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The high sensitivity of the spectrum and wavefunctions to boundary conditions, termed the non-Hermitian
skin effect, represents a fundamental aspect of non-Hermitian systems. While it endows non-Hermitian systems
with unprecedented physical properties, it presents notable obstacles in grasping universal properties that are
robust against microscopic details and boundary conditions. In this Letter, we introduce a pivotal theorem: in
the thermodynamic limit, for any non-Hermitian systems with finite-range interactions, all spectral moments
are invariant quantities, independent of boundary conditions, posing strong constraints on the spectrum. Utiliz-
ing this invariance, we propose a new criterion for bulk dynamical phases based on experimentally observable
features and applicable to any dimensions and any boundary conditions. Based on this criterion, we define
the bulk dispersive-to-proliferative phase transition, which is distinct from the real-to-complex spectral transi-
tion and contrasts with the traditional expectation that the existence of eigenvalues above the real axis implies
proliferative behavior. We verity these findings in 1D and 2D lattice models.

Introduction.—When a system interacts with external envi-
ronments, the use of a non-Hermitian Hamiltonian becomes
an efficient description and leads to a realm of new discover-
ies [1-3]. The non-Hermitian elements manifest differently
in various physical setups, for example, imbalanced mode
damping in optical and acoustic systems [4—7], odd viscos-
ity and elasticity in mechanical systems [8—12], quasi-particle
excitations with finite lifetime in condensed matter [13, 14],
time evolution of observables in open-quantum systems [15—
17], and dynamics of species population in biological sys-
tems [18, 19]. The non-Hermitian Hamiltonian enables com-
plex eigenvalues, giving rise to a myriad of intriguing phe-
nomena not found in conservative systems [20-28].

One central topic in non-Hermitian band systems [29-32]
is the non-Hermitian skin effect (NHSE) [33—-40], where a
large number of bulk wavefunctions localize at open bound-
aries. A key feature of NHSE is its high spectral sensitiv-
ity to boundary conditions [41-43]. It is generally observed
that the spectrum is dramatically reshaped as the boundary
conditions change from periodic to open. In two and higher
dimensions, the spectrum exhibits even more complex char-
acteristics [37, 38, 44-51]. The spectral density distribution
also depends on different open boundary conditions (OBC)
geometries [52-57].

Despite the exotic physical properties conferred by spec-
tral sensitivity in non-Hermitian systems, the full understand-
ing of this phenomenon remains elusive. This sensitivity to
boundary conditions cannot be an arbitrary rearrangement of
energy spectra; they must adhere to fundamental principles
that are impervious to boundary conditions. The rationale
for expecting such universality rests on the premise that, in
systems with local (finite-range) interactions, altering bound-
ary conditions only modifies a sub-extensive part of the sys-
tem, whose volume compared to the bulk approaches zero
in the thermodynamic limit. Consequently, there must ex-
ist pivotal characteristics dictated solely by the bulk, immune
to any variations in boundary conditions. Some nascent in-
sights into such bulk-dictated properties have surfaced re-
cently; for instance, in certain systems of NHSE, although
the (right) eigenstates display high boundary sensitivity, their

local density of states are uniform in the bulk and insensi-
tive to boundary conditions [25, 58]. Additionally, short-
term wavepacket evolution in the bulk appears boundary-
agnostic [59]. Notwithstanding these exciting findings, un-
derlying invariants and universal principles are yet to be un-
raveled.

In this Letter, we introduce and prove a universal spec-
tral moment theorem, applicable to any systems with finite-
range couplings—Hermitian or non-Hermitian. We demon-
strate that in the thermodynamic limit, despite potentially dra-
matic shifts in their energy spectrum, all moments of the spec-
trum are determined entirely by the bulk and are invariant with
respect to boundary conditions. Because the moments of the
spectrum are invariant under arbitrary (unitary or non-unitary)
transformations, Tr{ H"} = Tr{(M ~*HM)"}, where H is
the Hamiltonian and M is any arbitrary invertible operator,
the values of these spectral moments are highly robust. Fur-
thermore, among all functions of H, spectral moments are
the only quantities that offer such a level of robustness [60].
This robustness persists even if changes in boundary condi-
tions substantially alter the eigenvalues and eigenfunctions of
H due to the non-Hermitian skin effect. This result is a key
insight and conclusion of this manuscript.

