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ABSTRACT

Many trials are designed to collect outcomes at or around pre-specified times after randomization. If there is variability in the times when partici-
pants are actually assessed, this can pose a challenge to learning the effect of treatment, since not all participants have outcome assessments at the
times of interest. Furthermore, observed outcome values may not be representative of all participants’ outcomes at a given time. Methods have
been developed that account for some types of such irregular and informative assessment times; however, since these methods rely on untestable
assumptions, sensitivity analyses are needed. We develop a sensitivity analysis methodology that is benchmarked at the explainable assessment
(EA) assumption, under which assessment and outcomes at each time are related only through data collected prior to that time. Our method uses
an exponential tilting assumption, governed by a sensitivity analysis parameter, that posits deviations from the EA assumption. Our inferential
strategy is based on a new influence function-based, augmented inverse intensity-weighted estimator. Our approach allows for flexible semipara-
metric modeling of the observed data, which is separated from specification of the sensitivity parameter. We apply our method to a randomized

trial of low-income individuals with uncontrolled asthma, and we illustrate implementation of our estimation procedure in detail.

KEYWORDS: asthma; explainable assessment; influence function; inverse intensity weighting; semi-parametric estimation.

1 INTRODUCTION

Many randomized trials are designed to collect outcome infor-
mation at or around certain pre-specified times after random-
ization. In practice, however, there can be substantial variability
in the times when participants’ outcomes are actually assessed.
Such irregular assessment times pose a challenge to learning the
effect of treatment, similar to that posed by missing data. While
the goal is to learn population mean outcomes and treatment ef-
fects at certain target times, not all participants are assessed at
those times, and the observed outcomes may not be represen-
tative. For example, participants may miss or postpone data col-
lection appointments at times when their outcome is worse, such
that outcomes in the study data tend to be better compared to the
population distribution. In other studies, participants may tend
to have assessments at times when their outcome is worse—for
example, if the study collects data at “as-needed” appointments.
‘We say the assessment times are informative if the distribution of
observed outcomes at a given time differs from the population
distribution of outcomes at that time.

A number of inferential methods have been developed for
prospective studies with informative assessment times. All ap-
proaches impose untestable assumptions about the joint distri-

bution of the outcome and assessment time processes. Lin and
Ying (2001) posited semi-parametric regression models with
time-varying covariates for the outcome and assessment time
processes, and they used an assumption that the 2 processes
are conditionally independent given these time-varying covari-
ates to construct estimating equations for the outcome regres-
sion parameters. Their approach was generalized by several au-
thors to allow for dependence between the outcome and as-
sessment time processes through latent variables (eg, random
effects and frailty terms) in addition to covariates in the out-
come regression model; see, for example, Sun et al. (2007),
Sun et al. (2011a), Sun et al. (2011b), Liang et al. (2009). Lin
et al. (2004) instead developed an inverse intensity weighting
approach, also within an estimating equations framework, un-
der which the outcome and assessment time processes can be
associated through past observed outcomes and time-varying
covariates that are not included in the outcome model. There-
fore, their approach allows inference for the marginal mean of
the outcome process. Inverse intensity weighting approaches
have also been developed by Biizkova and Lumley (2007,2009),
Pullenayegum and Feldman (2013), and Sun et al. (2016).
Other authors have used likelihood-based approaches coupled
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FIGURE 1 Assessment times and outcomes in the Asthma Research for the Community (ARC) study. Panel A: assessment times by treatment
arm. The protocol called for assessments at 3, 6, 9, and 12 months after randomization, but there was substantial variability in the actual times
of assessment around these targeted times in each arm. Panel B: outcome trajectories for a sample of participants, showing their score on the
Asthma Control Questionnaire (ACQ) at each assessment time. Outcomes fluctuated considerably over time for some participants.

with assumptions that obviate the need for modeling the as-
sessment time process: Lipsitz et al. (2002) used a paramet-
ric approach, while Chen et al. (2015) and Shen et al. (2019)
used composite likelihoods conditioned on order statistics to
express the conditional density of observed outcomes in terms
of the outcome density of interest. As noted above, the key
caveat for all of these approaches is that untestable assump-
tions are needed; therefore, sensitivity analysis would be a valu-
able addition to each method. This is analogous to methods
for trials with missing data, which require untestable assump-
tions such as missing at random. There, sensitivity analysis
has been recognized as an important component of the analy-
sis; see, for example, the report, The Prevention and Treatment
of Missing Data in Clinical Trials (National Research Council,
2010).

Inverse intensity weighting approaches rely on the assumption
that assessment and outcomes at each time ¢ are related only
through study data observed before time ¢, such as baseline co-
variates, treatment assignment, times of earlier assessments, and
outcomes and time-varying covariates observed at those earlier
assessments. We refer to this assumption as explainable assess-
ment. While it is less restrictive than assuming that outcomes and
assessment times are unrelated or related only through baseline
variables, the explainable assessment assumption may not hold
in some studies. For example, some participants could have a
new downturn in their health that also prevents them from at-
tending a data collection appointment. Therefore, it is important
to assess how inference changes under departures from this as-
sumption.

Here, we develop a sensitivity analysis methodology, anchored
at the explainable assessment assumption, for estimating the
population mean of the (possibly unobserved) outcome val-
ues at a fixed time after randomization. Our method accounts

for the possibility that participants with worse outcomes at a
given time may be more (or less) likely than other participants
to have assessments at that time, even after controlling for vari-
ables observed earlier in the study. Our estimation approach
uses a new influence function-based augmented inverse intensity-
weighted estimator, which allows for flexible semi-parametric
modeling while allowing for root-n rates of convergence for our
estimator. Additionally, all modeling of the observed data is sep-
arate from the sensitivity parameter.

