that s < ¢ and by the double use of the law of total expectation, we have

E[{X (1) — n(OHX () — u()}a~ s | O)} AN ()2~ H{t | O(1)} N (D)]
= E{X (1) — p(OHX () — ()2 Hs | O} dN (A {1 | OE(N(1) | FF)
= E[{X (1) — w(OHX () — ()}~ {s | O(s)} dN(s) d]
= E{X (1) — p(OHX () — w()IA s | O)IE{AN () | X (1), F;} di]

=E[{X () — u(HX(s) — n(s)}deds]
— C(t,5) drds. ey

Weighting by A ~!{s | O(s)}A~{r | O(r)} serves to create a pseudo-population in which the
observation time process is no longer associated with {X (1) — w(H)}{X (s) — u(s)}. Hence,
C(t,s) 1s identifiable.

3. ESTIMATION

In practice, the intensity function for the observation time process is unknown and
requires modelling and estimation. Following Lin et al. (2004) and Yang et al. (2018,
2020), we assume that the intensity function follows a proportional intensity function
Mt | O} = ro(D) explg{O()}T B1, where g(-) is a prespecified multivariate function of
O(1). Let 0 = {Ag(?), B}. Under Assumption 1, the estimator of 6, denoted 6 = {ho(0), B,
can be obtained from the standard software. -

We treat the estimated intensity function, {)A»O(tij)}_l exp[— g{Oi(tij)}T f}], as the sampling
weight of Xj;. To estimate the mean function, because we cannot accurately recover each
trajectory of X; from sparse and noisy observations, we propose using weighted penalized
splines to borrow information from aggregated observations from all subjects. In particular,
let0 =& < & < -+ < &k < &gy = T be a sequence of knots. The number of interior
knots K = K, = n"7 with 0 < n < 0.5 being a positive integer such that max;<r<x+1 & —
&_1l = O(n™"). Let S, be the space of polynomial splines of order / > 1 consisting of
functions / that satisfy the following: (i) in each subinterval, / is a polynomial of degree
[ —1;and (i) for / > 2 and 0 < /' </ — 2, his ' times continuously differentiable on [0, 7].
Let {B;(-), 1 <j < gu}, gn = Kj,+, be the normalized B-spline basis functions of S,. Then,
forany /i € S, there exists y = (y1, ..., yqn)T € R such that h(¢) = qu; YiBi(t) = vy TB(1)
for ¢ € [0, r]. To account for the effect of the observation time process on estimating the
mean function, we define the weight

wi() = {ho(t)} " expl—BTg{O0: (1)} ()

for the jth observation of the ith subject, where j = 1,...,m;andi = 1,...,n. Let m be a
positive integer, smaller than /. Suppose that the penalty term in the penalized splines is

T
/ yT{B™ 1))y dt,
0
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where a®? = aal for any matrix or column vector a. Consequently, the penalty matrix is
0, = fOT{B(’”)(t)}®2 dz. We then estimate the mean function by /i(f) = BT (¢)y, with

n mj
P, = argmin [Z > (X — BTy Pwy(w) + %’“‘yTQ,m], (3)
veRim Lt j=1
where A, > 0 1is a tuning parameter controlling the roughness of the estimated mean
function.
Next, we present an estimator of the covariance function. Let G;(1;, 1) = {X; —
f(ti) { Xy — ja(ty)} be the raw estimate of the covariance function evaluated at (¢;;, ;7). By
(1), we introduce

wi(C) = Lot ot} exp(—BT[gl0i(1))} + glO:tiD} D),

where j,/ = 1,...,m;and i = 1,...,n, to account for the effect of the observation time
process on estimating the covariance function. We use the tensor product of the B;(?) to
estimate this bivariate covariance function. More specifically, C(z,s) is approximated by
Zlgh <jr<q, M By (DB, (5). To ensure that C(z,5) = C(s, 1), we require E = (1;,,,) to be
a ¢y X gn symmetric matrix. Define D(z, s) = B(7) ® B(s), which is a vector of length ¢?, and
n = Vef:(E). Then the estimated covariance function is é’(t, s) = ]f’l” =1 iy By (DB}, (s),
where E is obtained by solving the minimization problem

