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Abstract

In-context learning (ICL) exhibits dual operating
modes: task learning, i.e. acquiring a new skill
from in-context samples, and task retrieval, i.e.,
locating and activating a relevant pretrained skill.
Recent theoretical work proposes various mathe-
matical models to analyze ICL, but they cannot
fully explain the duality. In this work, we analyze
a generalized probabilistic model for pretraining
data, obtaining a quantitative understanding of
the two operating modes of ICL. Leveraging
our analysis, we provide the first explanation
of an unexplained phenomenon observed with
real-world large language models (LLMs). Under
some settings, the ICL risk initially increases and
then decreases with more in-context examples.
Our analysis offers a plausible explanation
for this “early ascent” phenomenon: a limited
number of in-context samples may lead to the
retrieval of an incorrect skill, thereby increasing
the risk, which will eventually diminish as
task learning takes effect with more in-context
samples. We also analyze ICL with biased
labels, e.g., zero-shot ICL, where in-context
examples are assigned random labels, and
predict the bounded efficacy of such approaches.
We corroborate our analysis and predictions
with extensive experiments with Transformers
and LLMs. The code is available at: https:
//github.com/UW-Madison-Lee-Lab/
Dual_Operating_Modes_of_ICL.

1. Introduction

Large language models (LLMs) exhibit a significant im-
provement in predictive performance when provided with
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in-context examples (Brown et al., 2020). This emergent
ability of LLMs, known as in-context learning (ICL), op-
erates in two distinct modes: task learning and task
retrieval (Pan et al., 2023). Large language models exem-
plify this duality. They can learn unseen functions from in-
context examples, demonstrating the learning mode (Brown
et al., 2020; Razeghi et al., 2022; Garg et al., 2022). Concur-
rently, LLMs can also retrieve and utilize a pretrained skill.
A clear evidence of the task retrieval mode is presented by
Min et al. (2022), where the authors show ICL performance
remains largely unaffected even when in-context examples
are annotated with random labels. This suggests that LLMs
simply retrieve a pretrained skill rather than learn it from
in-context examples.

The dual nature of ICL can be explained as follows. LLMs
are a next-token predictor that is pretrained on a large pre-
training set, consisting of diverse data from diverse do-
mains/tasks. To predict the next token optimally in such
a scenario, the model must first learn the task prior from
pretraining data and then implicitly perform Bayesian infer-
ence at the test time (Xie et al., 2022; Raventos et al., 2023).
Optimal prediction on multitask pretraining data requires
adherence to the learned prior (over the tasks present in
the pretraining data) and making predictions based on the
posterior. The ability to learn and apply this prior during
test-time inference enables task retrieval—if in-context exam-
ples align closely with a task encountered during pretraining,
the model can swiftly adjust its posterior and predict without
learning a new skill. Simultaneously, the model can learn a
novel or uncommon skill given sufficient in-context samples
and a non-zero prior probability for that skill.

Although the link between pretraining and ICL’s dual modes
is conceptually straightforward, formally establishing this
connection is an unresolved challenge. Motivated by this,
our work seeks to address the following questions: How
do we rigorously explain the dual operating modes of ICL?
Can we define the conditions under which the retrieval mode
is a dominant one and vice versa?

A New Model for Pretraining Data To find the answers
to these questions, we first propose a new probabilistic
model for pretraining data by assuming the pretraining data
has a latent clustered structure. In particular, we consider
in-context learning of linear functions following the recent
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Figure 1: A summary of our contributions. We first propose a probabilistic model for pretraining data and in-context
examples. By analyzing our model, we obtain a quantitative understanding of the dual operating modes of ICL, and explain

two real-world phenomena observed with LLMs.

work (Garg et al., 2022; Akytirek et al., 2023; Li et al., 2023;
von Oswald et al., 2023; Raventos et al., 2023; Wu et al.,
2024). A next-token prediction model is prompted with (1) a
sequence of (i, y) pairs, which come from a common linear
function, and (2) one test input @.s. An ideal model capable
of in-context learning linear models should internally fit a
linear function (say y = w’ «) using the in-context exam-
ples and then generate the predicted label 1t = W' Xieq; as
the next token. The recent work (Raventos et al., 2023; Wu
et al., 2024) show that such in-context learning is feasible by
training a next-token prediction model on a large pretraining
dataset, consisting of sequences of labeled samples drawn
from diverse linear functions.

We extend the existing model for pretraining data (Raven-
tos et al., 2023) by introducing multiple task groups and
task-dependent input distributions. When one generates pre-
training data, one must specify a probability distribution of
linear functions (equivalently, that of the linear coefficient
w). While most of the prior work assumes that w is drawn
from a single Gaussian distribution, we will model it as
drawn from a Gaussian mixture model, where each Gaussian
component models a task group. This model better reflects
real-world data that exhibits a clustered structure (Xie et al.,
2022). Furthermore, we also allow each mixture compo-
nent to have its own distribution for input . Shown on
the left-most panel in Fig. 1 is a simple visualization of our
model. The blue task group is modeled as the distribution
of linear functions with positive coefficients (w ~ 1) with
the input distribution centered around E[x] = +1. The red
lines represent the other task group — linear functions with
negative coefficients (w ~ —1) with the input distribution
centered at E[xz] = —1. See Sec. 3 for more details.

Analysis With our new model for pretraining data, we
analyze the optimal pretrained model under the squared
loss, i.e., the MMSE estimator of the label given input with
in-context examples. Here, the pretraining distribution (of
linear functions) is the prior, and in-context examples are
the observations. Leveraging the fact that the Gaussian mix-
ture is a conjugate prior to the Gaussian likelihood function,
we obtain a closed-form expression of the posterior distri-
bution. By fully quantifying the posterior distribution of
w in the form of a Gaussian mixture, we characterize how
in-context examples are used to update each component’s
posterior mean and posterior mixture probability. We will
call updates of mixture probabilities as task group (compo-
nent) re-weighting and updates of component means as task
group (component) shifting. See the central panel in Fig. 1
for visualization. By analyzing these two effects, we obtain
a quantitative understanding of how two different operating
modes emerge. In particular, we show that, under some mild
assumptions, task group re-weighting is the dominant factor
when provided with few in-context samples, rendering the
task retrieval mode. With many in-context samples, task
group shifting occurs, resulting in the task learning mode.

Explanation of Two Real-World Phenomena To demon-
strate the practical value of the new insights we have gained
from our model, we will leverage our analysis to explain and
predict two phenomena observed with LLMs in practice.

* The early ascent phenomenon refers to the observation
that, under certain conditions, the ICL risk initially in-
creases and then decreases when more in-context examples
are introduced (Brown et al., 2020; Xie et al., 2022). See
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the right-most panel of Fig. 1 for visualization. Based on
our analysis, we offer a plausible explanation for this early
ascent phenomenon—a limited number of in-context sam-
ples may lead to the retrieval of an incorrect skill, thereby
increasing the risk, which will eventually diminish as task
learning takes effect with more in-context samples.

Bounded efficacy of biased-label ICL is predicted by
our model. ICL performs well even with in-context ex-
amples that are annotated with biased labels (Lyu et al.,
2023; Min et al., 2022). Our model provides a rigorous
justification of this approach: If in-context examples with
biased labels carry sufficient information for retrieving a
correct pretrained task, then this approach would work.
At the same time, our analysis suggests that the operating
mode of ICL will make a transition from task retrieval to
task learning with more in-context examples. When the
learning mode starts taking place, the test risks of such
methods will start increasing as the pretrained model will
start fitting the biased labels. See the right-most panel of
Fig. 1 for visualization. This bounded efficacy has not
been reported in the literature (Min et al., 2022; Pan et al.,
2023). We found that this was due to the small number
of examples tested. With more in-context samples, we
observe the predicted bounded efficacy phenomenon with
real-world LLMs such as Mistral 7B (Jiang et al., 2023),
Mixtral 8 x7B (Jiang et al., 2024), Llama 2 (Touvron et al.,
2023), and GPT-4 (OpenAl, 2023).

2. Related Work

Dual Operating Modes of ICL. Pan et al. (2023) em-
pirically disentangle the two operating modes of ICL: task
recognition, which we refer to as task retrieval and task
learning. To illustrate, in the context of sentence sentiment
classification using ICL, Pan et al. (2023) explore three la-
beling schemes for in-context examples: (i) correct semantic
labels, (ii) correct but abstract labels (“0” and “1”"), and (iii)
random semantic labels (“positive” or “negative”). Pan et al.
(2023) claim that ICL is in the task recognition mode when
the model is provided with randomly labeled in-context data,
and observe that its efficacy does not correlate with model
size or the quantity of demonstrations. In fact, later, we
will show that via our analysis, an increasing number of
demonstrations will eventually decrease the ICL accuracy.
Conversely, ICL with correct but abstract labels, classified
as task learning, shows improved performance in propor-
tion to model size and in-context example count. ICL with
correct labels yields the highest accuracy since both task
recognition and task learning benefit it.

Explaining ICL via Bayesian Inference. Xie et al. (2022)
use a Hidden Markov Model (HMM) (Ghahramani & Jor-
dan, 1995; Rabiner, 1989) to model the pretraining data.