We apply our methodology to the Asthma Research for the
Community (ARC) study (Apter et al., 2019), a pragmatic ran-
domized trial of 301 low-income participants with uncontrolled
asthma. Participants in the active control group received usual
care plus access to and training in a web-based portal designed to
improve communication between participants and their health-
care providers. Participants in the intervention group received
home visits by community health workers to promote care coor-
dination and help with the use of the patient portal, in addition
to usual care and portal training. The primary outcome was the
score on the Asthma Control Questionnaire (ACQ) (Juniper
etal, 1999), reflecting symptoms over the week prior to assess-
ment. The study protocol called for outcome data to be collected
at 3, 6,9, and 12 months after randomization; however, research
coordinators were often unable to schedule data collection ap-
pointments until substantially later than these targeted times.
Figure 1 shows the actual times of assessments. Additionally, in
the intervention (control) arm, 4 (10) participants had 0 post-
baseline assessments, 9 (8) had only 1, 24 (29) had only 2, and
34 (27) had only 3 post-baseline assessments.

Data on specific reasons for delays were not collected; how-
ever, investigators believe that difficulties in reaching partici-
pants were largely due to factors such as participants’ compet-
ing work obligations and other demands on their time, where
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participants may have paid less close attention to requests for
follow-up assessments during times when they were function-
ing well. There were also some delays when participants waited
to return contact from project staff because they were not feel-
ing well enough or were seeking treatment or were hospitalized.
Figure 1 also shows outcome trajectories for a sample of partic-
ipants, with substantial increases and decreases in ACQ_Score
over time for some individuals. Given all these factors, it is pos-
sible that assessment at time ¢ may be associated with the out-
come at time t, even after adjusting for variables such as pre-
vious outcome values. The distribution of assessment times in
Figure 1 is similar in both arms, as is the distribution of inter-
assessment times (not shown); however, this does not indicate
that treatment effect estimation would remain valid if we failed
to account for informative assessment times in the analysis. For
example, the direction or strength of informativeness could be
differential across treatment arms.

The rest of the paper is organized as follows: in Section 2, we
introduce notation and define explainable assessment. In Sec-
tion 3, we present our sensitivity analysis framework and model
assumptions. Section 4 details our estimation procedure. In Sec-
tion 5, we discuss calibration of the sensitivity parameter. A re-
analysis of the ARC study is provided in Section 6. A simulation
study is presented in Section 7, and Section 8 concludes with a
discussion. A tutorial illustrating implementation of our estima-
tor on simulated data is provided in Web Appendix A.1 of the
Supplementary Materials, along with all code and the simulated
dataset.

2 BACKGROUND
2.1 Setting and notation

We consider a trial with a continuous outcome in which partic-
ipants are randomized to either treatment or control. Each par-
ticipant’s outcome is assessed at baseline and at some number
of subsequent times, where the timing and possibly the num-
ber of post-baseline assessments vary by participant. The goal of
the trial is to learn the population mean outcome under treat-
ment versus control at one or more fixed follow-up times. For
simplicity, we suppose that there is some time interval [t;, t; ]
that includes all of these target follow-up times, and such that
assessments take place throughout this interval in each arm; see
Web Appendix A.2 for trials with gaps in time when few assess-
ments occur. We assume that no participants drop out of the
study (though they may have fewer assessments than the proto-
col specifies).

Let A be the treatment assignment for a random individual,
with A = 1if the individual is assigned to treatment and A = 0
if they are assigned to control. Let T be the end of follow-up; note
that [0, 7] is the maximal period of follow-up, while the inter-
val [t;, t,] described above is a possibly smaller interval (with
0 < t; <t, < 1) selected by the analyst over which inference
will be drawn; see also the positivity requirement in Assumption
2. For each t € [0, 7], let Y(t) be the (possibly unobserved)
value of the participant’s outcome at time t. If fixed and/or time-
varying auxiliary covariates are collected, let X (¢ ) be the value of
the participant’s covariates at time ¢. Let N (¢ ) be the number of
assessments that the individual has had up through time t, and let
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AN(t) = N(t) — N(t—) be the indicator that the individual
has an assessment at time t. Let T} be the time of the individual’s
kth post-baseline assessment. We refer to {Y () : t € [0, t]} as
the outcome processand {N(t) : t € [0, t]} asthe assessment pro-
cess. For each t € [0, 7], let O(t) denote all of the participant’s
study data observed before time ¢, including baseline data, treat-
ment assignment, times of assessments prior to ¢, and data col-
lected at each assessment prior to t. We call O(t) the partici-
pant’s observed past before time t, with O = O() the partici-
pant’s observed data over the entire study. Finally, for each t €
[0, T],let Y!(t) and YO(t) be the outcomes that the participant
would have at time ¢ under assignment to treatment and control,
respectively. Let t;(t) = E {Yl(t)} and puo(t) = E {Yo(t)},
the population mean outcome at time ¢ were all individuals as-
signed to treatment or to control, respectively. For the effect of
treatment, we focus on the difference § (t) = 1t (t) — 1o (t).

