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Abstract
Recently, strong evidence has accumulated that some solutions to the Navier–
Stokes equations in physically meaningful classes are not unique. The primary
purpose of this paper is to establish necessary properties for the error of hypo-
thetical non-unique Navier–Stokes flows under conditions motivated by the
scaling of the equations. Our first set of results show that some scales are
necessarily active—comparable in norm to the full error—as solutions separ-
ate. ‘Scale’ is interpreted in several ways, namely via algebraic bounds, the
Fourier transform and discrete volume elements. These results include a new
type of uniqueness criteria which is stated in terms of the error. The second
result is a conditional predictability criteria for the separation of small perturb-
ations. An implication is that the error necessarily activates at larger scales as
flows de-correlate. The last result says that the error of the hypothetical non-
unique Leray–Hopf solutions of Jia and Šverák locally grows in a self-similar
fashion. Consequently, within the Leray–Hopf class, energy can hypothetic-
ally de-correlate at a rate which is faster than linear. This contrasts numerical
work on predictability which identifies a linear rate. Our results suggest that
this discrepancy may be explained by the fact that non-uniqueness might arise
from perturbation around a singular flow.
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1. Introduction

We consider the Navier–Stokes equations,

∂tu− ν∆u+ u ·∇u+∇p= 0; ∇ · u= 0, (NS)

which model the motion of a viscous incompressible fluid with velocity u and its associated
pressure p. We consider the problem onR3 × (0,T) for a time T > 0. A foundational mathem-
atical treatment of the problem was provided by Leray in [46] where global weak solutions
were constructed for finite energy data. These solutions are shown to satisfy a global energy
inequality, and can therefore be viewed as physically reasonable. Solutions resembling those
constructed by Leray are referred to as Leray–Hopf solutions. Although it has been nearly
a century since Leray’s original contribution, important questions remain open about (NS).
For example, it is not known if Leray–Hopf solutions can possess finite time singularities. It
is also unknown if unforced Leray–Hopf solutions are unique. In recent years, evidence has
accumulated suggesting negative answers to these questions. In the direction of blow-up, Tao
has constructed singular solutions for a nonlinear model replicating certain features of (NS)
[52]. Regarding uniqueness, Buckmaster and Vicol have demonstrated non-uniqueness in a
class of solutions which is weaker than the Leray–Hopf class using convex integration [18].
These solutions are not known to satisfy the global or local energy inequalities. Under non-
physical forcing, non-uniqueness has been shown in the Leray–Hopf class by Albritton, Brué
and Colombo [3]. These non-uniqueness results are built upon foundational work on the Euler
equations by De Lellis and Szekelyhidi [21], which precedes [18] and Vishik [57, 58] (see
also [4]), which precedes [3]. For the Leray–Hopf class with no forcing, it is possible that
non-uniqueness cannot be studied perturbatively from the Euler equations. Nevertheless, a
conjectural research program of Jia and Šverák [33, 34], as well as the numerical work of
Guillod and Šverák [31], provide strong evidence for non-uniqueness.

The possibility that a deterministic PDE gives rise to multiple solutions from a common ini-
tial condition is a concern in modelling and forecasting. In light of the mounting evidence for
non-uniqueness of solutions to (NS), it is important to understand how non-uniqueness could
evolve. Ideally, all possible solutions remain close together, indicating they are predictable
from a single flow. This can be viewed as a sort of stability. The possibility that two solu-
tions can separate explosively—meaning, e.g. that time derivatives of the separation rate are
unbounded at t= 0—is more concerning from the standpoint of predictability. It is therefore
natural to ask: What are necessary properties for the error of non-unique solutions to (NS)?
One approach to answering this question would be to establish uniqueness criteria in terms of
the error by shifting the condition from the background flow to the error.

Before discussing this prospect we briefly discuss uniqueness criteria for (NS), noting that
the literature is too expansive for a comprehensive review. Classically, uniqueness often comes
for free in settings where the nonlinear problem can be viewed as a perturbation of the heat
equation—this is the case for the strong solutions of Kato [38], see also [23], where uniqueness
within the class of strong solutions follows from the fixed point construction. A more nuanced
problem is that of weak-strong uniqueness, where one solution is assumed to be strong but the
other can be weak. For example, if u0 ∈ L2 ∩ L∞, then a bounded strong solution is known to
exist for a short period of time due to the Kato theory [38] and a global weak solution with
bounded energy is known to exist by Leray’s theory [46]. Weak-strong uniqueness implies
that these agree, at least on the time-scales of the Kato theory. As the Kato solution is smooth,
this is a way to prove regularity for weak solutions. Even more nuanced problems arise at the
interface between the perturbative regime and the fully nonlinear regime where the solutions
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belong to certain Besov spaces [7, 20, 45], Morrey spaces [16, 43] or have some structure [9].
We refer the reader to [44] for additional discussion of the matter.

The literature cited above does not shed light on the evolution of the error in non-uniqueness
scenarios. Importantly, the error can belong to different classes than u or v. So, it is conceivable
that neither u nor v belong to a uniqueness class, but the error w= u− v does. In the case of
non-unique self-similar solutions (in an appropriate class of weak solutions, see, e.g. [8]), the
error w would satisfy w ∈ L∞(0,∞;L3(R3)). If either u or v belong to this class, then w≡ 0.
Therefore, it should not in general be expected that the error fails to be in strong integrability
classes. This is good news from the perspective of forecasting; if this were not the case, then
non-uniqueness would necessarily imply a large error.

It is not obvious how to write uniqueness criteria in terms of the error. To prove uniqueness,
one typically needs to manage the following sort of bound:

[w-quantity]! [scale-invariant quantity] · [w-quantity] . (1.1)

Classical uniqueness criteria guarantee the scale-invariant quantity, which depends on u and
v, is small. So, the right-hand side is absorbed in the left-hand side and the error consequently
vanishes. Size conditions on w do not help close the estimate as u and v necessarily appear.
Therefore, uniqueness criteria in terms of the error must look different. Finding such criteria
is the first goal of this paper. To get around the obstacle in (1.1) we identify conditions on the
error which close these estimates based on the relative smallness of certain scales. In particular,
we pair certain scales in w with the large part of u and require these scales in w to be relatively
small. Heuristically, this amounts to refining (1.1) as follows,

[w-quantity]! [large scale-invariant quantity] · [relatively small w-quantity]

+ [small scale-invariant quantity] · [w-quantity] . (1.2)

Because smallness appears in both terms on the right-hand side, the estimate can be closed.
A second goal of this paper is to identify additional properties of the error based on the

condition that the error separates en masse at a scaling invariant rate. In particular, for several
interpretations of ‘scale,’ we will show that intermediate scales which are comparable to t1/2

are necessarily active as two solutions separate. The second part of this paper examines how
small perturbations de-correlate and is motivated by work on predictability [10, 11, 48]. In
this direction, we establish a conditional predictability criteria which states that energy de-
correlation requires a certain configuration of activity below wavenumbers in the dissipative
range. Additionally, we explain how the conjectural existence of non-unique solutions of Jia
and Šverák [33] would imply explosive separation within the Leray–Hopf class, suggesting
that the linear separation rate simulated in [10, 11] is not universal.

1.1. Properties of the error of Navier–Stokes flows

Many of our ideas are motivated by the scaling of (NS): If (u, p) solves the Navier–Stokes
equations, then so does the pair (uλ := λu(λx,λ2t),pλ := λ2p(λx,λ2t)) for any λ> 0. If u=
uλ and p= pλ for all λ, then u is said to be self-similar. A quantity is scaling invariant if it is
unchanged upon rescaling. For example, since∥u∥L3 = ∥uλ∥L3 for every λ, the L3 norm is said
to be scaling invariant.
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We will use u and v to denote two flows having a common initial condition, with w= u− v
being the error. Before giving the results, the main assumptions are stated. The first condition
is that

sup
0<t

sup
3<q!∞

(
t1/2−3/(2q) (∥u∥Lq + ∥v∥Lq)(t)+

(
∥u∥Ḃ−1+3/q

q,∞
+ ∥v∥Ḃ−1+3/q

q,∞

)
(t)
)
" c1, (A1)

for some c1 > 0, which can be large. In analogy with the blow-up literature, we think of this as
a Type I condition in that the controlled quantities are all scaling invariant; Type II conditions
would only assert weaker bounds. A centred Type I condition is also natural, namely

|u|(x, t)+ |v|(x, t)" c1
|x|+

√
t
. (A1’)

These are motivated by the scaling of (NS) and the fact that, roughly speaking, if the flows
satisfied stronger upper bounds, then they would agree due to the classical uniqueness theor-
ies. Thus, these are some of the strictest scenarios where non-uniqueness is plausible. Note
that (A1’) implies (A1).

The second type of condition essentially says that w neither converges to 0 asymptotically,
nor diverges slower than the critical rate as t→ 0+. In particular, it says

∥w∥Lp (t) t1/2−3/(2p) # c2, (A2)

for some c2 > 0 and some 3< p"∞. Compared to (A1) and (A1’), it is less clear that (A2)
holds in general non-uniqueness scenarios. In fact, proving it would amount to shifting a
uniqueness criteria from the background flows to the error, which we discussed above. When
our results use (A2), they should be interpreted as statements about which scales are active
given the assumption that a scaling invariant quantity for the error is non-vanishing at t= 0.

We are now ready to state our main results, which apply to three interpretations of ‘scale.’
We define the different solution classes appearing in these theorems in section 2. Note that for
3< p"∞ there is a local well-posedness theory [27, 38] which implies that any initial data
u0 ∈ Lp produces a unique strong solution u on [0,T0] where

T0 = c̃p∥u0∥2p/(3−p)
Lp ,

satisfying

sup
0!t!T0

∥u∥Lp (t)" 2∥u0∥Lp ,

where c̃p is a constant which only depends on p.
Our first result is motivated by the hypothetical non-uniqueness example of Jia and Šverák

[33], which is self-similar. By [13], self-similar solutions satisfy

|w(x, t) |" C(u0) t3/2
(
|x|+

√
t
)4 .