That is, each sequence in pretraining data is generated by an
HMM, whose parameters are randomly drawn from a partic-
ular distribution. During pretraining, a next-token prediction
model is trained to predict tokens in pretraining sequences,
which requires the inference of the latent HMM parameters.
While this model accurately reflects real-world pretraining
data characteristics, such as long-range dependencies, the
absence of a closed-form solution for optimal prediction
makes detailed analysis of ICL infeasible. On the other
hand, Garg et al. (2022); Raventos et al. (2023) consider the
setting where a next-token prediction model is pretrained
on token sequences consisting of (&, y) pairs in the form
of (x1,y1,T2,y2,...). The pretraining objective is to pre-
dict only the tokens at odd positions, i.e., to predict y, but
not . Garg et al. (2022) empirically evaluate the Trans-
former architecture (Vaswani et al., 2017), while the authors
of Raventos et al. (2023) proposed a probabilistic model
to generate sequences according to noisy linear regression.
More specifically, y; = (x;, w*) + ¢;, where w* is the
coefficient shared within the same sequence and ¢; is noise.
While this linear regression model facilitates a tractable
analysis and elucidates certain aspects of the dual operat-
ing modes of ICL, it falls short in modeling the clustered
characteristic of nature language. Han et al. (2023) show
that ICL asymptotically approaches kernel regression as the
in-context samples increases. Jeon et al. (2024) introduce
information-theoretic tools to show that the ICL risk should
decay in both the number and sequence lengths of in-context
examples. On the other hand, our proposed model allows for
tractable analysis and captures the clustered characteristic
of pretraining data.

Explaining ICL via Gradient Descent. Garg et al. (2022)
hint that the pretrained Transformer might implicitly exe-
cute gradient descent under ICL. Akytirek et al. (2023); von
Oswald et al. (2023); Dai et al. (2023) expand this notion
by theoretically showing that one attention layer can be
exactly constructed to perform gradient descent, and em-
pirically finding similarities between in-context inference
and gradient descent algorithm. Further, Ahn et al. (2023);
Mahankali et al. (2024); Zhang et al. (2023) dive into the
training process of Transformers. Ahn et al. (2023); Ma-
hankali et al. (2024) theoretically show that under certain
conditions, Transformers with one or more attention lay-
ers trained on noisy linear regression task minimizing the
pretraining loss will implement gradient descent algorithm.
Zhang et al. (2023) show that a single linear self-attention
layer trained by gradient flow with a suitable random ini-
tialization finds a global minimum of the objective function,
where ICL of the Transformer achieves prediction error
competitive with the best linear predictor.

Others. Wu et al. (2024) studies the sample complex-
ity required for pretraining a linear attention model and
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presents a statistical bound. In our work, we do not consider
a particular model architecture nor the statistical aspects of
pretraining — we assume a pretrained model is optimally
trained on infinitely large pretraining data, similar to the
previous work (Xie et al., 2022; Raventos et al., 2023; Han
et al., 2023). Giannou et al. (2023) show a looped Trans-
former can emulate any algorithms, such as SGD. Bai et al.
(2023) show Transformers can perform in-context algorithm
selection, i.e., adaptively selecting different ICL algorithms
such as gradient descent, least square, or ridge regression.
(Li et al., 2023) study the generalization bounds for ICL
with Transformers.

3. Pretraining and Data Generative Model

A next-token predictor is a sequential prediction model that
predicts the next token given an initial token sequence. Con-
sider pretraining this model on sequences consisting of
(z,y)' pairs in the form of (x1,y1, 2,92, ..), with the
model trained to predict only the y values, thereby skip-
ping the prediction of x. Here, we assume odd-numbered
tokens represent d-dimension real-valued vectors, and even-
numbered tokens represent scalars. During inference, the
model receives a sequence of 2k + 1 tokens. The first 2k to-
kens are k labeled samples (z;,v:),¢ € {1,...,k} =: [K],
and the last token is unlabeled ;. Ideally, the model
should predict the correct next token, yz41.

3.1. Data Generative Model

In the pretraining phase, we assume the next-token predictor
is pretrained on diverse tasks, each representing a continu-
ous joint distribution of (x,y). Before we move on to the
exact pretraining data generative model proposed in this
paper, we first provide a general setting for the data genera-
tion process. A task is defined by a joint distribution Dy, ,,
which specifies the likelihood of obtaining a sample (x, y)
from this task. Each task is sampled from the task prior
DPior meaning DP" represents a distribution over distribu-
tions. The pretraining data comprises numerous sequences,
each containing K labeled samples i.i.d. drawn from a dis-
tribution D, ,,. We formally describe our pretraining data
generative model in Assumption 1.

Assumption 1 (Pretraining Data Generative Model). Given
an integer K > 0, a pretraining task prior DP"°", we gener-
ate a sequence S as follows:

(a) Sample a task from the task prior: Dy, ,, ~ DPr;

(b) Sample K labeled samples from the chosen task:
Vi € {1, 2,..., K}, (:ci,yi) ~ 'Dm’y;

(c) Define a sequence Si: Sk = [®1,91,- -, LK, YK].

't is more rigorous to represent the vector  as multiple tokens.
However, viewing it as a high-dimensional “token” simplifies our

notation while not affecting our analysis. Thus, with a slight abuse
of notation, we will treat both ; and y; as tokens for simplicity.

In the sequence, the first 2k elements of Sk is denoted
as Sk, and the first 2k 4 1 elements will be indicated by
Sk ® Tiy1, €8, So =[], and S1 ® &2 = [w1, y1, 2]

3.2. Bayes-Optimal Next-Token Predictor

Let L(F) = Esx [% ho (F(Sk @ @pp1) — yk+1)2}

as the pretraining objective, where J is a next-token predic-
tor and Sk is generated from DP°F following Assumption 1.
In other words, for each sequence, we pretrain F to predict
each label y based on preceding samples, measuring risk
with the squared loss. Due to the linearity of expectation, we
have: £(F) = % X0 E [(F(Sk & za1) —yri1)?].

K

A variable-input-length next-token predictor F can be
viewed as K fixed-input-length next-token predictors
Fo, - .-, Fx—1, where Fj, takes a sequence of exactly 2k+1
tokens as input. Thus, assuming the sufficient expressive-
ness of F, the optimization problem F* = argmin » L(F)
can be decomposed into K separate optimization problems
fork € {0,..., K —1}:

Fi = argmin B [(Fu(Sk ® ri1) — yrs1)?].
Fr Sk

The solution denoted F;' is an MMSE estimator (Van Trees,
2004, page 63) for each k. Thus, the prediction F*(S;, ®
Try1) = Fp (Sk @ xiy1) satisfies:

F*(Sk @ xpy1) = gE [Yk+1|Sk © Ti41]
K

= E {]E [Yk11Da,y> Sk © Try1]

Da,y |Yr+1

Sk @ CCk-—H]

= E [ E [Wit1|DPaz,y, Tht1]|Sk @wk+1:| Y]

Dw,y |Yk+1

Thus, F*(S; @ xr4+1) is the expectation (over task pos-

terior) of E [yk+1|Da,y, Tr+1] regarding Sy, & @41 as
Yk+1
observation. We show that a pretrained Transformer can

empirically approximate Bayesian inference in Appendix D.

3.3. Gaussian/Linear Assumptions on Pretraining Data
Generative Model

Let us now elaborate further assumptions on DP°" and D, ,,
in the Assumption | for a tractable posterior, extending
beyond the scope of Raventos et al. (2023), who propose
the data generative model that each task is a noisy linear
regression task, the function w for each task is drawn from
the same Gaussian distribution, and different tasks share the
same x distribution. In contrast, our model posits that task
functions are derived from a Gaussian mixture distribution,
and tasks employ varying « distributions, as illustrated in
Fig. 2. We formally formulate this setting in Assumption 6.

Assumption 2 (Gaussian/Linear Assumptions for Pretraining
Data Generative Model).
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Figure 2: Pretraining data model of Raventos et al. (2023) and ours.

@ (s, w) ~ DY P w) = S0 7 P, w[ T,
where T}, is the m™ mixture component’ of the Gaus-
sian mixture, ie., P(p,w|T,) = N(p|ppm,oT) -
N(w|w,,,c2I), and 7, is the mixture weight.
Z%zl Tm = 1,0 < mp < 1, (b, wp,) is the cen-
ter of the mixture component 7,,, and all components share
the same covariance matrix controlled by o, and o,,;

(b) input: & ~ Dy (), P(z|p) = N(x|p, 02 1);

(¢) label: y|@ ~ Dy (w) : Pylz, w) = N(ylw'z,02);
@) |lppm || = llwm || = 1, Vm € [M];

(e) Ir > 1 thatVa, 8 € [M], 2 < Z—Z <r:

) x, p, fon, w, w,, € R4 T € R4¥4,

Remark 3.1. Based on Assumptions 6(b) and 6(c), we define
the probability of observing a sample (x,y) within a task
(p, w) as the “noisy linear regression” likelihood.

Assumption 6(a) indicates that the pretraining dataset of
an LLM consists of M different task groups. Assump-
tion 6(b) posits that tasks have varying x distribution with
varying mean but share the same covariance matrix. As-
sumption 6(c) assumes tasks as noisy linear regressions
with the same noise scale in labels. Assumption 2(e) posits
comparable mixture weights 7 across different task groups.

4. Inference and Dual Operating Modes

The previous Sec. 3.2 shows that performing ICL with the
optimally pretrained next-token predictor is equivalent to
computing the posterior mean of the label. In Sec. 4.1,

The concept “mixture component” is derived from Gaussian
mixture models in the statistical literature and is analogous to the
term “Task Group” depicted in the left-most panel of Fig. 1.

we give the generation process of in-context examples. In
Sec. 4.2, under Assumption 6 and treating Sy, @ @41 as
observation, we derive a closed-form expression for the task
posterior DP*!, and identify two factors in the transition
from prior to posterior: Component Shifting and Compo-
nent Re-weighting. In Sec. 4.3, we derive a closed-form
expression of the ICL prediction F*(Sy @ @g41). Fur-
ther, Sec. 4.4 presents the results of numerical computation
conducted under the tetrahedron setting, as illustrated in
Fig. 3(a). The numerical computation results demonstrate
the effects of component shifting and re-weighting. Finally,
Sec. 4.5 raises the definitions of the dual operating modes
with component shifting and re-weighting.