To demonstrate one application of the theorem, we study
the time evolution of wave packets in P7 -symmetric non-
Hermitian systems. Previous research has thoroughly inves-
tigated the phase transition from the P7 -exact phase, fea-
turing entirely real eigenvalues, to the P77 -broken phase, in
which some eigenvalues turn complex. However, for systems
in the thermodynamic limit, our understanding on the precise
effects of non-Hermiticity on P77 -symmetric systems remains
limited, due to the extreme sensitivity of the eigenspectrum
to the boundary conditions. In this context, we introduce the
concept of the dispersive-to-proliferative transition, which en-
capsulates the competition between dispersiveness and non-
unitary time evolution. By applying the theorem above, we
show that this transition sets a universal upper bound on the
real-to-complex transition of the eigenvalue spectrum, com-
pletely unaffected by the choice of boundary conditions or any
sub-extensive perturbations.



The universal spectral moment theorem.— Here we present
the universal spectral moment theorem using lattice Hamilto-
nians, while these conclusions can also be generalized to con-
tinuous models by appropriately taking the continuum limit.
We first define some notational conventions used in this paper.
Let Q2 be a bounded connected open region in R%, I" be a fixed
infinite lattice in R%, V be the volume of the Brillouin zone
(BZ), rI" be the lattice obtained by scaling the lattice I" by a
factor of r, H be a real space periodic non-Hermitian lattice
Hamiltonian with finite interaction range defined on the infi-
nite lattice I' with Bloch Hamiltonian H (k), k € BZ. With-
out loss of generality, we assume that each node in the unit
cell has only one degree of freedom and the number of nodes
in a unit cell is m. Let H, be a lattice Hamiltonian with N,
degrees of freedom defined on a finite lattice {2 N rI" with the
same interaction parameter (same nearest neighbor hopping,
etc.) as H. As we decrease r toward 0, H, remains defined
in the same open region 2, yet the lattice mesh becomes in-
creasingly dense [Figs. 1(a) and (b)], with the continuum limit
corresponding to 7 — 0. In the tight-binding setup, the lat-
tice constant does not directly enter the Hamiltonian, and thus
its value is not crucial. What is important are the values of
the hopping parameters, which we keep invariant as r — 0.
Therefore, the limit » — 0 is essentially equivalent to main-
taining a constant lattice spacing while scaling the size of the
open region to infinity, i.e., the thermodynamic limit.

Let po(FE) be the normalized spectral density of the open-
boundary Hamiltonian in the continuum limit, defined as
pa(E) = lim;_ lim, ,o N(E,1,7)/I?N,, where N(E,l,r)
counts the states within a square of area [ centered at E in the
complex energy plane. The integral of po(FE) over the entire
energy plane is 1. Although the spectral density pqo(E) itself
may depend on the boundary geometry, the spectral moments
are invariant, as stated in the following universal spectral mo-
ment theorem.

Theorem 1. For any positive integer n, the n'" moment of
the normalized density of states pq(z) in the continuum limit
is independent of the boundary condition and is related to the
Bloch Hamiltonian H (k) by the following formula

B po(E)dS = —

= — Tr(H(k)")dk, (D
EeC mV Jiepz (Hk)")

where dS is the area element in the complex-energy plane.