2.2 Explainable assessment

The assumption of explainable assessment says (informally) that
any relationship between assessment at time ¢ and the outcome
Y (t) is accounted for by the observed past O(t). This assump-
tion has been referred to as sequential ignorability (Lin et al.,
2004), visiting at random (Pullenayegum and Lim, 2016), or as-
sessment at random (Pullenayegum and Scharfstein, 2022), and
is analogous to the sequential exchangeability assumption that
has been used in the longitudinal missing data literature, for ex-
ample, in Vansteelandt et al. (2007). To define explainable as-
sessment formally, here we use the intensity function for the as-
sessment process given the observed past:

Aelo@)} =

lim [P{N(t fe)—N(t—)=1] 6(t)}/e], (1)

where N(t + €) — N(t—) is the indicator that the participant
has an assessment dEring the time interval [¢, t + ¢]. Consider
atime t with A {t | O(t)} > 0. We define

dF {y(t) | AN(t) =1,0(t)} =
Elin01+ dF{y(t) IN(t +€) = N(t—) = 1,0(t)}
and
dF {y(t) | AN(t) =0,0(t)} =
el_i)n& dF{y(t) IN(t +€) —N(t—) =0,0(t)},

the distributions of Y (t) among those who were, and who were
not, assessed at time ¢, given O(t).

Definition 1 (Explainable assessment) We say that assessment

is explainable (by the observed past) if
dF {y(t) | AN(£)=1,0(t)} =
dF {y(t) | AN(t) =0, 0(t)}
forallt with 2. {t | O(t)} > o.
That is, within strata of the observed past, under explainable

assessment the distribution of Y (¢) is the same among those
who were, and who were not, assessed at time t.
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FIGURE 2 Illustration of the tilt assumption (Assumption 1) in the context of the Asthma Research for the Community (ARC) trial. Panel A:
distribution of Y (¢) at 6 months among participants with a certain observed past who were assessed at 6 months. Panel B: posited distributions
of Y (t) at 6 months among participants who had the same observed past but were not assessed at 6 months. Under the explainable assessment
assumption (« = 0), the distribution for assessed versus non-assessed participants would be the same. Under a positive (negative) value of
the distribution for non-assessed participants would be tilted with more weight on higher (lower) values of Y (¢ ). Here, we show smoothed

depictions of the probability mass functions for this outcome.

Lin et al. (2004) developed the method of inverse inten-
sity weighting for studies with explainable assessment, extend-
ing weighting methods to the continuous-time setting by using
weights based on the intensity function in Equation (1). The
weights create a pseudo-population in which assessment times
and outcomes are no longer related if assessment is explainable.

3 SENSITIVITY ANALYSIS FRAMEWORK AND
MODELS

In some studies, dependence between assessment and outcomes
at time ¢t may not be fully explained by variables from earlier
assessments. For example, in studies that collect outcomes at
“as-needed” appointments, a sudden downturn in health may
lead participants to seek care. Unfortunately, whether assess-
ment is explainable cannot be determined from the study data,
which contain no information about the distribution of unob-
served outcomes, dF {y(t) | AN(t) =0, O(t) } In particular,
the current outcome Y (t) could impact assessment at t even
if earlier outcomes do not impact assessment at ¢ strongly, par-
ticularly in studies where outcomes tend to fluctuate over time.
There may be alternate assumptions that are equally as plausible
as explainable assessment, which could yield different inferences
about the treatment effect. Our sensitivity analysis provides an
inferential strategy for the treatment effect 5 (¢ ) under a range of
different plausible assumptions.

3.1 Sensitivity analysis framework

Here, we draw inference for 1t,(t) = E {Y“ (t)} separately for
each treatment assignment a = 0, 1. We leverage the fact that,

by randomization, u,(t) = E{Y(t) | A = a}, the mean out-
come at time t among participants assigned to treatment arm a,
and we work separately by treatment arm. That is, all assump-
tions, distributions, and estimators are treatment arm-specific.
For ease of notation, we suppress dependence on the treatment
arm until Section 4.4. In addition to explainable assessment,
we include assumptions under which outcomes among partic-
ipants who are not assessed at a given time t tend to be larger,
or smaller, than outcomes among similar participants who are
assessed at time t. Specifically, dF {y(t) | AN(t) =0, a(t)}
is assumed to be some “tilted version” of the distribution
dF {y(t) | AN(t) =1, B(t)}, with the magnitude and direc-
tion of the tilt determined by an arm-specific sensitivity parame-
ter o. We assume that E [exp{otY(t)} | AN(t) =1, a(t)] ex-
ists for all o in some neighborhood of & = 0. Then, for each
value of & in a range around o = 0 to be specified by the ana-
lyst (see Section S) and lying within this neighborhood:

Assumption 1 (Tilting assumption) For each time t with
Atl1o()} >0,

dF {y(t) | AN(t) =0,0(t)} =
dF {y(t) | AN(t) = 1, 0(t) } exp{ary(t)}/c{O(1): t},
where ¢ {6(1?); a} =E [exp{aY(t)} | AN(t) =1, 5(1‘)] and

we assume ¢ {a(t); Ol} < 00.

For a negative (positive) value of «, the distribution of
unobserved outcomes in the given arm is tilted to the left
(right) relative to the distribution of observed outcomes in
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that arm, with smaller (larger) values of Y (t) receiving greater
weight. A value of & = 0, or no tilt, is the explainable assess-
ment assumption. Figure 2 illustrates tilting for values of o =
—0.6, —0.3, 0, 0.3, 0.6 in the context of the ARC trial. More
generally, an alternate version of the tilting assumption can be
used, with a different choice of function qft, Y (t); o} in place of
aY (t); here we use Y (t ) for interpretability. The construction
that we use here, known as exponential tilting (Barndorff-Nielsen
and Cox, 1994), has been used by Rotnitzky et al. (2001), Birm-
ingham et al. (2003), Vansteelandt et al. (2007), and Scharf-
stein and McDermott (2019), among others, in sensitivity anal-
yses for trials with missing or censored data. It was also used by
Franks et al. (2020) for observational studies with possible un-
measured confounding and for trials with irregular and informa-
tive assessment times by Wang (2020). Wang (2020) developed
a discrete-time framework with estimation carried out using g-
computation with fully parametric models. In contrast, our in-
fluence function-based approach allows more flexible modeling
while maintaining /7 rates of convergence.