4.1. In-Context Task and In-Context Function

We introduce Assumption 3 for the in-context task and the
in-context function of in-context examples:

Assumption 3 (Gaussian/Linear Assumptions for In-Context
Examples).

(a) The input sequence Sy & 41 of ICL satisfies, Vi,
zi ~ N (p*, 720, yi = (i, w*):

®) [[p*]| = [lw*]] = 1.

Assumption 3(a) states that each in-context example (x;, y;)
is drawn from the in-context task (p*, w*), with w* repre-
senting the specific in-context function and the labels being
free from noise.

4.2. Closed-Form Expression of Posterior

The following lemma gives the closed-form expression of
posterior D% given any Sg @ g1 1:
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Lemma 4.1 (Conjugate Distributions with Noisy Linear
Regression Likelihood). Under Assumption 6, the posterior
probability of task (., w) given observation S, ® 11 is:

P(p,w| S & Tpi1) = Xy T P, w|Thy,)
= Yo o N (lfn, 521) - N (], 531).
Here, the mixture component Ty, in the prior is mapped

to the mixture component Ty, in the posterior with mixture
weight T, and component means (fi,,, W,):

~ _ w
Tm = T Cichy o,

2

ctt = exp (= ||* — Im+GFDOUANT 415, 2,)-1/202)

¥ = exp (—meH2 — me+k5wﬂ’|\?,M&”,gw)_l/zai) ,

fim = (L + (k +1)8,2) " (ptm + (k +1)d, ),
Wy = (I + kbyZ) (W, + k),

5o =oo(I+ (k+1)5,3,)7",

62 =02 (I +k6pSe) ™!,

where C1 is a normalizing constant, i.e., ) T = 1,0, =

2 2 k+1 _ k T
Ty — Tw — g — 2wi=1 Li _ i T,
gg’éw_ag’zﬂ_I’”_ k+1 ,Ew— k »

_ Z)Ll ;Y .
and w = ==—=. See Appendix G for the proof.

Remark 4.2. Gaussian mixture is known to be a conjugate
prior to the Gaussian likelihood. The outlined conjugate
distributions in this lemma extend the Gaussian mixture con-
jugate distributions by substituting the Gaussian likelihood
with the “noisy linear regression” likelihood in Remark 3.1.

Lemma 4.1 states that the task posterior remains a Gaus-
sian mixture, with its mixture components shifted and re-
weighted from the task prior. Therefore, understanding the
impact of in-context examples on the posterior requires un-
derstanding how in-context examples affect the two factors:

* Component Shifting (CS). The component center is
shifted from (ty,, Wi,) t0 (Lo, Win)-

* Component Re-weighting (CR). The component weight
is re-weighted from 7 to 7.

Remark 4.3. The term “component” comes from the lit-
erature on Gaussian mixtures. It serves as an alternative
to “Task Group” as shown in Fig. 2. The terminology
“Component Shifting” and “Component Re-weighting” can
be viewed as “Task Group Shifting” and “Task Group Re-
weighting”. We will abbreviate “mixture component center”
to simply “center” when there is no ambiguity.

Leveraging Assumption 3, we collected mathematical anal-
yses of CS and CR in Appendix H. The analysis explores
the impacts of pretraining task noises and the number of
in-context examples on fi,,, W, and 7,,, and examines the
convergence of fi,,, W, and 7,,, as k approaches infinity.

4.3. Closed-form Expression of ICL Prediction

With Assumption 6 and Lemma 4.1, we have the following
corollary for the prediction F*(Sy @ ®p41):

Corollary 4.4. Let w = 2%:1 T Wy, With pretraining
data generative model 1 and Assumption 6, if the pretrained
model F* minimizes the pretraining risk, then the prediction
on any sequence S, ® xy11 by F* is as follows: F*(Si ®

ka+1) = <€Bk+1az£\r{:1 7~Tm717m> = <€Ek+1,ﬁ7>-

Proof. Apply Assumption 1 to Eq. 1, F*(S; ® ®py1) =
E(,00)~Dror [(Tht 1, W) [S, © Tpq1]. Using Lemma 4.1,
thisreducesto S0 _ 7y E
(1, w)~Top
linearity of expectation and inner product, the prediction can

be simplified as (211, Y0 _| o) = (X1, ®). O

[(xk+1,w)]. Due to the
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Thus, the prediction is a convex combination of predictions
by the centers of those shifted and re-weighted mixture com-
ponents in the posterior. We are interested in how 7, and
w,, change to 7, and w,, with increasing k£ and how the
pretraining prior distribution properties affect these changes.

4.4. Prior Task Noises, CS, CR, and ICL Prediction

We numerically compute how 7,,, W, and the prediction
F*(Sk @ @k11) evolve as k increases under different prior
task noise conditions. The numerical computation is based
on the tetrahedron setting with four prior mixture compo-
nents as illustrated in Fig. 3(a). See Appendix B.1 for details
of the tetrahedron setting. Fig. 3(b) shows the computational
results. The first row shows the CS effect, demonstrating
the impact of increasing k on w,,. The second row shows
the CR effect, illustrating the impact of increasing k on
Tm- The third and fourth rows depict how increasing k
influences the risk of learning the function w*. We observe
that with low task noises and a small k£ value, the CR effect
initially prevails, significantly boosting the mixture weight
of component 1 over others. Then, as k increases further,
the CS effect aligns all component centers with (™, w™*).

4.5. Dual Operating Modes

The “task retrieval” mode describes a scenario where the
impact of component re-weighting surpasses that of com-
ponent shifting, leading to the prediction that is primarily
influenced by the interplay between pretraining priors and
in-context examples. An illustration of this is shown in the
first column of Fig. 3(b), where the re-weighting of 7, is
more pronounced than the shifting of w,,, indicating that
CR plays a pivotal role in altering the prediction. In contrast,
the “fask learning’ mode refers to situations where com-
ponent shifting dominates over component re-weighting,
resulting in the prediction almost depending on in-context
examples and neglecting the pretraining priors.

S. Early Ascent

We now explain the early ascent phenomenon by analyzing
a finegrained risk bound of ICL. (See Appendix C Theo-
rem C.1 for the coarser bound.)

5.1. Finegrained Upper Bound
The finegrained upper bound for ICL risk is shown below:

Theorem 5.1 (Finegrained Upper Bound for ICL Risk).
Consider a next-token predictor attaining the optimal pre-
training risk. As k — oo, ICL risk is upper bounded by:

M
E[L7] < D llwm — " [PEsg. [Fnll2re[* A1 (4)%),

m=1

where L, = (F(Sk @ ®p1) — ¥Yip1)® = (F(Sk @
Tpr1) — (Tpo1, w*))?, ||w,, — w*| is the distance be-
tween the in-context function w* and the function w.,,
of center m, T,, is the posterior mixture weight, and
A=(I+6, Zle x;x;] )L See Appendix L and Eq. 15
for proof details. In Appendix L.1, we further refine the
bound for cases when in-context x; only spans in a sub-
space of RY, resulting in \1(A) = 1 constantly.

In-context examples affect the upper bound by affecting the
two factors 73 and A;(A), corresponding to CR and CS
introduced in Sec. 4.2. When ignoring the CR effect and
only considering CS, the finegrained upper bound degrades
to the general coarse bound in Appendix C Theorem C.1.

5.2. The Effect of Dual Operating Modes on ICL Risk

We numerically compute ICL risk under varied settings to
explore the effect of the dual operating modes on the risk in
Fig. 4. When pretraining task noises are low, i.e., §,, and d,,
are small, the task retrieval mode happens with a small num-
ber of in-context examples, and the upper bound is affected
by how (p*, w™) is close to a prior center. Specifically, the
task prior boosts the learning process of ICL if the in-context
task is close to a prior center, due to the task retrieval mode
quickly retrieving the task of the nearest prior center.

5.3. Early Ascent with Biased x Distribution

However, the task retrieval mode may not always benefit
ICL. We notice a weird phenomenon is observed by Brown
et al. (2020) and Xie et al. (2022). As the number of in-
context samples increased, the performance of ICL first
decreased and then increased. Brown et al. (2020) reports
that GPT-3 on LAMBADA shows a lower one-shot accuracy
(72.5%) than zero-shot accuracy (76.2%), but the few-shot
accuracy (86.4%) is higher than the zero-shot accuracy. Xie
et al. (2022) also replicated this phenomenon with their
synthetic dataset. Xie et al. (2022) explains this by “the
few-shot setting introduces the distracting prompt structure,
which can initially lower accuracy.”

To obtain some insights, we present a simple scenario where
x misleads the prediction by an LLM. Consider the fol-
lowing one-shot prompt for English-to-Korean translation:
“What is the color of apple? A}x}2] 272 It o) o] 7193
What is the color of banana?” The correct answer should be
“Hpvpr}e] M 7Z-e ool 712°* However, GPT-3.5 gen-
erates “vHlupte] MZ-S w2 1] T} which means
“The color of bananas is yellow.” This shows that pretrained
LLMs could retrieve an incorrect skill (question answering
in this example) by observing misleading input ().