Theorem 1 states that the arbitrary order-n spectral mo-
ment of the OBC normalized density of states is an intrin-
sic property independent of boundary conditions of the non-
Hermitian Hamiltonian. It’s worth noting that the spectral
moments, although defined by the OBC Hamiltonian, can
be determined by only solving the Bloch Hamiltonian H (k),
thereby making them easily computable. For lattice Hamil-
tonians with finite-range couplings, the complex-valued OBC
spectrum covers a bounded region, and pq (F) is zero for all
sufficiently large | E/|. One straightforward application is that
when the OBC spectrum is real, po(E) can be completely
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FIG. 1. Lattice scaling and loops in 2 N rI". (a) Region 2 embedded
in the background lattice I". (b) Same region 2 with scaled back-
ground lattice rI" (r < 1). (c) Loops starting from bulk point s; and
from point s near the boundary.

determined by its spectral moments (related to Hausdorff mo-
ment problem [61]). When the spectrum becomes complex,
these spectral moments in general do not uniquely deter-
mine po(E). We need the information of all mixed moments
Jpec E%(E*)?po(E)dS to fully determine po(E). Now we
provide a proof of Theorem 1.

Proof. By the definition of the density of states po(E), we
have

T HP

lim
NT EeC

r—0

E" po(E)dS. @)

Given a node s in a finite size lattice (rI" N €2), we have

Z Hsin,,y"HizhHhs = ZW(LS), (3)

B1yeeyin—1 L

(H:})ss =

where L, indicates a loop starting and ending at node s
[Fig. 1], and the last summation is over all loops with the
weight w (L) being the product of the hopping strength on the
loop L,. From Eq. (3) we see that if a node s is deep in the
bulk [Fig. 1(c)], all loops L, cannot touch the lattice boundary,
and thus (H)ss largely depends on the bulk. Let Hy be the
real space Hamiltonian with the same hopping parameters on
a large torus of corresponding dimension such that the num-
ber of nodes R along one direction is much larger than n. Let
n g be the number of unit cells contained in the graph defining
Hp. Using the fact that for any given n, the portion of nodes
no farther than n/2 hopping steps away from the boundary in
the set rI" N 2 tends to zero [see Fig. 1(c) and Appendix A]
and (H)ss doesn’t depend on the boundary when node s is
in the bulk, we have

Te H'  Tr HY
T mng

lim
r—0 Nr

4)

Since the left-hand side doesn’t depend on R, we can apply
Bloch’s theorem to block diagonalize Hg and take R — oo



limit on both sides of Eq. (4). It follows that

TrH TrH} 1
lim ——" = lim ——2 = — Tr(H (k)") dk,
r—0 N, R—oco MNR mV kcBZ
)
which completes the proof of Theorem 1. O

From this proof, we can also see that the spectral moments
of the non-Hermitian Hamiltonian under periodic boundary
conditions (PBC) are the same as those under OBC in the
continuum limit. Consequently, the spectral moments are in-
deed independent of boundary conditions. It is worth noting
that if F(z) = Y2 a,2™ is an analytical function with no
poles in the PBC and OBC spectrum, we have [see Appendix
B for a proof of the case where F'(z) = e~***. A numerical
verification and a proof of general cases are provided in the
Supplemental Materials]

1
lim )

lim — W/kEBZ”_[‘rF[H(k)]dk. (6)

This result is fully consistent with Szegd limit theorem [62],
and this conclusion can be generalized to encompass arbitrary
boundary conditions as well as any form of sub-extensive per-
turbations or disorders that may occur in the system.