See also [14]. Consequently, for γ> 0

|w(x, t) |χBc
γ−1√t

(x)!u0
1

(γ−1 + 1)4
√
t
. (1.3)
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The prefactor can be made small indicating the activity in the region |x|# γ−1√t becomes
smaller as γ−1 grows. On the other hand, by self-similar scaling

∥w∥L∞ (t) =
1√
t
∥w∥L∞ (1) .

Hence, for self-similar non-uniqueness, the majority of the error’s activity is necessarily con-
tained within some region |x|!u0

√
t. Our first theorem demonstrates that this property of

self-similar uniqueness extends to general scenarios under assumption (A1’). It additionally
states upper and lower bounds on the error.

Theorem 1.1 (algebraic interpretation of ‘scale’). Assume u and v are mild solutions with
the same initial data u0. The following hold:

(1) (Uniqueness criteria) Fix 3" p<∞. Under assumption (A1’), there exist ϵ1(c1,p)> 0
and η = ϵ1/(c1 − ϵ1) so that, if there exists T so that

sup
0<t<T

∥w(·, t)χBη−1√t
∥Lp

∥w(·, t)χBc
η−1√t

∥Lp
< ϵ1, (1.4)

then w= 0.
(2) (Lower bound on the error) Let M0(t) = 2max{∥u∥∞(t),∥v∥∞(t)}. Assume (A2) for

some non-negative real number c2. Then, for any t> 0, a# 0 and c3 > 0, there exists
b= b(c2,c3, c̃∞,a, t,M0(t))> 1 so that any pair of mild solutions u and v to (NS) with
the same data do not satisfy

sup
x∈R3

|w(x, t) |
(
b|x|+

√
t
)a+1

√
t
a < c3. (1.5)

(3) (Upper bound on the error) Under assumption (A1’),

sup
x∈R3,0<t

|w(x, t) |
(
|x|+

√
t
)4

√
t
3 !c1,CB 1.

where CB is a universal constant introduced above (2.2).

Combining Items (2) and (3), we conclude that, for any 0< a< 3, there exists a sequence
(xk, tk)→ (0,0) so that

c3
√
t
a

(
b|xk|+

√
tk
)a+1 " |w(xk, tk) |.

Item (1) implies a unique continuation property: If w= 0 in a neighbourhood of (0, 0), then
w= 0 globally. Note that this is automatically satisfied by self-similar solutions due to scaling.
It is also implied more generally by real analyticity at positive times.

To our knowledge Item (1) constitutes a new type of uniqueness criteria.We develop similar
criteria below in theorems 1.3 and 1.4.

We next consider an analogous result in terms of frequency. The a priori algebraic bounds
of self-similar solutions provided the context for theorem 1.1. The next proposition provides a
similar context in a frequency sense. In particular, it gives an upper bound on the separation rate
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of individual Littlewood-Paley frequencies (see section 2 for the definitions of the Littlewood-
Paley decompositio, Besov spaces and local energy solutions).

Proposition 1.2 (separation bounds in frequency). Assume u0 ∈ Lp(R3 \ {0}) for some
p> 3, is divergence free and is (−1)-homogeneous. If u and v are self-similar local energy
solutions to (NS) with the same data u0, then, for every J ∈ Z,

∥∆<Jw∥L∞ (t)!u0 2
4Jt3/2.

This proposition states that, within the self-similar class, the error below a specific fre-
quency vanishes as t→ 0+ and the rate improves at lower scales. Therefore, because the full
self-similar error does not vanish (it blows up at the rate t−1/2), it must concentrate at smaller
and smaller scales as t→ 0+. Also note that the time exponent matches that in Item (3) of the-
orem 1.1. The next theorem establishes properties consistent with this for more general classes
of solution. It is formatted to replicate the structure and themes of theorem 1.1, but through a
different lens. The same comment applies to theorem 1.4 below.

Theorem 1.3 (frequency interpretation of ‘scale’). Assume u and v are mild solutions with
the same initial data u0. The following hold:

(1) (Uniqueness criteria) Assume (A1) for some value c1. Fix p ∈ (3,∞]. There exists
ϵ2(c1,p)> 0 and J1(t) with 2J1(t) ∼c1,p ϵ2t

−1/2, so that, if there exists T> 0 with

sup
0<t<T

∥w"J1∥Lp(t)
∥w<J1∥Lp(t)

" ϵ2,

then w= 0.
(2) (Low frequencies are active) Let M0(t) = 2max{∥u∥Lp(t),∥v∥Lp(t)}. If w satisfies (A2) for

some c2 and p ∈ (3,∞], then there exist γ(t) and J2(t) with

γ =
c2

4M0

(
4c̃pM

2p/(3−p)
0 + t

)1/2−3/(2p)
,

and

2J2 ∼
4M0

(
4c̃pM

2p/(3−p)
0 + t

)1/2−3/(2p)

c2

⎛

⎜⎝
c2

4M2
0CB

(
4c̃pM

2p/(3−p)
0 + t

)1/2−3/(2p)

⎞

⎟⎠

p
3−p

,

so that we have

∥w"J2∥Lp (t)
∥w<J2∥Lp (t)

" γ.

(3) (Intermediate frequencies are active) If (A1) and (A2) hold for some p ∈ (3,∞], then we
have 2J2 ∼p,c1,c2

√
t
−1

and there exists J3 < J2 with 2J3 ∼c1,p
√
t
−1

and

∥wJ3!j!J2∥Lp(t)∼γ ∥w∥Lp(t)∼c1,c2 t
−1/2+3/(2p). (1.6)
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The first item can be interpreted as saying that, if w ̸= 0, then high modes are active to some
extent. This complements the statement of the second item. The same comment applies to
theorem 1.4 which appears below.

Our third iteration of this theme involves a discretised interpretation of ‘scale’ which we
presently introduce. Fix a lattice of cubes {Qi} with disjoint interiors, volumes h3, and whose
closures cover R3. Suppose that one cube is centred at the origin. Let

Jhu0 (x) =
∑

j

χQj (x)
1

|Qj|

ˆ
Qj

u0 (y) dy.

This is effectively a discretisation of the flow based on volume elements and is a whole-space
version of an interpolant operator which has been used extensively to study the number of
degrees of freedom in 2D NS flows [25, 26, 35, 36] and more recently in the Azouni, Olson &
Titi data assimilation paradigm [5] and descendent ideas [19].

Theorem 1.4 (discretised interpretation of ‘scale’). Assume u and v are mild solutions with
the same initial data.

(1) (Uniqueness criteria) Assume (A1’) for some value c1 and suppose u and v are L3,∞-weak
solutions with the same data u02. Fix 3< p"∞. There exists ϵ3 = ϵ3(c1,p,∥u0∥L3,∞) so
that, letting

h̄(t) =max

{
2
c1 − ϵ3
ϵ3

√
t,
(
t3/4

t3/(2p)−1/2

ϵ3∥w∥Lp(t)

)2/3}
,

if

∥w− Jh̄w∥Lp (t)" ϵ3∥w∥Lp (t) ,

across a time interval (0,δ) where δ> 0 is arbitrary, then w= 0.
(2) (Large scales are active) Let M0(t) = 2max{∥u∥Lp(t),∥v∥Lp(t)}. If w satisfies (A2) for

some c2 and p ∈ (3,∞], then there exist γ(t) and h(t) with

γ =
c2

4M0

(
4c̃pM

2p/(3−p)
0 + t

)1/2−3/(2p)
,

and

1
h
∼

4M0

(
4c̃pM

2p/(3−p)
0 + t

)1/2−3/(2p)

c2

⎛

⎜⎝
c2

4M2
0CB

(
4c̃pM

2p/(3−p)
0 + t

)1/2−3/(2p)

⎞

⎟⎠

p
3−p

,

so that we have

∥Jhw∥Lp (t)# γ

2
∥w∥Lp (t) .

Note that, unlike in theorems 1.1 and 1.3, the length scale in the first part depends on
∥w(t)∥Lp .

2 Note that (A1’) is consistent with the initial data being O(|x|−1) ∈ L3,∞, so this is a reasonable class for solutions
to belong in. We provide a definition of L3,∞-weak solutions in section 2.
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1.2. Discussion of proofs

Each of theorems 1.1, 1.3 and 1.4 are proved using the same basic ideas. For the uniqueness
criteria, we choose length scales so that the background flows are necessarily small at large
scales. For example, in the algebraic case and under (A1’), if

√
t≪ |x|, then

|v(x, t) |≪
√
t
−1

.

This depletes the large scale activity of the error. The smallness condition on the relative size
of the small-scales in the error depletes the rest of the error. Of course, the nonlinear nature of
the problem means that the large scales of the background flows are not only paired with the
large scales of the error in terms like w ·∇u, so there is some nuance in pushing these ideas
through.

For the secondary conclusions, we employ an idea worked out in [2] which notes that the
integral structure of the error,

w(x, t) = et∆w0 −
ˆ t

0
e(t−s)∆P∇ · (u⊗ u− v⊗ v) ds,

has a part which rapidly decays when small scales are dominant in the initial error and a part
which grows from zero at t= 0. Hence, if sufficiently small scales are dominant at some time,
the L∞-norm can be pushed below the assumed lower bound (A2) at some later time, which is
contradictory. This idea has been used in prior work on regularity, in particular it relates to a
‘sparseness’ technique of Grujić [28] which was re-imagined in [2]. See also [12, 24, 29, 30].

1.3. Predictability

Forecasting in turbulent media is possible despite the fact that turbulence is a highly chaotic
fluid state because information about different scales persists in the flow for different periods
of time. This can be seen in weather forecasting where the turnover time of the smallest eddies
in the atmosphere is on the order of seconds, indicating a rapid onset of chaos at small scales,
while weather forecasts are effective for days [11]. In other words, large scale effects remain
predictable for a non-negligible amount of time despite small scale instabilities.