*What is the color of apple?” in Korean.
*What is the color of banana?” in Korean.
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Number of In-Context Examples (k) - Risk E[(F* — y},1)’]
Prior pt53 and In-Context p* 10 0, =0,=1/81 10 0y =0,=1/9 10 L =0p=1
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—— Medium
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0.0h90 97 g1 95 ¢ 00gg 2 ot 3 3¢ 00G0 o257 30 3

Number of In-Context Examples (k)

Figure 4: Distance to the closest prior vs ICL risk. We compute ICL risks of three target tasks colored red (farthest),
green, and blue (closest), under the tetrahedron setting, illustrated in the left-most figure. The red target task has the longest
distance to the closest prior center, and the blue target task has the shortest distance to the closest prior center. We can
observe that the target task is easier to learn when the distance to the closest prior is smaller.
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Figure 5: The early ascent phenomenon. Fig. 8(a) and Fig. 8(b) show that the task retrieval mode is dominant up to
k = 32, and component 1’s mixture weight increases (E[w] approaches w). Since this component is farther than the other
one, the risk starts increasing. At larger k values, the risk starts decreasing (E[w] approaches ws) via task learning. See
Appendix B.3 for setting details. We further examine the early ascent phenomenon under linear regression with varied levels
of label noises in Appendix 1.1, and under non-linear regression and discrete token prediction in Appendix [.2.

Based on our analysis, we further show that the early ascent
phenomenon provably occurs under a certain assumption
Appendix J.1. We also reproduce early ascent in Fig. 8(a),
where the upper bound and the risk initially increase due to
the misleading task (of center 1) is retrieved first. Fig. 8(b)
further demonstrates the relative locations of the retrieved
functions to functions of prior centers. Finally, we give the
formal theorem on the early ascent phenomenon:

Theorem 5.2 (Early Ascent). Assume «

=12 l[(wom—w*) " p* ||*+dr || wpn —w*||*
arg min 302 + 207

is the most misleading task and the task o satisfies
Ea, [(F(@1) = (w*,21))°] < Ba, [(@1,00 —w")?].
Then, when 6,, and 6, are small enough, 3k > 1 s.t.:

Ea, [(F(@1) — (w*,21))’]
< Esyozys [(]:*(Sk ®xpy1) — (W7, mk+1>)2] ;

where Eg, [(x1, wo — w*)?] equals to the risk when the

prediction fully depends on the misleading task function w,
of prior center o. See Appendix J.2 for proof details.

Theorem 5.2 shows that, if the misleading task « has a
higher risk than the zero-shot risk, then when J,, and J,, are
small enough, the early ascent phenomenon happens.

6. Bounded Efficacy of Biased-Label ICL

We further predict the bounded efficacy phenomenon by
examining the bound of ICL with biased labels. The as-
sumption for ICL with biased labels is described as follows:

Assumption 4 (ICL with Biased Labels). The function w* of
ICL with biased labels is different from the target function
Wey, L.e., w* # w, where w, is a function of a pretraining
task prior center. The in-context task is closer to the prior
center o compared to all the other prior centers 8 # «:

V8 # o [l — 1|2 = [l — [ > 2, g — w2 —
lwe, —w* || > a2, and 72w —w* |2~ (1+72) w, —
w*||? > 12u2,.
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Assumption 4 depicts that to retrieve w,, associated with
the prior center «, the in-context task is selected based on
its proximity to center «, ensuring it is closer to center a.

6.1. Upper Bound for ICL Risk with Biased Labels

The following theorem shows an upper bound for ICL risk
with biased labels to retrieve a task:

Theorem 6.1 (Upper Bound for ICL Risk with Biased La-
bels). Consider a next-token predictor attaining the optimal
pretraining risk. As k — oo, ICL risk with biased labels is
upper bounded by:

Es, [£}] < [wa —w*|*(1 +d77)

C :

+ L exp (cgk%—i) +O(k™2)
kb

where LY = (F(Sk®xry1) —ypi1)® = (F(Sk®xpq1) —

(41, Wa))> When 8, and b, are sufficiently small, exists

a particular interval for k s.t.:

Mixtral 8x7B Llama 2 70B GPT-4

\ \ s
\ N’ -

N — ke

0

True Labels
Random Labels

>

Classification Error
'S

i — "

o

0P PBP PP (DA R BP PO D PP P

Number of In-Context Examples (k)

Figure 6: Bounded efficacy. The error rates of ICL with
random labels start increasing at large k. See Appendix F
for more experimental results.

Lemma 6.2 ((informal) Upper Bound for Zero-Shot ICL).
Assume a next-token predictor attains the optimal pretrain-
ing risk, the risk of ICL with random labels (provide no
information) will reveal a bounded efficacy phenomenon.
See Appendix N for proof details.

Lemma 6.2 says that as the number of in-context examples
increases, the loss curve of zero-shot ICL with random

Es, [£7] < lwa —w*||*(1 + dr) min{1,4k%6,,*(1 + 72)*} labels will have the bounded efficacy phenomenon, which

d? u2 12 k2
[ ol w'x
+ Cg exp (k (80’% + 80‘5 +Cy exp 778 .

As k increases, the second and third terms dominate and
exponential decay when k is small, and the first term domi-
nates and increases when k is large. Cy,Cs, C3, and Cy4 are
constants depending on the prior setting, 7., and (p*, w*).
See Appendix M for proof details.

k 0 1 2 4 8 16
+ 75.0% 362% 339% 49.3% 793% 85.1%
Biased + 100.0% 98.3% 959% 60.5% 24.4% 16.8%

Table 1: Bounded efficacy in GPT-4. Error rate measured
with respect to “addition (4)” and “biased +”. The bounded
efficacy phenomenon: the error rate goes down to k = 2, but
it increases afterward. Experiment details in Appendix E. 1.

6.2. Bounded Efficacy of Biased-Label ICL in GPT-4

This section further shows that the bounded efficacy phe-
nomenon exists in GPT-4 in Table 1. With the task “biased
addition (4)” as the in-context task corresponding to w*, as
the number of in-context examples increases, ICL will first
retrieve the skill “addition (+)” corresponding to w, which
has a strong pretraining prior. Later, it will learn the “biased
-+ task, leading to the bounded efficacy phenomenon.

6.3. Bounded Efficacy for Zero-Shot ICL

We further introduce Lemma 6.2, a variation of the previous
Theorem 6.1, to explain zero-shot ICL, an ICL algorithm
capable of functioning with random labels (Lyu et al., 2023).

conflicts with the observation from Min et al. (2022) that
ICL with random labels has very similar performance as
ICL with true labels for the number of in-context examples
ranging from 1 to 32. We believe this observation is due to
the small number of in-context examples. Thus, we extend
the experiment of Min et al. (2022) to explore the number
of in-context examples beyond 32. Due to LLMs’ context
lengths constraining the maximum number of in-context
examples, we choose different LLMs from Min et al. (2022)
for a larger context length capacity.

Fig. 6 highlights the bounded efficacy phenomenon in the
error curve associated with random labels. Compared with
true labels, the error rate of ICL with random labels in-
creases at a much smaller k value, clearly exhibiting the
bounded efficacy phenomenon we predicted.

7. Conclusion

In this paper, we introduced a probabilistic model for under-
standing the dual operating modes of in-context learning:
task learning and task retrieval. Our analysis allowed us
to explain the existing early ascent phenomenon observed
in real-world ICL applications, and predict a new bounded
efficacy phenomenon of biased-label ICL. We validated our
findings and predictions via experiments involving large
language models. Our work lays the groundwork for future
research in further exploration and improvement of ICL.

We conclude our paper with the limitations of our current
framework: (i) the gap between our assumed pretraining
linear regression tasks and complex, non-linear, categorical,
real-world pretraining tasks of LLMs; (ii) the labels of in-
context samples are assumed to be noiseless.



Dual Operating Modes of In-Context Learning

Acknowledgements

This work was supported by the NSF Award DMS-2023239,
NSF CAREER Award CCF-2339978, Amazon Research
Award, and a grant from FuriosaAl.

We would like to express our sincere gratitude to Kartik
Sreenivasan for his invaluable discussions for this research.
His insights and expertise have been instrumental in shaping
this study. Additionally, we sincerely thank Andrew Geng
for his contributions to coding for the initial experimental
setup. His skills and dedication have been pivotal in the
early stages of our research.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Ahn, K., Cheng, X., Daneshmand, H., and Sra, S. Trans-
formers learn to implement preconditioned gradient de-
scent for in-context learning. In Advances in Neural
Information Processing Systems (NeurIPS), 2023.

Akyiirek, E., Schuurmans, D., Andreas, J., Ma, T., and Zhou,
D. What learning algorithm is in-context learning? Inves-
tigations with linear models. In International Conference
on Learning Representations (ICLR), 2023.

Bai, Y., Chen, F., Wang, H., Xiong, C., and Mei, S. Trans-
formers as statisticians: Provable in-context learning with
in-context algorithm selection. In Advances in Neural
Information Processing Systems (NeurlIPS), 2023.

Barbieri, F., Camacho-Collados, J., Anke, L. E., and Neves,
L. Tweeteval: Unified benchmark and comparative evalu-
ation for tweet classification. In Findings of the Associa-
tion for Computational Linguistics: EMNLP, 2020.

Boucheron, S., Lugosi, G., and Massart, P. Concentration
inequalities: A nonasymptotic theory of independence.
Oxford University Press, 2013.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, 1., and Amodei, D. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems (NeurlIPS), 2020.

