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torsors. As an application, we prove a universal bound for 
the differential splitting degree of differential central simple 
algebras.
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Introduction

Picard-Vessiot theory studies algebraic relations between solutions of homogeneous 
linear differential equations via Picard-Vessiot rings, which are analogues to Galois ex-
tensions from algebra. While various aspects of algebra have been effectively studied 

* Corresponding author.
E-mail addresses: mktsui@fsu.edu (M.C. Tsui), yidiwang@math.upenn.edu (Y. Wang).
https://doi.org/10.1016/j.jalgebra.2024.05.047
0021-8693/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, 
and similar technologies.

https://doi.org/10.1016/j.jalgebra.2024.05.047
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2024.05.047&domain=pdf
mailto:mktsui@fsu.edu
mailto:yidiwang@math.upenn.edu
https://doi.org/10.1016/j.jalgebra.2024.05.047


50 M.C. Tsui, Y. Wang / Journal of Algebra 658 (2024) 49–72
under the framework of torsors and Galois cohomology, Picard-Vessiot theory has pri-
marily been studied by treating the algebraic and differential aspects rather separately. 
The next paragraphs discuss the two things this paper does to bring the differential 
theory closer in line with the algebraic theory.

For the rest of this paper, “δ” will serve both as our shorthand for the word “differ-
ential” and our notation for derivations. We will also fix a δ-field (F, δ), i.e., a field F
equipped with a derivation δ : F → F . We will assume that F is of characteristic zero, 
and that its field of constants C is algebraically closed. For instance, the reader can take 
(F, δ) to be the complex function field C(x) with the derivation d/dx.

The first objective of this paper is to better describe Picard-Vessiot theory using δ-
torsors. In general, a Picard-Vessiot ring of an n ×n matrix differential equation y′ = Ay

over F is constructed as follows.

(1) Define the δ-ring R := F [Xij , det(Xij)−1 | 1 ≤ i, j ≤ n] with derivation δ(Xij) =
A(Xij).

(2) Let m be a maximal δ-ideal of R. Then R/m is a Picard-Vessiot ring for y′ = Ay.

In the classical theory, Kolchin had shown that the spectrum of a Picard-Vessiot ring is a 
torsor under its δ-Galois group (see e.g., [8] or [20, Theorem 1.29]). In [2], it was further 
shown that such a torsor is a δ-torsor. In Section 2, we give refinements of statements 
in [2]. Namely, we strengthen Step 1 into a bijective correspondence between the δ-
isomorphism class of Spec(R) and the equivalence class of the original equation y′ = Ay

in Proposition 2.4. We then generalize Step 2 to arbitrary δ-torsors in Theorem 2.8. As 
a consequence, we show that any δ-torsor arises from a unique Picard-Vessiot ring up to 
isomorphism.

The second objective of this paper is to construct a cohomology theory for Picard-
Vessiot theory that plays a role similar to Galois cohomology in Galois theory. We will 
use this cohomology to classify various differential objects that arise in Picard-Vessiot 
theory. Namely, we give a bijective correspondence between certain objects (namely the 
Φ-objects; see Section 3.3 for the precise definition) and δ-torsors under linear algebraic 
groups. To establish this correspondence, we introduce a cohomology theory using δ-
Hopf-Galois descent. The 1-cocycles in this cohomology H1

δ (Γ, G) are morphisms Γ → G

of varieties over C, where Γ and G are linear algebraic groups over C.
Fix a Picard-Vessiot extension K/F and a Φ-object M over F (e.g., δ-module, δ-

torsor, δ-central simple algebra). We will classify the set TF(K/F, M) of twisted forms 
of a Φ-object M , i.e., Φ-objects N over F that become isomorphic to M over K, by the 
above cohomology. This is done by the following theorem.

Theorem (Theorem 4.11). Let K/F be a Picard-Vessiot extension with δ-Galois group Γ. 
Let M be a Φ-object over F . Suppose that the group functor

Autδ,Φ(M) : (C -Algebras) → (Groups) : D �→ Autδ,ΦF⊗ D(M ⊗C D)

C
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is represented by a linear algebraic group G over C. Here the superscript Φ indicates that 
the automorphisms preserve the type Φ. Then the two sets TF(K/F, M) and H1

δ (Γ, G)
are in bijection.

A similar correspondence was also considered by [15] where our notion of twisted 
forms was classified in Amitsur cohomology, using faithfully flat descent. One advantage 
of our cohomology theory is that it allows us to work directly with Picard-Vessiot rings, 
which are generally not faithfully flat. Furthermore, our cohomology does not require in-
formation about the Picard-Vessiot extension like Amitsur cohomology does and thereby 
enables us to directly work with the δ-Galois groups. Recently, [11] also proved Theo-
rem 4.11 when the twisted forms are specifically δ-torsors in a model-theoretic approach.

When G is PGLn, Theorem 4.11 establishes the bijective correspondence between 
δ-central simple algebras of degree n introduced in [6], and δ-PGLn,F -torsors; see The-
orem 5.1. (While the paper was under review, a similar result was also proven in [12, 
Theorem 1.2].) Consequently, we can address questions raised for δ-central simple alge-
bras, leveraging properties of δ-PGLn,F -torsors. Previously, [5] proved that the δ-splitting 
degree for δ-quaternion algebras is at most three. Their approach involved explicitly solv-
ing the Riccati equations associated to δ-quaternion algebras. However, the algebraic 
structure of general δ-central simple algebras is much less explicit and therefore one can-
not expect nice associated differential equations for computation. Instead, we will use 
our new bijective correspondence with δ-PGLn,F -torsors to prove the following universal 
bound on the δ-splitting degree for general δ-central simple algebras:

Theorem (Corollary 5.2). Let (A, δ) be a δ-central simple F -algebra of degree n. Then

degδsp(A, δ) ≤ dim(PGLn) = n2 − 1.

This bound is optimal if PGLn appears as a δ-Galois group over the δ-field F .

Here is how this manuscript is organized. Section 1 reviews Picard-Vessiot theory. 
Section 2 studies δ-torsors as introduced in [2]. Section 3 defines the twisted forms that 
we will use. Section 4 proves Theorem 4.11 as part of the more general correspondence 
(Theorem 4.10) about δ-Hopf-Galois extensions. Then Proposition 4.12 restates Section 4
in terms of absolute cohomology. In Section 5 we recall δ-central simple algebras as 
introduced in [6] and answer a question of [5].

Acknowledgments. Sections 3 and 4 contain results from the first author’s thesis, and 
Sections 2 and 5 contain results from the second author’s thesis. The second author 
was partially supported by NSF grant DMS-2102987. Both authors thank David Har-
bater and Mark van Hoeij for helpful conversations, and Julia Hartmann for her patient 
advising and ample support. We also thank the reviewer for helpful comments.
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1. Picard-Vessiot theory

We first review Picard-Vessiot theory mainly following [20, Chapter 1].
A δ-ring is a commutative ring R equipped with a derivation δ : R → R, i.e., an 

additive map δ : R → R satisfying δ(rs) = δ(r)s + rδ(s) for all r, s ∈ R. Let (R, δ) be a 
δ-ring. The ring of constants of R is the subring Rδ := {r ∈ R | δ(r) = 0} of R. If Rδ is 
a field, we call Rδ the field of constants of R. An ideal I of R is a δ-ideal if δ(I) ⊆ I. If 
the only δ-ideals of R are 0 and R, then R is simple. A homomorphism of δ-rings (R, δR)
and (S, δS) is a ring homomorphism φ : R → S such that φ ◦ δR = δS ◦ φ. A δ-ring S
is a simple δ-quotient of R if S is simple and S is the image of a δ-ring homomorphism 
R � S.

A δ-R-module is an R-module M equipped with a derivation δ : M → M , i.e., δ(rm) =
rδ(m) + δ(r)m for all r ∈ R, m ∈ M . Let M be a δ-F -module with dimF M = n < ∞. 
After a choice of F -basis, M corresponds to an n ×n matrix differential equation y′ = Ay

with A ∈ Mn(F ). Two δ-F -modules are isomorphic if and only if their corresponding 
equations y′ = Ay and z′ = Bz are gauge equivalent, i.e., B = P ′P−1 +PAP−1 for some 
P ∈ GLn(F ). We call M trivial if M ∼= F ⊗C M δ as δ-F -modules, where M δ := {m ∈
M | δ(m) = 0}. In a suitable F -basis, a trivial δ-module corresponds to the equation 
y′ = 0 · y.