Predictability was initially studied by Lorenz [47] and Leith and Kraichnan [40, 41]. There
is also a rich modern literature, an incomplete list being [10, 11, 48, 53]. Several definitions of
predictability exist and we adopt that from [11]. For two initial data u0 and v0, define the error
energy by E∆(t) = ∥u− v∥22(t) where u and v evolve from u0 and v0 respectively. For initially
small perturbations, the flows are said to be predictable ifE∆(t)<

γ
2 (∥u∥

2
2 + ∥v∥22)(t) for some

γ ∈ (0,1)—for uncorrelated flows the left- and right-hand sides are comparable. Numerical
experiments show that, for infinitesimal perturbations of turbulent flows, on average E∆(t)
initially grows exponentially according toE∆(t) = E∆(0)eLt, where L is a Lyapunov exponent,
and then settles into a linear growth rate E∆(t)∼ t [11]. Linear bounds on growth rates should
be expected when perturbing around sufficiently bounded flows. This is even the case when
perturbing around an Euler flow, as examined in the context of boundary layer separation by
Vasseur and Yang [55, 56]. The length scale at which the perturbation is given plays a role in
the dynamics. A careful description of this can be found in [48]. See also [22] for a separation
bound on Euler flows in Gevrey norms by Drivas, Elgindi and La.

We include two results which connect predictability to the themes explored in this paper.
The first can be viewed as a conditional predictability criteria which also sheds light on the
distribution of the energy below and above scales in the dissipative range as flows de-correlate.
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Theorem 1.5 (predictability criteria). Suppose u and v are distributional solutions to (NS)
onRd × (0,T) for d= 2,3. Suppose also that w= u− v ∈ L∞(0,T;L2)∩ L2(0,T;H1) satisfies
the energy inequality

∂t∥w∥2L2 + 2∥∇w∥2L2 "−2
ˆ

(w ·∇u) ·wdx.

There exists a universal constant c5 so that, if, at a given time there exists J ∈ Z so that

∥∆!Jw∥2L2

∥∆>Jw∥2L2

" c522J

min
{
∥u∥L∞ ,

√
∥∇u∥L∞

}2 − 1,

then

∂t∥w∥2L2 +
Cmin

{
∥u∥L∞ ,

√
∥∇u∥L∞

}2

2c5
∥w∥2L2 < 0, (1.7)

meaning the flows are not de-correlating at the given time. Note that all norms are spatial and
calculated at the given time. Similarly, (1.7) also holds if there exists h> 0 so that

∥Jhw∥2L2

∥w− Jhw∥2L2

" c5h−2

min
{
∥u∥L∞ ,

√
∥∇u∥L∞

}2 − 1.

Note that the preceding condition is stated at a single time. If the condition holds across the
time interval (0,T) then ∥w∥22 is exponentially decaying. Although the condition is formulated
at individual frequencies, the rate of exponential decay is independent of J and h.

We explicitly assume that w has an energy inequality so that we do not need to impose
additional conditions on u or v. Plainly if u and v are both singular at a particular time,
then the conditions of the theorem cannot be met. The problem is symmetric in u and v so
min{∥u∥L∞ ,

√
∥∇u∥L∞} can be replaced by min{∥v∥L∞ ,

√
∥∇v∥L∞}.

Henshaw, Kreiss and Reyna identify a factor of ∥∇u∥−1/2
∞ with the dissipative length scale

in turbulence [32]. From this perspective, our result is describing behaviour of the error in the
dissipative range. If the initial error occurs at very small scales, i.e. deep within the dissipative
range, then due to continuity we must have that the conditions in the theorem are satisfied for
a non-vanishing period of time at scales between the perturbation scale and the inertial range.
During this time, the error energy would decrease exponentially at a rate which is independent
of the scale of the initial perturbation. This would cease once activity builds up at larger scales,
at which point the flows would presumably begin to de-correlate, filling scales in the inertial
range in an ‘inverse cascade,’ as simulated in [11].

There are similarities between theorem 1.5 and results in data assimilation and determining
functionals [5, 25, 26, 35, 36], a fact which is visible in our proof.

Our second result related to predictability explores the universality of the linear separation
rate simulated in [11] within the class of Leray–Hopf weak solutions. The linear separation
rates are for perturbations around bounded flows, but the Leray–Hopf class includes solutions
which are unbounded at t= 0. This would be the case for the localised non-unique solutions
hypothesised to exist in [31, 33], where we are viewing non-unique solutions as perturbations
with initial perturbation zero.

9
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The hypothetical non-unique Leray–Hopf solutions of Jia and Šverák are built by perturb-
ing3 two (hypothetical) self-similar solutions to finite energy solutions. This involves cutting
off the tail of the initial data. This should, in principle, not greatly effect the dynamics near
the space-time origin, which is where the singularity of the initial data occurs. In that case the
solutions should have an error energy separation which saturates the t1/2 rate determined by
scaling, as is necessarily the case for the self-similar solutions due to their exact scaling prop-
erty. This intuition can be made rigorous and suggests that a linear error energy separation rate
is likely not universal within the Leray–Hopf class. The following proposition re-states results
from [33] with the addition of a new lower bound on the error energy at small times.

Proposition 1.6. Suppose there exists a (−1)-homogeneous, divergence free vector field u0
and a self-similar local energy solution u1 satisfying [33, Spectral Condition (B)]. Then, there
exists a second self-similar local energy solution u2 with the same initial data u0 so that u1 ̸=
u2. Furthermore, there exist v0, v1 and v2 so that u1 − v1 and u2 − v2 are non-unique Leray–
Hopf weak solutions with divergence free, compactly supported initial datum u0 − v0 ∈ L2 and,
for small enough t,

t1/2 !u0,v0 ∥(u1 − v1)− (u2 − v2)∥2L2 (t) .

Consequently, if these solutions exist, then there is no universal linear bound on the separ-
ation rates of perturbations within the Leray–Hopf class.

1.4. Organisation

Section 2 contains preliminaries including definitions and discussions of mild solutions, local
Leray solutions, L3,∞-weak solutions and the Littlewood–Paley decomposition. Sections 3–5
contain, respectively, the proofs of theorems 1.1, 1.3 and 1.4. The proofs of results on predict-
ability are respectively contained in sections 6 and 7.

2. Preliminaries

2.1. Mild solutions

We denoted by B(·, ·) the bilinear operator

B(u,v) =−1
2

ˆ τ

0
e(τ−s)∆P︸ ︷︷ ︸
Oseen tensor

∇ · (u⊗ v+ v⊗ u)(s) ds,

where u and v are vectors and P is the Leray projection operator. Dumahel’s formula applied
to the projected form of (NS) formally leads to the integral representation

u(x, t+ τ) = eτ∆ [u(t)] (x)−
ˆ τ

0
e(τ−s)∆P∇ · (u⊗ u)(t+ s)ds

= eτ∆ [u(t)] (x)+B(u(t+ ·,u(t+ ·)).

3 We are using the term ‘perturbing’ a lot. It presently does not refer to the perturbations in the concept of predictability
as in the preceding paragraph, but rather to the method by which Jia and Šverák generate Leray–Hopf weak solutions
from self-similar solutions.
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Convergence of the solution to the data is understood in the sense of distributions. Although
primarily used in the context of strong solutions (in the sense of [38]), this formula can be
justified rigorously under very general conditions—in particular, it is valid distributionally
for many classes of weak solutions [17, 42]. The kernel K of the Oseen tensor satisfies the
following pointwise estimates due to Solonikov [50] where α is a multi-index,

|Dα
x K(x, t) |" C(α)

1
(
|x|+

√
t
)3+|α| . (2.1)

Throughout this paper we will use CB to denote a universal constant coming from bilinear and
kernel estimates. As we will only use the above for |α|= 0,1, we replace C(α) by CB in what
follows. For 1" p"∞,

∥B(u,v)∥Lp (t+ τ)" CB

ˆ τ

0

1

(τ − s)
1
2+

3
2 ( 1

q−
1
p )
∥u⊗ v∥Lq(t+ s)ds, (2.2)

where the value of CB has been updated. This is from [23, 38] when 1" p<∞ and [27, (2.7)
and estimates after (3.1)] for p=∞. The mild formulation of the perturbed Navier–Stokes
equations, where v is the background term and w is the unknown, is

w(t+ τ) = eτ∆w(t)−
ˆ τ

0
e(τ−s)∆P∇ · (v⊗w+w⊗ v+w⊗w)(t+ s) ds. (2.3)

2.2. Local energy solutions

We need to use the properties of local energy solutions in the proof of proposition 1.6. These
solutions were introduced by Lemarié-Rieusset, see the treatments in [42, 44], and played an
important role in the proof of local smoothing in [34]. Because L3,∞ ⊂ L2

uloc
4 it is a natural

class in which to consider non-uniqueness [31, 33, 34]. Additional properties of this class
have been explored in [16, 17, 37, 39].

