

1 TITLE: Anthropogenic fragmentation of landscapes: mechanisms for eroding the specificity of
2 plant-herbivore interactions

3

4 AUTHORS: Robert Bagchi^{1*}, Leone M. Brown¹, Chris S. Elphick¹, David L. Wagner¹, Michael S.
5 Singer²

6 ¹ Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville
7 Road Unit 3043, Storrs, Connecticut 06260-3043, USA

8 ² Department of Biology, Wesleyan University, Middletown, Connecticut 06459 USA

9 *Corresponding author: Robert Bagchi, email: robert.bagchi@uconn.edu; Tel: +1 860 486 6587

10 Submitted as a Concepts, Reviews and Synthesis article.

11 Author Contributions: RB, MSS, DLW and CSE conceived the idea and obtained funding;
12 RB and MSS drafted the initial manuscript and LMB, CSE and DLW contributed sections and
13 revisions; RB performed statistical analysis and RB and MSS developed the figures.

14 **Abstract**

15 Reduced ecological specialization is an emerging, general pattern of ecological networks in
16 fragmented landscapes. In plant-herbivore interactions, reductions in dietary specialization of
17 herbivore communities are consistently associated with fragmented landscapes, but the causes
18 remain poorly understood. We propose several hypothetical bottom-up and top-down
19 mechanisms that may reduce the specificity of plant-herbivore interactions. These include
20 empirically plausible applications and extensions of theory based on reduced habitat patch size
21 and isolation (considered jointly), and habitat edge effects. Bottom-up effects in small, isolated
22 habitat patches may limit availability of suitable hostplants, a constraint that increases with
23 dietary specialization. Poor hostplant quality due to inbreeding in such fragments may especially
24 disadvantage dietary specialist herbivores even when their hostplants are present. Size and
25 isolation of habitat patches may change patterns of predation of herbivores, but whether such
26 putative changes are associated with herbivore dietary specialization should depend on the
27 mobility, size, and diet breadth of predators. Bottom-up edge effects may favor dietary
28 generalist herbivores, yet top-down edge effects may favor dietary specialists owing to reduced
29 predation. An increasingly supported edge effect is trophic ricochets generated by large
30 grazers/browsers, which remove key hostplant species of specialist herbivores. We present
31 empirical evidence that greater deer browsing in small forest fragments disproportionately
32 reduces specialist abundances in lepidopteran assemblages in northeastern USA. Despite
33 indirect evidence for these mechanisms, they have received scant direct testing with
34 experimental approaches at a landscape scale. Identifying their relative contributions to reduced
35 specificity of plant-herbivore interactions in fragmented landscapes is an important research
36 goal.

37 **Keywords:** biotic homogenization, diet-breadth, edge effects, trophic interactions, trophic
38 ricochet.

39 **Introduction**

40 There is increasing evidence that communities in anthropogenically fragmented
41 landscapes lose ecological specialization, meaning that habitat specialist species and specific
42 interactions between species disappear with increasing fragmentation (Clavel et al. 2011; Burkle
43 et al. 2013; Martinson and Fagan 2014; Rossetti et al. 2017). This loss of ecological specificity
44 has been repeatedly demonstrated in plant-insect-herbivore interactions, with insect herbivore
45 assemblages in fragmented landscapes shifting towards species with broad diet breadths
46 (Tscharntke et al. 2002; Cagnolo et al. 2009; Öckinger et al. 2010; Hagen et al. 2012; Rossetti
47 et al. 2017). While the diminution of specific interactions in fragmented landscapes is expected
48 to have important implications (e.g. functional homogenization; Clavel et al. 2011), predicting
49 those consequences and identifying management tools to mitigate them are hampered by a
50 limited understanding of the mechanisms that erode ecological specialization. The goal of this
51 article is to explore how anthropogenic fragmentation of landscapes (hereafter “landscape
52 fragmentation”) might erode the specificity of plant-herbivore interactions by reducing dietary
53 specialization of insect herbivore communities.

54 Top-down and bottom-up forces need to be investigated as potential mechanisms because
55 communities of insect herbivores are shaped by both the availability and distribution of
56 resources and interactions with their natural enemies (Mooney et al. 2012; Moreira et al. 2016;
57 Vidal and Murphy 2018), both of which are modified in small, isolated habitat patches and at
58 habitat edges (Ryall and Fahrig 2005; Gravel et al. 2011; Wimp et al. 2011; Cirtwill and Stouffer
59 2016; reviewed in Murphy et al. 2016). Furthermore, the diet breadth of insect herbivores
60 influences the extent to which their populations are controlled by bottom-up and top-down forces
61 (Mooney et al. 2012; Vidal and Murphy 2018). Combining these patterns suggests that altered
62 interactions of herbivores with both their host plants and their predators could explain the
63 reduced dietary specialization of insect herbivores observed in fragmented landscapes (some
64 possible pathways are illustrated in Figure 1).

65 With respect to bottom-up effects, landscape fragmentation alters plant species
66 composition and diversity (Harper et al. 2005; Haddad et al. 2015; Collins et al. 2017), as well
67 as trait distributions, induced physiological responses and genetic diversity (Kolb and Diekmann
68 2005; Leimu et al. 2010; Guerin et al. 2014). These changes to their hostplants have the
69 potential to modify herbivore communities and plant-herbivore interactions (Faeth et al. 2005;
70 Wirth et al. 2008; Hunter 2016). Because dietary specialist herbivores rely on particular plant
71 species and are adapted to overcome specific plant defenses (Ali and Agrawal 2012), we
72 expect specialist herbivores to be more sensitive to the bottom-up effects of such changes to
73 their hostplants. With respect to top-down effects, predator communities are likely to change
74 dramatically in fragmented landscapes because sensitivity to fragmentation increases with
75 trophic rank (Kruess and Tscharntke 1994; Holt et al. 1999; Hunter 2002). These changes will
76 potentially alter dietary specialization of insect herbivore communities because distinct groups of
77 natural enemies are known to exert top-down control of dietary specialist versus generalist
78 herbivores (Gentry and Dyer 2002; Stireman and Singer 2003; Singer et al. 2014; Zvereva and
79 Kozlov 2016). Ultimately, the influence of fragmentation on plant-herbivore interactions will
80 depend on the extent to which bottom-up control of herbivores is strengthened or countered by
81 the responses of natural enemies (top-down controls) to landscape modification (Hunter 2016).

82 The powerful and widespread anthropogenic changes being wrought on ecosystems at a
83 landscape scale provides a strong impetus for developing a predictive framework for the
84 implications for species interactions (Hunter 2002; Tscharntke and Brandl 2004; Tscharntke et
85 al. 2012). By drawing on the literature on landscape fragmentation, wildlife ecology, and plant-
86 insect interactions, we propose several mechanisms by which landscape fragmentation is
87 expected to reduce dietary specialization in insect herbivore communities (Figure 1). Because
88 very little work has addressed this issue directly, this article is a synthesis of hypotheses arising
89 from different subdisciplines in ecology rather than a strict review of existing empirical work. We
90 focus on forest ecosystems, but draw inferences and examples from other ecosystems as well.

91 To illustrate some of our points in the context of this literature, we also present original,
92 preliminary data from an ongoing study of the mechanisms impacting dietary specialization of
93 larval Lepidoptera in fragmented forests in Connecticut, USA.

94 **Area and isolation effects**

95 Reduced patch area and increased isolation are two of the predominant drivers of negative
96 effects on biodiversity and ecosystem functioning in fragmented landscapes (Haddad et al.
97 2015). Their effects are often synergistic and overlapping (Didham et al. 2012), so we consider
98 them collectively. The loss of specialist consumers has been robustly associated with reductions
99 in patch size (Öckinger et al. 2010; Martinson and Fagan 2014; Rossetti et al. 2017) and, to a
100 lesser extent, isolation (Martinson and Fagan 2014; but see Steffan-Dewenter & Tscharntke,
101 2000), but the causes have received limited study and both bottom-up and top-down
102 mechanisms may play a role.

103 *Bottom-up effects*

104 Several mechanisms alter plant communities in small and isolated habitat fragments, and
105 the absence of certain species and altered trait distributions will likely affect herbivore
106 communities through bottom-up pathways. The presence or absence of any particular species
107 in an area of habitat results partly from a neutral sampling process: larger patches represent
108 larger samples, and are therefore more likely to include a given plant species (Connor and
109 McCoy 1979). Additionally, as outlined by the Theory of Island Biogeography (MacArthur and
110 Wilson 1967), larger patches support larger populations that are less prone to extinction (Lande
111 1988; Hanski 1999). Persistence of populations in small fragments and other marginal habitats
112 can be increased by immigration from better performing populations (Brown and Kodric-Brown
113 1977; Hanski 1999). Therefore, isolated habitat patches that receive fewer immigrants will suffer
114 higher extinction of existing species and lower colonization rates by new species. Both neutral

115 sampling and island biogeography cause the probability of any particular plant species occurring
116 in a habitat patch to decline with reduced patch area and greater isolation.

117 That the absence of a plant species will force exclude its specialist herbivores is a well-
118 established theory termed “sequential dependency” (Holt 1996, 2010). Sequential dependency
119 filters out dietary specialist herbivores from small, isolated patches as their hostplants are
120 progressively lost (Holt 1996, 2010; Gravel et al. 2011; Figure 1). Sequential dependency
121 shrinks the area of habitat available to herbivores to the area occupied by their host species,
122 which decreases geometrically with the dietary specificity of herbivores. Therefore, sequential
123 dependency could mediate the steeper species-area relationships observed for specialist
124 versus generalist herbivores (Steffan-Dewenter and Tscharntke 2000; Öckinger et al. 2010;
125 Franzén et al. 2012), and disproportionate loss of dietary specialists in fragmented landscapes.