Let (R, δR) be a δ-ring. A δ-R-algebra is a δ-ring (S, δS) such that S is an R-algebra 
and δS extends δR. Concepts like δ-R-coalgebras, δ-Hopf algebras, and δ-field extensions
are similarly defined as R-coalgebras, Hopf algebras, and field extensions with compatible 
derivations that commute with the structure ring homomorphisms.

A Picard-Vessiot ring R for a differential equation y′ = Ay over F is a simple δ-F -
algebra satisfying the following conditions:

(1) There exists a fundamental matrix Y ∈ GLn(R) that satisfies Y ′ = AY ;
(2) R = F

[
Yij ,det(Yij)−1 | 1 ≤ i, j ≤ n

]
;

(3) Rδ = C.

A Picard-Vessiot extension L for y′ = Ay is the fraction field of a Picard-Vessiot ring. 
The field of constants of a Picard-Vessiot field is known to be C. Since we assume C to 
be algebraically closed, a Picard-Vessiot ring for y′ = Ay over F exists and is unique up 
to an isomorphism of δ-F -algebras ([20, Proposition 1.20]).

Given a Picard-Vessiot ring R/F , the group functor

Autδ(R/F ) : (C -Algebras) → (Groups) : D �→ AutδF⊗CD(R⊗C D)

is represented by a linear algebraic group over C. Replacing R by Frac(R) gives a group 
functor Autδ(Frac(R)/F ) represented by the same linear algebraic group. See [4, Corol-
lary 2.12]. The δ-Galois group for R/F , denoted by Galδ(R/F ), is the linear algebraic 
group over C representing Autδ(R/F ).
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Finally the Picard-Vessiot closure FPV of F is the direct limit of Picard-Vessiot fields 
K over F , filtered by inclusion. It exists and is unique up to an isomorphism of δ-F -
algebras; see [10, Section 3].

2. Differential torsors

2.1. Differential torsors

Following [2], we reformulate Picard-Vessiot extensions as δ-torsors.

Definition 2.1. Let G be a linear algebraic group over C. Let R be a δ-ring containing 
C. A GR-torsor is an affine R-variety X equipped with a simply transitive group action 
α : X×GR → X. A δ-GR-torsor is a GR-torsor X equipped with a derivation δ : R[X] →
R[X] extending the derivation δ on R, such that ρ : R[X] ⊗RR[X] → R[X] ⊗RR[GR] cor-
responding to the morphism (α, pr1) : X×GR → X×X is a δ-R-algebra homomorphism. 
A δ-torsor is simple if R[X] is a simple δ-ring.

Let R/F be a Picard-Vessiot ring with δ-Galois group G. Then Spec(R) is a GF -torsor 
by the Torsor Theorem ([20, Theorem 1.28]) and a simple δ-GF -torsor by [2, Proposition 
1.12].

Definition 2.2. Let X be a δ-GF -torsor with derivation δ on F [X]. We call X a trivial
δ-torsor if X is a trivial GF -torsor and F [X] = F ⊗C F [X]δ, where F [X]δ denotes the 
constants of F [X] under the derivation δ.

Example 2.3. By Hilbert’s Theorem 90, any GLn,F -torsor X is trivial, so X can be 
identified with GLn,F and its coordinate ring with

F [X] = F [GLn,F ] = F
[
Xij ,det(Xij)−1 | 1 ≤ i, j ≤ n

]
.

[2, Examples 1.9 and 1.10] further show that all the derivations that turn X into a 
δ-GLn,F -torsor are given by δA(Xij) = A(Xij) for any A ∈ Mn(F ). In particular, a 
trivial torsor can be a nontrivial δ-torsor.

We now show that the above description of δ-GLn-torsors respects isomorphisms. Let 
δ-modn(F ) be the set of isomorphism classes of δ-F -modules of dimension n. We also 
let δ -GF -torsor(F ) be the set of isomorphism classes of δ-GF -torsors.

Proposition 2.4. The map

F : δ-modn(F ) → δ - GLn,F -torsor(F )

taking the δ-F -module corresponding to y′ = Ay to the δ-GLn,F -torsor Y with coordinate 
ring
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F [Y ] = F [Yij ,det(Yij)−1] and (Yij)′ = A(Yij)

is both functorial in F and a bijection. In particular, the map F takes the trivial δ-F -
module, e.g., when A = 0, to the trivial δ-GLn,F -torsor.

Proof. Functoriality is clear; surjectivity follows from Example 2.3. The well-definedness 
and injectivity of F follow from the following claim:

Let A, B ∈ Mn(F ). Two differential equations y′ = Ay and z′ = Bz are gauge equiv-
alent if and only if their corresponding δ-GLn,F -torsors are isomorphic.

To prove the claim, let Y and Z be δ-GLn,F -torsors corresponding to y′ = Ay and z′ =
Bz. We identify Y and Z with X = GLn,F as GLn,F -torsors. We also have derivations

δA(Xij) = A(Xij) on F [Y ] = F [X] and δB(Xij) = B(Xij) on F [Z] = F [X].

Since an automorphism of GLn,F as a (right) GLn,F -torsor is given by ϕ : x �→ Px for 
some P ∈ GLn(F ), this ϕ defines a δ-GLn,F -torsor isomorphism between Y and Z if and 
only if ϕ∗ ◦ δB = δA ◦ ϕ∗. But

δA ◦ ϕ∗(Xij) = δA(P (Xij)) = P ′(Xij) + PA(Xij)

and

ϕ∗ ◦ δB(Xij) = ϕ∗(B(Xij)) = Bϕ∗(Xij) = BP (Xij)

are equal precisely when B = P ′P−1 + PAP−1, so the claim follows. �
2.2. Induced differential torsors

Definition 2.5. Let ψ : H ↪→ G be an embedding of linear algebraic groups over C. Let 
Y be a δ-HF -torsor. The induced δ-GF -torsor via ψ, denoted Indψ(Y ), is defined as 
the spectrum of the ring (F [Y ] ⊗C C[G])H equipped with the derivation restricted from 
F [Y ] ⊗C C[G] by viewing elements in C[G] as constants.

The construction Indψ(Y ) is known to be a δ-GF -torsor. Moreover, the choice of ψ
uniquely determines the derivation on the coordinate ring of the induced δ-torsor (see 
[2, Proposition 1.8]).

Remark 2.6. Induction of δ-torsors commutes with base change. To see this, let L/F
be a δ-field extension for which Lδ = F δ. Then [2, Remark A.9(d)] gives a canonical 
isomorphism Indψ(X ×F L) ∼= Indψ(X) ×F L as GL-torsors. Finally the isomorphism 
L[X] ⊗CC[G] ∼= F [X] ⊗CC[G] ⊗F L of δ-rings restricts to (L[X] ⊗CC[G])HL ∼= (F [X] ⊗C

C[G])H ⊗F L, making Indψ(X ×F L) ∼= Indψ(X) ×F L an isomorphism of δ-torsors.
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Induction of δ-torsors also satisfies the following universal property.

Proposition 2.7. Let ψ : H ↪→ G be an embedding of linear algebraic groups over C. Let 
Y be a δ-HF -torsor and let Z be a δ-GF -torsor. Then there exists a unique derivation 
on Indψ(Y ) such that for every ψ-equivariant morphism of δ-torsors Y → Z, there exists 
a unique isomorphism ϕ : Indψ(Y ) → Z of δ-GF -torsors making the following diagram 
commute.

Y Indψ(Y )

Z

α ϕ

Proof. By [2, Proposition A.8], ϕ exists and is unique for GF -torsors. It remains to check 
that ϕ is also an isomorphism of δ-GF -torsors. On coordinate rings, the GF -equivariant 
map ϕ∗ is the restriction of the ring homomorphism

F [Z] F [Z] ⊗C C[G] F [Y ] ⊗C C[G]
ΔF [Z] α∗⊗1

to the codomain (F [Y ] ⊗C C[G])H . Since ΔF [Z] and α∗ are δ-ring homomorphisms, ϕ∗

is too, so ϕ is an isomorphism of δ-GF -torsors. �
Theorem 2.8. Let X be a δ-GF -torsor and let φ : G → GLn be an embedding of linear 
algebraic groups over C. Then Z := Indφ(X) is a δ-GLn,F -torsor with derivation Z ′ =
AZ for some A ∈ Mn(F ) (by Proposition 2.4). Let H be the δ-Galois group of Z ′ = AZ.