Definition 2.1 (local energy solutions). A vector field u ∈ L2
loc(R

3 × [0,T)), 0< T"∞, is
a local energy solution to (NS) with divergence free initial data u0 ∈ L2

uloc(R
3), denoted as

u ∈N (u0), if:

(1) for some p ∈ L
3
2
loc(R

3 × [0,T)), the pair (u, p) is a distributional solution to (NS),
(2) for any R> 0, u satisfies

esssup0!t<R2∧T sup
x0∈R3

ˆ
BR(x0)

1
2
|u(x, t) |2 dx+ sup

x0∈R3

ˆ R2∧T

0

ˆ
BR(x0)

|∇u(x, t) |2 dxdt<∞,

(3) for any R> 0, x0 ∈R3, and 0< T ′ < T, there exists a function of time cx0,R ∈ L
3
2
T′ so that,

for every 0< t< T ′ and x ∈ B2R(x0)

p(x, t) = cx0,R (t)−∆−1 divdiv [(u⊗ u)χ4R (x− x0)]

−
ˆ
R3

(K(x− y)−K(x0 − y))(u⊗ u)(y, t)(1−χ4R (y− x0)) dy, (2.4)

4 L2
uloc is the set of all uniformly locally square integrable functions and L3,∞ is weak-L3.
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in L
3
2 (B2R(x0)× (0,T ′)) where K(x) is the kernel of ∆−1 divdiv, Kij(x) = ∂i ∂j

−1
4π|x| , and

χ4R(x) is the characteristic function for B4R.
(4) for all compact subsets K of R3, u(t)→ u0 in L2(K) as t→ 0+,
(5) u is suitable, i.e. for all cylinders Q$ QT and all non-negative φ ∈ C∞

c (Q), we have the
local energy inequality

2
¨

|∇u|2φdxdt"
¨

|u|2 (∂tφ +∆φ) dxdt+
¨ (

|u|2 + 2p
)
(u ·∇φ) dxdt, (2.5)

(6) the function

t 0→
ˆ
R3

u(x, t) ·w(x)dx, (2.6)

is continuous in t ∈ [0,T), for any compactly supported w ∈ L2(R3).

Local energy solutions are known to satisfy certain a priori bounds [42]. For example,
in [16, 34], the following a priori bound is proven: Let u0 ∈ L2

uloc, divu0 = 0, and assume
u ∈N (u0). For all r> 0 we have

esssup0!t!σr2 sup
x0∈R3

ˆ
Br(x0)

|u|2

2
dxdt+ sup

x0∈R3

ˆ σr2

0

ˆ
Br(x0)

|∇u|2 dxdt< CA0 (r) , (2.7)

where

A0 (r) = rN0
r = sup

x0∈R3

ˆ
Br(x0)

|u0|2 dx,

and

σ = σ (r) = c0 min
{(

N0
r

)−2
,1
}
, (2.8)

for a small universal constant c0 > 0. Additionally, local energy solutions are mild [17].

2.3. L3,∞-weak solutions

Local energy solutions are defined for initial data in L2
uloc. Note that L3,∞ embeds in L2

uloc. Thus,
when u0 ∈ L3,∞, a local energy solution exists. The scaling of L3,∞ does not, however, show
up in the properties of this solution which come from the definition of local energy solutions.
The class of L3,∞-weak solutions provides a notion of solution which is more tailored to the
scaling of L3,∞. This class was introduced by Barker, Seregin and Šverák in [8] and extends
ideas in [49]. It has since been extended to non-endpoint critical Besov spaces of negative
smoothness [1].
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Definition (weak L3,∞-solutions). Let T > 0 be finite. Assume u0 ∈ L3,∞ is divergence free.
We say that u and an associated pressure p comprise a weak L3,∞-solution if

(1) (u, p) satisfies (NS) distributionally, (2.6) and the local energy inequality (2.5),
(2) ũ := u− et∆u0 satisfies, for all t ∈ (0,T),

sup
0<s<t

∥ũ∥2L2 (s)+
ˆ t

0
∥∇ũ∥2L2 (s) ds<∞, (2.9)

and

∥ũ∥2L2 (t)+ 2
ˆ t

0

ˆ
|∇ũ|2 dxds" 2

ˆ t

0

ˆ (
es∆u0 ⊗ ũ+ es∆u0 ⊗ es∆u0

)
:∇ũdxds.

(2.10)

In [8], weak solutions are constructed which satisfy the above definition for all T > 0. Also,
due to their spatial decay, weak L3,∞-solutions are mild and, in view of [17], are local energy
solutions.

An important observation in [8] is that the nonlinear part of a weak L3,∞-solution satisfies
a dimensionless energy estimate, namely

sup
0<s<t

∥ũ∥L2 (s)+
(ˆ t

0
∥∇ũ∥2L2 (s) ds

) 1
2

!u0 t
1
4 . (2.11)

We emphasise that the energy associated with ũ vanishes at t= 0. This decay property will
be essential in our work. It is worth remarking that this estimate implies an upper bound
on the energy separation rate of non-unique solutions in the class of weak L3,∞-solutions.
Interestingly, because self-similar solutions exist in this class, examples exist which saturate
this bound. This fact plays an important role in our proof of proposition 1.6.

2.4. Littlewood–Paley

We refer the reader to [6] for an in-depth treatment of Littlewood–Paley and Besov spaces.
Let λj = 2j be an inverse length and let Br denote the ball of radius r centred at the ori-
gin. Fix a non-negative, radial cut-off function χ ∈ C∞

0 (B1) so that χ(ξ) = 1 for all ξ ∈
B1/2. Let φ(ξ) = χ(λ−1

1 ξ)−χ(ξ) and φj(ξ) = φ(λ−1
j )(ξ). Suppose that u is a vector field of

tempered distributions and let∆ju= F−1φj ∗ u for j# 0 and∆−1 = F−1χ ∗ u. Then, u can be
written as

u=
∑

j"−1

∆ju.

If F−1φj ∗ u→ 0 as j→−∞ in the space of tempered distributions, then we define ∆̇ju=
F−1φj ∗ u and have

u=
∑

j∈Z
∆̇ju.
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We additionally define

∆<Jf =
∑

j<J

∆̇j f; ∆"jf = f−∆<Jf,

with the obvious modifications for∆!J and∆>J. If we do not specify that J is in integer, then
we use χ(λ−1

1 2Jξ) in the definition of ∆!J.
Littlewood–Paley blocks interact nicely with derivatives and, by Young’s inequality, Lp

norms. This is illustrated by the Bernstein inequalities which read:

∥Dα∆̇j f∥Lp " 2j|α|∥∆̇j f∥Lp ; ∥∆̇j f∥Lp " 2j(
3
q−

3
p )∥∆̇j f∥Lq .

The Littlewood–Paley formalism is commonly used to define Besov spaces. We are primar-
ily interested in Besov spaces with infinite summability index, the norms of which are

||u||Bs
p,∞ := sup

−1!j<∞
λsj ||∆ju||Lp(Rn),

and

||u||Ḃs
p,∞

:= sup
−∞<j<∞

λsj ||∆̇ju||Lp(Rn).

The critical scale of Besov spaces are Ḃ3/p−1
p,∞ . Note that L3 ⊂ L3,∞ ⊂ Ḃ3/p−1

p,∞ for 3< p. In
particular, Ḃ3/p−1

p,∞ contains functions f satisfying | f(x)|! |x|−1 when p> 3.

3. Algebraic scenario

The following definition and lemma appear in [2]. They will be used to prove Item (2) of
theorem 1.1.

Definition 3.1 (Lp-sparseness). Let 1" p"∞, ε,β ∈ (0,1), and ℓ> 0. A vector field u0 ∈
Lp(Rd) is (ε,β,ℓ)-sparse in Lp if there exists a measurable set S such that

∥u0∥Lp(Sc) < β∥u0∥Lp (3.1)

and

sup
x0∈Rd

|S∩Bℓ (x0) |
|Bℓ (x0) |

" ε. (3.2)

Let G :Rd →R be a Schwartz function and Gt be the convolution operator

Gtu0 := t−
d
2G
(
·/
√
t
)
∗ u0. (3.3)

when t> 0. We have in mind that G= (4π)−d/2e−|x|2/4 and Gt is the heat semigroup.

Lemma 3.2. Let p ∈ (1,∞], γ ∈ (0,1), and t> 0 be fixed. Let u0 ∈ Lp(Rd) be a vector field.
Suppose that u0 is (ε,β, ℓ̄

√
t)-sparse, where the dimensionless parameters ε,β ∈ (0,1) and

ℓ̄> 0 satisfy

ℓ̄# f(γ) ; β " ∥G∥−1
L1 γ/3; ε1−

1
p " C−1

0 ∥G∥−1
L∞γ/ℓ̄

d (3.4)
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where f depends on G and satisfies f(γ)→+∞ as γ→ 0+, and C0 > 1 is an absolute constant
depending only on the dimension. Then

∥Gtu0∥Lp " γ∥u0∥Lp . (3.5)

When Gt = et∆, the above requirement on ℓ̄ can be made more explicit:

ℓ̄2 # C0ln(C0/γ). (3.6)

Proof of theorem 1.1. (Part 1) Note that sup0<s<t s
(p−3)/2p∥w∥Lp(s)<∞ by (A1’). We will

shortly specify a value for ϵ1. Fix 3< p<∞. From (2.3) with τ = 0, we have

∥w∥Lp(t)" CB

ˆ t

0

1

(t− s)1/2
(∥vw∥Lp + ∥uw∥Lp) ds. (3.7)

We choose η to be

η =
ϵ1

c1 − ϵ1
. (3.8)

If |y|# η−1√s, then, by (A1’) and our requirement on η,

|v(y,s) |" ϵ1√
s
.

Hence,

∥vw∥Lp(|y|"η−1
√
s) "

ϵ1√
s
∥w∥Lp(|y|"η−1

√
s).

Assume T is small enough that

∥w(·, t)χBη−1√t
∥Lp

∥w(·, t)χBc
η−1√t

∥Lp
< ϵ1,

for all 0< t< T. Using (1.4),

∥vw∥Lp(|y|<η−1
√
s) " ∥v∥L∞∥w∥Lp(|y|<η−1

√
s) " ϵ1

c1√
s
∥w∥Lp(|y|"η−1

√
s).

The same estimates hold with v replaced by u. Hence, for t< T

∥w∥Lp(t)" CB

ˆ t

0

2c1ϵ1
(t− s)1/2 s1/2+(p−3)/2p

s(p−3)/2p∥w∥Lp (s) ds

" 2CBc1ϵ1t(3−p)/2p sup
0<s<t

s(p−3)/2p∥w∥Lp (s) .
(3.9)

Taking

ϵ1 "
1

4CBc1
,
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and, after rearranging things, a supremum on the left-hand side, we have

sup
0<s<T

s(p−3)/2p∥w∥Lp (s)" 0.