126 Empirical tests of sequential dependency are rare, however. Analysis of 1111 populations
127 of butterflies in the UK, spanning 27 species and 54 sites, showed that the abundance of dietary
128 specialist species depended on hostplant availability, whereas hostplant availability did not
129 predict the abundance of dietary generalists (Curtis et al. 2015). Reanalysis of data from a
130 classic study on arthropod recolonization of six mangrove islands in the Florida Keys, USA, after
131 experimental defaunation with insecticide (Simberloff and Wilson 1969) indicated that more
132 specialized species tended to colonize later (Piechnik et al. 2008). Further reanalysis found that
133 arthropod species were less likely to go extinct if they could exploit basal resources or when
134 their prey were present on islands (Cirtwill and Stouffer 2016), consistent with sequential
135 dependency.

136 Host availability in a patch of habitat is dynamic, not constant, and the success of an
137 herbivore in a patchy landscape requires it to track its hosts through space and time, especially
138 when herbivores have a limited diet breadth. Theoretically, the population dynamics of prey and
139 their specialist predators can be stabilized in patchy landscapes (Huffaker 1958; Swihart et al.
140 2001; Johst and Schöps 2003; Ryall and Fahrig 2005) as prey find refuge in previously

141 unoccupied patches and reproduce before predators arrive. A consequence of the prey's ability
142 to escape is that specialist predators, especially poor dispersers, decline with increasing
143 fragmentation (Bascompte and Solé 1998; Swihart et al. 2001; Kondoh 2003). In contrast,
144 generalist predators are less sensitive to isolation in small habitat patches (Swihart et al. 2001;
145 Kluger et al. 2011), largely because they are not dependent on tracking a particular host. In the
146 context of plant-herbivore interactions with plants as prey and herbivores as predators, these
147 results suggest that the ability to establish and maintain populations in isolated, small habitat
148 fragments will increase with herbivore diet breadth and mobility.

149 Insect movement and host-tracking behavior within patches may also affect specialist and
150 generalist herbivores differently. Because insect movement generally follows a correlated
151 random walk (Kareiva and Shigesada 1983), herbivore persistence requires that randomly
152 moving individuals stay in a patch long enough to reproduce (i.e., find and oviposit on an
153 appropriate host). The probability of finding an appropriate host will decrease with patch size
154 (Crone and Schultz 2003; Brown and Crone 2016), especially for specialists dependent on
155 encountering a particular host. Additionally, the permeability of habitat edges will influence
156 insect search behavior. Hard edges, which deter individuals from crossing them, may be less
157 detrimental for specialists than more permeable edges if they increase the probability of
158 remaining in the patch and thus of finding a specific host (Stamps et al. 1987; Ries and Debinski
159 2001; Schtickzelle and Baguette 2003). Alternatively, deterrence from crossing edges will inhibit
160 emigration and finding a new patch with suitable hosts. Understanding the consequences of
161 these combined responses for dietary specialization in fragmented landscapes will likely require
162 species-specific knowledge about how movement and host-tracking behaviors vary among
163 species and with traits like diet breadth (Haddad and Baum 1999; Hambäck and Englund 2005).

164 Even when dietary specialist herbivores locate their hosts in small fragments, fragmentation
165 may alter the food quality of those hosts for insects in ways that advantage generalists more
166 than specialists (Figure 1). In particular, plant populations in small and isolated habitat patches

167 are more likely to be inbred (Honnay et al. 2005; Leimu et al. 2010), which may alter the
168 nutritional quality (Ridley et al. 2011; Kittelson et al. 2015) and defense metabolism of
169 hostplants (Carr and Eubanks 2002; Hull-Sanders and Eubanks 2005; Ouborg et al. 2006;
170 Campbell et al. 2013). Although less resistant plants should benefit herbivores in general
171 (Hayes et al. 2004; Campbell et al. 2013), the benefits are likely to be larger for dietary
172 generalists than for specialists that are specifically adapted to overcome their hosts' defenses
173 (Cornell and Hawkins 2003; Hull-Sanders and Eubanks 2005; Ali and Agrawal 2012; Mooney et
174 al. 2012). For example, the pupal mass of two specialist chrysomelid beetles feeding on outbred
175 *Ipomoea hederacea* var. *integriuscula* plants was higher than that attained on inbred plants
176 (Hull-Sanders and Eubanks 2005). Generalist herbivores differed in their response to host
177 inbreeding, with pupae of a polyphagous Lepidoptera species (*Spodoptera exigua*) having
178 greater mass on outbred plants while inbred plants supported larger populations of polyphagous
179 cotton aphids (Hull-Sanders and Eubanks 2005). This example suggests that inbreeding in
180 plants might reduce population growth of specialists more than generalists, but there are several
181 counterexamples in which specialist herbivores have preferred or performed better on inbred
182 hosts (Delphia et al. 2009; Campbell et al. 2013). Therefore, although the prediction that
183 landscape fragmentation might cause plant inbreeding that advantages polyphagous herbivores
184 over dietary specialists is plausible, the current evidence is mixed and indirect.

185 The reduction of dietary specialization by herbivores in fragmented landscapes could result
186 from additional responses to limited hostplant availability or quality in small habitat patches.
187 Host choice is context dependent and, denied access to their preferred hostplants, some
188 herbivores will use alternative plant species (Fox and Morrow 1981). It is possible, then, that
189 oligophagous herbivores might use alternative, related hosts when their preferred hosts are
190 unavailable in small habitat patches. Use of alternative hosts can occasionally be fatal when
191 female Lepidoptera oviposit on hosts completely unsuitable for their offspring (so-called "lethal
192 oviposition mistakes", Bowers and Schmitt 2013) and, in general, the use of less preferred hosts

193 is likely to reduce herbivore performance, especially when herbivores have restricted diet
194 breadth (Gripenberg et al. 2010). There are exceptions, however, and herbivores may actually
195 have higher population growth rates on alternative hosts with the appropriate chemistry (Brown
196 et al. 2017) or be able to rapidly adapt to alternative or novel hosts in fragmented landscapes
197 (e.g. Singer et al. 1993). Consequently, some dietary specialist populations might expand their
198 hostplant range in the absence of preferred hosts, while others might decline due to fitness
199 deficits imposed by the use of alternative hosts. Either response erodes the specificity of plant-
200 herbivore interactions as patch size diminishes.

201 *Top-down effects*

202 The effects of patch size and isolation on top-down control of herbivores are complex and
203 depend on the landscape context and the specialization and dispersal of the predators and
204 herbivores (Kondoh 2003; Ewers and Didham 2006; Ryall and Fahrig 2006; Liao et al. 2017). In
205 general, the reduction in abundance in small, isolated habitat patches increases with trophic
206 rank (Holt et al. 1999), releasing prey species from top-down control (Kruess and Tscharntke
207 1994; Anton et al. 2007; Schüepp et al. 2014; Liao et al. 2017; Figure 1). Effects of patch size
208 and isolation on top-down control of insect herbivores have been found to depend on traits of
209 the natural enemies involved, such as dispersal ability, and competition among parasitoids (e.g.
210 Roland and Taylor 1997; Nieminen and Nouhuys 2017). The dietary specificity of predators and
211 parasitoids is a trait of special importance, as several studies show that specialist predators are
212 more sensitive to fragmentation than are generalists (Swihart et al. 2001; Ryall and Fahrig 2005;
213 Cagnolo et al. 2009), so top-down control of herbivores from specialist natural enemies should
214 decline in small, isolated patches, whereas attack by generalist natural enemies should be
215 undiminished. To the extent that dietary generalist enemies target dietary generalist herbivores
216 (e.g. Dyer 1995; Singer et al. 2014; Zvereva and Kozlov 2016) and specialist enemies target
217 specialist herbivores (e.g. Gentry and Dyer 2002; Stireman and Singer 2003; Zvereva and

218 Kozlov 2016), small, isolated fragments will provide an enemy-free space advantage to
219 specialist herbivores.

220 Relatively large predators, such as insectivorous birds, also impose strong top-down effects
221 on insect herbivores (Van Bael et al. 2008; Mooney et al. 2010; Mäntylä et al. 2011). Despite
222 being generalist insectivores or omnivores, many bird species show “area-sensitive” responses
223 to habitat patch size, which often translate into reduced avian species richness in smaller
224 fragments (e.g., Robbins et al. 1989; Askins 1993; Bregman et al. 2014). This general pattern of
225 loss from small habitat fragments extends to many species of insectivorous forest birds
226 (Robbins et al. 1989; Bayard and Elphick 2010; Bregman et al. 2014) and manipulative
227 experiments that exclude birds (Mols and Visser 2002; Van Bael et al. 2008; Singer et al. 2014)
228 or increase their population sizes (Jedlicka et al. 2011) have shown that insectivorous birds can
229 reduce both herbivorous arthropod populations and herbivory. Evidence that dietary specialist
230 insect herbivores experience lower bird predation risk than generalists (Singer et al. 2014)
231 raises the possibility that decreased avian predation in small habitat fragments primarily benefits
232 dietary generalist herbivores (Figure 1).

233 A loss of area-sensitive predator species owing to reductions in patch size, however, does
234 not necessarily imply a change in the strength of top-down effects of the predator community. It
235 is possible that alternative predator species might compensate through species turnover, or that
236 those species that remain will increase in their abundance or foraging activity (Yachi and Loreau
237 1999). Community-level compensation for lost predators is unlikely for specialist predators, such
238 as parasitoids, but it is plausible for large generalist predators like birds. Bayard and Elphick
239 (2010) found that the abundance of a given bird species decreased with patch size in only 25%
240 of almost 1500 tests, and increased in about 13% of tests, suggesting less clear effects of patch
241 area on abundance than species richness. Furthermore, Morante-Filho *et al.* (2016) report that
242 forest specialist bird species lost from fragmented landscapes were substituted with habitat
243 generalist species, suggesting some degree of compensation. Clearly, to assess the top-down

244 effects of avian predators, we need to know how the effects of patch size on species occurrence
245 and richness translate into the total number of avian predators, and hence consumption. These
246 results demonstrate that top-down effects can be important, but without clearer knowledge of
247 density-dependent predation, prey partitioning and area/isolation sensitivity of different predator
248 groups, it is not clear how top-down habitat area and isolation effects relate to the loss of dietary
249 specialization in herbivore communities.