(a) Any simple δ-quotient R of F [X] is a Picard-Vessiot ring for Z ′ = AZ. In partic-
ular, Y := Spec(R) is a simple δ-HF -torsor.

(b) There is a closed embedding ψ : H ↪→ G and X ∼= Indψ(Y ).
(c) Induction is unique: if X ∼= Indψ′

(Y ′) for some ψ′ : H ′ → G and δ-H ′
F -torsor Y ′, 

then H ∼= H ′, and Y ∼= Y ′ as δ-HF -torsors.
(d) Z ∼= Indρ(Y ), where ρ := φ ◦ ψ : H → GLn.

Proof. The proof of [2, Proposition 1.15] shows the following:

(∗) Given a δ-GF -torsor X, any simple δ-quotient R of F [X] determines a simple 
δ-H-torsor Y := Spec(R). Moreover, X ∼= Indψ(Y ) for some embedding ψ : H ↪→ G.

Let R be a simple δ-quotient of F [X]. Precomposing with F [Z] � F [X] gives F [Z] �
F [X] � R, making R a simple δ-quotient of F [Z]. Therefore, R is a Picard-Vessiot ring 
of Z ′ = AZ, which is unique up to isomorphism. Now by applying (∗), Y := Spec(R) is 
a simple δ-HF -torsor and X ∼= Indψ(Y ) for some embedding ψ : H ↪→ G. This proves 
parts (a)–(c).

By construction, the composite Y → X → Z is ρ-equivariant, where ρ := φ ◦ ψ. 
Therefore, Z ∼= Indρ(Y ) by Proposition 2.7. This proves (d). �
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2.3. Split differential torsor

We now study the splitting behavior of δ-torsors. For the rest of this section, we 
assume any δ-field extension L of F has the same field of constants as F .

Definition 2.9. Let X be a δ-GF -torsor, M a δ-F -module, and L a δ-field extension 
of F . We say that L is a splitting field of X (resp. M) or that L splits X (resp. M) 
if XL is a trivial δ-GL-torsor (resp. δ-L-module). A splitting field L of X (resp. M) is 
called minimal if trdegF (L) is the smallest among the splitting fields of X (resp. M). The 
splitting degree of X (resp. M), denoted degδsp(X) (resp. degδsp(M)), is the transcendence 
degree of a minimal splitting field.

We show that minimal splitting fields for δ-modules and therefore for δ-torsors are of 
finite transcendence degree, as summarized below.

Lemma 2.10. Let M be a δ-F -module. Then the Picard-Vessiot extension of M is a 
minimal splitting field of M .

Proof. Let L be a splitting field of M . In an F -basis, M corresponds to an equation 
y′ = Ay with A ∈ GLn(F ). Since M ⊗F L is trivial, y′ = Ay is gauge equivalent to 
z′ = 0z, so there exists a fundamental matrix Y ∈ GLn(L) for y′ = Ay. The Picard-
Vessiot extension of M over F is F (Yij) ⊆ L. �
Theorem 2.11. Let X be a δ-GF -torsor and let R be a simple δ-quotient of F [X]. Then 
K := Frac(R) is a minimal splitting field of X. Let H be the δ-Galois group of R. Then 
degδsp(X) = dim(H). In particular, degδsp(X) ≤ dim(G) for all δ-G-torsor X.

Proof. Fix an embedding φ : G → GLn. By Theorem 2.8, Z := Indφ(X) is a δ-GLn,F -
torsor that corresponds to some δ-module M with Picard-Vessiot ring R. Moreover, 
X = Indψ(Y ) where Y = Spec(R) is a δ-HF -torsor and ψ : H → G is some embedding.

We first show that K is a splitting field of X. By the Torsor Theorem ([20, Theorem 
1.30]), K⊗FR ∼= K⊗CC[H], i.e., K splits Y . By Remark 2.6, X×FK = Indψ(Y ) ×FK ∼=
Indψ(Y ×F K). Then

K[X] ∼= (K ⊗C C[H] ⊗C C[G])H ∼= K ⊗C C[G],

so K splits X. Let L be another δ-field that splits X. By a similar argument, Z ×F L

(and hence M ⊗F L) is trivial. Therefore, L contains K by Lemma 2.10, whence K is 
minimal.

Hence, degδsp(X) = trdegF (K) = dim(H) by [20, Corollary 1.30]. Moreover, since H
is a closed subgroup of G, dim(H) ≤ dim(G). �
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3. Twisted forms and descent

This section defines twisted forms in Picard-Vessiot theory and proves descent along 
δ-Hopf-Galois extensions (Theorem 3.10). Throughout this section, R denotes a δ-C-
algebra, and all unadorned tensor products are taken over R, i.e., ⊗ = ⊗R.

3.1. Differential faithful flatness

Since the category of δ-modules over a δ-ring R is abelian, the notion of exact se-
quences is defined.

Definition 3.1. A δ-ring homomorphism R → S is said to be δ-faithfully flat if the 
following holds: any given sequence N• of δ-R-modules is exact if and only if the sequence 
N• ⊗R S of δ-S-modules is exact.

When R → S is δ-faithfully flat, the Amitsur complex M → M ⊗R S → M ⊗R S⊗2 →
· · · is exact for all δ-R-module M by similar arguments to [1, Theorem III.6.6].

Proposition 3.2. Let R be a simple δ-ring (e.g., R is a Picard-Vessiot ring). Then the 
inclusion R ↪→ Frac(R) is a δ-faithfully flat homomorphism.

Proof. We follow [14, Proposition 11.7]. Let K = Frac(R). Then a δ-R-module N is zero 
if and only if N ⊗R K is zero. To see this, notice that when N �= 0, we have R ↪→ N

since R is simple, and so K ↪→ N ⊗R K since K/R is flat.
Now let N• = ( N ′ α→ N

β→ N ′′ ) be a sequence of δ-R-modules. Since K/R is flat, it 
suffices to check that β ⊗ idK is surjective. But this follows since

N• is exact ⇔ kerβ
N ′ = 0 ⇔ kerβ

N ′ ⊗R K = ker(β ⊗ 1)
N ′ ⊗R K

= 0 ⇔ N• ⊗R K is exact. �
3.2. Differential Hopf-Galois extension

We first reformulate Picard-Vessiot rings as δ-Hopf-Galois extensions. Let S be a 
δ-coalgebra over R with comultiplication Δ and counit ε.

Definition 3.3. A δ-S-comodule over R is a δ-R-module M together with a δ-R-linear 
map ρ : M → M ⊗R S such that (1 ⊗ Δ) ◦ ρ = (ρ ⊗ 1) ◦ ρ and (1 ⊗ ε) ◦ ρ = 1.

Let H be a δ-Hopf algebra over R with comultiplication ΔH , counit εH , and antipode 
σH .

Definition 3.4. Suppose that S is a δ-algebra over R equipped with a map ΔS : S →
S ⊗R H such that S is a δ-H-comodule via the coaction map ΔS. If M is both a δ-S-
module and a δ-H-comodule with a δ-R-linear map ΔM : M → M ⊗R H satisfying 
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ΔM (ms) = ΔM (m)ΔS(s) for all m ∈ M and all s ∈ S, we say that M is a δ-(H, S)-Hopf 
module over R. The H-coinvariants of M is the δ-R-submodule

M coH = {m ∈ M | ΔM (m) = m⊗ 1}

of M . In the special case that S = R and ΔS(s) = s ⊗ 1 for all s ∈ R, we simply call M
a δ-H-Hopf module over R.

Definition 3.5. A δ-H-Hopf-Galois extension is a δ-faithfully flat δ-ring extension S/R
such that S is a δ-H-Hopf module over R, and such that the map

canS : S ⊗R S → S ⊗R H

x⊗ y �→ (x⊗ 1)ΔS(y)
(1)

is an isomorphism of δ-algebras.