~ . qn 2 A
& =argmm[2 > {G,-al-j, DEDY n,L,‘ZBa,zj)B(r,-,)} w,-ﬂ<C>+§nTan]. )

i=1 1<jFI<m; j142=1

Here Q¢ is a ¢> x ¢* penalty matrix with (jj, j2)th entry

AP

<”,1 ) 8D, (1,)9' D, (1, s)} dtds
1

(Lai & Wang, 2013), and A > 0 is a tuning parameter that controls the trade-off between
fidelity to the data and plausibility of C(¢, s). The functional principal components are then
estimated by solving

| €600 ds =0

subject to [ <pj2(t) dr = 1 and [; ¢j()¢r(t)ds = 0 when j # k. Detailed steps for solving
these equations can be found in Chapter 8.4 of Ramsay & Silverman (2005).

In the following numerical implementations, we take m = 2. The generalized cross-
validation is used to choose the tuning parameters A, A¢ and the number of basis function
gn. In particular, let ¥ denote the vector of length N = Y7, m; consisting of observa-
tions Xy, j = 1,...,m;, i = 1,...n. Let W = diag{w;(w),j = 1,...,m;, i = 1,...,n} and
Y,, = W'/2¥. According to Chapter 3 of Gu (2013), the generalized cross-validation score
for (3) is

N7V T — 4,00 Y

VM()‘M) = [N—ltr{l— Aw()‘u)}]z

b
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where /is an N x N identity matrix and 4,,(1,) is the so-called smoothing matrix satisfying
)A’w = w2y = Ay (X)) Y. An explicit form of A4,,(A,) can be found in equation (3.12) of
Gu (2013). We select A, by minimizing V(). The smoothing parameter A ¢ for the covari-
ance function estimate defined in (4) is chosen in a similar manner. Moreover, the number of
basis functions ¢, is selected by gradually increasing its value in a grid until it leads to a sig-
nificant decrease in the generalized cross-validation score; see the Supplementary Material
for details.

4. THEORETICAL PROPERTIES
4.1. Large sample properties of the mean function estimator

Ford € NT, let C%([0, t]) denote the class of functions with continuous dth derivatives
over [0, 7]. Without loss of generality, we assume that T = 1 in the theoretical analy-
sis. Below, we present the regularity assumptions for deriving the large sample properties
for proposed mean and covariance function estimators, as well as the estimated functional
principal components.

Assumption 2. The true mean function of X, u(-), belongs to C?([0, t]) for some d >
max(2, m).

Assumption 3. The knots are equally spaced in S,. The order of the spline functions
satisfies / > d and [ > m.

Remark 1. Assumptions 2 and 3 ensure that there exists a spline function i(-) = BT (1)y €
Sy such that [[u — ftllec = O(g, 4y The equal-spaced knot assumption is used for the con-
venience of deriving the decay rate; see Proposition 4.2 of Xiao (2019). Proof of this result
is similar to that of Lemma 1 of Smith & Barrow (1979) and is omitted here. Without the
equal-spaced knot assumption, deriving the decay rate of the eigenvalues of the relevant
penalty matrix would be more challenging. This is left for future research.

Assumption 4. There exists some constant § > 2 such that E(||.X ||‘f>o) < 00.

Assumption 5. The random errors €; are independent and identically distributed with
mean 0 and E(]|e ||f>o) < 00, where § is defined in Assumption 4 and ¢ denotes the random
process of the error.

Establishing the uniform convergence rate on the estimated mean function entails strong
moment conditions on X and € as in Assumptions 4 and 5. Similar assumptions are
considered in Li & Hsing (2010) and Zhang & Wang (2016).

Assumption 6. In the intensity function A(7) = Ao (?) exp_[g{a(t)}T,Bo], Ao(?) belongs to
CP([0, t]) for some p > d and is strictly positive, and g{O(7)} is almost surely bounded
over [0, T].