Proposition 1 For each time t with A {t | 6(t)} > 0, the mean
w(t) in each arm is identified under Assumption 1, as

B E[Y(t) exp{aY (t)} | AN(t) = 1,6(t)]
u(t) =E ( E[exp{ocY(t)} | AN(t) = 1,6(1‘)] ) ’

The proof is shown in Web Appendix B.1 in the Supplement
ary Materials and also shows the following;:

Corollary 1 For each t with A {t | 6(1‘)} > 0, the conditional

mean outcome given the observed past, E {Y (t) | O(t)}, is identi-
fied from the observed data as

E[Y () exp{aY (t)} | AN(t) = 1,0(t)]
E[exp{aY ()} | AN(t) =1, 0(t)]

Efr@®)|0(t)} =

3.2 Inverse intensity weighting under the tilting assumption

Our approach extends inverse intensity-weighting to our sen-
sitivity analysis framework. Since assessment at time ¢ can de-
pend on the current outcome Y (¢) under Assumption 1, we use
weights based on the following intensity function:

p{t1Y(t),0(t)}) = (2)
lim [P{N(t +€) —=N(t—) =11Y(t), 0(t)}/e].

e—0

Assumption 2 (Positivity assumption)_ There is some ¢ > 0
such that, for all t in [t;, t,], p {t | Y (t), O(t)} > c for all values
of Y(t) and O(t).

The intensity function p { tY(t), a(t)} is related to the in-
tensity function A {t | B(t)} in Equation (1) through the fol-
lowing:

Biometrics, 2024, Vol. 80, No.4 e §

Proposition 2 Under Assumptions 1 and 2, for each t in [t1, t,],
plt1Y().00)} =
Mt 1 0) ) E[ explay (t)} | AN(t) = 1,0(t)]/ explaY ()}.

The proofis given in Web Appendix B.1. We leverage this rela-
tionship in Section 4 to keep observed data modeling separated
from sensitivity parameters. Proposition 2 also gives an interpre-
tation of & as the log of the ratio of the intensities at time ¢ for par-
ticipants who have the same observed past and whose outcomes
Y (t) differ by one unit:

[ p{t1Y(t) =y(t), 0(t)} } .

p{t 1Y () =y(t) +1,0(1)}

3.3 Additional assumptions

Proposition 1 shows that, under Assumption 1, p(t) at each
time ¢t would theoretically be estimable from infinite data. In or-
der to estimate 14 (t) from finite data, we also make the follow-
ing smoothing assumption that allows us to borrow information
across different times.

Assumption 3 (Marginal mean assumption) u(t) =
B(t)'B forallt € [ti, ], for some specified vector-valued
basis  function B(t) = (By(t),...,B,(t)) with V=
ftztl B(t)B(t)'dt invertible, and B € RF a parameter vector.

Note that Assumption 3 uses an identity link appropriate for a
continuous outcome.

Proposition 3 The parameter B is identified under Assumptions 1,
2, and 3.

Proof. Under Assumptions 1 and 2, u(t) is identified from the
observed data for each t € [t;, t,], and under Assumption 3,

B=V [z, B(t)u(t)dt.
U

Finally, we assume that assessment depends on future values
of the outcome and covariates, the current value of covariates,
and past unobserved values of the outcome and covariates only
through past observed data and the current value of the out-
come:

Assumption 4 (Non-future dependence assumption) LetL =
{(Y(t),X(t):0 <t <71} Then
lime_,o+ [P{N(t +€) = N(t—) =1 O(t), L}/¢] =

lime o+ [P{N(t +€) = N(t=) = 1| 0(t), Y (t)} /€],

Similar non-future dependence assumptions have been used
in longitudinal settings with missing data (Kenward et al., 2003;
Wang and Daniels, 2011). Assumption 4 aids in derivation of an
influence function for 8. However, investigators should consider
whether it is tenable in their study. An example where Assump-
tion 4 would likely not hold is a study where assessments occur
at doctors’ visits when participants are receiving care, which then
impacts future outcomes. In this case, after adjusting for the ob-
served pastand Y (¢ ), there could be dependence between future
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outcomes and assessment at time ¢, since both are related to re-
ceiving care at time f. (Note that here receipt of care at time t is
not conditioned on, since our approach does not accommodate
adjustment for variables that occur at the time of assessment ¢,
except for Y (¢).)

4 ESTIMATION
4.1 Observed data modeling

To implement our approach, researchers must fit 2 types of mod-
els. First, in each arm the intensity function A {t | O(t) } ismod-
eled using an Andersen-Gill model (Andersen and Gill, 1982),
orastratified Andersen-Gill model stratified by assessment num-
ber A {t | 6(t)} = Aoi(t) exp {y/Z(t)}Dk(t). Here, Z(t) isa
specified (possibly vector-valued) function of the participant’s
observed past O(t) containing key baseline covariates and time-
varying factors that impact both assessment time and outcome,
such as outcomes at previous assessments. The function Ag i (t)
is an unspecified baseline intensity function for stratum k, y is a
parameter vector, and Dy (t) is an indicator that the participant
is at risk for having the kth assessment at time . The baseline in-
tensity functions A (¢ ) are estimated by kernel smoothing the
Breslow estimator of the cumulative baseline intensity functions
(Breslow, 1972).