Let R/F be a Picard-Vessiot ring extension with δ-Galois group G. Since the notion 
of a δ-Hopf-Galois extension is dual to that of a δ-torsor, R/F is a δ-F [G]-Hopf-Galois 
extension.

3.3. Φ-structures

We can formalize the “differential objects” (δ-module, δ-R-algebra, Picard-Vessiot 
ring, etc.) from the last section as Φ-objects. We roughly follow the formalism in [16, 
Section 1.3].

Definition 3.6. Let R be a C-algebra. A type over R is a triple

Φ = (H, I, {(n1i, n2i, n3i, n4i)}i∈I)

where H is a δ-Hopf algebra over R, I is a set, and {(n1i, n2i, n3i, n4i)}i∈I is a subset 
of N4. Given such a type Φ over R, a Φ-object (M, {Φi}) is a δ-R-module M equipped 
with a collection of δ-R-module homomorphisms

{
Φi : M⊗n1i ⊗H⊗n2i → M⊗n3i ⊗H⊗n4i

}
i∈I

.

A morphism of Φ-objects (M, {Φi}i∈I) and (N, {Ψi}i∈I) is a δ-R-module homomorphism 
ϕ : M → N that makes the following diagram commute for all i ∈ I.

M⊗n1i ⊗H⊗n2i M⊗n3i ⊗H⊗n4i

N⊗n1i ⊗H⊗n2i N⊗n3i ⊗H⊗n4i

Φi

ϕ⊗n1i⊗id ϕ⊗n3i⊗id

Ψi
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The Φ-objects and their morphisms form a category which we denote by Φ -Object. In 
particular, an automorphism of a Φ-object M is a δ-R-module automorphism of M that 
preserves the type Φ. The group of all automorphisms of M is denoted by Autδ,ΦR (M).

Definition 3.7. Let S be a δ-R-algebra and let Φ = (H, I, {(n1i, n2i, n3i, n4i)}i∈I) be a 
type over R. Then

ΦS := (H ⊗R S, I, {(n1i, n2i, n3i, n4i)}i∈I)

is a type over S. The map taking a Φ-object (M, {Φi}i∈I) to the ΦS-object (M⊗S, {Φi⊗
idS}i∈I) is called the extension of scalars map. Let Φ be a type over C. A ΦR-object M
is trivial if there exists a Φ-object M δ such that M = M δ ⊗C R.

Example 3.8. We will always view

(1) a δ-R-module as a Φ-object of type (R, ∅, ∅);
(2) a δ-R-algebra A with multiplication m : A⊗2 → A as a Φ-object of type 

(R, {1}, {(2, 0, 1, 0)});
(3) a δ-H-Hopf-Galois extension S/R with multiplication m : S⊗2 → S and coaction 

ΔS : S → S ⊗H as a Φ-object of type (H, {1, 2}, {(2, 0, 1, 0), (1, 0, 1, 1)}).

3.4. Equivariant Φ-structures

Let Φ be a type over R and let H ′ be a δ-Hopf algebra over R.

Definition 3.9. An H ′-equivariant Φ-object is a Φ-object (M, {Φi}i∈I) such that M is a 
δ-H ′-comodule with coaction map ΔM : M → M ⊗H ′ making the diagram

M⊗n1i ⊗H⊗n2i M⊗n3i ⊗H⊗n4i

M⊗n1i ⊗H⊗n2i ⊗H ′ M⊗n3i ⊗H⊗n4i ⊗H ′

Φi

Δ⊗n1i
M ⊗id Δ⊗n3i

M ⊗id

Φi⊗idH′

commute for all i ∈ I. A morphism of H ′-equivariant Φ-objects (M, {Φi}i∈I) and 
(N, {Ψi}i∈I) is a morphism ϕ : M → N of Φ-objects making the following diagram 
commute.

M N

M ⊗H ′ N ⊗H ′

ΔM

ϕ

ΔN

ϕ⊗idH′

We denote the category of H ′-equivariant Φ-objects and their morphisms by ΦH′-Object.
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3.5. Descent

Let Φ = (H, I, {Φi}i∈I) be a type over R, and S/R a δ-H ′-Hopf-Galois extension. 
Given a Φ-object (M, {Φi}i∈I), the ΦS-object (M⊗RS, {Φi⊗ idS}i∈I) is H ′-equivariant 
over S since Φi ⊗ idS commute with ΔS for all i ∈ I. This defines a functor

Φ -Object → ΦH′

S -Object (2)

Conversely, given a H ′-equivariant ΦS-object (N, {Φi}) over S, we may consider its 
coinvariant module N coH′ = {n ∈ N | ΔN (n) = n ⊗ 1}. Since each Φi commutes with 
ΔN , the ΦS-structure on N restricts to a Φ-object on N coH′ . This gives a functor

ΦH′

S -Object → Φ -Object

We now show that the two functors define an equivalence of categories. We follow the 
proof of [18, Theorem 3.7 (1) ⇒ (2)].

Theorem 3.10 (Descent along δ-Hopf-Galois extensions). Let S/R be a δ-H ′-Hopf-Galois 
extension and let Φ = (H, I, {Φi}i∈I) be a type over R. Then extension of scalars defines 
an equivalence of categories

Φ -Object → ΦH′

S -Object .

The pseudo-inverse is given by taking an object N to the coinvariant module N coH′ .

Proof. Naturality is clear. We are left to check that the maps

μN : N coH′ ⊗R S → N

n⊗ s �→ ns
and ιM : M → (M ⊗R S)coH′

m �→ m⊗ 1

are bijections for all M in Φ -Object and N in ΦH′

S -Object.
Consider the following two commutative diagrams.

N coH′ ⊗R S N ⊗R S (N ⊗S H ′) ⊗R S

N N ⊗S H ′ N ⊗S H ′ ⊗S H ′

μN
idN⊗

S
canS idN⊗H′⊗

S
canS

ΔN

ΔN⊗H′

idN⊗ΔH′

(3)
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(M ⊗R S)coH′
M ⊗R S M ⊗R S ⊗R H ′

M M ⊗R S M ⊗R S ⊗R S

ι

ι

ιM

ι1

ι2

idM⊗ canS
(4)

The vertical maps idN ⊗S canS , idN⊗H′ ⊗S canS , and idM ⊗ canS are isomorphisms since 
(1) is an isomorphism. The top rows of (3) and (4) are exact by the definition of coH ′

and also the δ-flatness of S/R in the case of (3). The bottom row of (3) is exact by 
coassociativity of ΔN . Since S/R is δ-faithfully flat, the Amitsur complex in the bottom 
row of (4) is exact. So μN and ιM are isomorphisms. �
3.6. Twisted forms

Oftentimes, a given type of Φ-objects is too varied for direct classification. Instead, 
we view two Φ-objects as related if they become isomorphic after extension of scalars.

Definition 3.11. Let S be a δ-R-algebra, Φ be a type over R, and M and N be Φ-objects. 
We call N an (S/R)-twisted form of M if there exists an isomorphism N⊗RS ∼= M⊗RS of 
ΦS-objects. We let TF(S/R, M) denote the set of isomorphism classes of (S/R)-twisted 
forms of M .

Example 3.12.

(1) Any δ-module over F is a (FPV/F )-twisted form of the trivial δ-module M of the 
same rank. Thus δ-modn(F ) = TF(FPV/F, M).

(2) Let H be a δ-Hopf algebra over R. Let S/R be a δ-H-Hopf-Galois extension. Then 
S is an (S/R)-twisted form of H via the isomorphism canS .

δ-torsors are another important example of twisted forms. Given a δ-R-algebra S and 
a linear algebraic group G over C, we say that a δ-GR-torsor X is an (S/R)-twisted form
of a δ-GR-torsor Y if XS is isomorphic to YS as δ-GS-torsors; equivalently, R[X] is an 
(S/R)-twisted form of R[Y ] as δ-R[G]-Hopf-Galois extensions. Given a δ-GR-torsor X, 
we let TF(S/R, X) denote the set of isomorphism classes of (S/R)-twisted forms of X.

Example 3.13. Let G be a linear algebraic group over C. By Theorem 2.11, any 
δ-GF -torsor is a (FPV/F )-twisted form of the trivial δ-GF -torsor GF . In particular, 
δ-GF -torsor(F ) = TF(FPV/F, GF ).