10

Dagan, 1., Glickman, O., and Magnini, B. The PASCAL
recognising textual entailment challenge. In PASCAL
Machine Learning Challenges Workshop (MLCW), 2005.

Dai, D., Sun, Y., Dong, L., Hao, Y., Ma, S., Sui, Z., and Wei,
F. Why can GPT learn in-context? Language models
secretly perform gradient descent as meta-optimizers. In
Findings of the Association for Computational Linguistics
(ACL), 2023.

Dolan, W. B. and Brockett, C. Automatically construct-
ing a corpus of sentential paraphrases. In International
Workshop on Paraphrasing (IWP@IJCNLP), 2005.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What can
Transformers learn in-context? A case study of simple
function classes. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Ghahramani, Z. and Jordan, M. Factorial hidden markov
models. In Advances in Neural Information Processing
Systems (NeurIPS), 1995.

Giannou, A., Rajput, S., Sohn, J.-y., Lee, K., Lee, J. D.,
and Papailiopoulos, D. Looped Transformers as pro-
grammable computers. In International Conference on
Machine Learning (ICML), 2023.

Han, C., Wang, Z., Zhao, H., and Ji, H. In-context learning
of large language models explained as kernel regression.
arXiv preprint arXiv:2305.12766, 2023.

Jeon, H. J.,, Lee, J. D., Lei, Q., and Van Roy, B. An
information-theoretic analysis of in-context learning.
arXiv preprint arXiv:2401.15530, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. 1., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7B. arXiv preprint
arXiv:2310.06825, 2023.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., Casas, D. d. 1., Hanna,
E. B., Bressand, F., et al. Mixtral of experts. arXiv
preprint arXiv:2401.04088, 2024.

Li, Y., Ildiz, M. E., Papailiopoulos, D., and Oymak, S.
Transformers as algorithms: Generalization and stability
in in-context learning. In International Conference on
Machine Learning (ICML), 2023.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations (ICLR), 2019.

Lyu, X., Min, S., Beltagy, L., Zettlemoyer, L., and Hajishirzi,
H. Z-ICL: Zero-shot in-context learning with pseudo-
demonstrations. In Annual Meeting of the Association for
Computational Linguistics (ACL), 2023.



Dual Operating Modes of In-Context Learning

Mahankali, A., Hashimoto, T. B., and Ma, T. One step of
gradient descent is provably the optimal in-context learner
with one layer of linear self-attention. In International
Conference on Learning Representations (ICLR), 2024.

Marelli, M., Menini, S., Baroni, M., Bentivogli, L., Bernardi,
R., and Zamparelli, R. A SICK cure for the evaluation of
compositional distributional semantic models. In Interna-
tional Conference on Language Resources and Evalua-
tion (LREC), 2014.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M.,
Hajishirzi, H., and Zettlemoyer, L. Rethinking the role of
demonstrations: What makes in-context learning work?

In Empirical Methods in Natural Language Processing
(EMNLP), 2022.

OpenAl. GPT-4 technical report, 2023.

Pan, J., Gao, T., Chen, H., and Chen, D. What in-context
learning “learns” in-context: Disentangling task recogni-
tion and task learning. In Findings of the Association for
Computational Linguistics (ACL), 2023.

Rabiner, L. R. A tutorial on hidden markov models and
selected applications in speech recognition. Proceedings
of the IEEE, 1989.

Raventos, A., Paul, M., Chen, F., and Ganguli, S. The
effects of pretraining task diversity on in-context learning
of ridge regression. In ICLR Workshop on Mathematical
and Empirical Understanding of Foundation Models (ME-
FoMo), 2023.

Razeghi, Y., IV, R. L. L., Gardner, M., and Singh, S. Impact
of pretraining term frequencies on few-shot numerical rea-
soning. In Findings of the Association for Computational
Linguistics: EMNLP, 2022.

Sheng, E. and Uthus, D. Investigating societal biases in a
poetry composition system. In Workshop on Gender Bias
in Natural Language Processing, 2020.

Touvron, H., Martin, L., Stone, K., Albert, P., Almabhairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Tsigler, A. and Bartlett, P. L. Benign overfitting in ridge re-
gression. Journal of Machine Learning Research (JMLR),
2023.

Van Trees, H. L. Detection, estimation, and modulation the-
ory, Part I: Detection, estimation, and linear modulation
theory. John Wiley & Sons, 2004.

11

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems (NeurlPS), 2017.

Vershynin, R. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cam-
bridge university press, 2018.

von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning (ICML),
2023.

Wu, J., Zou, D., Chen, Z., Braverman, V., Gu, Q., and
Bartlett, P. L. How many pretraining tasks are needed for
in-context learning of linear regression? In International
Conference on Learning Representations (ICLR), 2024.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit Bayesian
inference. In International Conference on Learning Rep-
resentations (ICLR), 2022.

Zhang, R., Frei, S., and Bartlett, P. L. Trained transformers
learn linear models in-context. In Robustness of Few-
shot and Zero-shot Learning in Large Foundation Models
(RO-FoMo), 2023.



Dual Operating Modes of In-Context Learning

A. Notations

This section collects all notations used in the main paper.

Notations introduced in Sec. 3:

* F: anext-token predictor.

« Fra pretrained next-token predictor.

* F*: a Bayes-optimal next-token predictor that attains Bayes risk minimization.

* Fj: anext-token predictor for k in-context examples.

» Fj: a Bayes-optimal next-token predictor that attains Bayes risk minimization for % in-context examples.
« x and y: input and label for a task, e.g.,  and y of a linear regression task y = & " w.

* k: the number of in-context examples.

* K: the max number of examples in a sequence.

*» Si: asequence of k in-context examples, [X1, Y1, . - . , Tk, Yk]-
» Sk: asequence of K in-context examples, [€1,y1, ..., TK, YK]-
* Sk ®xpr1: Sk D xiy1 = [T1,Y1,- ., Tk, Yk, Tr+1), Which is a sequence of k in-context examples appended with @y 1.

* 1 and w: the parameters that jointly specify a task. p specifies the distribution of &, and w specifies the function mapping
x toy.

s DPror and Dyw: pprior — D, w, and they represent the task prior distribution where each task is specified by parameters
p and w. The task prior is also named pretraining prior, pretraining task prior, pretraining prior distribution, pretraining
task prior distribution, or simply prior.

* D, (u): the conditional distribution of & conditioned on g of the task (u, w).

* Dy (p, w): the joint distribution of (x, y) in the task (p, w).

* Dy (w): y distribution conditioned on the input = and parameter w of the task (p, w).

» P(p,w): the task probability of (p,w) in the task prior DPFr,

* P(x|p): the probability of @ in Dy ().

* P(y|x,w): the probability of i in Dy, (w).

* L(F): the risk of F on samples generated from the pretraining data generative model 1.

* M: the number of mixture components in a Gaussian mixture prior.

* N(z; p, X): the probability of  in the multivariate normal distribution with mean g and covariance matrix 3.
* m, a, and 3: the indices of mixture components in a Gaussian mixture prior.

s T),: the m™ mixture component in a Gaussian mixture prior.

* T,: the mixture weight of the m™ mixture component in a Gaussian mixture prior.

* t, and w,y,: (fy,, w,y,) is the center of the m™ mixture component.

o p* and w*: (u*, w*) is the in-context task, i.e., in-context examples are drawn from this task without label noises.
* 0, and o, the task noises, i.e., the noise scales of p and w.

* 0, and o, the sample noises, i.e., the noise scales of x and y of pretraining samples.

* 7,: the sample noise, i.e., the noise scale of « of in-context examples.

* d: the dimension of .

* r: the max ratio of two mixture weights of two mixture components.

12



Dual Operating Modes of In-Context Learning

Notations introduced in Sec. 4:

s DPt: The posterior distribution of the pretraining prior DPi" after observing Sy © X 1.

* || - ||: the Ly norm.

T

e ||z||%: for any vector z, ||z|® = z= " z.

s ||x||%: for any vector  and matrix A, ||z||%} =z " Az.

o P(p,w|Sk @ xky1): the probability of task (u, w) in the posterior after observing S, @ j41.

e T,,: the m™ mixture component in the Gaussian mixture posterior.

* 7. the mixture weight of the m™ mixture component in the Gaussian mixture posterior.

* [l and W, (fim, W) is the center of the m™M mixture component in the Gaussian mixture posterior.

* P(p, w|ﬁn): the probability of task (g, w) in the m™ mixture component of posterior.

. . . o2 2
* 6, and ,,: the ratios of squared task noises over squared sample noises. §,, = —%, and Ow = Z; .
£ Y
e Y X,=1
. Sw: Sw — lelkfcimz
e Zfill T
T e T |
° 7 Zf—l TiYi

* w: the mean of w in the task posterior, i.e., the predicted function by Bayes-optimal next-token predictor. F* (S @
Tpt1) = (Tpgr, W) = <wk+172%:1 7~Tm’f’m>'

* ¢t and cv: parts of the re-weighting coefficient of Component Re-weighting.

* ¥, (a, ) and ¥,, (e, B): functions to help analyze the phenomenon of Component Re-weighting.

« r(a, ): the ratio of the mixture weight 7, of T}, over the mixture weight 74 of Tj.

* \g(A): the d" largest eigenvalue of matrix A. In this paper A € R?¥9, thus \4(A) represents the smallest eigenvalue of
matrix A.

* A\1(A): the 1%, the largest eigenvalue of matrix A.