250 **Edge effects**

251 Edge effects are likely to dominate when a landscape becomes fragmented with relatively
252 little total loss of habitat area (Fahrig 2017). Species able to use a wide range of resources, i.e.
253 resource generalists, typically respond positively to edges (Ries et al. 2004; Wirth et al. 2008;
254 Hagen et al. 2012). Herbivore abundance typically increases at habitat edges (Wirth et al. 2008)
255 and a meta-analysis of edge effects on insect herbivore abundance and herbivory showed
256 positive responses overall, especially for Lepidoptera and Orthoptera, but did not consider the
257 potential role of dietary specialization (De Carvalho Guimarães et al. 2014). Although we know
258 of no formal quantitative analysis that specifically considers the potential for edge effects to
259 differ with insect herbivore diet breadth, a review by Wirth et al. (2008) reported several
260 examples of specialist insect herbivores responding negatively to habitat edges and generalist
261 herbivores invariably benefiting. It therefore appears likely that the decrease of dietary
262 specialization by insect herbivores in fragmented landscapes is partly driven by edge effects.

263 A growing literature has sought to organize the various processes that modify natural
264 communities at habitat edges, especially those due to anthropogenic fragmentation of
265 landscapes (Fahrig 2003; Ries et al. 2004; Murphy et al. 2016; Fahrig 2017; Ries et al. 2017).
266 The edge resource model of Ries and Sisk (2004) considers the edge a boundary zone
267 between habitat types potentially differing in resource availability. The response of a particular
268 species to a habitat edge depends on the distribution of limiting resources on either side of the

269 edge; the extent that resources spill across the edge and the degree to which the resources
270 provided by the adjoining habitats are supplementary or complementary (Ries et al. 2004; Ries
271 and Sisk 2004). Ries et al. (2004) expanded the edge resource model to incorporate
272 interactions between focal species and competitors, predators and mutualists that themselves
273 respond to edge-induced resource gradients. The edge resource model was formulated to
274 predict edge responses of individual species, but it has also successfully predicted responses of
275 groups of species that share resource requirements (Wimp et al. 2011; Murphy et al. 2016; Ries
276 et al. 2017). It therefore provides a useful framework for understanding how diet breadth might
277 modulate the response of insect herbivores to habitat edges. Predictions of the specificity of
278 plant-herbivore interactions based on the edge resource model depend on whether edge
279 responses of herbivores or predators dominate multi-trophic dynamics.

280 *Bottom-up effects*

281 Habitat edges typically experience distinct microclimatic conditions relative to interior parts
282 of a habitat type. For example, typical forest:matrix edges are characterized by increased light,
283 temperature, and wind, and decreased humidity (Ries et al. 2004; Ewers and Banks-Leite
284 2013). Such altered microclimates are less suitable for many plant species specialized to forest
285 interiors, driving a switch in plant species composition and hence the resources available to
286 herbivores (Wirth et al. 2008). The sensitivity of herbivores to turnover in plant composition
287 decreases with their diet breadth because generalists are less likely to lose all their host plants
288 and are more likely to consume alternative plant hosts (Ries et al. 2004). In addition, dietary
289 generalist herbivores are more likely to benefit from exploiting complementary resources
290 provided by adjoining habitats than are specialists.

291 Edge effects may also work against dietary specialist herbivores by increasing the
292 representation of exotic and invasive plant species in local communities (Harper et al. 2005;
293 Figure 1; Allen et al. 2013). Increased exotic abundance is expected to limit hostplant availability
294 for native dietary specialist herbivores to a greater degree than for dietary generalist herbivores

295 that may potentially use the exotic plants (Burghardt et al. 2010). Indeed, arthropod
296 communities found on exotic trees and shrubs in the northeastern USA are much impoverished
297 in terms of diversity and abundance relative to those on native plants (Tallamy and Shropshire
298 2009; Burghardt et al. 2010; Burghardt and Tallamy 2013). In a common garden study with
299 dozens of exotic and native woody plant species, Burghardt et al. (2010) found that dietary
300 specialist caterpillar assemblages were less abundant and species-rich on exotic plants relative
301 to natives, even in comparisons of congeneric plants. By contrast, dietary generalist herbivores,
302 especially large grazers and browsers, can opportunistically forage on many exotic plant
303 species (e.g., Morrison and Brown 2004).

304 *Top-down effects*

305 Top-down effects of predators on herbivores and plants can also be modified at habitat
306 edges (Murphy et al. 2016). In support of the resource edge model (Ries and Sisk 2004),
307 several studies show that generalist predators tend to respond positively to edges (Rand et al.
308 2006; Frost et al. 2015) whereas specialist predators respond negatively (e.g. Valladares et al.
309 2006; Valladares et al. 2012; Figure 1). While Valladares et al. (2006) found reduced parasitoid
310 abundance at woodland edges, they also found increased parasitism rates of leafminers along
311 edges. Further study revealed a disproportionate loss of interaction specificity in food webs in
312 smaller habitat patches (Valladares et al. 2012), suggesting that host-specialist parasitoid
313 species were being replaced by generalist parasitoids, which were driving the increased
314 parasitism near edges. In another case, Frost et al. (2015) found that generalist vespid wasps
315 “spilled over” from exotic plantation forest to native forest as they opportunistically tracked the
316 abundance of caterpillar prey. Experimental reduction of caterpillar prey in the plantation forest
317 decreased the generalist predator spillover, whereas the spillover of relatively host-specific
318 parasitoids was unaffected by the caterpillar manipulation. If the edge resource model’s
319 predictions hold, the shift in the predator community toward generalists along edges is likely to
320 differentially affect dietary specialist and generalist herbivores. Based on evidence discussed

321 above that specialist herbivores have relatively specialized enemies compared to generalist
322 herbivores, we expect increased predation on dietary generalist herbivores relative to dietary
323 specialists, resulting in increased specificity in herbivore-plant interactions near edges.

324 *Trophic ricochets*

325 An extension of the resource edge model considers not only direct effects on herbivores,
326 but also indirect effects on other herbivores and predators. Deer appear to benefit greatly from
327 the proliferation of forest edges, and increased deer browsing has been identified as a type of
328 edge effect (Alverson et al. 1988). In temperate forests globally, deer respond positively to
329 forest edges with increased density or reproduction (e.g., Japanese sika deer, *Cervus nippon*,
330 Miyashita et al. 2008; North American white-tailed deer *Odocoileus virginianus*, Massé and Côté
331 2012; European roe deer, *Capreolus capreolus* Brazaitis et al. 2014). According to the “trophic
332 ricochet” hypothesis (Nuttle et al. 2011), large grazers and browsers, such as white-tailed deer
333 in the USA, can drastically alter vegetation abundance composition, and structure, with a
334 ricochet effect that propagates up to insect herbivores and their predators (Nuttle et al. 2011;
335 Bressette et al. 2012; Wheatall et al. 2013). In support of the trophic ricochet hypothesis,
336 several studies provide evidence that deer-excluded areas contained more caterpillars and
337 forest birds than deer-accessible areas in the northeastern USA (Nuttle et al. 2011; Bressette et
338 al. 2012; Wheatall et al. 2013). While the effect of large herbivores on the community-level
339 specificity of plant-herbivore interactions has not been explored, we hypothesize two potential
340 mechanisms of opposing effect.

341 One possible mechanism for reduced specificity of plant-insect interactions is due to altered
342 plant community structure in heavily browsed, fragmented forests. Deer herbivory tends to
343 reduce woody vegetation (e.g., Horsley et al. 2003; Nuttle et al. 2011; Habeck and Schultz
344 2015) on which many forest insect herbivores, such as caterpillars, also feed (Wagner et al.
345 2002; Wagner 2005; Wagner 2011). Evidence suggests that above-ground insect diversity is
346 indeed higher in the absence of deer (Chips et al. 2015). Dietary specialist herbivores may be

347 especially vulnerable to this ricochet effect in smaller habitat patches, where the probability of
348 finding their preferred hostplant species has already been reduced (Figure 1). The negative
349 ricochet impact of deer herbivory is further exacerbated by the overlap in plant preference by
350 deer and dietary specialist herbivores. Although deer preference for particular plants can vary
351 depending on landscape context, analysis of a global dataset found that large mammal
352 herbivory reduced arthropod diversity, with a trend towards reduced abundance as well (Daskin
353 and Pringle 2016). The strength of the effects found by Daskin and Pringle (2016) increased in
354 areas of low primary productivity, indicating that the strength of the mechanism proposed here is
355 likely to vary across ecosystems in a similar manner.

356 A mechanism of opposing effect is that browsing by large herbivores could sometimes
357 indirectly benefit dietary specialist herbivores. Deer browsing, in particular, can alter the
358 morphology and chemistry of plants in ways that may benefit dietary specialist herbivores in the
359 same community. Although Lind et al. (2012) found that overall herbivory by both dietary
360 generalist and specialist insect herbivores was highest on unbrowsed spicebush (*Lindera*
361 *benzoin*), consistent with the mechanism above, caterpillars of the toxin-sequestering dietary
362 specialist spicebush swallowtail (*Papilio troilus*) both preferred and had higher growth rates on
363 browsed leaves, perhaps because they benefited from increased levels of induced chemical
364 defenses. Based on existing theory predicting how varying levels of induced plant toxins affect
365 insect herbivore performance (Ali and Agrawal 2012), we expect browsing effects on induced
366 plant phenotypes to mainly benefit dietary specialist herbivores that sequester induced toxins
367 from their host plants, a trait frequently associated with the use plant secondary metabolites as
368 host recognition cues (Bernays and Chapman 1994). Herbivory by dietary generalists and
369 specialists may also exert opposing selective pressures on defensive chemistry of particular
370 plants: in the absence of dietary specialists, plant populations may evolve increased chemical
371 defenses, but in the absence of dietary generalists, plant phenotypes with decreased defenses
372 may be favored because they deter toxin-sequestering dietary specialists (Lankau 2007; Ali and

373 Agrawal 2012). If deer herbivory exerts selection to increase plant defenses, this may increase
374 the detectability of the plants by their specialist insect herbivores (Lankau 2007), which would
375 be beneficial regardless of patch size, and could help to mediate competition with generalist
376 herbivores and counter declines in smaller patches.