Finally, we compute the automorphism group of trivial Φ-objects. Note that the 
following lemma already appears in [15, Proposition 3.8]. We present it according to 
our framework.
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Lemma 3.14. Let Φ be a type over C. Let M be a trivial ΦF -object, i.e., there exists a 
Φ-object M δ such that M = M δ ⊗C F . Then Autδ,ΦR (M ⊗F R) = AutRδ(M δ ⊗C Rδ) for 
any δ-F -algebra R. In particular, if the functor

AutC(M δ) : (C -Algebras) → (Groups) : D �→ AutD(M δ ⊗C D)

is represented by a linear algebraic group G over C, then Autδ,ΦF (M) = G(C).

Proof. First an easy computation shows that (M ⊗F R)δ = (M δ ⊗C R)δ = M δ ⊗C Rδ.
An automorphism φ ∈ Autδ,ΦR (M ⊗F R) preserves constants, so φ and φ−1 restrict 

to Rδ-module automorphisms ψ, ψ−1 on M δ ⊗C Rδ. Since φ ◦ φ−1 = φ−1 ◦ φ = id on 
M ⊗F R, ψ and ψ−1 are inverses on M δ ⊗C Rδ. Conversely, extending ψ R-linearly to 
ψ ⊗Rδ idR recovers φ. Hence

Autδ,ΦR (M ⊗F R) = AutRδ(M δ ⊗C Rδ).

In particular, if AutC(M δ) is represented by a linear algebraic group G over C, 
Autδ,ΦF (M) = G(C) by taking R = F . �

This lemma in particular tells us that for a trivial δ-GF -torsor X, AutδF (X) = G(C).

4. Cohomology

We now define the cohomology that classifies the twisted forms of the previous section.

Definition 4.1. Let Γ and G be linear algebraic groups over C. Let Γ act on G (as varieties) 
in a way that is compatible with the group structure on G. A 1-cocycle is a morphism 
of varieties a : Γ(C) → G(C) satisfying the following condition: for any σ ∈ Γ(C) we let 
aσ := a(σ) and require that aστ = aσ · σ(aτ ) holds for all σ, τ ∈ Γ(C). Two 1-cocycles 
a and b are equivalent if there exists c ∈ G(C) such that aσ = c · bσ · σ(c)−1. We define 
H1

δ (Γ, G) to be the set of 1-cocycles Γ → G modulo equivalence.

We will adopt the following setup.

Assumption 4.2. Let Γ be a linear algebraic group over C with Hopf algebra H ′
0 and let 

S/R be a δ-(H ′
0 ⊗C R)-Hopf-Galois extension. Let (M, {Φi}i∈I) be a Φ-object and set 

MS := M ⊗R S. Furthermore assume that the automorphism group of M is represented 
by a linear algebraic group G over C, i.e., there exists an isomorphism

Autδ,Φ(MS ⊗C D) ∼= G(D) (5)

that holds for every C-algebra D and is functorial in D. We will always identify the two 
groups in (5).
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Remark 4.3. Note that (5) gives a sequence of isomorphisms

Autδ,Φ(MS ⊗C H ′
0
⊗n) ∼= G(H ′

0
⊗n) (6)

∼= HomC-algebras(C[G], H ′
0
⊗n) ∼= MorC-varieties(Γn, G)

which takes f ∈ Aut(MS ⊗C H ′
0
⊗n) to the morphism Γn → G defined by

Γn(C) → G(C)
(σ1, ..., σn) �→ (idMS

⊗σ1 ⊗ · · · ⊗ σn)∗f.
(7)

Here (idMS
⊗σ1⊗· · ·⊗σn)∗f is the morphism obtained by extension of scalars such that 

the following diagram commutes:

MS ⊗C H ′
0
⊗n

MS ⊗C H ′
0
⊗n

MS MS .

f

idMS
⊗σ1⊗···⊗σn idMS

⊗σ1⊗···⊗σn

(idMS
⊗σ1⊗···⊗σn)∗f

(8)

Remark 4.4. Assumption 4.2 gives an action of Γ on G that we now describe. First 
we define an action of Γ(C) on S by letting an element σ ∈ Γ(C) act on S via the 
automorphism σ = (idS ⊗σ) ◦ ΔS :

σ : S ΔS−−→ S ⊗C H ′
0

idS ⊗σ−−−−→ S. (9)

This action extends to an action of Γ(C) on MS := M ⊗R S. The action of Γ(C) on MS

further gives an action of Γ on G on C-points by conjugation: for any σ ∈ Γ(C) and 
ϕ ∈ G(C), we define the action to be σ(ϕ) := σ ◦ ϕ ◦ σ−1. We will consider G with this 
Γ-action when discussing the cohomology set H1

δ (Γ, G).

Remark 4.5. In the case n = 1 in Remark 4.3, an element a ∈ Aut(MS⊗CH
′
0) corresponds 

to a morphism of varieties Γ → G which we again denote by a. If for each σ ∈ Γ(C) we 
let aσ := a(σ), we have the equality

(idMS
⊗σ)∗a = aσ.

The commutativity of the diagram

MS MS ⊗C H ′
0 MS ⊗C H ′

0

MS MS

ΔMS

σ

a

id⊗σ id⊗σ

aσ

further gives the equality
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(idMS
⊗σ) ◦ (a ◦ ΔMS

) = aσ ◦ σ (10)

which we will later use in Lemma 4.9.

Construction 4.6. We define a map

F : TF(S/R,M) → H1
δ (Γ, G)

as follows. Let (N, ϕ) be a twisted form of M . We define F(N, ϕ) to be the cocycle 
a : Γ(C) → G(C) which sends an element σ in Γ(C) to the element

aσ := ϕ ◦ σ(ϕ) = ϕ ◦ σ ◦ ϕ−1 ◦ σ−1 in G(C).

We must verify that F is well-defined. That a is a cocycle follows from the standard 
computation in G(C):

aσ · σ(aτ ) = aσ ◦ σ ◦ aτ ◦ σ−1

= (ϕ ◦ σ ◦ ϕ−1 ◦ σ−1) ◦ σ ◦ (ϕ ◦ τ ◦ ϕ−1 ◦ τ−1) ◦ σ−1

= ϕ ◦ (σ ◦ τ ) ◦ ϕ−1 ◦ (σ ◦ τ )−1

= aστ

which holds for all σ, τ ∈ Γ(C).
Next let (N ′, ψ) be isomorphic to (N, ϕ) as twisted forms of M and let b = F(N ′, ψ). 

Setting c = ψ ◦ ϕ−1, we have

c−1 ◦ bσ ◦ σ(c) = c−1 ◦ bσ ◦ σ ◦ c ◦ σ−1

= (ϕ ◦ ψ−1) ◦ (ψ ◦ σ ◦ ψ−1 ◦ σ−1) ◦ σ ◦ (ψ ◦ ϕ−1) ◦ σ−1

= ϕ ◦ σ ◦ ϕ−1 ◦ σ−1

= aσ

for all σ ∈ Γ(C). Thus F takes equivalent twisted forms to equivalent cocycles. We 
conclude that F is well-defined.

Construction 4.7. We define a map

G : H1
δ (Γ, G) → TF(S/R,M) (11)

as follows. Given a cocycle a representing an element of H1
δ (Γ, G), we define the δ-R-

module

G(a) := {m ∈ MS | (aσ ◦ σ)(m) = m for all σ ∈ Γ(C)} . (12)

We will soon check that G is a well-defined map (in Lemma 4.9). Our proofs of 
Lemma 4.9 and Theorem 4.10 below follow that of [17, Theorem 2.6] where a cohomology 
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set was introduced to classify Hopf-Galois extensions for noncommutative rings. The 
following lemma allows us to convert from their “cochains” which are maps MS →
MS ⊗C H ′

0 to our cochains which are morphisms Γ → G.

Lemma 4.8. Let M be a C-vector space, X an algebraic variety over C, and f, g ∈
M ⊗C C[X]. If (idM ⊗σ)f = (idM ⊗σ)g for all σ ∈ X(C) then f = g in M ⊗C C[X].

Proof. Since X is an algebraic variety over an algebraically closed field C, equality of 
functions on X(C) implies equality of elements in C[X]. This gives the case M = C.