Second, the conditional distribution of observed
outcomes in each arm given the observed past,
dF {y(t) | AN(t) =1, a(t)}, is modeled using a single
index model (Chiang and Huang, 2012). In the single index
model, the conditional cumulative distribution function of Y (¢ )
given a vector of predictors, say W (t), is assumed to depend
on W (t) only through a scalar W (¢). Thus, this function is
modeled as G{-, W (t); 0}, where G{y, u; 8} is a cumulative
distribution function in y for each u, and @ is a vector of un-
known parameters. The estimator of G is a step function in y
that is kernel smoothed with respect to W (t ) via a bandwidth
parameter h; 6 and h are jointly estimated by minimizing a
pseudo sum of integrated squares (Chiang and Huang, 2012).
Spec1ﬁcally, in our context, for each t and each value of o(t),

{y(t) | AN(t) =1,0(t) = o(t)} is a step function with
jumps at all outcome values observed in the data.

4.2 Estimation of the mean outcome gt (t ) under &

The following result provides a way of constructing estimators
for B and 14(t) that incorporate the flexible models fit in Sec-
tion 4.1, yet converge at fast parametric rates.

Theorem 1 Under Assumptions 1-4, an influence function for B is
given by

53
9(0) = /
t=t,
t
“
t=t,

where B(t) and V are given in Assumption 3.

[Y(t) —E{v(t) | 0(t)}]
p{t1Y(t),0(t)}

V'B(t)E{Y (t) | O(t)}dt — B,

V'B(t) dN(t)

The proof of Theorem 1 is given in Web Appendix B.3.

Suppose that we have data for n independent individuals.
We construct estimators 3 and f£(t) using the following steps,
where we use a subscript i to denote data for individual i. For
each individual i:

1. For each assessment k with Ty in the interval [t;, t, ], com-
pute

E[exp {o¥ (Ti)} | AN(Ty) = 1, 0,(Tw)] =
[ et (1) =51 ANCr) =101,
where ) is the set of all outcome values occurring in the
data; the estimated conditional mean (see Corollary 1)
E{Y(T;) | 0,(T)} =

E[Y (Ty) exp{erY (Ty)} | AN(Ty) = 1, 0,(Ty)]
Elexp{aY (Ty)} | AN(Ty) = 1, 0,(Ty)]

and the estimated intensity (see Proposition 2)
P{Tu | Yi(Ty), 0i(Ty) } =
ox(Te) explP'Zi(Ti)) expl—a¥i(T,)) x
ElexpleY (Tp)} | AN(Ty) = 1,0,(Ty)]-

2. For each time t in [t, t,], compute the predicted mean
outcome at time ¢ given their observed past before time
t:

E{Y(t) | 0:(t)} =

BIY (¢) expla ()} | AN(t) = 1, 0,(t)]
Elexp{aY (t)} | AN(t) =1, 0,(t)]

3. Compute @(Oi) =

- [¥:(Tie) — E{Y (Ty) | 0(T3)}]
kz{ B (T, 0Ty

t
“f
t=t

where S; = {k: Ty € [t1, 1]}

VIB()E{Y (t) | O,(t)}dt

Our augmented inverse mtenstty-wezghted estimators are ,3 =

Ly, W(0) and fi(t) = B'B(t).

4.3 Large-sample distribution of B

If the models for A {t | 6(t)} and
{ (t) | AN(t) =1 6(t)} are both correctly specified,
and if Assumptions 1-4 and additional regularity condi-
tions hold, then ./n (ﬂ ﬂ) = N[ Var{go(O)}] See
Web Appendix B.4; there we derive the second-order remain-
der term in an expansion of \/n (/3 /3) following Kennedy
(2016), and we show conditions under which this remainder

term is asymptotically negligible.
From this result, influence
estimators for E and [i(t) are given by @'(E) =

function-based variance
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iz [¥0) - B}{¥0) -B] and Varfn()) =

i=
B(t)’ﬁr(ﬁ)B(t). A Wald confidence interval for wu(t) can
be constructed using this influence function-based variance
estimator or using a jackknife variance estimator. In simula-
tions mimicking the ARC data, we found that nonparametric
bootstrap was not a feasible of way of constructing confidence
intervals; ties in bootstrapped datasets caused estimates of con-
ditional cumulative distribution functions based on the single
index model to be undefined.

4.4 Inference for 8(t)

Here, we re-introduce subscripts for each treatment arm, and we
also let or; and o be sensitivity parameters for the treatment
and control arms, respectively. To conduct the sensitivity anal-
ysis for §(t), the estimation procedure above is repeated in the
treatment arm to estimate (¢, (t) under a range of ¢ values, and
separately in the control arm to estimate 4o (f) under a range of
oo values. These results are then combined to estimate the treat-
ment effect §(t) = 11 (t) — po(t) over a grid of sensitivity pa-
rameters (o, o} ).