* Yi41: the label of learning the function w*. y;_ | = (Ti41, w™).

Notations introduced in Sec. 5:

* The L2 loss of ICL learning to learn the function w*. L} = (F(Sp @ Try1) —¥jy1)? = (F(Sk ®Tht1) — (Tpy1, w*))?.

Notations introduced in Sec. 6:

« VB # a,llup — pt||* = [[ta — p*||* > d2,, the p-margin of any other 1z over fiq.

o d2,: VB # a,||lws — w*||? — ||lws — w*||? > d2,, the w-margin of any other wg over w,,.

o ul: VB # a, 72 |lws — w*||* — (14 72)|w — w*||? > 72u2,, the weighted w-margin of any other ws over wy,.
* yi,: the label of retrieving the function wy,. ¥, | = (Tri1, Wa)-

* The L2 loss of ICL learning to retrieve the function w,, of the pretraining prior center a.. L = (F(Sk@D®rq1) —yp1)> =
(F(Sk ® pt1) — (Tpt1, wa))?

B. Prior Examples

This section outlines our configurations of prior settings in numerical computations and preliminary Transformer experiments,
focusing on the geometrical arrangement of the centers in the priors. Specifically, we detail the configurations where the
centers form shapes of 3-dimensional regular polyhedra in Sec. B.1, extend to configurations in d-dimensional spaces in
Sec. B.2, and discuss a unique setup related to the early ascent phenomenon in Sec. B.3.
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s of Prior and p* of In-Context Task wp of Prior and w* of In-Context Task

Hs wp

Ol"’a Owa
* o * w

Figure 7: Visualization of the tetrahedron setting. The figure shows the pretraining prior centers and the in-context task.
For 8 € {1,2,3,4}, (g, wg) is a mixture component center in the prior. (o, Wy ) for o = 1 (numbers are noted in the
center of circles) is the center of the target task for ICL with biased labels, while (p*, w*) is the in-context task. The dotted
purple lines highlight the distance of 1 from the origin (0, 0, 0) to any point denoted by p or w.

B.1. Regular Polyhedrons

Taking into account the centers of the mixture components from the pretraining prior, which manifest as distinct points
forming the vertices of various shapes, we examine 3-dimensional regular polyhedrons. These include tetrahedron (4
vertices/centers), octahedron (6 vertices/centers), hexahedron (8 vertices/centers), icosahedron (12 vertices/centers), and
dodecahedron (20 vertices/centers), listed with increasing density of the centers on a sphere.

The configuration of a regular polyhedron with M centers is established in accordance with the parameters outlined in
Assumption 6, as detailed below:

* Dimension d = 3, the number of mixture components equals to M

* The centers of mixture components form a regular polyhedron with M vertices;

* All components’ mixture weights are the same, 7,,, = 1/M, and p,,, = w,,, for all m € [M];
* For noises of « and y, we have 0, = 0y = 1, and 7, = 1;

* For noises of p and w, we have o, = o, = 0.25 if not specified;

2w +wo

« For the in-context task, pt* = 2E1TE2 - and qp* = Towstwa]

t = Top e if not specified, where po is one of the the closest centers
O M.

We mainly use the tetrahedron setting in the paper. Therefore, we further visualize the setting and note down the parameters.
The 3D visualization of mixture component centers in the prior and the in-context task are shown in Fig. 7. The parameters
are noted as follows:

* Dimension d = 3, number of mixture components M = 4;
» The centers of topics form a tetrahedron as shown in Fig. 7. p; = w; = [O,O,—I]T, B2 = wy = | 8 0 1]T

913
H3:w3:[_\/ga+ %a%}T,andel:UM:[—\/g,_\/ga %}T,

* All components’ mixture weights are the same, 7,,, = 1/4, and p,, = w,y,, forall m € {1,2,3,4};

>
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Table 2: Prior settings for early ascent. The pretraining task prior comprises two components for one dimension and
three for two or more dimensions. ICL aims to predict following the in-context function w*, equivalent to prior center 2’s
function wy (w* = ws). The in-context task is characterized by having a closer x distribution to the task of prior center 1
but a closer & — y mapping to the prior center 2. The parameters for all cases are set to 0, = 0, = 0.05, 0, = 7, = 1,
and o, = 2. Refer to Fig. 8(b) for visualization of the prior centers under dimension d € {1, 2, 3}.

Component Mixture

Case /Task Weight i w
Component 1 12 py = [+1] wy = [—1]
d—1 Component 2 12 o = [—1] wo = [+1]
N Component 3 / / /
______ In-contextTask _ / _ p'=[+1] ___  wi =41
Component 1 13 p1 = [+1,+1] wy = [—1,—1]
d—2 Component 2 13 po = [—1,-1] wy = [+1, +1]
N Component 3 13 p3 = [+1,—1] ws = [—1,+1]
______ In-contextTask __ / _ p’=[L+1] ___ _ wi=[L+]
Component 1 13 p1=[+1]+ [+ x (d—1) wy=[-1]+[-1] x(d—-1)
g>o Component2 13 po =[-1]+[-1] x (d=1) wy=[+1]+[+1] x (d—1)
= Component 3 13 ps = [+1]+[-1] x (d—1) w3z =[-1]+[+1] x (d—1)
In-context Task / p=[+1] x d w* = [+1] x d
* For noise of x and y, we have 0, = 0y = 1, and 7, = 1;
e For noises of p and w, we have o, = o, = 0.25 if not specified;
« For in-context task, we have p* = 2fitpet021s 5 g% — _2wnidwa+0.2ws e liohtly shift the in-context task

T 2m14p2+0.2ps]| T [2wi+w240.2ws]| ¢
(p*, w*) towards (p3, ws) for visualization purposes, to make m = 3 and m = 4 produce slightly different curves.

B.2. d-Dimensional Examples

We consider d-dimensional examples with d centers for d € {2,4, 8,16, 32}. A d-dimensional example with d vertices is
parametered as follows:

* Dimension equals to d, number of mixture component M = d;
1 ifi=m
0 ifi#m
characterized by having all elements equal to 0 except for the m™ element, which is 1.

e Forallm € [M], oy, = €y, and p,; = { , i.e., [ is the m™ vector in the standard basis of R™,

* All components’ mixture weights are the same, 7,,, = 1/d, and p,,, = w,,,, for all m € [M];
* For noise of « and y, we have 0, = 0, = 1, and 7, = 1;

* For noises of p and w, we have o, = 0, = 0.25;

2w; +wa

* For the in-context task, we have pu* = Q”L’“H and w* = SRl

T l2pitpe

B.3. Early Ascent Examples

Table 2 outlines the prior configuration used to produce the early ascent phenomenon, where the in-context task is designed
with a distribution of x close to a misleading task. The full results are shown in Fig. 8.
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(a) First row: expected L2 loss and upper bound with increasing in-context samples &k under varied dimensions d.
Second row: expected mixture weights with increasing in-context samples k under varied dimensions d. We further

examine the early ascent phenomenon under linear regression with varied levels of label noises in Appendix 1.1, and
under non-linear regression and discrete token prediction in Appendix 1.2.
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(b) The trajectory of the expectation of w with increasing &k under d equal to 1, 2 and 3.

Figure 8: The early ascent phenomenon. Fig. 8(a) displays the trends of expected losses, upper bounds, and mixture
weights, while Fig. 8(b) presents the trend of the expectation of w. We can see that the task retrieval mode is dominant up to

k = 32, and component 1’s mixture weight increases (E[w] approaches w1 ). Since this misleading component 1 is far from
the target component 2, the risk starts increasing. At larger k values, the risk starts decreasing (E[w] approaches w-) via
task learning.

C. Coarse Upper Bound for ICL Risk

The following theorem shows a coarse upper bound of the ICL risk parallel to Theorem 5.1:

Theorem C.1 (Coarse Upper Bound for ICL Risk). Consider a next-token predictor attaining the optimal pretraining risk
As k — oo, the ICL risk is upper bounded by:

4(1 +dr2)

E3k$wk+1 [‘Clﬂ <W

+O(K3),

where L, = (F(Sk @ Tr41) — Ypp1)? = (F(Sk @ @pq1) — (Tpg1, w*))? and § is an arbitrarily small positive constant.
See Appendix L for proof details. The upper bound decreases as the square of the inverse of k. Notice there is no noise

Jor y labels of in-context examples under our setting, which leads to a faster decay rate than standard 1/k for ridge
regression (Tsigler & Bartlett, 2023).
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The notations ¢,, and k are colored for easier observation.

0u=0,=1/81 8,=0,=1/9 6,=6,=1  0,=06,=9  6,=0,=31
N

Q o
P N — B[R~y

R Q
> S — E[(F — i)

MSE

S0od6s2 024682 V024682 024682 0246302

Number of In-Context Examples (k)

Figure 9: In-context learning vs ridge regression. R* indicates the prediction by ridge regression, F* indicates the
prediction by ICL with a Bayes-optimal next-token predictor, and y;; = (®g+1,w™). Let the k samples draw from a
task (p*, w™), which is drawn from the pretraining prior distribution. The dimension d of x equals 6. We observe that
ICL performs better than ridge regression when k is small, and ridge regression performs better than ICL when k£ > d.
Especially, when the task prior distribution has high task variance (big J,, and ¢,, values), ICL and ridge regression have
very similar performance.

We further compare the risk Es, gz, , [£};] and the risk under ridge regression with L2 regularization parameter equal to
1075, where the same k samples without label noises are used as in-context examples for ICL and training samples for ridge
regression. Fig. 9 shows the experiment results. Under certain settings for the task prior D, ,,, when the task prior has low
task variances, ICL performs better than ridge regression with a fixed regularization parameter under small k.