For a general M , let {mi}i∈I be a basis of M over C and write f =
∑

mi⊗fi and g =∑
mi⊗gi for some fi, gi ∈ C[X]. For all σ ∈ X(C), we have (idM ⊗σ)(f) = (idM ⊗σ)(g)

hence 
∑

mi⊗σ(fi) =
∑

mi⊗σ(gi). The linear independence of {mi}i∈I over C and the 
previous paragraph now give fi = gi for all i ∈ I. �
Lemma 4.9. The map G in Construction 4.7 is well-defined.

Proof. Step 1. We first check that given a cocycle a, G(a) is a twisted form of M . First 
note that a satisfies the following properties:

(a) (aσ ◦ σ)(ms) = (aσ ◦ σ)(m)σ(s) for all σ ∈ Γ(C), m ∈ MS , and s ∈ S;
(b) a1 = idMS

;
(c) aστ = aσ ◦ σ ◦ aτ ◦ σ−1 for all σ, τ ∈ Γ(C).

Here (c) is the cocycle condition for a, (b) follows from (c) by letting σ = τ = 1 in Γ(C), 
and (a) follows from the S-linearity of aσ.

We claim that the composite map Δ′ given by a ◦ ΔMS
: MS → MS ⊗C H ′

0 defines 
a coaction on MS making MS a δ-(H ′

0, S)-Hopf module. In other words, we must verify 
the following properties:

(A) Δ′(ms) = Δ′(m)Δ(s) for all m ∈ MS , s ∈ S;
(B) (idMS

⊗εH′
0
) ◦ Δ′ = idMS

;
(C) (Δ′ ⊗ idH′

0
) ◦ Δ′ = (idMS

⊗ΔH′
0
) ◦ Δ′.

Since εH′
0
: H ′

0 → C corresponds to 1 ∈ Γ(C), (B) follows from (b) by (10).

To show (A) and (C), by Lemma 4.8, it suffices to show that the equalities obtained by 
applying (idMS

⊗σ) to (A) and (idMS
⊗σ ⊗ τ) to (C) hold for all σ, τ ∈ Γ(C). Applying 

(idMS
⊗σ) to (A) and simplifying by (10) gives (a). Thus (A) holds. Similarly, applying 

1 ⊗ (σ ◦ τ) to the right side of (C) gives

(idMS
⊗σ ⊗ τ) ◦ (idMS

⊗ΔH′
0
) ◦ Δ′ = (idMS

⊗(σ ◦ τ)) ◦ Δ′ = aστ ◦ (σ ◦ τ ). (13)

Applying idMS
⊗(σ ◦ τ) to the left side of (C) gives
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aσ ◦ σ ◦ aτ ◦ σ−1 (14)

since the following diagram commutes:

MS

MS ⊗C H ′
0 MS

MS ⊗C H ′
0 ⊗C H ′

0 MS ⊗C H ′
0 MS

Δ′ aτ◦τ

Δ′⊗idH′
0

1⊗τ

(aσ◦σ)⊗idH′
0 aσ◦σ

1⊗σ⊗1 1⊗τ

(I)

.

Here, region (I) commutes by the computation

((aσ ◦ σ) ◦ (1 ⊗ τ))(m⊗ h) = ((aσ ◦ σ)(m · τ(h))

= ((aσ ◦ σ)(m)) · τ(h)

= ((1 ⊗ τ)σ(aσ ◦ σ))(m⊗ h).

Equating (13) with (14) gives (c). Thus (C) holds. This concludes checking that Δ′

defines a coaction on MS making MS a δ-(H ′
0, S)-Hopf module.

Theorem 3.10 implies that the coinvariant module (MS)co Δ′ is a twisted form of M
over R. Therefore it suffices to show that G(a) equals (MS)coΔ′ . Any m ∈ (MS)co Δ′

satisfies Δ′(m) = m ⊗ 1. For any σ ∈ Γ(C), applying (1 ⊗ σ) to Δ′(m) = m ⊗ 1 and 
simplifying by (10) gives (aσ ◦ σ)(m) = m. Thus (MS)co Δ′ ⊆ G(a). Invoking Lemma 4.8
gives the reverse inclusion and so (MS)co Δ′ = G(a).

Step 2. The map G takes equivalent cocycles to isomorphic twisted forms. Two cocycles 
a and b are equivalent means that b = c ◦ a ◦ c−1 for some c ∈ G(C) = Autδ,Φ(MS). The 
automorphism c : MS → MS restricts to an isomorphism G(a) ∼= G(b). �

Here is the main theorem of this section.

Theorem 4.10. Consider the above setup. The maps F and G are inverses. Hence there 
is a bijection between the two sets TF(S/R, M) and H1

δ (Γ, G).

Proof. We first check G ◦ F = 1. Let (N, ϕ) be a twisted form of MS with associated 
cocycle a = F(N, ϕ). Set P := G(a). We want to show P ∼= N . Clearly the isomorphism 
ϕ : N⊗S → MS has image in P , so ϕ restricts to ϕ|N : N → P . Consider the commutative 
diagram

N ⊗ S P ⊗ S

MS .

ϕ|N⊗idS

ϕ

∼= mult.∼=
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By definition of twisted form, the vertical map is an isomorphism so ϕ|N ⊗ idS is too. 
By δ-faithful flatness of S/R, ϕ|N is an isomorphism.

We now check F ◦ G = 1. Given a cocycle a, let (N, ϕ) := G(a) and b := F(N, ϕ). 
Given σ ∈ Γ(C), consider the diagram

MS MS

N N

MS MS

bσ◦σ

ϕ

ϕ

σ

ϕ

ϕ

aσ◦σ

.

The triangles here trivially commute. The upper trapezoid commutes by definition of bσ. 
The bottom trapezoid commutes by the following two computations. For all n ∈ N and 
s ∈ S, we have

ϕ(σ(n⊗ s)) = ϕ((n⊗ 1)(1 ⊗ σ(s))) = nσ(s)

where the second equality uses the isomorphism N ⊗ S ∼= MS given by scalar multipli-
cation. Also

(aσ ◦ σ ◦ ϕ)(n⊗ s) = (aσ ◦ σ)(ns) = (aσ ◦ σ)(n)σ(s) = nσ(s)

where the second equality uses property (a) in the proof of Lemma 4.9 and the third 
equality uses the definition of N . Therefore the diagram above is commutative so bσ◦σ =
aσ ◦ σ for all σ ∈ Γ(C). By (10) and Lemma 4.8, we have b = a. �
4.1. Absolute cohomology

While Theorem 4.10 is stated for twisted forms over δ-Hopf-Galois extensions, which 
includes Picard-Vessiot ring extensions, sometimes it is easier to work with twisted forms 
over Picard-Vessiot field extensions.

Theorem 4.11. Let R/F be a Picard-Vessiot ring extension with δ-Galois group Γ. Let 
K = Frac(R), ΦΦΦ be a type, and M be a ΦΦΦ-object over F . Suppose that the automorphism 
group of M ⊗F R is represented by a linear algebraic group G over C. Then Construc-
tion 4.6 adapts directly to give a bijection

TF(K/F,M) → H1
δ (Γ, G). (15)
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Proof. We have a commutative diagram

TF(R/F,M) TF(K/F,M)

H1
δ (Galδ(R/F ),M) H1

δ (Galδ(K/F ),M),

∼=

i

∼=

where i is the natural inclusion viewing an (R/F )-twisted form of M as a (K/F )-twisted 
form of M . The left vertical map is bijective by Theorem 4.10. The bottom map is 
bijective as Galδ(R/F ) = Galδ(K/F ). By Proposition 3.2, K/R is δ-faithfully flat. Thus 
an isomorphism NK

∼= N ′
K restricts to an isomorphism NR

∼= N ′
R for any two δ-F -

modules N and N ′. This makes i a bijection. Thus the right vertical map in (15) is also 
a bijection. �

We can classify the (FPV/F )-twisted forms from Example 3.12 by the following coho-
mology set. Any Picard-Vessiot field extension L/F with a Picard-Vessiot subextension 
K/F gives a map Galδ(L/F ) → Galδ(K/F ) which in turn induces a map

H1
δ (Galδ(K/F ), G) → H1

δ (Galδ(L/F ), G). (16)

The maps of the form (16) form a direct system. We call its direct limit

H1
δ (F,G) = lim−−→H1

δ (Galδ(L/F ), G)

the absolute cohomology set over F with values in G.