In light of (1.4) we conclude that w= 0 on R3 × (0,T). Global uniqueness follows from the
local well-posedness theory and the fact that u(·,T/2) ∈ L∞(R3).

If p=∞, then we set up our argument slightly differently5, beginning with,

∥w∥L∞(t)" CB

ˆ t

0

1

(t− s)1/2+3/(2q)
∥w∥L∞ (∥v∥Lq + ∥u∥Lq) ds, (3.10)

and then reason similarly. Ultimately this avoids having to integrate
ˆ t

0

1

(t− s)1/2 s
ds,

which diverges.
(Part 2) We assume (A2). Fix t0, which plays the role of t in the statement of the theorem.

LetM0 = 2max{∥u∥L∞(t0),∥v∥L∞(t0)}. Then, there exists T0 = 4c̃∞M−2
0 so that ∥u∥L∞(t)+

∥v∥L∞(t)" 2(∥u∥L∞(t0)+ ∥v∥L∞(t0)) for all t0 " t" t0 + T0. Bilinear estimates imply

∥w∥L∞(t)" ∥e(t−t0)∆w(t0)∥L∞ + 2CB (t− t0)
1/2M2

0.

We have

2CB (t− t0)
1/2M2

0 "
c2
2
√
t
,

if

2CB (t− t0)
1/2M2

0 "
c2

2
√
T0 + t0

.

Choose t to satisfy

t= t0 +
c22

16C2
B

(
c̃∞M2

0 + t0M4
0

) . (3.11)

Wewill show that, if (1.5) holds at time t0 for a choice of parameters to be specifiedmoment-
arily, then

∥e(t−t0)∆w(t0)∥L∞ " c2
4
√
t
,

leading to a contradiction, namely

∥w∥L∞(t)" 3c2
4
√
t
,

5 To illustrate the details which are omitted here, we pursue this case in the proof of theorem 1.3 below, as it requires
similar logic.
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as this violates (A2). For this we will use lemma 3.2 with

γ =
c2

4M0
√
t
.

Define ℓ̄, β and ϵ according to this choice of γ, the time scale t− t0 and (3.6). If (1.5) holds at
time t0, then,

St : =
{
x ∈R3 : |w(x, t0) |# β∥w∥L∞ (t0)

}
⊂
{

c3
√
t0
a

(b|x|+
√
t0)

a+1 # β
c2√
t0

}

⊂
{(

c3
βc2

)1/(a+1)√
t0 # b|x|

}
. (3.12)

To ensure (ϵ,β, ℓ̄
√
t− t0)-sparseness we choose b so that

∣∣∣∣

{(
c3
βc2

)1/(a+1)√
t0 # b|x|

}∣∣∣∣" ϵ
∣∣Bℓ̄

√
t−t0

∣∣,

namely,

1
b3

:=
ϵℓ̄3 (t− t0)

3/2

(c3/(βc2))
3/(a+1) t3/20

.

Under this choice of parameters, by lemma 3.2,

∥e(t−t0)∆w(t0)∥L∞ " c2
4
√
t
,

which we already noted is a contradiction. Therefore, we cannot have that (1.5) holds at any
time t0.

(Part 3) Part 3 follows from an argument appearing in [33] and again in [13, 51, 54]. We
will need point-wise bounds for some convolutions which we copy from [51, lemma 2.1]: Let
a,b ∈ (0,5) and a+ b> 3. Then,

φ(x,a,b) =
ˆ 1

0

ˆ
R3

(
|x− y|+

√
1− t

)−a (
|y|+

√
t
)−b

dydt, (3.13)

is well defined for x ∈ R3, and

φ(x,a,b)! R−a +R−b +R3−a−b [1+(1a=3 + 1b=3) logR] , (3.14)

where R= |x|+ 2. These estimates can be extended to other time intervals by a change of
variable. From (2.1) we have

|w(x, t) |"
ˆ t

0

ˆ
R3

CB(
|x− y|+

√
t− s

)4
c21

(|y|+
√
s)2

dyds,

which implies

|w(x, t) |" CB
c21
√
t

(
|x|+

√
t
)2 ,
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by the preceding convolution estimates. Applying this argument two more times yields the
advertised result. We illustrate the first application. We have using the new bound for |w|
and (A1’) that

B(u,w)"
ˆ t

0

ˆ
R3

CB(
|x− y|+

√
t− s

)4 |w||u|dyds

" CBc31
√
t
ˆ t

0

ˆ
R3

CB(
|x− y|+

√
t− s

)4
1

(|y|+
√
s)3

dyds. (3.15)

The pointwise estimates for the time convolution imply this term is bounded by t/(|x|+
√
t)3.

The same applies to the other terms in the integral expansion forw. One more repetition results
in the bound t3/2/(|x|+

√
t)4.

4. Frequency scenario

We begin by proving separation rates for individual modes of self-similar solutions.

Proof of proposition 1.2. Observe that

1
|x|n ∈ Ḃ−n

∞,∞.

This follows from the fact that |x|−n is (−n)-homogeneous and the relationship this induces
on ∥∆̇j(| · |−n)∥L∞ compared to ∥∆̇0(| · |−n)∥L∞ . In [13] it is shown that w(x,1)! (1+ |x|)4
(this is why we require the solutions be local energy solutions). Hence, w(·,1) ∈ Ḃ−4

∞,∞.
Additionally, the self-similar relationship between modes can be calculated as in [15, (2.5)],
implying, for a given j and t and letting 22( j−i)t= 1,

∥∆̇jw∥L∞(t) =
1√
t
∥∆̇i w

(
2j−i(·),1

)
∥L∞ !u0

1√
t
24i,

due to membership in Ḃ−4
∞,∞. Hence,

∥∆̇jw∥L∞(t)!u0 2
4jt3/2.

The stated conclusion follows after summing over j< J.

Note that we used a global bound on the profile at t= 1. For discretely self-similar solutions,
these bounds are only available away from the origin—it is not known in general whether or not
the solutions can be singular on a ball centred at the origin. Additional work would therefore
be needed to check that w(·,1) ∈ Ḃ−4

∞,∞ when u and v are only discretely self-similar.
We now recall a definition of sparseness framed in terms of the Littlewood-Paley decom-

position. Compared to physical sparseness, this definition has the advantage of involving fewer
parameters. This notion of sparseness encompasses the spatial version, at least within a certain
parameter range, as demonstrated in [2].
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Definition 4.1 (Lp-sparseness in frequency). Let β ∈ (0,1) and J ∈R. Then a vector field
u0 ∈ Lp is (β,J)-sparse in frequency in Lp if

∥∆<Ju0∥Lp " β∥u0∥Lp . (4.1)

The following lemma is taken from [2].

Lemma 4.2. Fix 1" p"∞, t> 0 and γ> 0. Let u0 ∈ Lp. There exists J ∈ Z satisfying 2J ∼
γ−1t−1/2 and β = γ/2 so that, if u0 is (β,J)-sparse in frequency, then

∥et∆u0∥Lp " γ∥u0∥Lp . (4.2)

We are now ready to prove theorem 1.3.

Proof of theorem 1.3. (Part 1)We first prove the p=∞ case. Applying ∆̇<J1 to the perturbed
Navier–Stokes equations and adopting the abbreviation f<J = ∆̇<J (as well as similar abbre-
viations for ∆̇!J, ∆̇"J and ∆̇>J) gives

(∂t −∆)w<J1 +P∇ · (w⊗ v+ v⊗w+w⊗w)<J1 = 0.

Then,

w<J1 (x, t) =−
ˆ t

0
e(t−s)∆P∇ · (w⊗ v+ v⊗w+w⊗w)<J1 (s) ds.

Note that, provided v ∈ L∞(0,T; Ḃ−1
∞,∞), we have

∥v<j∥L∞ " ∥v∥L∞(0,T;Ḃ−1
∞,∞)2

j.

Also, by support considerations in the Fourier variable, we have

(
f<J1 g

)
<J1

=
(
f<J1 g<J1+2

)
<J1

.

The bilinear terms are all bounded the same, as is illustrated in the following estimate where
q is taken in (3,∞),

∣∣∣∣
ˆ t

0
e(t−s)∆P∇ · (w⊗ v)<J1 (s) ds

∣∣∣∣

" CB

ˆ t

0

1

(t− s)
1
2+

3
2q
∥w<J1∥L∞∥v<J1+2∥Lq ds+CB

ˆ t

0

1

(t− s)
1
2+

3
2q
∥(w"J1 ⊗ v)<J1

∥Lq ds

" CBC(q)
ˆ t

0

c1

(t− s)
1
2+

3
2q s

1
2

s
1
2 ∥w<J1∥L∞ (s)2J1(s)(1−

3
q ) ds

+CCB

ˆ t

0

c1

(t− s)
1
2+

3
2q s1−

3
2q

s
1
2 ∥w"J1∥L∞ (s) ds

" 2CBC(q)c1ϵ2t−1/2 sup
0!s!t

s1/2∥w<J1∥∞ (s) , (4.3)

which holds by the Besov space bounds in (A1) and (2.2), the additional assumption that
2J1(s)(1−3/q) ∼c1,cB ϵ2s

−(1−3/q)/2 (which defines J1) and the observation in (4.6), from which
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we obtain a constant C(q). Since q was arbitrary, we may fix, e.g. q= 6 to make this constant
universal. We therefore take ϵ2 to satisfy

2CCBc1ϵ2t−1/2 <
1
3
t−1/2,

whence obtaining

t1/2
∥∥∥∥
ˆ t

0
e(t−s)∆P∇ · (w⊗ v)<J1 (s) ds

∥∥∥∥
L∞

< sup
0!s!t

1
3
s1/2∥w<J1∥L∞(s).