To demonstrate Theorem 1, we calculate the spectrum of

a non-Hermitian lattice model in two dimensions and show
that the normalized density of states depends on boundary
conditions while the spectral moments don’t [see the Supple-
mental Materials for coupled Hamiltonian under more com-
plicated boundary shapes]. Consider a non-Hermitian tight
binding model as illustrated in Fig. 2(a). We calculate the
periodic-boundary spectrum, i.e., H (k) for all k in the Bril-
louin zone, and the open-boundary eigenvalues with system
size of L, = L, = 100 [Fig. 2(b)]. The spectral density is
drastically different under OBC and PBC [Fig. 2(c)]. How-
ever, their spectral moments coincide when the system size
tends to continuum limit (r — 0), as shown in Fig. 2(d). The
spectral moments with distinct boundary conditions converge
at the rate of r, and this holds true regardless of system di-
mensions [see Appendix A].
Dispersive-to-proliferative transition in PT -symmetric non-
Hermitian systems.— The theorem discussed above not only
imposes fundamental constraints on the energy spectrum, but
also has practical relevance for experimental studies. To il-
lustrate this, we investigate a d-dimensional P7T -symmetric
system under arbitrary boundary conditions and examine its
bulk wave dynamics, which is a standard experimental tech-
nique for probing non-Hermitian systems [63].

In PT-symmetric systems, as the strength of non-
Hermiticity v increases beyond a certain threshold v*, a phase
transition will often occur, where the energy spectrum of the
systems transitions from real to complex, known as the P7 -
exact to P77 -broken transition. Depending on the system, the
value of v* may be zero or finite. More importantly, this
threshold +* can also vary with boundary conditions, as the
energy eigenvalues are highly sensitive to them. However,
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FIG. 2. Invariance of spectral moments in 2D. (a) The 2D non-
Hermitian lattice model; (b) OBC and PBC geometry; (c) The OBC
spectrum (red) and PBC spectrum (Blue) are drastically different; (d)
Convergence of 3" spectral moment as a function of . z3 is the 37
spectral moment of an infinite system (right-hand side of Eq. (1)), 25
is the 3" spectral moment of large systems under OBC.

in realistic experimental systems with large sizes, modifying
boundary conditions only affects a negligible fraction of the
system. Thus, except in the vicinity of the boundaries, the
time dynamics should remain uninfluenced by boundary con-
figurations.

With this understanding we define this transition as follows.
Prepare a J-function wave-packet at one bulk point (e.g., the
origin), and measure its amplitude at the same point at a later
time ¢. This measurement probes the amplitude of the equal-
position correlation function, which takes the following form
in the thermodynamic limit and can be viewed as the time-
evolution operator averaged over all eigenvalues,

G(t) = lim G,(t) = lim Loy it (7)

r—0 r—0 IV,

Due to the PT symmetry, |G(t)| = |G(—t)|. Here we focus
on the fate of |G(t)| at large time, i.e., whether it decays to
zero or diverges towards infinity.

In the thermodynamic limit, the time-evolution of |G ()|
is mainly governed by two competing effects: dispersiveness
and non-unitary time evolution. At the Hermitian limit, |G (¢)|
decays as a power-law function of ¢ due to dipersiveness. In
contrast, at strong non-Hermiticity, non-unitary time evolu-
tion makes |G/(#)] to grow exponentially at large ¢. Thus, as we
gradually increase the strength of non-Hermiticity (), a phase
transition between the dispersive phase, |G (¢)| — 0, and the
proliferative phase, |G (t)| — oo, shall arise, and the criti-
cal strengths of non-Hermiticity will be labeled .. As will
be shown below, in contrast to the real-to-complex spectrum
transition, where v* is often zero or sensitive to boundary con-
ditions, the critical value -, for this dispersive-to-proliferative
transition is typically finite, and it is completely independent
of boundary conditions at the thermodynamic limit.

Notably, while the two phase transitions (spectrum versus
dispersiveness) are distinct, we will establish a deep connec-




tion between them by proving that . sets a universal upper
bound for v*, as illustrated in Fig. 3(a). That means, although
the value of v* may fluctuate with different boundary condi-
tions, it will never surpass .. It’s important to recognize that
our analysis here primarily focuses on the regime of small ~,
omitting the re-entry effect — a phenomenon where the P77 -
exact phase (or dispersive phase) can reappear at high values
of . In more general scenarios, our findings indicate that the
proliferative phase is necessarily contained within the com-
plex spectrum phase, regardless of boundary conditions.
Relations and differences between ~* and ~..— From Eq. (6)
and Eq. (7), we obtain

m

Gt) = — / e~ Nkt g, (8)
Q mV; keBZ

where \; (k) denotes the j-th band of the Bloch Hamiltonian
H (k). To demonstrate the connection between G (t) and com-
plex spectrum, we prove the following conclusion [A rigorous
proof of the following Corollary is in Appendix C.]