5 SELECTION OF A RANGE OF SENSITIVITY
PARAMETER VALUES

The analyst must decide on a range of sensitivity parameter
values to include in the sensitivity analysis. Domain expertise
should be used in making this decision, and how best to use
such expertise is a key question for all sensitivity analyses. Cinelli
and Hazlett (2020) have noted that “perhaps [the] most fun-
damental obstacle to the use of sensitivity analysis is the diffi-
culty in connecting the formal results to the researcher’s sub-
stantive understanding about the object under study,” and they
write that the “bounding procedure we should use depends on
which...quantities the investigator prefers and can most soundly
reason about in their own research.” In keeping with this, we
propose the following approach in which domain experts rea-
son about the treatment arm-specific mean outcome: We first
query domain experts for extreme values flmin and fimay Such
that, in their judgment, a value of j4(t) outside of the bounds
(Mmin» Mmax) at any time t would be implausible. We then treat
any value « under which (¢ ) falls outside of (f4mins max) for
some t as implausible, and retain all other values. Other possible
approaches could draw on bounding procedures that have been
developed for sensitivity analyses for unmeasured confounding
in observational studies. Authors including Franks et al. (2020),
Sjélander et al. (2022), and Veitch and Zaveri (2020) have de-
veloped methods that use the strength of measured covariates’
impact on the exposure and outcome to calibrate plausible val-
ues for the impact of unmeasured factors, after adjusting for
measured covariates. An approach for our setting that borrows
from ideas of Sjélander et al. (2022) could be to use some ob-
servable quantity that is related to the attenuation in E{Y () |
AN(t) =1} — E{Y(t) | AN(t) = 0} obtained by adjusting
for the observed past O(t). This could in principle be used
to calibrate plausible values for E{Y (t) | AN(t) = 1, O(t)} —
E{Y(t) | AN(t) = 0, O(t)}, the residual difference due to un-
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measured factors U (t) after adjusting for O(t). As with other
benchmarking approaches, this would use researchers’ substan-
tive beliefs that the strength of the impact of U(¢) on AN(t)
and Y (t), after adjusting for O(t), is no more than some factor,
say r, times the marginal impact of O(t) on AN(t) and Y (t).
Careful consideration would be needed in selecting a plausible
value of r, taking into account the time scale of the study, since
U (t) could include the outcome just before time ¢, whereas the
impact of O(t) on AN(t) and Y (t) could be dampened due to
the time elapsed since the previous study visit. Development of
a method along these lines, and investigations that would guide
when and how to implement it in practice, could be a direction
for future research.

6 DATA ANALYSIS: ARC TRIAL

Here, we analyze the ARC data using our sensitivity analysis
methodology. The ACQ_is on a scale from 0 (completely con-
trolled asthma) to 6 (extremely uncontrolled asthma) and takes
valuesin {0, 1/6,2/6,3/6, ..., 6}. Apositive value of o, posits
that unobserved values of the ACQ_Score in treatment arm a
tend to be higher (that is, worse) than observed values of the out-
come in that arm at each time ¢, after controlling for variables ob-
served before time t. This could be the case if participants tended
to miss or postpone data collection appointments at times when
their asthma was worse, so that some of the participants” higher
ACQ Score values were not observed, while ¢, could be nega-
tive if participants in arm a tended to be more engaged with the
study at times when their asthma was worse. Since we do not
know which, if either, of these is the case, we consider positive,
negative, and zero values of ov,. We consider Assumption 4 to be
reasonable since the assessment process was not tied to clinical
care that might affect future outcomes.

We estimate f4;(t) and p1o(t) over a time interval of 60-
460 days, since this interval contains the target times of 90, 180,
270, and 360 days and assessments occur throughout this pe-
riod. For each a = 0, 1, we assume that u,(t) = B,B(t) for
t € [60, 460], with B(t) a cubic spline basis with one interior
knot at t = 260 days; this choice of B(t) allows the marginal
mean to be a fairly flexible smooth function of time. We fit the
models described in Section 4.1, modeling the intensity function
A { t]o(t )} separately for each treatment arm using a stratified
Andersen-Gill model with the outcome at the previous assess-
ment as the predictor. We also considered an intensity model
that includes lag time since the previous visit as an additional
predictor. While lag time was a strong predictor in this model,
the resulting inference for 1,(t) was extremely similar under
both models, and we therefore present the results of the sim-
pler model. The coefficient for the previous outcome is —0.024
(standard error 0.038) in the intervention arm, and 0.042 (stan-
dard error 0.036) in the control arm. We estimated the base-
line intensity functions using kernel smoothing of the Breslow
estimate of the cumulative baseline intensity, with an Epanech-
nikov kernel and a bandwidth of 30 days. We modeled the con-
ditional distribution of observed outcomes separately for each
treatment arm using a single index model with the current time,
lag time since the previous assessment, and a natural spline of
the outcome at the previous assessment as predictors. We then
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FIGURE 3 Estimated population means of scores on the Asthma Control Questionnaire (ACQ) in the Asthma Research for the Community
(ARC) trial under a range of sensitivity parameter values. Estimation is made under values of @ = —0.6, —0.3, 0, 0.3, 0.6, where a positive
(negative) value of & posits that unobserved outcome values at time # tend to be higher (lower) than observed values, after controlling for
variables observed before time t. Upper panels: point estimates on the interval 60-460 days after randomization in the intervention (PT+HYV)
arm (panel A) and the control (PT) arm (panel B). Lower panels: point estimates and 95% Wald confidence intervals using the jackknife
variance estimate at each target time of 90, 180, 270, and 360 days in the intervention arm (panel C) and the control arm (panel D). For each
arm, only sensitivity parameter values under which the estimated curves lie completely between the dotted lines at f4yin = 1.2 and [l = 3.0

are considered plausible based on subject-matter expertise.

constructed the augmented inverse intensity weighted estima-
tors given in Section 4.2.

Figure 3 shows estimates of the curve 1, (t),t € [60, 460],
under a range of o values and estimates of o(t),t €
[60, 460], under a range of &g values, with higher 1, (t) under
higher values of «,,. Estimates and confidence intervals for 1, (t)
at the target times are also shown. The minimal clinically im-
portant difference for the ACQ_Score is 0.5; therefore, one way
of interpreting the magnitude of ¢, in this study is that increas-
ing o, by 0.3 corresponds to an increase in /,(t) that, at some
times t, is approximately as much as the minimal clinically im-
portant difference for the outcome. Next, we consider the ranges

of o and o values to include. Our clinical collaborator (Author
AJA) considered that a mean ACQ Score of 3.0 or higher, or 1.2
or lower, at any time would be extreme in either treatment arm.
These bounds are shown in Figure 3. A value of &y > 0.52 led
to avalue of /4; (t) that was greater than 3.0, and a value of g >
0.25 led to a value of 1o (t) that was greater than 3.0; therefore
we use bounds of —0.6 < a; < 0.52and —0.6 < g < 0.25in
our final sensitivity analysis.