Repeating this for the other terms in the expansion for w<J1 and taking a time-supremum of
the left-hand side of the w<J1 integral expansion implies w= 0.

The 3< p<∞ case is similar but we do not need to pass to the Lq norm in our bilinear
estimate—this resembles what we did in detail in the proof of theorem 1.1.
(Part 2) We assume (A2). Fix t0. Let M0 = 2max{∥u∥Lp(t0),∥v∥Lp(t0)}. Then, there exists
T0 = 4c̃pM

2p/(3−p)
0 so that ∥u∥Lp(t)+ ∥v∥Lp(t)" 2(∥u∥Lp(t0)+ ∥v∥Lp(t0)) for all t0 " t" t0 +

T0. The bilinear estimate (2.2) implies

∥w∥Lp(t)" ∥e(t−t0)∆w(t0)∥Lp +

ˆ t

t0

CB

(t− s)
1
2+

3
2p
(∥uw∥Lp/2 (s)+ ∥wv∥Lp/2 (s)) ds

" ∥e(t−t0)∆w(t0)∥Lp + 2CB (t− t0)
1/2−3/(2p)M2

0. (4.4)

We have

2CB (t− t0)
1/2−3/(2p)M2

0 "
c2

2t1/2−3/(2p)
,

if

2CB (t− t0)
1/2−3/(2p)M2

0 "
c2

2(T0 + t0)
1/2−3/(2p)

.

Choose t to satisfy

t= t0 +

(
c2

4M2
0CB (T0 + t0)

1/2−3/(2p)

) 2p
p−3

(4.5)

We will obtain the contradiction if

∥e(t−t0)∆w(t0)∥Lp " c2
4t1/2−3/(2p)

.

Lemma 4.2 will give us a conclusion like

∥e(t−t0)∆w(t0)∥Lp " γ∥w∥Lp(t0),

which is bounded above by γM0. We therefore want to use lemma 4.2 with γ satisfying

γM0 "
c2

4(T0 + t0)
1/2−3/(2p)

,and so we fix γ =
c2

4M0(T0 + t0)
1/2−3/(2p)

.
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Choosing β = γ/2 and, recalling t− t0 is given in (3.11), choosing

2J2 ∼ γ−1 (t− t0)
−1/2 ,

we see by lemma 4.2 that if w(t0) is (β,J2)-sparse in Lp, then

∥e(t−t0)∆w(t0)∥Lp " c2
4t1/2−3/(2p)

.

Therefore, w(t0) can never be (β,J2)-sparse in Lp.
(Part 3) Note that (Part 2), (A1) and (A2) together imply

∥w!J2∥Lp(t)∼γ t3/(2p)−1/2 ∼c1,c2 ∥w∥Lp(t).

By (A1),

∥w<J3∥Lp "
∑

j<J3

∥uj − vj∥Lp " 2c1
∑

j<J3

2j(1−
3
p )

= 2c12
J3(1− 3

p )
∑

j<0

2j(1−
3
p ) !p 2c12

(J3+1)(1− 3
p ). (4.6)

We require that

2c12(J3+1)(1−3/p) ! t3/(2p)−1/2,

where the suppressed constant is chosen small enough that

∥w<J3∥p "
1
2
∥w!J2∥Lp .

It follows that

∥wJ3!j!J2∥Lp # 1
2
∥w!J2∥Lp ,

which completes the proof.

Remark 4.3. It may be interesting to point out that, under the assumptions of theorem 1.3,
if (A1) and (A2) hold, the latter for p=∞, then there exists ϵ4 so that,

inf
t>0

∥w∥Ḃ−1
∞,∞

(t)> ϵ4.

In other words, a condition like (A2) implies other scaling invariant measurements of the error
do not vanish at t= 0. To prove this, recall (2.3) and observe that, for t> 0,

ˆ τ

0
e(τ−s)∆P∇ · (u⊗w)(t+ s) ds" CB sup

t<s ′<t+τ

ˆ τ

0

1

(τ − s)1/2
c12

t
ds

" CBc12τ 1/2

t

" c2
6
√
t+ τ

, (4.7)
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provided

τ =
c22t

72C2
Bc

4
1
.

Other terms in the bilinear part of (2.3) are handled identically. Therefore,

c2
(t+ τ)1/2

" ∥w∥L∞(t+ τ)" ∥e(t+τ)∆w(t)∥L∞ +
c2

2
√
t+ τ

,

implying

c2 " sup
0<τ̃<∞

(t+ τ̃)1/2∥e(t+τ̃)∆w(t)∥L∞ ∼ ∥w∥Ḃ−1
∞,∞

(t).

5. Discretised scenario

We begin by establishing an analogue to lemmas 3.2 and 4.2 in the context of the discretised
projection operator. Recall that we consider a fixed lattice of cubes {Qi}with disjoint interiors,
volume h3, and whose closures cover R3. Denote the centre of Qi by xi. Let

Ih,tu0 (x) =
∑

j

χQj (x)
∑

i

1
t3/2

e−|xj−xi|2/(4t)
ˆ
Qi

u0 (y) dy.

and let

Jhu0 (x) =
∑

j

χQj (x)
1

|Qj|

ˆ
Qj

u0 (y) dy.

The next lemma should be understood in analogy with lemmas 3.2 and 4.2 but where the inter-
pretation of ‘sparseness’ is understood through the length scale h of the interpolant operator.

Lemma 5.1. Fix t> 0, p ∈ [1,∞] and γ> 0. Take h! γ
√
t. If

∥Jhu0∥Lp " γ/2∥u0∥Lp ,

then

∥et∆u0∥Lp " γ∥u0∥Lp .

Proof. Begin by taking x ∈ Qj. We have

|et∆u0 (x) |" |et∆u0 (x)− Ih,tu0 (x) |+ |Ih,tu0 (x) |. (5.1)

Expanding the leading term on the right-hand side gives

|et∆u0 (x)− Ih,tu0 (x) |!
∑

i

1
t3/2

ˆ
Qi

e−|xj−xi|2/(4t)
∣∣∣∣e

−|x−y|2/(4t)+|xj−xi|2/(4t) − 1
∣∣∣∣

︸ ︷︷ ︸
=:F(x,y,xj,xi)

u0 (y) dy

!
∑

i

F(x,y,xj,xi)
1
t3/2

e−|xj−xi|2/(4t)∥u0∥Lp(Qi)|Qi|1−1/p. (5.2)
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By the mean value theorem and the fact that the Gaussian is Schwartz, it follows that

sup
i,j

sup
x∈Qj,y∈Qi

F(x,y,xj,xi)!
h√
t
.

To elaborate, note that xj − xi ∈ Qj −Qi and x− y ∈ Qj −Qi. Hence ||xj − xi|− |x− y||! h.
Viewing F(x,y,xj,xi) as |e−(z/(2

√
t))2 − e0| where |z|= ||xj − xi|− |x− y||! h and using the

mean value theorem as well as the chain rule to evaluate partial derivatives in z of e−|z|2/4t, we
find that

F(x,y,xj,xi)! h
|̄z|
t
e−|̄z|2/(4t),

for some z̄ satisfying |̄z|! h. The fact that e−|̄z|2/(4t) !
√
t

z̄ yields the desired bound on F. Using
this bound we find that

∥et∆u0 − Ih,tu0∥Lp(Qj) !
h√
t
|Qj|1/p

∑

i

1
t3/2

e−|xj−xi|2/(4t)∥u0∥Lp(Qi)|Qi|1−1/p

! h√
t

∑

i

h3

t3/2
e−|xj−xi|2/(4t)∥u0∥Lp(Qi), (5.3)

which is a discrete convolution. We now apply ℓp to the sequence {∥et∆u0 − Ih,tu0∥Lp(Qj)} and
use Young’s inequality to obtain

∥et∆u0 − Ih,tu0∥Lp(R3) !
h√
t
∥u0∥Lp(R3)

∑

i

h3

t3/2
e−|xi|2/(4t) ! h√

t
∥u0∥Lp(R3).

We also observe that

|Ih,tu0 (x) |=
∣∣∣∣
∑

i

χQi (x)
h3

t3/2
e−|xj−xi|2/(4t) 1

|Qi|

ˆ
Qi

u0 (y) dy
∣∣∣∣! |Jhu0 (x) |, (5.4)

and, so,

∥Ih,tu0∥Lp(R3) ! ∥Jhu0∥Lp(R3).

Combining the above observations and taking h! γ
√
t, we obtain

∥et∆u0∥Lp(R3) !
h√
t
∥u0∥Lp(R3) + ∥Jhu0∥Lp(R3) " γ∥u0∥Lp(R3).

Proof of theorem 1.4. We include details for 3< p<∞. Our starting point is

∥w∥Lp(t)" CB

ˆ t

0

1

(t− s)1/2
(∥vw∥Lp + ∥uw∥Lp) ds, (5.5)

where we take t< δ. We only consider the case ∥vw∥Lp as the treatment of u is identical.
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Recall from the proof of theorem 1.1 that, choosing η to be

η =
ϵ1

c1 − ϵ1
, (5.6)

we have

∥vw∥Lp(|y|"η−1
√
s) "

ϵ1√
s
∥w∥Lp(|y|"η−1

√
s).

We now choose h̄= h̄(s) so that Bη−1
√
s(0)⊂ Q0, where Q0 is the cube centred at the origin

with edge-lengths h̄—that is, h̄# 2η−1√s. As ϵ1 was fixed in the proof of theorem 1.1, we
replace ϵ1 with ϵ3 and will subsequently adjust its value.

We next write

∥vw∥Lp(|y|<η−1
√
s) " ∥vJh̄w∥Lp(|y|<η−1

√
s) + ∥v(w− Jh̄w)∥Lp(|y|<η−1

√
s).