This assumption specifies a smoothness property for the baseline intensity to ensure that
a desirable convergence rate can be achieved when replacing the true intensity function
with the estimated one in (2). This assumption is commonly adopted in a semiparametric
Cox model (Cox, 1972) for modelling the intensity function for a counting process. We can
estimate B by the partial likelihood approach, the cumulative baseline intensity function

GZ0Z aunr 0 uo Jasn saueiqr] ANsioniun sjels ON Aq £9€G28//GG09ESE/L/Z 1 /SI0IME/}WOIG/W0d"dNO oIS PEO.//:SARY WO} PAPEOUMOQ


https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae055#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae055#supplementary-data

8 PEIJUN SANG, DEHAN KONG AND SHU YANG

Ao(t) = fot Ao (s) ds by Breslow’s estimator and further Aq(#) by a kernel-smoothed esti-
mator defined in (S18) in the Supplementary Material. More details can be found in the
Supplementary Material. Under Assumption 6, according to Andersen et al. (1993), f is
J/n consistent, and Xo(7) is a consistent estimator of A with rate n=?/@+D _if the bandwidth
h, satisfies &, = n~ /@D and the kernel K is of order Lpl, which denotes the greatest
integer strictly less than p (Tsybakov, 2009, p. 5). Under this assumption, the convergence
rate of A(7) is no slower than the uniform convergence rate given in Theorem 1. Conse-
quently, this semiparametric estimate of A(z) will not affect the uniform convergence rate
of the proposed mean and/or covariance function. The following theorem establishes the
uniform convergence rate for the proposed mean function estimator.

THEOREM 1. Assume that Assumptions 1-6 hold. Then the estimated mean function [1(t) =
B(t)Tp,, where p,, is defined in (3), satisfies

1/2
N _ qnlogn
sup () —p ()] = OP{(]nd + Audy + ( . > }
te[0,7] n

provided that »,q>" = O(1), ¢ = O{(n/log n)*=2} and logn/n = 0(q;4).

Remark 2. 1f g, = (n/logm)"/02) and &, = o{g, ““™™}, the uniform convergence rate
of [ is Op{(n/logn)~4/1+2d} Our mean function estimator achieves the optimal conver-
gence rate {n/log(n)}~%/ 24+ established by Stone (1982) for independent and identically
distributed data and by Li & Hsing (2010) for sparse functional data with the assumption
that the observational times are independent of the functional data.

To derive the convergence rate for the proposed covariance function estimator, we further
need the following assumption.

Assumption 7. The true covariance function of X, C(-,-), belongs to C([0, t]?).

Similarly to the mean function, by the result on page 149 of De Boor (1978), Assump-
tion 7 leads the existence of 7 € R such that

sup  |C(1,8) — DV (1,97 = O(g, ).
(1,5)€[0,7]2

The following theorem establishes the convergence rate for the proposed covariance function
estimator.

THEOREM 2. Assume that Assumptions 1-7 hold with some § > 4 in Assumptions 4 and
5. The estimated covariance function C(t,s) = D(t,s)' 7, where fj = vec(E) defined in (4),
satisfies

p 210 n 1/2
sup |C(t,5) — C(1,9)| = Op{qnd +Acq” + (qn g ) }
(1,9)€[0,7]? n

provided that ».cq*™ = O(1), qi = O{(n/logn)®=2/2} and logn/n = 0(q;4).
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Remark 3. If g, =< (n/logn)"/ Qd+2) apnd r e = O(q;m_d), then the uniform convergence

rate of C is Op{(n/logn)~4/2d+D} In other words, the uniform convergence rate of the
covariance function estimator is the same as the optimal rate established by Stone (1982) for
independent and identically distributed data, and by Li & Hsing (2010) for sparse functional
data with the assumption that the observational times are independent of the functional
data.

COROLLARY 1. Under the same assumptions as in Theorem 2, q, =< n*/“*2 and o =
O(q;’”_d),for 1 <j <o satisfying k1 > -+ > kj, > Kjy+1 = 0, we have

T

1/2
|I€j - Kjl = OP(n_1/2) and { /O |g5](t) — (Pj(t)|2 dl‘} — OP(n—d/(zd—f—l))’

where k; and ¢; denote the jth eigenvalue and eigenfunction of C(, s), respectively.

This conclusion is similar to Theorem 1 of Hall et al. (2006), which is a refined result of
Theorem 2 of Yao et al. (2005).