377 **Lepidopteran diet breadth in forest fragments in Connecticut**

378 Ongoing work in a fragmented forest landscape in Connecticut, northeastern USA, provides
379 some support for some of the pathways described in this review. In May – July 2015 we
380 sampled lepidopteran larvae in four 100 m² plots in each of 10 fragments of temperate
381 deciduous forest (size range: 3 – 400 ha). The proportion of dietary specialist species increased
382 with fragment area (Figure 2), a trend that we tested statistically using a Binomial Generalized
383 Linear Mixed Model (GLMM) including a random intercept for fragment identity ($z = 2.21$, $P =$
384 0.027). We surveyed the vegetation from the same plots and classified woody plant species into
385 deer sensitive or insensitive categories. This classification was based on a literature survey that
386 collated the effects of deer-exclusion experiments on woody plant species in northeastern USA
387 (see Appendix for sources). The abundance of specialist caterpillars increased more steeply
388 with the abundance of woody plants sensitive to deer browsing (Figure 3a; negative binomial
389 GLMM: $z=2.93$, $P=0.003$) than abundance of generalists did ($z=0.73$, $P=0.47$). The densities of
390 deer-preferred plant species declined in smaller forest patches (Figure 3b; negative binomial
391 GLMM: $z=2.48$, $P=0.013$), perhaps contributing to the decrease in specialist herbivores we
392 observed (Figure 2). These data suggest that the overabundance of deer observed in many
393 temperate forest regions, especially at forest edges (Alverson et al. 1988), could
394 disproportionately disadvantage dietary specialist insect herbivores.

395 **Conclusions and future directions**

396 We hope that this review stimulates further research into the mechanisms that control the
397 specificity of plant-herbivore interactions in fragmented landscapes. In summary, the observed

398 loss of dietary specialist herbivores in anthropogenically fragmented landscapes can arise from
399 reduced area and increased isolation of habitat patches, as well as from direct and indirect
400 effects of habitat edge proliferation. The landscape structure and the dispersal and habitat-
401 preference traits of species in local communities will determine which of these landscape
402 components dominates this multi-dimensional phenomenon. Our examination of theory and
403 evidence suggests that bottom-up and top-down mechanisms have the potential to play
404 important roles in the erosion of plant-herbivore specificity in fragmented landscapes. Pathways
405 of feedback between bottom-up and top-down mechanisms represent an important future
406 direction of study (Hunter 2016). Both the trophic theory of island biogeography and the edge
407 resource model offer useful insight into the phenomenon. Their general predictions find much
408 support in plant-herbivore communities, but significant gaps in our understanding remain
409 regarding the relative strength of multiple predicted effects.

410 Reading the literature at face value suggests that bottom-up effects are likely to
411 predominate in landscape fragmentation's reduction of plant-herbivore specificity. However, this
412 impression might be due to the more limited study of top-down compared to bottom-up
413 mechanisms and theory. Here we identify several key research questions to guide future study
414 of this issue. To give adequate consideration to hypothetical top-down mechanisms, we need to
415 know how area-sensitivity compares between large, generalist predators versus small, specialist
416 predators. Additionally, how much do predator communities compensate for the loss of the most
417 area-sensitive species, and what are the functional consequences of these altered predator
418 communities for dietary specialist and generalist herbivores? The strong functional roles of
419 particular species, such as large grazer/browser species, highlight the importance of species
420 identity effects in altering the plant-herbivore communities in fragmented landscapes. Here
421 again, significant questions remain: how much does the reduced abundance and species
422 richness of dietary specialist herbivores in fragmented forests owe to neutral, sampling effects
423 versus deterministic, species identity effects driving variation in plant communities? In the realm

424 of bottom-up effects, components of landscape fragmentation may modify plant variation and
425 plant-herbivore interactions by acting at the plant phenotypic level. Does intraspecific
426 phenotypic variation in anti-herbivore resistance traits in plants, including induced resistance,
427 respond directly or indirectly to area or edge effects? To what extent might these landscape-
428 level processes organize community-level variation in plant and herbivore phenotypes?

429 To address these and related questions, further research is needed that combines
430 landscape level observations with experimental manipulations to provide rigorous tests of
431 alternative mechanisms. Field experiments will be especially valuable for gaining inferences in
432 the context of real communities, while lab and mesocosm experiments will be valuable for
433 elucidating mechanisms that act at relatively small spatial and temporal scales. Indeed, it is not
434 clear to what extent the overall pattern of loss of plant-herbivore specificity depends on the
435 spatial and temporal scales of landscape fragmentation, let alone how the underlying
436 mechanisms might depend on scale. Given this uncertainty, studies at multiple spatial and
437 temporal scales are needed to identify possible mechanisms.

438 Future studies will also maximize their utility by using measures of ecological specialization
439 that can be quantified and compared among species and communities. Descriptors such as
440 “specialists” and “generalists” without any clear reference to the resource in question are
441 problematic alone because the concept of specialization is inherently relative and context-
442 dependent (Forister et al. 2012). In other words, one study’s specialist may be another study’s
443 generalist. If research on the loss of ecological specialization in fragmented landscapes were to
444 use recently proposed metrics for quantifying ecological specialization of particular resources
445 (e.g. Devictor et al. 2010; Poulin et al. 2011; Jorge et al. 2017), empirical studies could reveal
446 new quantitative patterns. Likewise, this move would enable more powerful re-analyses and
447 meta-analyses on this topic.

448 We presently know that landscape fragmentation is eroding the specificity of plant-herbivore
449 interactions, but in order to understand the dimensions of the problem and its causes, new

450 approaches are needed. To conclude, studies of plant-herbivore interactions would do well to
451 consider landscape context in which they occur, as conclusions about dietary specialization
452 (population/community studies) and interaction specificity (e.g., network analyses) will be
453 affected by landscape fragmentation.

454 **Acknowledgements**

455 We thank Miranda Davis, Howard Kilpatrick, Sabrina Strom, Crystal Wright, Quinn
456 Brencher, and Daniel Grogan for their contributions to the ideas and collection of data presented
457 in this paper. This work was funded by the National Science Foundation (grant number DEB-
458 1557086). We are grateful to Colin Orians for inviting this paper. The paper was substantially
459 improved by suggestions from Dr Orians and three anonymous reviewers. The authors declare
460 they have no conflict of interest.

461 **References**

462 Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense.
463 Trends Plant Sci. 17:293-302 doi: 10.1016/j.tplants.2012.02.006.

464 Allen JM, Leininger TJ, Hurd JD, Civco DL, Gelfand AE, Silander JA (2013) Socioeconomics
465 drive woody invasive plant richness in New England, USA through forest fragmentation.
466 Landscape Ecol. 28:1671-1686 doi: 10.1007/s10980-013-9916-7.

467 Alverson WS, Waller DM, Solheim SL (1988) Forests too deer: edge effects in northern
468 Wisconsin. Conserv. Biol. 2:348-358 doi: 10.1111/j.1523-1739.1988.tb00199.x.

469 Anton C, Zeisset I, Musche M, Durka W, Boomsma JJ, Settele J (2007) Population structure of
470 a large blue butterfly and its specialist parasitoid in a fragmented landscape. Mol. Ecol.
471 16:3828-3838 doi: 10.1111/j.1365-294X.2007.03441.x.

472 Askins RA (1993) Population trends in grassland, shrubland, and forest birds in eastern North
473 America. In: Power DM (ed) Current Ornithology, vol 11. Plenum Press, New York, pp 1-34

474 Bascompte J, Solé RV (1998) Effects of Habitat Destruction in a Prey–Predator Metapopulation
475 Model. J. Theor. Biol. 195:383-393 doi: 10.1006/jtbi.1998.0803.

476 Bayard TS, Elphick CS (2010) How area sensitivity in birds is studied. Conserv. Biol. 24:938-
477 947 doi: 10.1111/j.1523-1739.2010.01480.x.

478 Bernays E, Chapman R (1994) Host-Plant Selection by Phytophagous Insects. Chapman and
479 Hall, New York

480 Bowers MD, Schmitt J (2013) Overcrowding leads to lethal oviposition mistakes in the Baltimore
481 Checkerspot, *Euphydryas phaeton*, Drury (Nymphalidae). J. Lepid. Soc. 67:227-229 doi:
482 10.18473/lepi.v67i3.a10.

483 Brazaitis G et al. (2014) Landscape effect for the Cervidae *Cervidae* in human-dominated
484 fragmented forests. Eur. J. For. Res. 133:857-869 doi: 10.1007/s10342-014-0802-x.

485 Bregman TP, Sekercioglu CH, Tobias JA (2014) Global patterns and predictors of bird species
486 responses to forest fragmentation: implications for ecosystem function and conservation.
487 Biol. Conserv. 169:372-383 doi: 10.1016/j.biocon.2013.11.024.

488 Bressette JW, Beck H, Beauchamp VB (2012) Beyond the browse line: complex cascade
489 effects mediated by white-tailed deer. Oikos 121:1749-1760 doi: 10.1111/j.1600-
490 0706.2011.20305.x.

491 Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration
492 on extinction. Ecology 58:445-449 doi: 10.2307/1935620.