Proposition 4.12. Let ΦΦΦ be a type and M a ΦΦΦ-object over F . Suppose that the automor-
phism group of M ⊗F FPV is represented by a linear algebraic group G over C. Suppose 
also that the map

lim−−→TF(K/F,M) → TF(FPV/F,M) (17)

induced by inclusion maps TF(K/F, M) → TF(FPV/F, M), where K/F are Picard-
Vessiot extensions over F , is a bijection. Then there is a bijection of the two sets 
TF(FPV/F, M) and H1

δ (F, G).

Proof. For any Picard-Vessiot field extension K/F , Theorem 4.11 gives a bijection 
TF(K/F, M) ∼= H1

δ (Galδ(K/F ), G). Now take direct limits over the Picard-Vessiot field 
extensions K/F . �
Corollary 4.13 (δ-modules). There is a bijection δ-modn(F ) ∼= H1

δ (F, GLn).

Proof. By Example 3.12, it suffices to show TF(FPV/F, M) ∼= H1
δ (F, GLn), where 

M is the trivial δ-module over F of rank n. We first verify that the hypotheses of 
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Proposition 4.12 hold. Let D be a C-algebra. By Lemma 3.14, Autδ,ΦF⊗CD(M ⊗C D) =
AutD(M δ ⊗C D) = GLn(D).

Next a (FPV/F )-twisted form N of M gives an isomorphism ϕ : N ⊗F FPV → M ⊗F

FPV. Pick F -bases {ni} and {mj} for N and M . Then ϕ(ni) =
∑

cijmj for some 
cij ∈ FPV. Therefore ϕ restricts to an isomorphism N ⊗F K ∼= M ⊗F K, where K/F

is the Picard-Vessiot extension in FPV generated by the entries cij over F . Thus (17) is 
surjective.

Since all hypotheses are verified, Proposition 4.12 now gives the desired bijection. �
Corollary 4.14 (δ-torsors). Let G be a linear algebraic group over C and consider GF as 
a trivial δ-GF -torsor. Then there is a bijection δ-G -torsor(F ) ∼= H1

δ (F, G).

Proof. By Example 3.13, it suffices to show TF(FPV/F, GF ) ∼= H1
δ (F, G). Let D be a 

C-algebra. By Lemma 3.14, Autδ,ΦF⊗CD(GF⊗CD) = AutD(GD) = G(D).
Next if X is a (FPV/F )-twisted form of GF , we get an isomorphism of δ-Hopf-Galois 

extensions F [X] ⊗F FPV ∼= F [G] ⊗F FPV. As in the proof of Corollary 4.13, this iso-
morphism restricts to one over a Picard-Vessiot field extension K/F . Therefore X is a 
(K/F )-twisted form of GF . We conclude that (17) is surjective, with M = F [G].

Since all hypotheses are verified, Proposition 4.12 now gives the desired bijection. �
Remark 4.15. We can describe the bijection in Corollary 4.14 explicitly. A δ-G-torsor 
X in TF(FPV/F, GF ) lies in TF(K/F, GF ) for some Picard-Vessiot field extension 
K/F . For any such K, XK

∼= GK and so has a δ-K-point x. Any σ ∈ Galδ(K/F )
defines an automorphism on X(K), and we set aσ ∈ G(K) to be the unique ele-
ment such that σ(x) = x · aσ in X(K). We can check that σ �→ aσ defines a cocycle 
a ∈ H1

δ (Galδ(K/F ), G), and so we have a map

TF(FPV/F,GF ) → H1
δ (Galδ(K/F ), G).

The cocycle constructed is compatible with the maps

H1
δ (Galδ(K/F ), G) → H1

δ (Galδ(L/F ), G).

Thus we get a map

TF(FPV/F,GF ) → H1
δ (F,G).

Cohomological computations allow us to deduce some facts about Picard-Vessiot ex-
tensions.

Proposition 4.16. Let U be a unipotent group and Γ a reductive group over C. If a δ-UF -
torsor X is split by a Picard-Vessiot extension R/F with Galδ(R/F ) = Γ, then X is a 
trivial δ-UF -torsor.
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Proof. By viewing Ga as a Γ-module, we may identify H1
δ (Γ, Ga) with the corresponding 

Hochschild cohomology set. By [13, Corollary 14.15, Proposition 14.21], U admits a 
central normal series

U = Un ⊃ Un−1 ⊃ · · · ⊃ U1 ⊃ U0 = {e},

with Ui/Ui−1 ∼= Ga. The exact sequence of Γ-module

1 −→ Ui−1 −→ Ui −→ Ga −→ 0

induces a long exact sequence

· · · −→ H1(Γ, Ui−1) −→ H1(Γ, Ui) −→ H1(Γ,Ga).

By [7, Proposition 1], we have H1
δ (Γ, Ga) = 0, so an induction on i shows that 

H1
δ (Γ, Ui) = 0 for i = 1, . . . , n − 1. In particular, H1

δ (Γ, U) = 0, so X is trivial. �
This proposition in particular implies that a differential equation with unipotent δ-

Galois group cannot be fully solved over a Picard-Vessiot extension with a reductive 
δ-Galois group unless it is already fully solved over the base field.

5. Differential central simple algebras

[5] previously showed that the δ-splitting degree of δ-quaternion algebras is at most 
three. This universal bound was also proven to be optimal for certain δ-fields. In this 
section, we generalize this result to all δ-central simple F -algebras when C is algebraically 
closed. For the rest of the section, we assume any δ-field extension L of F has the same 
field of constants as F .

We first recall some definitions and properties from [6]. A δ-central simple algebra is 
a pair (A, δ), where A is a central simple F -algebra and δ is a derivation on A extending 
δ on F . By [6, Proposition 1], the derivations on the matrix algebra Mn(F ) are given by 
δP , where P is an n × n traceless matrix and

δP (x) = (x)′ + Px− xP

for all x ∈ Mn(F ). Here (x)′ denotes the entry-wise derivation on x. We write δ-CSAn(F )
for the set of isomorphism classes of δ-central simple algebras of degree n over F .

The δ-splitting degree of a δ-central simple algebra (A, δ) is defined as

degδsp(A, δ) = min
L

{trdegF (L) | (A, δ) ⊗F L ∼= (Mn(L), ′)}.

Theorem 5.1. There is a bijection

δ-CSAn(F ) ←→ δ - PGLn,F -torsor(F ).



M.C. Tsui, Y. Wang / Journal of Algebra 658 (2024) 49–72 71
Proof. Let (A, δ) be a δ-central simple F -algebra of degree n. By [6, Theorem 1], we 
have (A, δ) ⊗F L ∼= (Mn(L), ′) for some Picard-Vessiot extension L/F . Therefore, the 
δ-central simple algebras of degree n are twisted forms of (Mn(FPV), ′). In other words,

δ-CSAn(F ) = TF(FPV/F, (Mn(F ), ′)).

Since (Mn(FPV), ′) = (Mn(C), ′) ⊗C FPV, Lemma 3.14 gives

AutδFPV(Mn(FPV), ′) = AutC(Mn(C)) = PGLn(C).

By Proposition 4.12, we have the bijection

TF(FPV/F, (Mn(F ), ′)) ←→ H1
δ (F,PGLn(C)).

Combined with Corollary 4.14, we get the desired bijection

δ-CSAn(F ) ←→ δ - PGLn,F -torsor(F ). �
Theorems 2.11 and 5.1 together give us a description of the δ-splitting degree for each 

δ-central simple algebra, leading to the following universal bound for δ-splitting degree 
for all δ-central simple F -algebras.

Corollary 5.2. Let (A, δ) be a δ-central simple F -algebra of degree n. Then

degδsp(A, δ) ≤ dim(PGLn) = n2 − 1.

This bound is optimal when PGLn appears as a δ-Galois group over F .

Proof. The first claim follows from Theorem 2.11 and Theorem 5.1. If PGLn appears 
as a δ-Galois group, there exists a Picard-Vessiot ring R such that Y := Spec(R) is a 
simple PGLn-torsor, whence the second claim also follows from Theorem 2.11. �
Remark 5.3. When F = (C(t), d/dt)), all linear algebraic groups appear as δ-Galois 
groups (see [19]) and therefore the universal bound above is optimal.