D. Transformer Performance in Approximating Bayesian Inference

We examine if a Transformer network pretrained on samples generated from our pretraining data generative model matches
the performance of Bayesian inference. We consider three factors of the task prior in our experiment: prior task noises,
number of components, and feature dimension. For scalar y, we transform it to a d-dimensional vector [y, 0, . .., 0]. Thus,
Sk @ T4 forms a (2k + 1) x d matrix, comprising @1 and k pairs of (x;, y;).

Experiment Setting. We conduct experiments based on the module GPT2Model from the package Transformers supported
by HuggingFace’. We use a 10-layer, 8-head Transformer decoder with 1024-dimensional feedforward layers, and the input
dimension is set to d, equal to the dimension of . We train the model over three epochs, each consisting of 10,000 batches,
with every batch containing 256 samples. We use AdamW (Loshchilov & Hutter, 2019) as the optimizer with weight decay
as 0.00001 and set the learning rate to 0.00001.

Experiment Results. Fig. 10, 11, and 12 show the experimental results, where F denotes the prediction of the Transformer
network, 7 denotes the prediction of Bayesian inference, and y;, ; = (@1, w*) is the label of learning the in-context
function. In Fig. 10, we consider the tetrahedron setting (see Apendix B.1 for setting details) under varied task noises
(0, = 6y € {1/256,1/64,1/16,1/4,1}). In Fig. 11, we consider settings of regular shapes (see Appendix B.1 for setting
details) with different numbers of vertices/components (M € {4,6,8,12,20}). In Fig. 12, we consider settings with varied
dimensions (see Appendix B.2 for setting details, d € {2,4, 8,16, 32}). We observe that the trained Transformer network
can approximate the Bayes-optimal predictor under varied settings, and the larger the number of dimensions and the number
of mixture components, the harder it is for the Transformer network to approximate Bayesian prediction.

E. Additional Information for Bounded Efficacy in GPT-4

E.1. Experimental Setting

Table 3 introduces the experiment setting of GPT-4, including the system message, the prompt, the in-context task, the
“biased + task, and the “addition (+)” task. Designating the “biased + task as the in-context task, i.e., ¢; = a; +b; + 1,
we measure the performances on two goals, including learning the “biased +” task and retrieving the “addition (4)” task.

Shttps://huggingface.co/
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0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Number of In-Context Examples (k)

Figure 10: Prior task noises. The figure shows the experiment results under varied noise levels. §,, and ¢, indicate the
noise levels of the pretraining task prior. /* indicates the prediction of Bayesian inference while F indicates the prediction
of the trained Transformer network. The results show that the trained Transformer network’s performance can approach the
performance of Bayesian inference.

10°

0 10 20 30 O 10 20 30 O 10 20 30 O 10 20 30 O 10 20 30
Number of In-Context Examples (k)

Figure 11: Number of components. The figure shows the experiment results under varied component densities. M indicates
the number of mixture components corresponding to different 3D regular polyhedrons described in Appendix B.1, and
0y =0y = 1—16. JF™* indicates the prediction of Bayesian inference while F indicates the prediction of the trained Transformer
network. The higher the component density is, the harder it is for the Transformer network to approach Bayesian inference.
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Number of In-Context Examples (k)

Figure 12: Feature dimension. The figure shows the experiment results under varied dimensions. d indicates the dimension
and the number of mixture components (see Appendix B.2 for setting details), and §,, = d,, = % F* indicates the

prediction of Bayesian inference while F indicates the prediction of the trained Transformer network. The higher the feature
dimension is, the harder it is for the Transformer network to approach Bayesian inference.

Table 3: Experiment setting to reveal the bounded efficacy phenomenon of biased-label ICL in GPT-4.

Setting Desciption
LLM GPT-4
You are a mathematician. Consider the following math problem and
System Message . .
follow the exact instruction.
You are given examples. Each example has two integers as input and
one integer as output. Please provide an answer for the last problems
in the math exercise:
Prom (Mb1=
pt
(D=
Dbpr1=
Provide your answer directly.
In-Context Task and b, are uniformly sampled from [10,99], and ¢; = @, + b, + 1.

Goal of Learning the

Aiming to learn the “biased + task, a(?)b=(a+b+1), with

“biased +” in-context examples following the same “biased + task,
Task with True Labels a(?7)b=(a+b+1).
Goal of Retrieving the ~ Aiming to retrieve the “addition (+)” task, a(?)b=(a+b). However, the
“addition (+)” in-context examples are provided with a slightly different task
Task with Biased Labels “biased +”, a(?)b=(a+b+1).

E.2. Additional Results

This section collects four pairs of prompts and predictions for k¥ = 0, 2, 8 in Tables 4, 5, and 6. The results show that ICL
with biased labels will initially retrieve a commonsense pretraining task due to task retrieval, and finally learn the in-context

task because of task learning.
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Table 4: Zero in-context example, k = 0. Prediction is colored red if it is correct for task retrieval (a(?)b = (a + b)), and
colored blue if it is correct for task learning (a(?)b = (a + b+ 1)). “...” denotes the hidden part of the prompt. Please refer

to Table 3 for the whole prompt.

57(?)15=

;5(?)15=

Prompt 51(?)36= 76(7)82=
Without knowing the ~ Sorry, but your  Your question seems to
operation or rule that  questionis not  be missing some
connects the two clear. Could information. Could you
input integers to you please please provide the

Results the output integer in Provide more examples you mentioned? 70
the examples, it’s information They are necessary to
impossible to provide about the understand the relationship
a correct answer. operation between the two input

Please provide the
examples or the rule.

between the
two numbers?

integers and the output
integer.

Table 5: Two in-context examples, k = 2. Prediction is colored red if it is correct for task retrieval (a(?)b = (a + b)), and
colored blue if it is correct for task learning (a(?)b = (a + b+ 1)). “...” denotes the hidden part of the prompt. Please refer

to Table 3 for the whole prompt.

73(7)80=154

48(7)73=122

21(7)28=50  94(2)43=138

Prompt 59(7)22=82  78(7)80=159 69(2)29=99  98(?)70=169
54(7)97= 21(7)33= 47(M10=  96(7)4l=
Results 151 54 57 187

Table 6: Eight in-context examples, k = 8. Prediction is colored red if it is correct for task retrieval (a(?)b = (a + b)), and
colored blue if it is correct for task learning (a(?)b = (a + b+ 1)). “...” denotes the hidden part of the prompt. Please refer

to Table 3 for the whole prompt.

37(7)70=108

60(?)76=137

66(2)40=107

68(7)88=157

41(D18=60  69(7)26=96  46(7)81=128 34(?)18=53
19(N12=32  72(7)85=158 63(7)31=95  70(2)70=141
82(167=150 39(7)10=50  41(724=66  13(?)35=49
Prompt 42(7)13=56  50(7)47=98  70(?)43=114 52(?)50=103
26(M41=68  19(7)63=83  89(7)84=174 72(7)32=105
80(7)39=120 45(7)95=141 76(7)82=159 98(?)82=181
58(7)23=82  69(D4l=111 46(2)28=75  55(2)51=107
40(7)90= 81(7)36= 49(7)46= 50(7)31=
Results 130 118 96 82

F. Bounded Efficacy in Zero-shot ICL

This section introduces the experiment setting of Fig. 6. We start by introducing the experiment results in Fig. 13 copied
and pasted from the work of Min et al. (2022). While our theory shows the bounded efficacy phenomenon for ICL with
non-informative labels (Lemma 6.2), Fig. 13 seems to imply a conflict phenomenon. Thus, we further extend the number of
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Figure 13: Ablations on varying numbers of examples in the demonstrations (k). Models that are the best under 13B in each
task category (Channel MetalCL and Direct GPT-J, respectively) are used.
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Figure 14: As k increases, the classification error curve of ICL with random labels exhibits the bounded efficacy phenomenon.

The curve with true labels further confirms that this phenomenon is not due to models tending to perform worse on long
sequences.

in-context examples in Fig. 13 left. The classification task adopts five datasets including (i) glue-mrpc (Dolan & Brockett,
2005), (ii) glue-rte (Dagan et al., 2005), (iii) tweet_eval-hate (Barbieri et al., 2020), (iv) sick (Marelli et al., 2014), and (v)
poem-sentiment (Sheng & Uthus, 2020). We use the GitHub code® released by Min et al. (2022) to generate the same data
and evaluate LLMs with a larger context length capacity aiming at a larger number of in-context examples. We selected
Mistral 7B (32768), Mixtral 8x7B (32768), Llama2 13B (4096), Llama2 70B (4096), and GPT-4 (8192) for our experiments,

with the integers in parentheses indicating the maximum context length for each model. We perform inference on large
models with 8 H100 with the package vilm’.

G. The Derivation of Posterior

This section provides detailed derivations for Lemma 4.1. We begin by showing the posterior is potentially still a Gaussian
mixture in Sec. G.1. Then, in Sec. G.2, we show how Eq. 2 is proportion to Eq. 3, which is precisely a Gaussian mixture.

G.1. Prior to Posterior
We start by showing the posterior is potentially still a Gaussian mixture. For fixed Sy, @ xj41:

P(p, w|Sy © Tp11)

x P(p, w|Si, @ ®pt1)P(Sk ® Trt1)
= P(p,w,S; ® xpi1)

= P(p, w)P(S © Tpi1|p, w)

M
= ( > mmPlp, me)>P(Sk ® Tpy1|p, w)
m=1

Shttps://github.com/Alrope123/rethinking-demonstrations
https://docs.vlim.ai/en/latest/
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M
= T P, w|Tn) P(Sk © Tpyr |, w) (@)
M ~
x> TP, w|T). 3)
m=1

We give the derivation from Eq. 2 to Eq. 3 in the next section.