493 Brown LM, Breed GA, Severns PM, Crone EE (2017) Losing a battle but winning the war:
494 moving past preference–performance to understand native herbivore–novel host plant
495 interactions. Oecologia 183:441-453 doi: 10.1007/s00442-016-3787-y.

496 Brown LM, Crone EE (2016) Minimum area requirements for an at-risk butterfly based on
497 movement and demography. Conserv. Biol. 30:103-112 doi: 10.1111/cobi.12588.

498 Burghardt KT, Tallamy DW (2013) Plant origin asymmetrically impacts feeding guilds and life
499 stages driving community structure of herbivorous arthropods. *Divers. Distrib.* 19:1553-1565
500 doi: 10.1111/ddi.12122.

501 Burghardt KT, Tallamy DW, Philips C, Shropshire KJ (2010) Non-native plants reduce
502 abundance, richness, and host specialization in lepidopteran communities. *Ecosphere* 1:1-22
503 doi: 10.1890/ES10-00032.1.

504 Burkle LA, Marlin JC, Knight TM (2013) Plant-Pollinator Interactions over 120 Years: Loss of
505 Species, Co-Occurrence, and Function. *Science* 339:1611-1615 doi:
506 10.1126/science.1232728.

507 Cagnolo L, Valladares G, Salvo A, Cabido M, Zak M (2009) Habitat fragmentation and species
508 loss across three interacting trophic levels: Effects of life-history and food-web traits.
509 *Conserv. Biol.* 23:1167-1175 doi: 10.1111/j.1523-1739.2009.01214.x.

510 Campbell SA, Thaler JS, Kessler A (2013) Plant chemistry underlies herbivore-mediated
511 inbreeding depression in nature. *Ecol. Lett.* 16:252-260 doi: 10.1111/ele.12036.

512 Carr DE, Eubanks MD (2002) Inbreeding alters resistance to insect herbivory and host plant
513 quality in *Mimulus guttatus* (Scrophulariaceae). *Evolution* 56:22-30 doi: 10.1111/j.0014-
514 3820.2002.tb00846.x.

515 Chips MJ et al. (2015) The indirect impact of long-term overbrowsing on insects in the Allegheny
516 National Forest region of Pennsylvania. *Northeast. Nat.* 22:782-797 doi:
517 10.1656/045.022.0412.

518 Cirtwill AR, Stouffer DB (2016) Knowledge of predator-prey interactions improves predictions of
519 immigration and extinction in island biogeography. *Global Ecol. Biogeogr.* 25:900-911 doi:
520 10.1111/geb.12332.

521 Clavel J, Julliard R, Devictor V (2011) Worldwide decline of specialist species: toward a global
522 functional homogenization? *Front. Ecol. Environ.* 9:222-228 doi: 10.1890/080216.

523 Collins C et al. (2017) Fragmentation affects plant community composition over time. *Ecography*
524 40:119-130 doi: 10.1111/ecog.02607.

525 Connor EF, McCoy ED (1979) The statistics and biology of the species-area relationship. *The*
526 *American Naturalist* 113:791-833 doi: 10.1086/283438.

527 Cornell HV, Hawkins BA (2003) Herbivore responses to plant secondary compounds: A test of
528 phytochemical coevolution theory. *Am. Nat.* 161:507-522 doi: 10.1086/368346.

529 Crone EE, Schultz CB (2003) Movement behavior and minimum patch size for butterfly
530 population persistence. In: Boggs CL, Watt WB, Ehrlich PR (eds) *Butterflies: ecology and*
531 *evolution taking flight*. University of Chicago Press, Chicago, IL, USA, pp 561-576

532 Curtis RJ, Brereton TM, Dennis RL, Carbone C, Isaac NJ (2015) Butterfly abundance is
533 determined by food availability and is mediated by species traits. *J. Appl. Ecol.* 52:1676-1684
534 doi: 10.1111/1365-2664.12523.

535 Daskin JH, Pringle RM (2016) Does primary productivity modulate the indirect effects of large
536 herbivores? A global meta-analysis. *J. Anim. Ecol.* 85:857-868 doi: 10.1111/1365-
537 2656.12522.

538 De Carvalho Guimarães CD, Viana JPR, Cornelissen T (2014) A Meta-Analysis of the Effects of
539 Fragmentation on Herbivorous Insects. *Environ. Entomol.* 43:537-545 doi: 10.1603/EN13190.

540 Delphia CM, De Moraes CM, Stephenson AG, Mescher MC (2009) Inbreeding in horsenettle
541 influences herbivore resistance. *Ecol. Entomol.* 34:513-519 doi: 10.1111/j.1365-
542 2311.2009.01097.x.

543 Devictor V et al. (2010) Defining and measuring ecological specialization. *J. Appl. Ecol.* 47:15-
544 25 doi: 10.1111/j.1365-2664.2009.01744.x.

545 Didham RK, Kapos V, Ewers RM (2012) Rethinking the conceptual foundations of habitat
546 fragmentation research. *Oikos* 121:161-170 doi: 10.1111/j.1600-0706.2011.20273.x.

547 Dyer LA (1995) Tasty generalists and nasty specialists? Antipredator mechanisms in tropical
548 lepidopteran larvae. *Ecology* 76:1483-1496 doi: 10.2307/1938150.

549 Ewers R, Didham R (2006) Confounding factors in the detection of species responses to habitat
550 fragmentation. *Biol. Rev. Camb. Philos. Soc.* 81:117-142 doi: 10.1017/s1464793105006949.

551 Ewers RM, Banks-Leite C (2013) Fragmentation Impairs the Microclimate Buffering Effect of
552 Tropical Forests. *PLOS ONE* 8:e58093 doi: 10.1371/journal.pone.0058093.

553 Faeth SH, Warren PS, Shochat E, Marussich WA (2005) Trophic Dynamics in Urban
554 Communities. *Bioscience* 55:399-407

555 Fahrig L (2003) Effects of habitat fragmentation on biodiversity. *Annu. Rev. Ecol., Evol. Syst.*
556 34:487-515 doi: 10.1146/annurev.ecolsys.34.011802.132419.

557 Fahrig L (2017) Ecological responses to habitat fragmentation per se. *Annu. Rev. Ecol., Evol.*
558 *Syst.* 48 doi: 10.1146/annurev-ecolsys-110316-022612.

559 Forister ML, Dyer LA, Singer MS, Stireman JO, Lill JT (2012) Revisiting the evolution of
560 ecological specialization, with emphasis on insect–plant interactions. *Ecology* 93:981-991
561 doi: 10.1890/11-0650.1.

562 Fox LR, Morrow PA (1981) Specialization: species property or local phenomenon. *Science*
563 211:887-893 doi: 10.1126/science.211.4485.887.

564 Franzén M, Schweiger O, Betzholtz P-E (2012) Species-area relationships are controlled by
565 species traits. *PLoS One* 7:e37359 doi: 10.1371/journal.pone.0037359.

566 Frost CM, Didham RK, Rand TA, Peralta G, Tylianakis JM (2015) Community-level net spillover
567 of natural enemies from managed to natural forest. *Ecology* 96:193-202 doi: 10.1890/14-
568 0696.1.

569 Gentry GL, Dyer LA (2002) On the conditional nature of neotropical caterpillar defenses against
570 their natural enemies. *Ecology* 83:3108-3119 doi: 10.1890/0012-
571 9658(2002)083[3108:OTCNON]2.0.CO;2.

572 Gravel D, Massol F, Canard E, Mouillot D, Mouquet N (2011) Trophic theory of island
573 biogeography. *Ecol. Lett.* 14:1010-1016 doi: 10.1111/j.1461-0248.2011.01667.x.

574 Gripenberg S, Mayhew PJ, Parnell M, Roslin T (2010) A meta-analysis of preference–
575 performance relationships in phytophagous insects. *Ecol. Lett.* 13:383–393 doi:
576 10.1111/j.1461-0248.2009.01433.x.

577 Guerin GR et al. (2014) Global change community ecology beyond species-sorting: a
578 quantitative framework based on mediterranean-biome examples. *Global Ecol. Biogeogr.*
579 23:1062–1072 doi: 10.1111/geb.12184.

580 Habeck CW, Schultz AK (2015) Community-level impacts of white-tailed deer on understorey
581 plants in North American forests: a meta-analysis. *AoB Plants* 7:plv119 doi:
582 10.1093/aobpla/plv119.

583 Haddad NM, Baum KA (1999) An experimental test of corridor effects on butterfly densities.
584 *Ecol. Appl.* 9:623–633 doi: 10.1890/1051-0761(1999)009[0623:AETOCE]2.0.CO;2.

585 Haddad NM et al. (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems.
586 *Science Advances* 1:e1500052 doi: 10.1126/sciadv.1500052.

587 Hagen M et al. (2012) Biodiversity, species interactions and ecological networks in a
588 fragmented world. *Adv. Ecol. Res.* 46:89–120 doi: 10.1016/B978-0-12-396992-7.00002-2.

589 Hambäck PA, Englund G (2005) Patch area, population density and the scaling of migration
590 rates: the resource concentration hypothesis revisited. *Ecol. Lett.* 8:1057–1065 doi:
591 10.1111/j.1461-0248.2005.00811.x.

592 Hanski I (1999) *Metapopulation Ecology*. Oxford University Press, Oxford

593 Harper KA et al. (2005) Edge influence on forest structure and composition in fragmented
594 landscapes. *Conserv. Biol.* 19:768–782 doi: 10.1111/j.1523-1739.2005.00045.x.

595 Hayes CN, Winsor JA, Stephenson AG (2004) Inbreeding influences herbivory in *Cucurbita*
596 *pepo* ssp. *texana* (Cucurbitaceae). *Oecologia* 140:601–608 doi: 10.1007/s00442-004-1623-2.