When F = (C((t)), t( d
dt )), the structure of the universal Picard-Vessiot ring ([20, 

Chapter 3]) suggests that the Picard-Vessiot extensions over C((t)) must be Liouvillian 
and therefore the δ-Galois groups must be solvable ([20, Chapter 1 Section 5]). By a 
slight modification of Kovacic’s proof of [9, Proposition 20] using the derivation t( d

dt ), we 
may show that all δ-Galois groups must be in the form Gs

m ×Gε
a ×G, where ε ∈ {0, 1}

and G is finite and cyclic. A different treatment is also available in [21]. Hence, the 
universal bound give in Corollary 5.2 can be improved. To obtain a sharper bound, by 
Theorem 2.11, it suffices to find a connected closed subgroup of PGLn of the maximal 
dimension that is of the above form.
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A commutative linear algebraic group is isomorphic to the direct product of a torus 
and a commutative unipotent group ([13, Corollary 16.15]). Therefore, a connected sub-
group H of PGLn that appears as a δ-Galois group must be in the form Gs

m or Gs
m×Ga

for some s. Here s is bounded by n −1, the dimension of the maximal torus of PGLn. See 
[3, Theorem 22.6(ii) and section 23.2]. However, Gn−1

m ×Ga is not a subgroup of PGLn; 
otherwise, Gn−1

m × Ga lifts to Gn
m × Ga as a subgroup of GLn, but this is impossible. 

Therefore, the universal bound is at most n − 1.

Data availability

No data was used for the research described in the article.

References

[1] Michael Artin, Noncommutative Rings, Class notes, fall 1999, pp. 75–77.
[2] Annette Bachmayr, David Harbater, Julia Hartmann, Michael Wibmer, Differential embedding 

problems over complex function fields, Doc. Math. 23 (2018) 241–291.
[3] Armand Borel, Linear Algebraic Groups, Graduate Text in Mathematics, 2 edition, Springer, New 

York, 1969.
[4] Tobias Dyckerhoff, The inverse problem of differential Galois theory over the field R(z), arXiv 

preprint, arXiv :0802 .2897, 2008.
[5] Parul Gupta, Yashpreet Kaur, Anupam Singh, Splitting of differential quaternion algebras, arXiv 

preprint, arXiv :2210 .02103, 2022.
[6] Juan Lourdes, Andy R. Magid, Differential central simple algebras and Picard-Vessiot representa-

tions, Proc. Am. Math. Soc. 136 (6) (2008) 1911–1918, http://www .jstor .org /stable /20535372.
[7] Gregor Kemper, A characterization of linearly reductive groups by their invariants, Transform. 

Groups 5 (2000) 85–92.
[8] Ellis Robert Kolchin, Differential Algebra & Algebraic Groups, vol. 54, Academic Press, 1973.
[9] J. Kovacic, The inverse problem in the Galois theory of differential fields, Ann. Math. 89 (3) (1969).

[10] Andy R. Magid, The Picard–Vessiot closure in differential Galois theory, Banach Cent. Publ. 58 
(2002) 151–164, https://eudml .org /doc /281834.

[11] David Meretzky, Anand Pillay, Picard-Vessiot extensions, linear differential algebraic groups and 
their torsors, arXiv preprint, arXiv :2307 .14948, 2008.

[12] Manujith K. Michel, Varadharaj R. Srinivasan, Differential Galois groups of differential central 
simple algebras and their projective representations, arXiv preprint, arXiv :2402 .16093, 2024.

[13] J.S. Milne, Algebraic Groups: The Theory of Group Schemes of Finite Type over a Field, Cambridge 
Studies in Advanced Mathematics, Cambridge University Press, 2017.

[14] James Milne, A primer of commutative algebra, https://www .jmilne .org /math /xnotes /CA402 .pdf, 
2017.

[15] Akira Masuoka, Yuta Shimada, Twisted forms of differential Lie algebras over C(t) associated with 
complex simple Lie algebras, Arnold Math. J. 7 (1) (2021) 107–134.

[16] Nardin Denis, The essential dimension of finite group schemes, Master’s thesis, 2012, https://
homepages .uni -regensburg .de /~nad22969 /dispense /tesimagistrale .pdf.

[17] Philippe Nuss, Marc Wambst, Non-abelian Hopf cohomology, J. Algebra 312 (2) (2007) 733–754, 
https://doi .org /10 .1016 /j .jalgebra .2006 .10 .005.

[18] Hans-Jürgen Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Isr. J. Math. 
72 (1–2) (1990) 167–195, https://doi .org /10 .1007 /BF02764619.

[19] Carol Tretkoff, Marvin Tretkoff, Solution of the inverse problem of differential Galois theory in the 
classical case, Am. J. Math. 101 (6) (1979) 1327–1332.

[20] Marcus van der Put, Michael F. Singer, Galois Theory of Linear Differential Equations, Grundlehren 
der mathematischen Wissenschaften, Springer, Berlin, Heidelberg, 2003.

[21] Santiago Velazquez Iannuzzelli, Local differential Galois groups, Master’s thesis, University of Penn-
sylvania, 2023.

http://refhub.elsevier.com/S0021-8693(24)00328-4/bib72BECFB68951ECAA7B6D0B15309D6095s1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bib2D625F88FA2837A167D7A2091FE172F0s1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bib2D625F88FA2837A167D7A2091FE172F0s1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bibA86710DB0F0CA2035C999269B8F4543Ds1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bibA86710DB0F0CA2035C999269B8F4543Ds1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bib6E704C1482DF6FEE65A2295133B87F74s1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bib6E704C1482DF6FEE65A2295133B87F74s1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bibBA073A2E60F78441E5FC3059142563C5s1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bibBA073A2E60F78441E5FC3059142563C5s1
http://www.jstor.org/stable/20535372
http://refhub.elsevier.com/S0021-8693(24)00328-4/bib507C0634938C7648A991AC74E80186D9s1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bib507C0634938C7648A991AC74E80186D9s1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bib5DFA40D000DBC481247E5009AF10DEBFs1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bib6C2A2C9072C4CEB6B54B9DD539E05638s1
https://eudml.org/doc/281834
http://refhub.elsevier.com/S0021-8693(24)00328-4/bibC90A918B859BD1E56CF99AF6246B128Es1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bibC90A918B859BD1E56CF99AF6246B128Es1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bibFE07F97C6FFEC4369E9805B5BD6A48F5s1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bibFE07F97C6FFEC4369E9805B5BD6A48F5s1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bib5685D7BB751F4C0EC5DA030420E37704s1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bib5685D7BB751F4C0EC5DA030420E37704s1
https://www.jmilne.org/math/xnotes/CA402.pdf
http://refhub.elsevier.com/S0021-8693(24)00328-4/bib180F73339A7DE9A72F36D0746C7E04C7s1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bib180F73339A7DE9A72F36D0746C7E04C7s1
https://homepages.uni-regensburg.de/~nad22969/dispense/tesimagistrale.pdf
https://homepages.uni-regensburg.de/~nad22969/dispense/tesimagistrale.pdf
https://doi.org/10.1016/j.jalgebra.2006.10.005
https://doi.org/10.1007/BF02764619
http://refhub.elsevier.com/S0021-8693(24)00328-4/bibF5FC3D77A2B3A877D67A91FD18556174s1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bibF5FC3D77A2B3A877D67A91FD18556174s1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bib65E08E1E48E533D98A2CB262C5569629s1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bib65E08E1E48E533D98A2CB262C5569629s1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bib26BFEDD7DB134F165A27362C5DD301DAs1
http://refhub.elsevier.com/S0021-8693(24)00328-4/bib26BFEDD7DB134F165A27362C5DD301DAs1

	Cohomology for Picard-Vessiot theory
	Introduction
	Introduction
	1 Picard-Vessiot theory
	2 Differential torsors
	2.1 Differential torsors
	2.2 Induced differential torsors
	2.3 Split differential torsor

	3 Twisted forms and descent
	3.1 Differential faithful flatness
	3.2 Differential Hopf-Galois extension
	3.3 Φ-structures
	3.4 Equivariant Φ-structures
	3.5 Descent
	3.6 Twisted forms

	4 Cohomology
	4.1 Absolute cohomology

	5 Differential central simple algebras
	Data availability
	References