Corollary 1. Ifwe have

_ 1 | )
G| = — / “N R Q| > 1, 9
| ()’ mV ; keBZe ©)

for somet € R, H, has complex eigenvalues in the continuum
limit. That is, there exist rq > 0 and € > 0 such that H,
has at least one complex eigenvalue whose absolute value of
imaginary part is greater than € for all 0 < r < ry.

This Corollary implies that real OBC spectrum is a suffi-
cient, rather than necessary, condition for dispersiveness, and
thus a generic relation between real OBC spectrum and disper-
siveness is illustrated in Fig. 3(a), where ~y denotes a general
non-Hermitian parameter. We emphasize that the dispersive-
to-prolifrative transition 7y, can be detected through short-time
bulk dynamics in experiments, and is boundary-agnostic in the
thermodynamic limit, making it an intrinsic phase transition.
In contrast, the OBC spectrum transition point y* is sensitive
to the boundary, as it results from the interplay between the
dynamics and the system’s boundary.

Here, we demonstrate the relation between v, and v* by
considering the following one-dimensional non-Bloch P7T -
symmetric Hamiltonian:

H(z) =((L=z+(1+7)z""+az*+272)% (10)

where z := ¢ and v > 0 is the non-Hermitian parameter
and o > 0. For o = 0.2, the OBC spectrum splits from real
to complex upon turning on the non-Hermiticity (v > 0), indi-
cating the transition point v* = 0 for this Hamiltonian. How-
ever, we will show that the dispersive-to-proliferative tran-
sition at v, does not coincide with v*; specifically, 7. =~
0.053 > ~* for this model. The mismatch between ~. and v*
will lead to a key physical consequence that extends beyond
conventional expectation: even though the OBC spectrum is
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FIG. 3. OBC spectrum and dispersiveness. (a) General relation be-
tween real OBC spectrum and dispersiveness, where « denotes gen-
eral non-Hermitian parameters and v* < ~.; (b) The spectrum for
¥ < v =001 < v.and v = 0.1 > ~, are all complex; (c)

G(t) for v = 0.01 is bounded but grows exponentially at large ¢ for
v =0.1.

complex-valued at some v (where v* < v < 7.), the bulk
dynamics characterized by Eq. (7) converge in the thermody-
namic limit, as illustrated in Fig. 3(c).

Determine the dispersive phase in arbitrary dimensions.—
Here we provide an analytical method to determine the
dispersive-to-proliferative transition point based on a deform-
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FIG. 4. dispersive-to-proliferative transition phase diagrams in 1D
and 2D. (a) dispersive-to-proliferative phase diagram for the 1D
Hamiltonian Hip(z). Red dots are the computed phase boundary
using the contour integral method. (b) The illustration for the 2D
lattice Hamiltonian given by Eq. (13). (c) dispersive-to-proliferative
phase diagram of the 2D Hamiltonian. The non-Bloch P7 transition
point for a < 0.5 is a finite value. (d) When o = 0.3, Gap(t) for
v = 0.1 < 7. [signaled by a diamond in (c)] is bounded; while it
grows exponentially at large ¢ for v = 0.25 > ~. [indicated by a
triangle in (c¢)].



ing contour method, which is applicable in arbitrary dimen-
sions. We illustrate this method using the following P7 sym-
metric non-Bloch Hamiltonian:

Hip(z) = (1 =)z + L+ +a(z2+272), (11)
where 7, > 0 is assumed and z = e*. Applying Eq. (8),
we have