597 Holt RD (1996) Food webs in space: an island biogeographic perspective. In: Polis GA,
598 Winemiller KO (eds) *Food Webs, Integration of Patterns and Dynamics*. Chapman & Hall,
599 London, pp 313–323

600 Holt RD (2010) Toward a trophic island biogeography. In: Losos JB, Ricklefs RE (eds) The
601 theory of island biogeography revisited. Princeton University Press, Princeton, USA, pp 143-
602 185

603 Holt RD, Lawton JH, Polis GA, Martinez ND (1999) Trophic rank and the species-area
604 relationship. *Ecology* 80:1495-1504 doi: 10.1890/0012-
605 9658(1999)080[1495:TRATSA]2.0.CO;2.

606 Honnay O, Jacquemyn H, Bossuyt B, Hermy M (2005) Forest fragmentation effects on patch
607 occupancy and population viability of herbaceous plant species. *New Phytol.* 166:723-736
608 doi: 10.1111/j.1469-8137.2005.01352.x.

609 Horsley SB, Stout SL, DeCalesta DS (2003) White-tailed deer impact on the vegetation
610 dynamics of a northern hardwood forest. *Ecol. Appl.* 13:98-118 doi: 10.1890/1051-
611 0761(2003)013[0098:WTDIOT]2.0.CO;2.

612 Huffaker C (1958) Experimental studies on predation: Dispersion factors and predator-prey
613 oscillations. *Hilgardia* 27:343-383 doi: DOI:10.3733/hilg.v27n14p343.

614 Hull-Sanders HM, Eubanks MD (2005) Plant defense theory provides insight into interactions
615 involving inbred plants and insect herbivores. *Ecology* 86:897-904 doi: 10.1890/04-0935.

616 Hunter MD (2002) Landscape structure, habitat fragmentation, and the ecology of insects. *Agric.*
617 *For. Entomol.* 4:159-166 doi: 10.1046/j.1461-9563.2002.00152.x.

618 Hunter MD (2016) The Phytochemical Landscape: Linking Trophic Interactions and Nutrient
619 Dynamics. Princeton University Press, Princeton

620 Jedlicka JA, Greenberg R, Letourneau DK (2011) Avian conservation practices strengthen
621 ecosystem services in California vineyards. *PLoS ONE* 6:e27347 doi:
622 10.1371/journal.pone.0027347.

623 Johst K, Schöps K (2003) Persistence and conservation of a consumer–resource
624 metapopulation with local overexploitation of resources. *Biol. Conserv.* 109:57-65

625 Jorge LR et al. (2017) Phylogenetic trophic specialization: a robust comparison of herbivorous
626 guilds. *Oecologia* 185:551-559 doi: 10.1007/s00442-017-3980-7.

627 Kareiva PM, Shigesada N (1983) Analyzing insect movement as a correlated random walk.
628 *Oecologia* 56:234-238 doi: 10.1007/Bf00379695.

629 Kittelson PM et al. (2015) How functional traits, herbivory, and genetic diversity interact in
630 *Echinacea*: implications for fragmented populations. *Ecology* 96:1877-1886 doi: 10.1890/14-
631 1687.1.

632 Kluger EC, Berlocher SH, Tooker JF, Hanks LM (2011) Consequences of Habitat
633 Fragmentation for the Prairie-Endemic Weevil *Haplorrhynchites aeneus*. *Environ. Entomol.*
634 40:1388-1396 doi: 10.1603/EN11054.

635 Kolb A, Diekmann M (2005) Effects of Life-History Traits on Responses of Plant Species to
636 Forest Fragmentation. *Conserv. Biol.* 19:929-938 doi: 10.1111/j.1523-1739.2005.00065.x.

637 Kondoh M (2003) Habitat fragmentation resulting in overgrazing by herbivores. *J. Theor. Biol.*
638 225:453-460 doi: 10.1016/S0022-5193(03)00279-0.

639 Kruess A, Tscharntke T (1994) Habitat fragmentation, species loss, and biological control.
640 *Science* 264:1581-1584 doi: 10.1126/science.264.5165.1581.

641 Lande R (1988) Genetics and demography in biological conservation. *Science* 241:1455-1460
642 doi: 10.1126/science.3420403.

643 Lankau RA (2007) Specialist and generalist herbivores exert opposing selection on a chemical
644 defense. *New Phytol.* 175:176-184 doi: 10.1111/j.1469-8137.2007.02090.x.

645 Leimu R, Vergeer P, Angeloni F, Ouborg N (2010) Habitat fragmentation, climate change, and
646 inbreeding in plants. *Ann. N. Y. Acad. Sci.* 1195:84-98 doi: 10.1111/j.1749-
647 6632.2010.05450.x.

648 Liao J, Bearup D, Blasius B (2017) Diverse responses of species to landscape fragmentation in
649 a simple food chain. *J. Anim. Ecol.* 86:1169-1178 doi: 10.1111/1365-2656.12702.

650 Lind EM, Myron EP, Giaccai J, Parker JD (2012) White-tailed deer alter specialist and generalist
651 insect herbivory through plant traits. *Environ. Entomol.* 41:1409-1416 doi: 10.1603/EN12094.

652 MacArthur RH, Wilson EO (1967) *The Theory of Island Biogeography*. Princeton University
653 Press

654 Mäntylä E, Klemola T, Laaksonen T (2011) Birds help plants: a meta-analysis of top-down
655 trophic cascades caused by avian predators. *Oecologia* 165:143-151 doi: 10.1007/s00442-
656 010-1774-2.

657 Martinson HM, Fagan WF (2014) Trophic disruption: a meta-analysis of how habitat
658 fragmentation affects resource consumption in terrestrial arthropod systems. *Ecol. Lett.*
659 17:1178-1189 doi: 10.1111/ele.12305.

660 Massé A, Côté SD (2012) Linking habitat heterogeneity to space use by large herbivores at
661 multiple scales: From habitat mosaics to forest canopy openings. *For. Ecol. Manage.* 285:67-
662 76 doi: 10.1016/j.foreco.2012.07.039.

663 Miyashita T, Suzuki M, Ando D, Fujita G, Ochiai K, Asada M (2008) Forest edge creates small-
664 scale variation in reproductive rate of sika deer. *Popul. Ecol.* 50:111-120 doi:
665 10.1007/s10144-007-0068-y.

666 Mols CMM, Visser ME (2002) Great tits can reduce caterpillar damage in apple orchards. *J.*
667 *Appl. Ecol.* 39:888-899 doi: 10.1046/j.1365-2664.2002.00761.x.

668 Mooney KA, Gruner DS, Barber NA, Van Bael SA, Philpott SM, Greenberg R (2010)
669 Interactions among predators and the cascading effects of vertebrate insectivores on
670 arthropod communities and plants. *Proc. Natl. Acad. Sci. USA* 107:7335-7340 doi:
671 10.1073/pnas.1001934107.

672 Mooney KA, Pratt RT, Singer MS (2012) The Tri-Trophic Interactions Hypothesis: Interactive
673 Effects of Host Plant Quality, Diet Breadth and Natural Enemies on Herbivores. *PLoS One*
674 7:e34403 doi: 10.1371/journal.pone.0034403.

675 Morante-Filho JC, Arroyo-Rodríguez V, Lohbeck M, Tscharntke T, Faria D (2016) Tropical forest
676 loss and its multitrophic effects on insect herbivory. *Ecology* 97:3315-3325 doi:
677 10.1002/ecy.1592.

678 Moreira X, Abdala-Roberts L, Rasmann S, Castagneyrol B, Mooney KA (2016) Plant diversity
679 effects on insect herbivores and their natural enemies: current thinking, recent findings, and
680 future directions. *Curr. Opin. Insect Sci.* 14:1-7 doi: 10.1016/j.cois.2015.10.003.

681 Morrison JA, Brown LM (2004) Effect of herbivore exclosure caging on the invasive plant *Aliaria*
682 *petiolata* in three southeastern New York forests. *Bartonia*:25-43

683 Murphy SM, Battocletti AH, Tinghitella RM, Wimp GM, Ries L (2016) Complex community and
684 evolutionary responses to habitat fragmentation and habitat edges: what can we learn from
685 insect science? *Curr. Opin. Insect Sci.* 14:61-65 doi: 10.1016/j.cois.2016.01.007.

686 Nieminen M, Nouhuys Sv (2017) The Roles of Trophic Interactions, Competition and Landscape
687 in Determining Metacommunity Structure of a Seed-Feeding Weevil and Its Parasitoids. *Ann.*
688 *Zool. Fenn.* 54:83-95 doi: 10.5735/086.054.0109.

689 Nuttle T, Yerger EH, Stoleson SH, Ristau TE (2011) Legacy of top-down herbivore pressure
690 ricochets back up multiple trophic levels in forest canopies over 30 years. *Ecosphere* 2:1-11
691 doi: 10.1890/ES10-00108.1.

692 Öckinger E et al. (2010) Life-history traits predict species responses to habitat area and
693 isolation: a cross-continental synthesis. *Ecol. Lett.* 13:969-979 doi: 10.1111/j.1461-
694 0248.2010.01487.x.

695 Ouborg NJ, Vergeer P, Mix C (2006) The rough edges of the conservation genetics paradigm
696 for plants. *J. Ecol.* 94:1233-1248 doi: 10.1111/j.1365-2745.2006.01167.x.

697 Piechnik DA, Lawler SP, Martinez ND (2008) Food-web assembly during a classic
698 biogeographic study: species “trophic breadth” corresponds to colonization order. *Oikos*
699 117:665-674 doi: 10.1111/j.0030-1299.2008.15915.x.

700 Poulin R, Krasnov BR, Mouillot D (2011) Host specificity in phylogenetic and geographic space.
701 Trends Parasitol. 27:355-361 doi: 10.1016/j.pt.2011.05.003.

702 Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of
703 agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol. Lett.
704 9:603-614 doi: 10.1111/j.1461-0248.2006.00911.x.