5. SIMULATION STUDIES

5.1. Simulation design

The simulated response process {X;(¢): i = 1,...,n} is generated by X;(#) = sin(¢ +
1/2) + 215(0:1 viCiwr(t) + €i(¢) for t € [0, 7] with T = 3, where v, = (=DM + DL,
the ¢j are independently following a uniform distribution over [—./3, /3] and ¢ (¢) =
2/ 3)/2cos(knt) for k > 1, and the €;(¢) are independently normally distributed across
both i and ¢, with mean 0 and variance 0.01. We consider the following design for observa-
tion times. The observation times of X;(-) are generated sequentially by a general counting
process with the intensity function A{z | Y?bs(t—)} = exp{2X I-Obs(t—)}. This design leads to
sparse observations of X;(z) with an average of 11.5 observations on each trajectory. We
vary the sample size from n = 100 to n = 200.

We compare the proposed estimators with unweighted functional principal component
analysis (Yao et al., 2005) without adjusting for the informative observation time process.
For a fair comparison, we use the penalized spline for smoothing instead of the original
local linear smoother proposed by Yao et al. (2005). For the proposed estimators, we con-
sider both cases when the true intensity function is known or estimated to examine the
impact of intensity function estimation on subsequent analysis. We report the mean inte-
grated squared errors for the estimated mean function, covariance function and first func-
tional principal component, defined as [ {2(1) — u(0}?dt, [y [y 1C(s, ) — Cs, O} dsdt
and fof (@1(0) — 1 (D)} dt, respectivgly. We also report the bias and the standard error of the
estimated first eigenvalue, denoted Aj.

Table 1 summarizes the mean integrated squared errors over 200 Monte Carlo runs.
Figure 1 plots the average of the estimated mean functions and the first functional principal
components across 200 Monte Carlo replicates. The unweighted method shows clear biases
in estimating the mean function and the first principal component, while our proposed
weighted method can reduce the biases. Interestingly, the proposed estimators with esti-
mated weights improve the counterparts with true weights in terms of the mean integrated
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Table 1. Mean integrated squared errors (x0.01) for the estimated mean function,

covariance function and first functional principal component. The actual numerical values

are those displayed in the table multiplied by 0.01. Standard deviations are reported in
parentheses

() C(s, 0 1(0) K1
UW TW EW UW TW EW UW TW EW UW TW EW
100 641 113 110 318 263 240 144 98 92 446 111 1.09
(2.00) (0.67) (0.63)  (1.55 (1.04) (85)  (8.4) (5.3) (4.6) (473) (3.96) (3.81)

200 629 083 0.82 294 191 175 126 71 66 468 50 .56
(145) (0.46) (0.42)  (1.94) (0.56) (0.49) (7.9) (3.7) (32)  (4.02) (3.00) (2.91)

UW, the unweighted method; TW, the proposed method assuming that the true intensity function is known;
EW, the proposed method where the intensity function is estimated.

n

(b)

u(r)

(2

Fig. 1. Simulation results of (a) the average of the estimated mean function and (b) the average of the esti-

mated first functional principal component across 200 Monte Carlo replicates. In both panels, the black

solid line denotes the true function, while the dashed, dash-dot and dotted lines denote the estimates from

the proposed method with estimated weights, the proposed method with true weights and the unweighted
method, respectively.

squared errors of é‘(s, t) and @1 (7); see Table 1. This phenomenon is similar to the inverse-
propensity-weighting estimator of the average treatment effect, where one can achieve better
efficiency by using the estimated propensity score instead of using the true score.

In addition, we consider the following designs in the Supplementary Material.

(1) Function A(#) depends on both an auxiliary process Z and the past history of X,
and the true process X also depends on Z. Process Z can either be a null set or be
a multivariate random vector or a stochastic process.
(i1) The baseline intensity function Ag(?) can be set to be a constant or a linear function.
(iii) The observational time is independent of the response process.

For all these settings, our proposed method performs similarly to the comparison shown
earlier; see §S.3 in the Supplementary Material for details.

6. APPLICATION

Most existing studies focused only on the treatment effect of highly active antiretro-
viral therapy on a clinical endpoint at a fixed time-point, e.g., CD4 counts two years after
treatment initiation (Yang, 2022). On the contrary, our goal is to study the mean trend
and variation mode of CD4 counts. The observational Acute Infection and Early Disease
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Fig.2. (a), (b) Trajectories of log CD4 counts and log viral load observed at irregularly spaced follow-up vis-

its from five randomly selected patients. (c), (d) Estimated mean function and the first eigenfunction of log

CD4 counts from the unweighted method and the proposed weighted method. Here dashed and dotted lines
represent the estimates from the weighted and unweighted methods, respectively.