Figure 4 shows estimates and confidence intervals for §(t) at
6 and 12 months under selected values of oy and «;. If we as-
sume oy = «; (which includes explainable assessment in each
treatment arm), there is not enough evidence to conclude a
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FIGURE 4 Treatment effect estimates from the Asthma Research for the Community (ARC) data under selected values of the sensitivity
parameters o] and otg. Shown are estimates (95% CI) for the treatment effect § () = 41 (t) — 1o (¢) at 6 months and 12 months. Highlighted
entries in the lower right for Month 6 and Month 12 correspond to values of &; and &g under which there would be evidence that the home
visits intervention reduces (that is, improves) the population mean score on the Asthma Control Questionnaire (ACQ) at that time, compared
to portal training alone. The highlighted entry in the upper left for Month 12 corresponds to values under which there would be evidence that
the intervention raises the population mean ACQ Score. Confidence intervals are Wald intervals using the jackknife variance estimate.

treatment effect at 6 months or at 12 months. However, if we
consider the possibility that informative assessments may oper-
ate differently in each arm, then we do have evidence of a treat-
ment effect in some cases. For example, if we assume g = 0, but
assume that, in the intervention arm, unobserved values of the
ACQ Score tend to be lower than observed values by an amount
corresponding to ; = —0.2, then there would be evidence that
the home visits intervention improves (that is, reduces) the pop-
ulation mean ACQ Score at 6 months compared to portal train-
ingalone, by an estimated six tenths of a point. Estimation of § (¢ )
under a finer grid of (@, o1 ) values is presented via the contour
plots in Figure 5, showing point estimates and confidence inter-
val information at 6 and 12 months. Point estimates range be-
tween —1.48 and 1.32 at 6 months and between —0.85 and 1.19
at 12 months. If o) and o are similar, orif ; > op and the dif-
ference in values no more than 0.5, then there is not enough ev-
idence to conclude a treatment effect at 6 months. On the other
hand, if @y > @1 4 0.2, then in many cases there would be ev-
idence that the intervention improves (reduces) the population
mean ACQ _Score relative to portal training alone at 6 months.
There are also values of &y and «; under which there would be
evidence that the population mean ACQ Score is higher (that is,
worse) under the intervention at 6 months; however, informa-
tiveness would have to be strongly differential across treatment
arms. Informativeness would also have to be strongly differential
across arms to have evidence of either a positive or negative treat-
ment effect at 12 months. In this study, such a large difference in
the value of the sensitivity parameters between arms would likely
not be plausible.

7 SIMULATIONS

We generated realistic simulated data based on the ARC data,
with a sample size of N = 200 in each arm. Details of our data-
generating process are given in Web Appendix C. Data were gen-
erated to follow our sensitivity analysis assumption (Assump-
tion 1) with true a; and o values of —0.6, —0.3, 0, 0.3, and 0.6
and analyzed using our augmented inverse intensity-weighted
estimators. We first assessed the finite sample performance of
our estimators by analyzing the simulated data using the true val-
ues of oy and op. To demonstrate the benefit of our approach
by showing the dangers of not accounting for informative as-
sessment times in the analysis, we also analyze the same sim-
ulated data using the explainable assessment assumption that
a1 = op = 0 in each case. This explores the performance of an
approach that relies on the explainable assessment assumption
in cases where that assumption does not hold. Results for the
treatment effects at 6 months and 12 months for each of these
analyses are shown in Table 1. Results for the mean outcome in
each treatment arm at 3, 6,9, and 12 months (including the true
values of each mean) are given in Web Appendix C. In the anal-
ysis estimating treatment effects using the true values of ov; and
p, the empirical bias over 500 simulations is small, with an ab-
solute value of less than 0.05 in each case. Confidence interval
coverage over 500 simulations is close to the nominal level of
0.95, ranging between 0.930 and 0.966. In the analysis assum-
ingo; = ap = 0, in many cases the bias is large and confidence
interval coverage is poor, including coverage as low as 0.594
even in cases with o = o. This highlights the importance of
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FIGURE § Sensitivity analysis for the Asthma Research for the Community (ARC) trial. Panels on the left show the point estimate of the
treatment effect § (¢) at 6 months (panel A) and 12 months (panel C) under each pair of sensitivity parameter values. Point estimates vary
between —1.48 and 1.32 at 6 months and between —0.85 and 1.19 at 12 months. Panels on the right display information about 95%
confidence intervals for § (¢) at 6 months (panel B) and 12 months (panel D). The region in white corresponds to sensitivity parameter values
under which the confidence interval contains zero, while the shaded region in the lower right (upper left) corresponds to values under which
the confidence interval is entirely negative (positive); and the contour height is the value closest to zero that is inside the confidence interval.
Confidence intervals are Wald intervals using the jackknife variance estimate.

considering a range of different assumptions through sensitivity
analysis.

8 DISCUSSION

In many trials where the timing of outcome assessments varies by
participant, assessment times may be related to underlying out-
come values. This dependence can give misleading conclusions
about the effect of treatment if not correctly accounted for in the
analysis. Analysis methods for this setting make an untestable as-
sumption about the informative assessment process; however,
many assumptions can be consistent with the study data, and
the treatment effect may differ across these assumptions. In this
sense, researchers face 2 sources of uncertainty: the usual statis-

tical uncertainty due to sample size and the unknown degree to
which assessments may be informative. Our sensitivity analysis
methodology provides researchers with a tool that accounts for
both of these factors. By presenting inferences for treatment ef-
fects under a range of different assumptions, researchers will be
able to provide a more accurate representation of the overall un-
certainty in their study conclusions.