705 Ridley CE, Hangelbroek HH, Wagenius S, Stanton-Geddes J, Shaw RG (2011) The Effect of
706 Plant Inbreeding and Stoichiometry on Interactions with Herbivores in Nature: *Echinacea*
707 *angustifolia* and Its Specialist Aphid. PLOS ONE 6:e24762 doi:
708 10.1371/journal.pone.0024762.

709 Ries L, Debinski DM (2001) Butterfly responses to habitat edges in the highly fragmented
710 prairies of Central Iowa. J. Anim. Ecol. 70:840-852 doi: 10.1046/j.0021-8790.2001.00546.x.

711 Ries L, Fletcher Jr RJ, Battin J, Sisk TD (2004) Ecological responses to habitat edges:
712 mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 35:491-522

713 Ries L, Murphy SM, Wimp GM, Fletcher RJ (2017) Closing persistent gaps in knowledge about
714 edge ecology. Current Landscape Ecology Reports 2:30-41 doi: 10.1007/s40823-017-0022-
715 4.

716 Ries L, Sisk TD (2004) A predictive model of edge effects. Ecology 85:2917-2926 doi:
717 10.1890/03-8021.

718 Robbins CS, Dawson DK, Dowell BA (1989) Habitat area requirements of breeding forest birds
719 of the middle Atlantic states. Wildlife Monographs:3-34

720 Roland J, Taylor PD (1997) Insect parasitoid species respond to forest structure at different
721 spatial scales. Nature 386:710

722 Rossetti MR, Tscharntke T, Aguilar R, Batáry P (2017) Responses of insect herbivores and
723 herbivory to habitat fragmentation: a hierarchical meta-analysis. Ecol. Lett. 20:264-272 doi:
724 10.1111/ele.12723.

725 Ryall KL, Fahrig L (2005) Habitat loss decreases predator–prey ratios in a pine-bark beetle
726 system. *Oikos* 110:265-270 doi: 10.1111/j.0030-1299.2005.13691.x.

727 Ryall KL, Fahrig L (2006) Response of predators to loss and fragmentation of prey habitat: a
728 review of theory. *Ecology* 87:1086-1093 doi: 10.1890/0012-
729 9658(2006)87[1086:ROPTLA]2.0.CO;2.

730 Schtickzelle N, Baguette M (2003) Behavioural responses to habitat patch boundaries restrict
731 dispersal and generate emigration–patch area relationships in fragmented landscapes. *J.*
732 *Anim. Ecol.* 72:533-545 doi: 10.1046/j.1365-2656.2003.00723.x.

733 Schüepp C, Uzman D, Herzog F, Entling MH (2014) Habitat isolation affects plant–herbivore–
734 enemy interactions on cherry trees. *Biol. Control* 71:56-64 doi:
735 10.1016/j.biocontrol.2014.01.007.

736 Simberloff DS, Wilson EO (1969) Experimental zoogeography of islands: the colonization of
737 empty islands. *Ecology* 50:278-296 doi: 10.2307/1934856.

738 Singer MC, Thomas CD, Parmesan C (1993) Rapid human-induced evolution of insect–host
739 associations. *Nature* 366:681-683 doi: 10.1038/366681a0.

740 Singer MS, Lichter-Marck IH, Farkas TE, Aaron E, Whitney KD, Mooney KA (2014) Herbivore
741 diet breadth mediates the cascading effects of carnivores in food webs. *Proc. Natl. Acad. Sci.*
742 USA 111:9521-9526 doi: 10.1073/pnas.1401949111.

743 Stamps JA, Buechner M, Krishnan VV (1987) The effects of edge permeability and habitat
744 geometry on emigration from patches of habitat. *The American Naturalist* 129:533-552 doi:
745 10.1086/284656.

746 Steffan-Dewenter I, Tscharntke T (2000) Butterfly community structure in fragmented habitats.
747 *Ecol. Lett.* 3:449-456 doi: 10.1111/j.1461-0248.2000.00175.x.

748 Stireman JO, Singer MS (2003) Determinants of parasitoid–host associations: insights from a
749 natural tachinid–lepidopteran community. *Ecology* 84:296-310 doi: 10.1890/0012-
750 9658(2003)084[0296:DOPHAI]2.0.CO;2.

751 Swihart RK, Feng Z, Slade NA, Mason DM, Gehring TM (2001) Effects of Habitat Destruction
752 and Resource Supplementation in a Predator–Prey Metapopulation Model. *J. Theor. Biol.*
753 210:287–303 doi: 10.1006/jtbi.2001.2304.

754 Tallamy DW, Shropshire KJ (2009) Ranking lepidopteran use of native versus introduced plants.
755 *Conserv. Biol.* 23:941–947 doi: 10.1111/j.1523-1739.2009.01202.x.

756 Tscharntke T, Brandl R (2004) Plant-insect interactions in fragmented landscapes. *Annu. Rev.*
757 *Entomol.* 49:405–430 doi: 10.1146/annurev.ento.49.061802.123339.

758 Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat
759 fragments to conservation of insect communities of grassland–cropland landscapes. *Ecol.*
760 *Appl.* 12:354–363 doi: 10.1890/1051-0761(2002)012[0354:COSHFT]2.0.CO;2.

761 Tscharntke T et al. (2012) Landscape moderation of biodiversity patterns and processes—eight
762 hypotheses. *Biol. Rev. Camb. Philos. Soc.* 87:661–685 doi: 10.1111/j.1469–
763 185X.2011.00216.x.

764 Valladares G, Cagnolo L, Salvo A (2012) Forest fragmentation leads to food web contraction.
765 *Oikos* 121:299–305 doi: 10.1111/j.1600-0706.2011.19671.x.

766 Valladares G, Salvo A, Cagnolo L (2006) Habitat Fragmentation Effects on Trophic Processes
767 of Insect-Plant Food Webs. *Conserv. Biol.* 20:212–217 doi: 10.1111/j.1523–
768 1739.2006.00337.x.

769 Van Bael SA et al. (2008) Birds as predators in tropical agroforestry systems. *Ecology* 89:928–
770 934 doi: 10.1890/06-1976.1.

771 Vidal MC, Murphy SM (2018) Bottom-up vs. top-down effects on terrestrial insect herbivores: a
772 meta-analysis. *Ecol. Lett.* 21:138–150 doi: 10.1111/ele.12874.

773 Wagner D (2005) Caterpillars of eastern North America. Princeton field guides. Princeton
774 University Press. Princeton, NJ, USA

775 Wagner D, Ferguson D, McCabe T, Reardon R (2002) Geometrid caterpillars of northeastern
776 and Appalachian forests. USFS Technology Transfer Bulletin. FHTET-2001-10, Morgantown,
777 WV
778 Wagner DL (2011) Owlet caterpillars of eastern North America. Princeton University Press
779 Wheatall L, Nuttle T, Yerger E (2013) Indirect effects of pandemic deer overabundance inferred
780 from caterpillar-host relations. Conserv. Biol. 27:1107-1116 doi: 10.1111/cobi.12077.
781 Wimp GM, Murphy SM, Lewis D, Ries L (2011) Do edge responses cascade up or down a multi-
782 trophic food web? Ecol. Lett. 14:863-870 doi: 10.1111/j.1461-0248.2011.01656.x.
783 Wirth R, Meyer ST, Leal IR, Tabarelli M (2008) Plant herbivore interactions at the forest edge.
784 Progress in botany. Springer, pp 423-448
785 Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment:
786 the insurance hypothesis. Proc. Natl. Acad. Sci. USA 96:1463-1468
787 Zvereva EL, Kozlov MV (2016) The costs and effectiveness of chemical defenses in herbivorous
788 insects: a meta-analysis. Ecol. Monogr. 86:107-124 doi: 10.1890/15-0911.1.

789 **Figure Legends**

790 **Figure 1:** A model system illustrating a subset of the bottom-up and top-down pathways by
791 which landscape fragmentation is hypothesized to reduce the abundance of dietary specialist
792 herbivores more than dietary generalists, including area and isolation effects, edge effects,
793 trophic ricochet, and mechanism-independent effects (indicated by different colored arrows).
794 Arrows can indicate positive or negative relationships and their signs are multiplicative through
795 pathways (pathways containing even or odd numbers of negative effects would be, respectively,
796 positive or negative overall). This model system reflects features of fragmented forests we study
797 in Connecticut: area and edge effects are likely to dominate, with minimal influence of isolation
798 effects and negligible dispersal limitations of woody plants, Lepidoptera (small specialist and

799 generalist herbivores), white-tailed deer (large generalist herbivores), parasitoids (small
800 specialist and generalist predators), and insectivorous birds (large generalist predators).

801 **Figure 2:** Effects of patch area (log scale) on the proportion of larval Lepidoptera that are
802 dietary specialists in temperate deciduous forest fragments in Connecticut. Points (and error
803 bars) indicate the mean observed proportion (\pm s.e.m) of caterpillars that were specialists from
804 four 100-m² plots in each of 10 forest patches surveyed in 2015. Lines and shaded areas are
805 the expectations and 95% confidence intervals from a binomial GLMM fitted to the data.

806 **Figure 3:** (a) The abundance of dietary specialist caterpillars increased more steeply with
807 the abundance of deer-sensitive plant species than did the density of generalists in 10
808 temperate deciduous forest patches of varying size in Connecticut. Deer-sensitive plant species
809 were found to be preferentially browsed by deer in deer-exclusion experiments conducted in the
810 northeastern USA (see Appendix for sources). Points indicate the numbers of caterpillars
811 collected in four 100-m² plots in each forest patch, and the expectations and 95% confidence
812 intervals of a negative binomial GLMM fitted to the data are indicated by the lines and shaded
813 envelopes respectively. (b) The number of individuals between 1 – 2 m in height of deer-
814 sensitive woody plant species increased with patch area. Points indicate the mean total
815 abundance of saplings across all species (\pm s.e.m) occurring in four 100-m² plots in each of 10
816 forest patches. The line and shaded envelope are, respectively, the predicted relationship and
817 confidence envelope from a negative binomial model fitted to the data.