For the first term on the right-hand side we have

∥vw∥Lp(|y|<η−1
√
s) "

∥∥∥∥v
1
h̄3

ˆ
Q0

w(y) dy
∥∥∥∥
Lp(Q0)

" c1c4s3/(2p)−1/2s1/4h̄−3/2,

where, because u and v are L3,∞-weak solutions, we have ∥w∥L2(t)" c4t1/4, for a constant c4
depending on ∥u0∥L3,∞ . We further restrict h̄ so that

s3/(2p)−1/2s1/4h̄−3/2 " ϵ3√
s
∥w∥Lp (s) .

For the second term on the right-hand side we have

∥v(w− Jh̄w)∥Lp " c1ϵ3√
s
∥w∥Lp (s) ,

by assumption.
Combining these bounds we obtain

∥w∥Lp(t)!c1,c4,cB ϵ3

ˆ t

0

1

(t− s)1/2
1

s1−3/(2p)
s1/2−3/(2p)∥w(s)∥Lp ds

" 1
2
t3/(2p)−1/2 sup

0<s<t
s1/2−3/(2p)∥w(s)∥Lp , (5.7)

provided ϵ3 is chosen small compared to c1, c4 and cB, and

h̄=max

{
2
c1 − ϵ3
ϵ3

√
s,
(
t3/4

t3/(2p)−1/2

ϵ3∥w∥Lp(t)

)2/3}
.

This is enough to conclude w≡ 0.
As we have seen in the proofs of theorems 1.1 and 1.3, the case p=∞ follows similarly

but we need to initialise our argument with the estimate

∥w∥L∞(t)" CB

ˆ t

0

1

(t− s)1/2+3/(2q)
(∥vw∥Lq + ∥uw∥Lq) ds, (5.8)
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where q can be any value in (3,∞).
(Part 2) This proof is essentially identical to the proof of part 2 of theorem 1.3. The only

difference is that we replace 2J2 with h−1. We then see by lemma 5.1 that, if

∥Jhw∥Lp(t0)"
γ

2
∥w∥Lp(t0),

then

∥e(t−t0)∆w(t0)∥Lp " c2
4t1/2−3/(2p)

.

This implies that we cannot have

∥Jhw∥Lp(t0)"
γ

2
∥w∥Lp(t0).

6. Conditional predictability criteria

Proof of theorem 1.5. Note that all calculations are done at the fixed time as stated in the
theorem, which is suppressed in what follows. We have

∂t∥w∥2L2 + 2∥∇w∥22 " 2
ˆ

w ·∇uwdx.

Note that

∥∆>Jw∥2 " C2−J∥∇w∥2,

which is just a Bernstein inequality. Hence,

∂t∥w∥2L2 +C22J∥∆>Jw∥22 + ∥∇w∥22 " C∥u∥L∞∥∇w∥2∥w∥2 " C2∥u∥2L∞∥w∥22 + ∥∇w∥22.

We alternatively have

∂t∥w∥2L2 +C22J∥∆>Jw∥22 + ∥∇w∥22 " C∥∇u∥L∞∥w∥22.

Assume that at some time (which everything that follows occurs at) and some K> 0 that

∥∆!Jw∥2L2 " K∥∆>Jw∥2L2 .

Then,

∥w∥22 " ∥w!J∥22 + ∥w"Jw∥22 " (K+ 1)∥w"J∥22.

And, provided

C22J∥∆>Jw∥22 # 2(K+ 1)C2∥u∥2L∞∥∆>Jw∥22,

or

C22J∥∆>Jw∥22 # 2(K+ 1)C∥∇u∥L∞∥∆>Jw∥22,
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which is implied if (K+ 1)1/2min{∥u∥L∞ ,
√
∥∇u∥L∞}! 2J for a sufficiently small sup-

pressed constant, we obtain

∂t∥w∥2L2 +
C
2
22J∥∆>Jw∥22 " 0.

Noting again that ∥w∥22 " (K+ 1)∥w"J∥22 we improve this to

∂t∥w∥2L2 +
C22J

(K+ 1)
∥w∥22 " 0.

Wenow think of J as fixed and defineK according to (K+ 1)1/2min{∥u∥L∞ ,
√
∥∇u∥L∞}=

c52J where c5 is a universal constant consistent with the suppressed constant above. In this case
we see that, if

∥∆!Jw∥2L2

∥∆>Jw∥2L2

"

⎛

⎜⎝
c522J

min
{
∥u∥L∞ ,

√
∥∇u∥L∞

}2 − 1

⎞

⎟⎠ ,

then

∂t∥w∥2L2 +
Cmin

{
∥u∥L∞ ,

√
∥∇u∥L∞

}2

2c5
∥w∥2L2 " ∂t∥w∥2L2 +

C
2
22J∥∆>Jw∥22 " 0,

and the error is non-increasing. The preceding condition makes sense provided K# 0, which
implies

22J #
min

{
∥u∥L∞ ,

√
∥∇u∥L∞

}2

c5
.

The proof for the discretised operator is identical once we observe that, in place of
Bernstein’s inequality, we have by the Poincaré inequality that

∥w− Jhw∥L2 " Ch∥∇w∥L2 .

Then, we just replace 2J with h−1, ∆!Jw with Jhw and ∆>Jw with w− Jhw throughout the
proof.

Remark 6.1. One can use sparseness to get a similar result but it seems sub-optimal compared
to the energy methods employed above. In particular, it is possible to prove that for T > 0
given, there exist J and h so that 2−J ∼ h∼M−1 where M= sup0<s<T(∥u∥L∞ + ∥v∥L∞)(s)
and, if

∥w!J∥L2 " 1
4
∥w∥L2 or ∥Jhw∥L2 " 1

4
∥w∥L2 ,

for all t ∈ (0,T), then

sup
0<s<T

∥w∥L2(s)" 2∥w∥L2(0).
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To execute the sparseness argument using (2.3), we need M to depend on ∥u∥∞ and ∥v∥∞.
This is not the case if we use energy methods due to the standard cancellation. This is why
only a single non-unique flow field in theorem 1.5 needs to be finite. Furthermore, the decay
rate in the proof of theorem 1.5 does not follow obviously from the sparseness argument. So,
even though mild solution methods allow us to suppress the L2 norm, they seem sub-optimal
compared to energy methods.

7. The energy separation of Jia and Šverák’s hypothetical solutions

In [33], Jia and Šverák demonstrate that, if certain non-unique self-similar solutions exist, then
non-unique Leray–Hopf solutions also exist. This is not immediate because self-similar initial
data for (NS) is −1-homogeneous and so does not belong to L2. Our proposition 1.6 makes
the observation that the error energy of these non-unique Leray–Hopf solutions is bounded
below. Jia and Šverák also identify sufficient conditions for non-uniqueness in [33] based
on the eigenvalues of a linearised operator, but this is less relevant to the point we are mak-
ing in proposition 1.6. In this section we will prove proposition 1.6. The proof is fairly short
after a close reading of [33]. Before stating the proof, we will recall some of the notation and
machinery of [33].

Self-similarity plays a crucial role in [33]. If a solution u to (NS) is self-similar, then it has
a stationary profile defined by

1√
t
U
(

x√
t

)
:= u(x, t) ,

for (x, t) ∈R3 ×R+. The profile U satisfies a stationary system referred to as the Leray
equations, namely,

∆U+
x
2
·∇U+

1
2
U−U ·∇U−∇P= 0, ∇ ·U= 0.

In [33], Navier–Stokes solutions involving a second profile, which they denote φ, are also
considered [33, (1.3)]. However, in the result from [33] which we care about (namely [33,
theorem 5.2]), φ= 0 and so we do not discuss it further. In [33], a linearised operator is defined
based on the Leray equations. The non-uniqueness result is then conditioned on the eigenvalues
of this operator.

We consider the Leray–Hopf weak solutions in [33] which are guaranteed to exist by [33,
theorem 5.2] under what Jia and Šverák label spectral condition (B). The proof of [33, theorem
5.2] is not written explicitly, but follows the same logic as the proof of [33, theorem 5.1], for
which details are given. The difference between the proof of [33, theorem 5.1] and the proof of
[33, theorem 5.2] is that φ= 0 for both ui in the latter—this is because under spectral condition
(B), both ui are self-similar.

The main ingredient in both proofs is [33, theorem 3.1], which constructs solutions to a
perturbed (NS) around self-similar solutions. We presently recall the details with some modi-
fications to tailor the statement to our needs. We do not recall the precise spectral assumption
made on a solution to Leray’s equation as this is not our main point.
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Theorem 7.1 (perturbations of self-similar fields). Let U satisfy a spectral assumption stated
precisely in [33, theorem 3.1]. Suppose also that U satisfies6

U ∈ L∞; ∇ ·U= 0; esssupx
(
(1+ |x|)1+|α| |∇αU(x) |<∞for |α|= 0,1,2

)
.

Let u(x, t) = 1√
t
U
(

x√
t

)
. Given a divergence free vector field v0 ∈ L4(R3), there exists a suffi-

ciently small T= T(U,v0)> 0 and solution v to the problem

∂tv−∆v+ u ·∇v+ v ·∇u+ v ·∇v+∇π = 0; ∇ · v= 0, (7.1)

in R3 × (0,T) with initial data v(·,0) = v0 in the sense that

lim
t→0+

∥v(·, t)− v0∥L4 = 0.

Moreover v satisfies

v ∈ L∞
(
0,T;L4) ; t1/2∥∇v∥L4 (t) ∈ L∞ (0,T) ; lim

t→0
t1/2∥∇v∥L4 (t) = 0,

with

∥v∥L∞(0,T;L4) + ∥(·)1/2 ∥∇v∥L4(R3) (·)∥L∞(0,T) < C(U)∥u0∥L4 .

Furthermore, v is the unique solutions satisfying the above properties.

In [33, theorem 3.1], this theorem is applied to non-unique, local energy self-similar solu-
tions with a common O(|x|−1) initial condition u0. We label these solutions ui for i = 1,2
and denote their corresponding similarity profiles by Ui. Note that ui are bounded at positive
times. This and the known integrability conditions on vi imply they satisfy the local energy
inequality (2.5).