A detailed tutorial for the methodology presented here is in-
cluded in the Supplemental Materials. Additionally, an R pack-
age implementing this methodology titled SensIAT has been
published on CRAN (Redd et al., 2024), and the source code
can be found at https://uofuepibio.github.io/SensIAT/.

Unfortunately, the question of whether assessment times are
informative in a given study cannot necessarily be determined
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TABLE 1 Simulation results. Data were generated under the sensitivity analysis assumption (Assumption 1) using values of g, oy =
—0.6, —0.3, 0, 0.3, 0.6. The treatment effects at 6 and 12 months were then estimated using augmented inverse intensity weighted estima-
tors: (a) using the true values of &g, &y (rows denoted “S.A.”), and (b) under the explainable assessment assumption that o = o; = 0 (rows
denoted “Expl.”). Shown are the absolute values of the empirical bias and the confidence interval coverage across 500 simulations. Confidence
intervals are Wald confidence intervals using the jackknife variance estimate.

True oy

—0.6 —-0.3 0 0.3 0.6
| Bias| Cov. | Bias| Cowv. | Bias| Cov. |Bias| Cov. | Bias| Cov.
0.6 S.A. 0.021 0.936 0.016 0.940 0.010 0.944 0.005 0.958 0.000 0.954
Month 6 Expl. 1.459 0.000 1.162 0.002 0.772 0.008 0.286 0.650 0.272 0.624
03 S.A. 0.015 0.946 0.010 0.946 0.003 0.942 0.001 0.962 0.007 0.954
Expl. 1.044 0.004 0.747 0.014 0.357 0.462 0.129 0.888 0.687 0.052
0 S.A. 0.010 0.952 0.005 0.934 0.001 0.942 0.006 0.956 0.012 0.952
True Expl. 0.686 0.022 0.389 0.398 0.001 0.942 0.487 0.208 1.045 0.006
o1 03 S.A. 0.005 0.954 0.000 0.944 0.006 0.954 0.011 0.954 0.016 0.938
Expl. 0.390 0.396 0.093 0.912 0.297 0.576 0.783 0.028 1.341 0.002
06 S.A. 0.001 0.964 0.004 0.960 0.011 0.956 0.015 0.958 0.021 0.942
Expl. 0.151 0.876 0.146 0.854 0.536 0.160 1.022 0.008 1.580 0.000
06 S.A. 0.004 0.954 0.002 0.952 0.010 0.956 0.021 0.960 0.036 0.956
Month 12 Expl. 1.356 0.000 1.080 0.000 0.717 0.008 0.257 0.652 0.283 0.594
03 S.A. 0.002 0.964 0.008 0.958 0.017 0.956 0.028 0.956 0.042 0.944
Expl. 0.958 0.000 0.682 0.018 0.319 0.496 0.141 0.870 0.681 0.016
True 0 S.A. 0.006 0.956 0.012 0.948 0.020 0.944 0.032 0.940 0.046 0.930
o Expl. 0.619 0.040 0.343 0.450 0.020 0.944 0.480 0.158 1.020 0.000
03 S.A. 0.009 0.960 0.015 0.956 0.023 0.938 0.034 0.938 0.048 0.938
Expl. 0.340 0.458 0.064 0.938 0.299 0.568 0.759 0.008 1.299 0.000
06 S.A. 0.011 0.966 0.017 0.960 0.025 0.952 0.036 0.952 0.050 0.942
Expl. 0.115 0.906 0.161 0.852 0.524 0.092 0.984 0.000 1.524 0.000

from the study data. In particular, assessment times may be in-
formative even in studies without indications such as number
of assessments varying by participant; differential timing of as-
sessments across treatment arms; or timing of assessment im-
pacted by the outcome at previous assessments. Substantive
knowledge about the study should also be consulted in con-
sidering whether participants may be more (or less) likely to
have an assessment when their outcome is worse. If investiga-
tors anticipate having irregular follow-up times in their study,
they can consider conducting participant interviews to learn
whether the reasons for missed, delayed, or early appointments
were related to participants’ outcomes. Participant responses
could then be used to help assess whether sensitivity analysis is
needed and inform the range of sensitivity parameter values to be
included.

In this paper, we opted for an intensity modeling approach, as
was used, for example, in Lin et al. (2004), Sun et al. (2007),
Buzkové and Lumley (2007), and Liang et al. (2009). It would
also be possible to develop a discrete-time version of our ap-
proach using pooled logistic regression with smoothing of the

time-specific intercepts. Our estimation approach was devel-
oped for continuous outcomes and uses a mean model with the
identity link (Assumption 3). Future work will generalize our
work to other link functions, such as the logit link appropriate for
binary outcomes. The ARC study had minimal dropout, and in
our approach we have assumed that no participants are censored
(though they may have fewer assessments than the study pro-
tocol specifies). Future work will relax this assumption. We also
used an assumption of non-future dependence (Assumption 4),
which may not be appropriate for some types of studies. This
assumption is not needed for identification, but is used in our
semi-parametric estimation approach. Finally, an important is-
sue is selecting the range of sensitivity parameter values that will
be included in the analysis. Here, we have used a bounding ap-
proach that uses domain experts’ knowledge in a direct way with-
out the need for additional assumptions; however, this approach
may result in a wide range of values. A key direction for future
research is to develop and study other bounding procedures, in-
cluding methods that would incorporate participant interviews
described above.
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