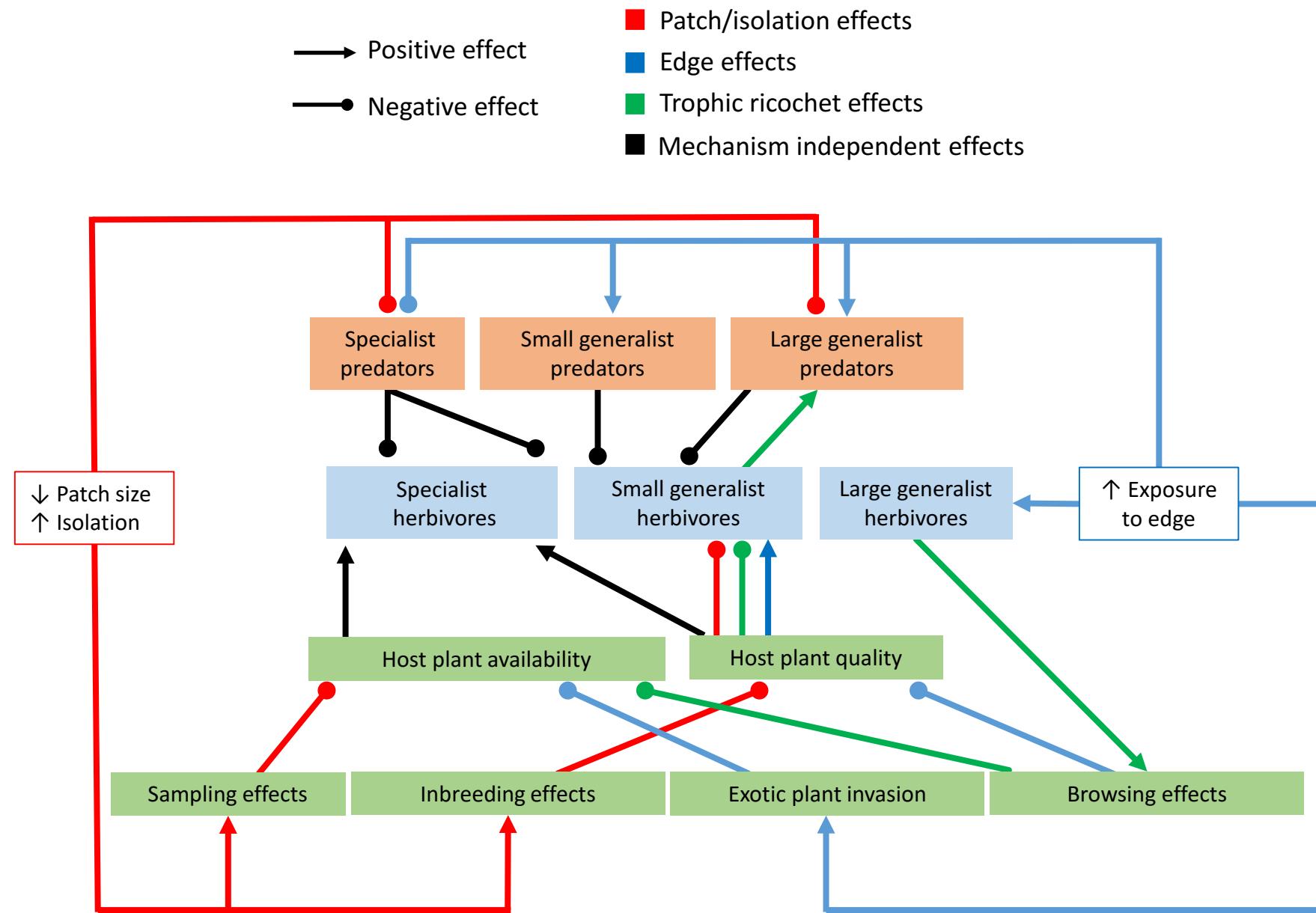


Figure 2

Click here to download Figure
Figure2_PrSpecialist.pdf

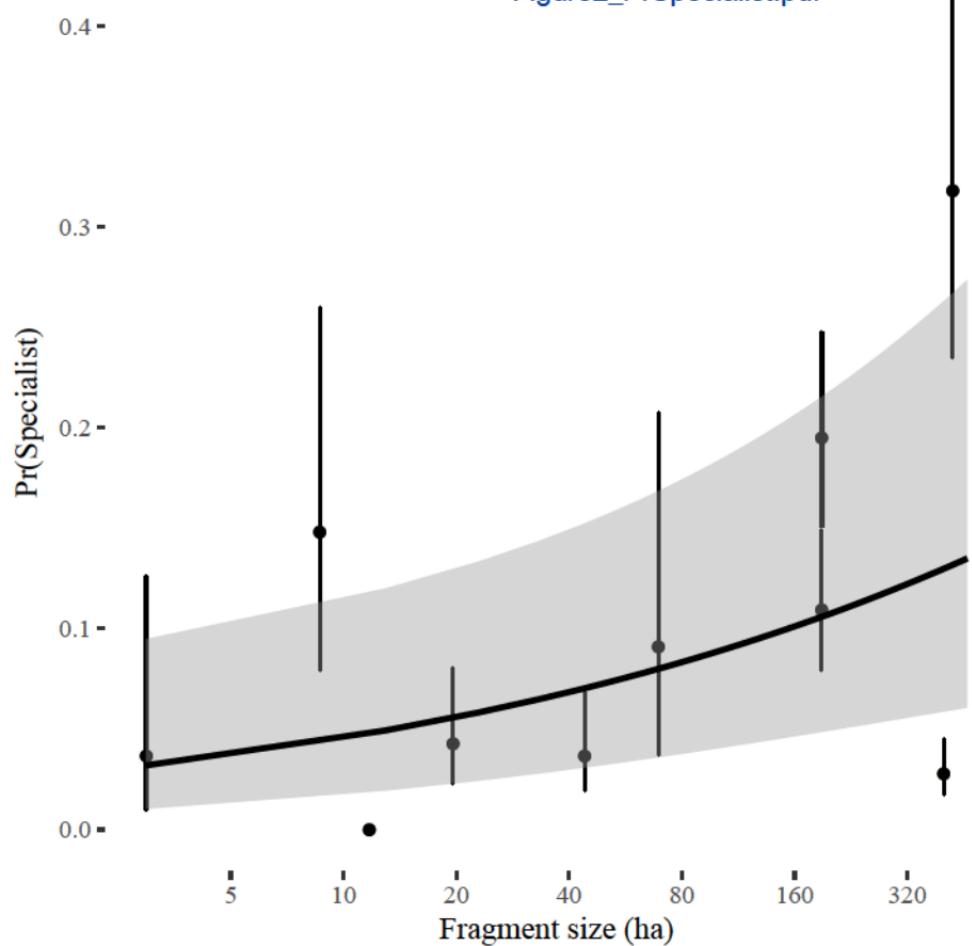
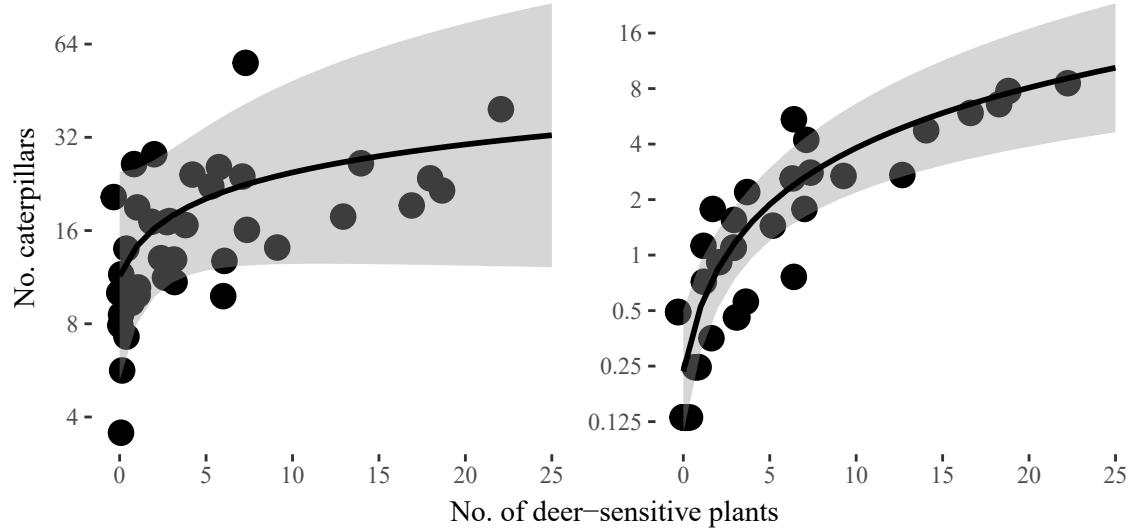
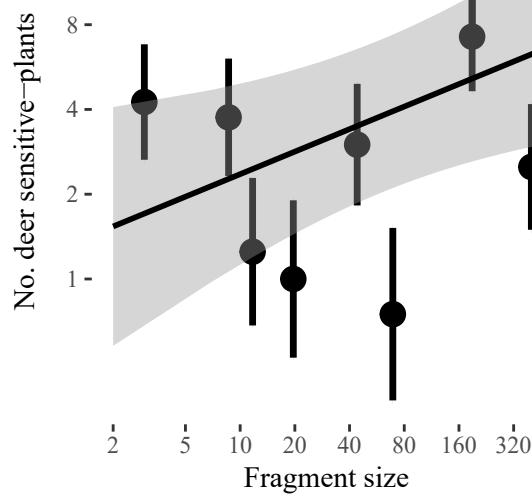



Figure 3

(a)


Generalists

Click here to download Figure
Figure3_deer.pdf

(b)

Specialists