Leray–Hopf solutions are generated by theorem 7.1 by applying it to the tail of u0, which is
in L4. We can mean many things by the ‘tail of u0,’ for example we could mean a divergence
free vector field which is supported on R3 \B(0,2) and identical to u0 on R3 \B(0,3)—this
sort of construction is well known and can be made rigorous using the Bogovskii map [54,
p 45]. theorem 7.1 generates solutions vi to (7.1) with initial data taken to be this ‘tail.’ The
sought Leray–Hopf solutions then turn out to be V1 := u1 − v1 and V2 := u2 − v2, the initial
datum of which is self-similar on B(0,2), compactly supported and belongs to L2. The validity
of this procedure is confirmed in [33, theorem 5.2].

The main idea behind the following proof is that, within B(0,2) and as t→ 0, vi goes to zero
relatively quickly meaning Vi has the same asymptotics as ui = Vi + vi. This means that Vi is
approximately self-similar near the space-time origin. This approximate self-similarity then
leads to a lower bound for the error energy of the difference between the Leray–Hopf weak
solutions.

Proof of proposition 1.6. In this proof we take u0, u1, and u2 to be as described above. Let
ψ be a smooth cut-off function so that ψ= 0 on R3 \B(0,3) and ψ= 1 on B(0,2). Let v̄0 =
(1−ψ)u0. Let Φ be the Bogovskii map as defined in [54, section 2.8]. Observe that div(v̄0) =
v0 div(1−ψ) ∈ L4(B(0,3) \B(0,2)). Hence Φ(v̄0) ∈W1,4

0 (B(0,3) \B(0,2)),

divΦ = v0 div(1−ψ) ,

6 In [33] these properties define the space Y. Also, u is labelled ã and U is labelled a. The term b in [33] is zero for us.
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and

∥Φ (v̄0)∥W1,4
0

! ∥v0∥L4 .

Letting

v0 = v̄0 −Φ(v̄0) ,

we see that

supp(v0) =R3 \B(0,2) ; v0 = u0 onR3 \B(0,3) ;and v0 ∈ L4.

Let vi be as defined in theorem 7.1 as perturbations of the background fields ui and initial data
v0. Let Vi = ui − vi and denote the respective pressures by Πi. By [33, theorem 5.2], these are
Leray–Hopf weak solutions.

We will show that, for any ϵ, there exists Tϵ so that

∥vi∥2L2(B(0,1)) (t) = ∥Vi − ui∥2L2(B(0,1)) (t)" ϵt1/2, (7.2)

for t ∈ (0,Tϵ]. This will be enough to prove the proposition after noting that, for t" 1, the
exact scalings of ui imply that

t1/2∥u1 − u2∥2L2(B(0,1)) (1) = ∥u1 − u2∥2L2(B(0,t1/2)) (t)" ∥u1 − u2∥2L2(B(0,1)) (t) ,

from which, and by taking
√
ϵ= ∥u1 − u2∥L2(B(0,1))(1)/8, we infer that

∥V1 −V2∥L2(B(0,1)) (t)# ∥u1 − u2∥L2(B(0,1))(t)−∥v1∥L2(B(0,1))(t)−∥v2∥L2(B(0,1))(t)

# t1/4∥u1 − u2∥L2(B(0,1)) (1)− t1/4∥u1 − u2∥L2(B(0,1)) (1)/4

=
3
4
t1/4∥u1 − u2∥L2(B(0,1)) (1) , (7.3)

for t ∈ (0,Tϵ).
To show (7.2), we use the following version of the local energy inequality:
ˆ

|vi (x, t) |2φ dx+ 2
ˆ t

0

ˆ
|∇vi|2φdxds

"
ˆ

|v0 (x) |2φ dx+
ˆ t

0

ˆ
|vi|2∆φ dxds+

ˆ t

0

ˆ (
|vi|2 + 2πi

)
(vi ·∇φ) dxds

− 2
ˆ t

0

ˆ
(vi ·∇ui ) · viφ dxds+

ˆ t

0

ˆ
|vi|2ui ·∇φdxds, (7.4)

which applies to non-negative φ ∈ C∞
c (R3). We have already mentioned why each vi satisfy

the local energy inequality (2.5). To deduce (7.4) from (2.5) we just use the noted convergence
property of vi to v0 as t→ 0+. Let φ# 0 belong to C∞

c (R3) evaluate to 1 on B(0,1) and
have support in B(0,2). Importantly, the support properties of v0 imply the first term on the
right-hand side of (7.4) is zero. We will bound the other terms on the right-hand side of (7.4)
term-by-term using the fact that

lim
t→0+

t1/2∥∇vi ∥L4 (t) = 0 and lim
t→0+

∥vi − v0∥L4 (t) = 0,
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where i = 1,2, which is stated in theorem 7.1. Since v0 = 0 on B(0,2) we also have that
limt→0+ ∥vi ∥L4(B(0,2))(t) = 0.

For the pressure term we have

ˆ t

0

ˆ
πi vi ·∇φ dxds!

ˆ t

0
∥vi∥L4(B(0,2))∥πi ∥L4∥∇φ∥L2 ds

!φ

(
sup

0<s<t
∥vi∥L4(B(0,2))

)(
sup

0<s<t
∥vi∥L4

)ˆ t

0
∥ui∥L∞ ds

+

(
sup

0<s<t
∥vi∥L4(B(0,2))

)(
sup

0<s<t
∥vi∥5/4L4

)ˆ t

0
∥∇vi∥3/4L4 ds, (7.5)

0where we have used the Calderon-Zygumund theory, the fact that πi can be computed from
ui and vi via Riesz transforms and the Gagliardo-Nirenberg inequality ∥f∥8 ! ∥ f∥5/84 ∥∇f∥3/84
to obtain the last term. Since ui are local energy solutions and are self-similar, they satisfy
∥ui∥∞(t)" ∥Ui∥∞t−1/2. On the other hand, ∥∇vi∥3/44 (t)!v0 t

−3/8 and, upon integrating in
time, we note t5/8 " t1/2 for t" 1. Hence,

ˆ t

0

ˆ
πi vi ·∇φ dxds" C(ui,v0,φ)

(
sup

0<s<t
∥vi∥L4(B(0,2))

)

︸ ︷︷ ︸
→0as t→0+

t1/2.
(7.6)

Plainly by taking t sufficiently small we can bound the above by ϵ
√
t/4. For the terms involving

|vi|2 we have

ˆ t

0

ˆ
|vi|2∆φ dxds+

ˆ t

0

ˆ
|vi|2ui ·∇φdxds+

ˆ t

0

ˆ
|vi|2vi ·∇φdxds

"
ˆ t

0
∥vi∥2L4(B(0,2))∥∆φ∥L2 ds+C(ui)

ˆ t

0
∥vi∥2L4(B(0,2))∥∇φ∥L2

1√
s
ds

+C(v0)
ˆ t

0
∥vi∥2L4(B(0,2))∥∇φ∥L4 ds" ϵ

4

√
t, (7.7)

for t sufficiently small by the same logic as was applied to the pressure term. For the last term,

ˆ t

0

ˆ
(vi ·∇ui ) · viφ dxds,

we integrate by parts to get a termwhere the gradient falls on φ, which, in view of the preceding
estimate, is bounded by ϵ

√
t/4, and a term which is a multiple of

ˆ t

0

ˆ
(vi ·∇vi ) · uiφ dxds.

This term lacks a cancellation and requires the most care. To bound this note that ui is a local
energy solution to (NS) and so satisfies (2.7). Consequently,

30



Nonlinearity 37 (2024) 095023 Z Bradshaw

ˆ t

0

ˆ
(vi ·∇vi )uiφ dxds" sup

0<s<t
∥ui∥L2(B(0,3))

ˆ t

0
∥vi∥L4(B(0,2))∥∇vi∥L4 ds

!u0,v0 sup
0<s<t

∥vi∥L4

ˆ t

0

1
s1/2

ds" ϵt1/2/4, (7.8)

again by taking t sufficiently small. Since
ˆ

|v0 (x) |2φ dx= 0,

we obtain from (7.4) that
ˆ
B(0,1)

|vi|2 (x, t) dx" ϵt1/2,

for sufficiently small t.

Data availability statement

No new data were created or analysed in this study.

Acknowledgments

The research of Z Bradshawwas supported in part by the NSF via Grant DMS-2307097 and the
Simons Foundation via a collaboration grant. The author is grateful to the anonymous referees
for their insightful and constructive recommendations.

References

[1] Albritton D and Barker T 2019 Global weak besov solutions of the Navier–Stokes equations and
applications Arch. Ration. Mech. Anal. 232 197–263

[2] Albritton D and BradshawZ 2022 Remarks on sparseness and regularity of Navier–Stokes solutions
Nonlinearity 35 2858–77

[3] Albritton D, Brué E and ColomboM 2022 Non-uniqueness of Leray solutions of the forced Navier–
Stokes equations Ann. Math. 196 415–55

[4] Albritton D, Brué E, Colombo M, De Lellis C, Giri V, Janisch M and Kwon H 2024 Instability and
Non-uniqueness for the 2D Euler Equations, after M. Vishik (Annals of Mathematics Studies vol
219) (Princeton University Press) p ix+136

[5] Azouani A, Olson E and Titi E 2014 Continuous data assimilation using general interpolant observ-
ables J. Nonlinear Sci. 24 277–304

[6] Bahouri H, Chemin J-Y and Danchin R 2011 Fourier analysis and nonlinear partial differen-
tial equations Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of
Mathematical Sciences vol 343) (Springer) p xvi+523

[7] Barker T 2018 Uniqueness results for weak Leray-Hopf solutions of the Navier–Stokes systemwith
initial values in critical spaces J. Math. Fluid Mech. 20 133–60
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