Research Program (AIEDRP) Core 01 study was established by Hecht et al. (2006). It estab-
lished a cohort of newly infected HIV patients. The patients were protocolized to visit the
physicians for outcome assessment such as CD4 count and viral load at weeks 2, 4 and 12,
and then every 12 weeks thereafter, through week 96. In our analysis, we include 72 patients
from the AIEDRP program who initiated HAART between 52 and 92 days after HIV diag-
nosis. These patients also had more than two visits during the study follow-up. The outcome
of interest is log CD4 count, with lower values meaning worse immunological function. A
unique challenge arises due to substantial variability in the follow-up visit times at which
patient outcomes were assessed. Panels (a) and (b) of Fig. 2 respectively show the trajectories
of log CD4 counts and log viral load at follow-up visits from five randomly selected patients.
The number and timing of the visits differ from one patient to the next, resulting in irregu-
larly spaced observations. Moreover, such irregular visit times can be due to obstacles that
may be related to patients’ health status and thus informative about the outcome of interest.

We apply the proposed method to estimate the mean trend and variation mode of log
CD4 counts over time. To address the irregularly spaced and informative observation times,
we model the intensity of visit times by a Cox proportional intensity function, adjusting
for log CD4 counts and log viral load at the closest past visit. The fitted result for the
intensity function, presented in the Supplementary Material, shows that patients with lower
CD4 counts and higher viral load are more likely to visit. Figure 2(c) displays the esti-
mated mean functions of the log CD4 counts from unweighted and weighted analyses. The
unweighted estimator shows persistently lower means than the weighted estimator over time.
This is in line with the fitted result of the intensity function that suggests that the worst
outcomes are more likely to be assessed and thus the unweighted estimator is biased down-
ward. Figure 2(d) displays the estimated first eigenfunction that depicts the dominant mode
of variation of CD4 counts. The weighted and unweighted analyses tend to agree on the
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variation mode after 10 months; however, there exist great discrepancies between them
before 10 months. The weighted analysis uncovers the phase transitions of CD4 counts fol-
lowing treatment initiation: an immediate dramatic change, followed by a plateau between
10 and 20 months, and a rebound after 20 months. Such transitions are reasonable because
antiretroviral therapy promptly reduces the amount of HIV and helps the immune system
recover and produce more CD4 cells, while drug resistance can be developed in extended
long treatment uptake and causes CD4 counts to change.

For the sensitivity analysis of the intensity function for the observation times of CD4
counts, we fit another intensity function with g{O(¢)} taken as the log viral load and its
square. This new intensity function leads to a similar estimate of the mean function and
the first eigenfunction of log CD4 counts. More details can be found in the Supplementary
Material.

7. DISCUSSION

To handle the informative observation time process, we describe identifying assumptions
that are tantamount to the missingness-at-random assumption; that is, the unobserved out-
comes are unrelated to the probabilities of observations so long as controlling for observed
information. Our weighting strategy can be readily extended to other functional principal
component analyses, such as the principal analysis by conditional expectation proposed
by Yao et al. (2005). Empirical results in the Supplementary Material demonstrate similar
performance to the proposed approach, while theoretical comparisons will be explored in
future research. More robust and efficient estimation than weighting-alone estimators can
be developed by using the augmentation of the conditional mean functions (Coulombe &
Yang, 2024), which will be another interesting future research topic. In practice, if a prog-
nostic variable that is related to the observation time process is not captured in the data, the
observed information is not sufficient to explain away the dependence between the longitu-
dinal outcomes and the observational time process, leading to observations not at random
or missingness not at random (Pullenayegum & Lim, 2016; Sun et al., 2021). Because
such assumptions are untestable, sensitivity analysis methodology is critically important for
assessing the robustness of the study conclusion against violation of assumptions; however,
no such methodology has been developed previously. In the future, we will develop a sen-
sitivity analysis toolkit following Robins et al. (1999), Yang & Lok (2017) and Smith et al.
(2023) for functional data with irregular observation times.

The code to implement the analysis is available at https://github.com/spj1125/
FPCA.
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SUPPLEMENTARY MATERIAL

The Supplementary Material includes proofs of the identification results and theorems,
additional details of numerical implementations and additional results of numerical studies
in the main manuscript.
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