_ 1 e*iH][)(Z)t
Gip(t) = — —dz. 12
ID( ) 211 |z|=1 z & ( )

Because |G’1D| either decays to zero or grows exponentially as
t — +o0, we only need to probe whether G(¢) is bounded to
determine if the system is in the dispersive phase. For this pur-
pose, we first identify the region on the complex z plane where
Im Hp(z) < 0, and then ask whether the integral contour of
Eq. (12), i.e., the unit circle |z| = 1, can be adiabatically de-
formed into this region without hitting any poles. This crite-
rion is a sufficient condition for the dispersive phase, because
if such a contour deformation can be achieved, |e‘”““)(z)t| is
bounded by 1 for all £ > 0 on the contour, which implies that
G(t) is bounded at t — +oc. Using this method, we compute
the dispersive-to-proliferative transition points of this model,
as shown in Fig. 4(a). It is worth commenting that Eq. (10)
is the square of Eq. (11). Hence the trace of the propaga-
tor of Eq. (10) converges to zero whenever G p(t) converges
to zero. The real space Hamiltonian H of Eq. (10) and the
square of the real space Hamiltonian H,p of Eq. (11) only dif-
fers on entries that correspond to hoppings between sites near
the boundary. Therefore, the OBC spectrum can be sensitive
even to a slight modification of the open boundaries, while the
dynamics doesn’t.

Our method is straightforwardly applicable to higher di-
mensions. Now consider a 2D P7T symmetric non-Bloch
Hamiltonian [as illustrated in Fig. 4(b)]

If for any 6 € [0,27], we can adiabatically deform the in-
tegral contour |z,| = 1 into Im Haop (r(0)e'?, 2,) < 0, where
r(6) > 0is some smooth function of #, then the same deform-
ing contour argument shows that |G,p ()| is bounded. Based
on this method, we find the model has a non-zero dispersive-
to-proliferative transition point 7. for & < 0.5. We further
plot the phase diagram in Fig. 4(c). The phase diagram for
dispersive-to-proliferative transition is sharply contrasted with
the universal zero threshold (y* = 0) of real-to-complex tran-
sition in the higher-dimensional OBC spectrum [47]. |Gop ()]
decays to zero when v < 7. and grows exponentially at large
t when v > . [Fig. 4(d)], which validates this method.
Conclusion.—In this paper, we formulate a universal spec-
tral moments theorem, applicable to any systems with finite
ranged couplings. We demonstrate that the spectral moments
are invariant with respect to boundary conditions. Hence they
form a new class of bulk quantities and strongly constrains the
OBC spectrum. We further give an analytical expression for
the spectral moments based on the spectrum under PBC which
are easy to compute, and an analytical expression for the av-
erage eigenvalue of the time-evolution operator in the thermo-
dynamic limit, G(t). The boundedness of G(t) suggests a new
phase of dispersiveness for non-Hermitian band systems. We
further proposed a deforming contour method on the bound-
edness of GI(t), which serves as a criterion for dispersiveness
in arbitrary dimension. Our work demonstrates the feasibility
of constructing bulk quantities to study the physical proper-
ties of non-Hermitian systems. The existence of a non-trivial
2D P7T symmetric Hamiltonian where small non-Hermiticity
preserves dispersiveness opens up new avenues for the study
of wavepacket dynamics in higher dimensions.
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In this section, we provide proofs for the following conclusions presented in the main text: the convergence rate of spectral
moments, the Szegd limit theorem [Eq. (6)] for F'(z) = e~**, and Corollary 1.



Appendix A. Convergence rate of spectral moments

Lemma 1. Let A1, ..., AN, be the eigenvalues ofI:Ir. For alln € NT we have

N,
1 1
— N — Tr(H(k)™) dk| = O(r), (Al)
N ;:1 oV oy (H(k)") (r)

where m is the number of degree of freedom per unit cell and V' is the volume of the Brillouin zone.

Proof. We have

N,

1 Tr H w(L

R ST L NEC) "
j=1

Ny Ny

where the last sum is over all loops of length n in 7" N © and w(L) is the weight of the corresponding loop. Since

> w@) =) w(L), (A3)

L

where the first sum is over all nodes in 7I" N € and the second sum is over all loops of length n with starting point s. Then, the
number of points in rI" N €2 that has at least a loop of length n touching the boundary (denote this set of points as 9Q(n)) is
proportional to nB,., where B, oc 71~ is the number of nodes on the boundary 9. So we have

Sos o, wLs)  Yseoam) 2ar. W) Xegaam) 2w, @(Ls)
N = N + N . (A4)

Since N,. o r~%, we have

2 scon(n) 2o, W(Ls)
N,

= O(r). (A5)

To estimate the second term in the right hand side of Eq. (A4), let Hp, be the Hamiltonian one 7" with periodic condition such
that the number of nodes along on direction, R, is much larger than n. Let ny be the number of unit cells contained in the graph
defining Hp. Then for any unit cell U € Q \ 02(n), we have

> w(Ly) = ey (A6)

s€U L, "R
Let u, be the number of unit cells in the network rT" N Q2 \ ©(n), then we have

N, — mu,

N = 0. (AT)

Hence we see

Esg{@ﬂ(n) ZLS w(LS) U ZSEU ZLS w(LS) mu, — N, ZSEU ZLS w(LS>

ZseU ZLS W(LS) .

= - A
N, N, N, m i m o
From Eq.(A6) we have
w(Ls) TrHY TrHy 1 ,
Ywevr2p,wLs)  TeHy o TrHp 1 / Te(H (k)")dk. (A9)
m mnpg R—oco MNR mV kcBZ

Combining Eq. (AS), Eq. (A7),Eq. (A8) and Eq. (A9) we obtain Eq.(A1). O



Appendix B. Proof of Eq. (6) in the case of F'(z) = ¢~ "'
Proof.

de > 0,Vr >0,n >0,k € BZ, we have |\;(k)| < ¢
and | Tr H/N,| < ¢". Givent € Rand e > 0,3N > OsuchthatVg > N,k € BZ,r > 0, we have

o (R)E _ zq: (—ids(k)t)?

Tr et I, (—it)? Tr HJ
: ! S i D DT (A1O)
j=1 J=1
Fix a ¢ > N, we have
Tr et 1 <« / .\
- — A RiqE| < A(r) + B(r) + C (A11)
e T r ),
v, < A(r) + B(r) + C(r)
where A(r), B(r), C(r) are defined as
Alr) = Tr et I (—it)! Tr H)
Ny 7 JIN; 7
1| & L (—ids (K)t)7
B()ziz/ e—Nk)t—Z( : (' L (A12)
mV s—1/kEBZ =1 J
q j g m . ;
(—it)? Tr H 1 / (—iXs(k)t)?
Clr)= L — — - dk|.
) ; J'N; ; ; mV Jeepz J!
Note that 0 < A(r) < €,0 < B(r) < eand C(r) — 0 as r — 0 (by lemma 1). Taking a upper limit of  — 0, we have
e—iHTt 1 m )
limsup |[———— — — / em PRkl < 2¢ (A13)
r—0 N, mV ——1/keBZ
Since ¢ is arbitrary, we arrive at Eq. (8). O

Appendix C. Proof of Corollary 1

Proof. 1f G(ty) > 1 for some ty > 0, from Eq. (8), we know 37y > 0and e > 0,V0 < r < rq,| Tr et /N | > efto_ If the
absolute values of imaginary parts of all the eigenvalues of H, are all less than e, then |[e =" | < e holds for all eigenvalue \
of H,. Using the triangle inequality for absolute values and the fact that the trace of a matrix equals the sum of all its eigenvalues,
we have | Tr e~ %0 /N, | < o, which is a contradiction. The proof for the case |G (to)| > 1 for some ¢y < 0 is similar. [
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