G.2. Closed-form Solution from Eq. 2 to Eq. 3

We analyze each component (indicated by a specific m) in Eq. 2. Given fixed S, @ @41, for all m € [M] and all (p, w),
we have:

log(P(p, w|Tr,) P(Sk @ Tpey1|p, w))

k41 k
_ s =l o —wl? S el Y e w — il
202 202, 202 202
o) —4/2 2 —d/2 2 —d/2 27)~1/2
+log (“T)d) +log <( ”)d ) + (k + 1) log <( ’T)d ) + klog (( ) )
ol od od oy
) —d/2 2 —d/2 2 —d/2 2 —-1/2
(Let Gy = log ((”)d) + log <(”)d> + (k+1)log (%) + klog (“T)) )
od od od oy
k1 k
_ oo pl? s w3 e Y el w - gl
3 202 202, 202 202
k+1 k
o (||Nm —ul? X Sl wz‘||2) B (||wm —wl® | Y ] w —inIQ)
3 2072 202 202, 207
2 2
g o'w
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z y
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k
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m

1 _ S\ _
- €Xp ( T 952 ( (me||2 = |lwm + Aww”%I.t,_sz‘;w)—l) + flw — (I + Ay3y) 1(wm + Aww)i.t,.Awf:w))
w

||p,mH2 = [l + (k + 1)51‘[1’”%1-&-(1@4-1)6“2“)—1 ”wm”2 — [[wm + k(swwH%I-&-kéwi:w)—l
ocexp | — 252 exp | — 9202
o2 o2

e w
Cm Cm

NI+ (k+1)0,2) " (o + (k+ 1)8ui), 00 (I + (k+1)6,5,) ")
- N(wl|(I + kéwiw)*l(wm + kd,w) o2 I+ kéwiw)*l).

) w

By defining P(p, w|T) = N(ul(I + (k + 1)0,2) " (pm + (k + 1)8,),02(I + (k + 1)5,E,)71) - N (w|(T +
kS Baw) " H (W, + kb)), 02 (I 4+ k6w Sey) 1) and 7y, = 7 ck . We have:

T P (1, [ 1) P(Si ® Tpp1 |, w) o %TYLP(I‘I’7w|Tm)'

Therefore,

M M
Z 7T7np(p’7w‘Tm)P(Sk 2] mk-‘rl‘p’a ’U)) S8 Z ﬁ-mp(p‘a w|Tm)
m=1 m=1
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Figure 15: Numerical analysis on component re-weighting. The trends of ¥,,, ¥,,, and 7, for CR with increasing k£
under varying task noise parameters.

H. Detailed Analysis of Component Shifting and Re-weighting

H.1. Analysis of Component Re-weighting

This section analyzes the CR effect on 7g as k increases. We focus on whether 7, of T, surpasses 7 of any other Tg with
8 # «, where « is the index of the closest prior center to the in-context task as described in Assumption 3. We assess this
via the ratio r(«, 3) of 7, to Tg:

r(a; §)

Ta

e

where we define two functions ¥, («, 3)
r(a, B) changes with increasing k.

TaCockey

msCoclcl

Ta exp(¥,, (o
T8

Analysis of U, (a, 5). We further simplify the function ¥, («, 3) as follows:

k+1

Wl 8) = (O g = ill® =Y ke — @il)/ 202 (1 + (k+1)5,)).

i=1

k+1

=1

,B) + Vo (o, B)),

“

log(ck/cly) and Wy (o, B) = log(c /c}) to facilitate the analyses of how

&)

(See Appendix H.3.1 for derivation.) Since x; ~ N (u*, 721), choosing p* closer to p,, tends to make ¥, (v, 3) positive
and increase faster with increasing k. However, as k approaches infinity, ¥, (v, /3) stabilizes rather than increasing infinitely,
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ie., limy oo Wy, B) = (s — 1> = [[ta — p*|?)/(207). The leftmost column of Fig. 15 shows the numerical
computation of ¥, (, ) with varied task noises under the tetrahedron setting (see Appendix B.1 for setting details). The

2
smaller the value of J,, (= Z—g) is, the easier for ¥, (v, () to increase as k increases.

Meanwhile, we also have:

k+1 k+1
Jm Yula,B) = (Z; s — :ll* — ; o — 2il*)/(203) 6)

Analysis of U, («, ). We further simplify the function ¥,, («, 3) as follows:
Vo(a, B) = (lws — w*H?—(I—&-kSU,wa)*l — [Jlwa — w*H%—(I—&-kéwiw)*l)/(20121;)~ (N

(See Appendix H.3.2 for derivation.) Since kd,X (= 6y Zle x;x,] , see definition of ,, in Lemma 4.1) is semi-
positive definite, thus choosing w* closer to w,, tends to make W,,(«, 3) positive and increase faster as k increases.
- gl )
However, as k approaches infinity, limy,_, oo k0y e = limy o0 kdwz’?ﬂ% = kb (p* " +721). Thus, limy_oo T —
(I + kb))t = I and U, (a, B) stabilizes rather than increasing infinitely, i.e., limy_ 0o o (v, 8) = (|Jws — w*||? —
|lwe — w*||?)/(202). The topmost row of Fig. 15 shows the numerical computation of W, (c, 3) with varied task noises
2
under the tetrahedron setting (see Appendix B.1 for setting details). The smaller the value of §,, (= Z—g’) is, the easier for

W, (v, B) to increase as k increases. However, one should note that [|[ws — w*||?> > ||w, — w*||? does not necessarily

1mply Hwﬂ - w*Hi—(I—i-k&wfiw)—l > ”wa - w*Hi—(I—ﬁ-kéwf}w)—l'

Meanwhile, we also have:
Jim (a, B) = (Jws — w25, 5, — lwa — w25, 5,)/(202)

= (lps — mill2s, — lpa — x:l2s, )/ (202)

k k
= O My = w12 =" e = w117/ (202), ®)
=1 =1

where yf = (x;, wg), ¥y = (x4, wy), and Yy = (x;, w*).

Therefore, combine Eqgs. 6 and 8 and we have:

lim Wy (e, B) + Pu(, B)

Ty Tw—>

k
s = el — o~ losn =l o — il | ot

2
20z

12 = Nl — w12

2 2
203 20,

) ©))

Numerical Computations of Component Re-weighting. We have seen how noises o, and o, of the task prior affect the
values of ¥, and ¥, with increasing k. We further show the numerical computation of 74 in the center of Fig. 15. The
figure shows that the smaller ,, and d,, are, the larger ¥, (c, §) and W, (cv, 5) will be with increasing k, and the easier for
the mixture component T, to dominates in the posterior with an increasing number of in-context examples.

H.2. Analysis of Component Shifting

The Component Shifting effect in Lemma 4.1 involves shifting the variables fi,, and w,,:

P = (I + (k+1)0,2) " (tm + (k +1)0,12), (10)
W = (I + k0 Bap) (W, + k). (11)

The following analyses examine these two variables with increasing k.
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Figure 16: Numerical computations of || fi,, — p*||, | @y, — w™*|| for Component Shifting (CS).

Analysis of [1,,,. We provide the derivation of fi,, in Eq. 10 (see Appendix H.4.1 for details):
P = (o + k6 2) /(14 (k +1)0,). (12)

koo
Thus, when £ increases, fi,,, moves close to the value of Z:Tlm and limy_, o0 fty, = p*. We also show the numerical
computation of the distance between shifted fi,,, and p* in the first row of Fig. 16.

Analysis of w,,. We provide the derivation of w,, in Eq. 11 (see Appendix H.4.2 for details):

Wy = (I + kdyZep) Hw,, — w*) +w*. (13)

Notice when k — 00, kdyy3q, = kéww — kb (12T +w*w* T, thus Mg (k0w Ze) — 00, A (T+EGyEe) 1) —
0, limg o0 (I + k0 Xew)  Hwp, — w*) < limp_oo M (L + k6w Bew) 1) - |wy, — w*|| = 0 and limy,_, o0 W, = w*,
where A4(A) indicates the minimum eigenvalue of A. We also show the numerical computed distance between w,,, and w*
in the second row of Fig. 16.

H.3. Derivation Collection of ¥, («, ) and ¥, (o, ()

This section collects derivations for ¥, (c, §) and ¥, (v, 8). The derivation of ¥, («, ) is collected in Sec H.3.1 and the
derivation of ¥,, (v, () is collected in Sec H.3.2.

H.3.1. DERIVATION OF ¥, (a, 3)

This section collects the derivation of ¥, (e, §) in Eq. 5 of Sec. H.1:

Vu(a, B)
= log(ct/c#)
\msl\2 s+ R+ 180 BN L sy, 5,01
20’2
= log
Hl‘d ‘2 |‘H0+(k+1) ul“” 1
exp< 77 (T (k+1)8,5p)~

_ A R D8 psll — s + 60 it @l (L4 (b + D) lall® = e + 8, 3000 il

202(1+ (k+1)6,,) 202(1+ (k+1)6,)
s+ 0 S il a4 6, Y @i
202(1+ (k +1)5,) 202(1+ (k +1)5,,)
el = 205 (B 30 ) — 1160 SN @ill” —lgall® — 28 (0 A i) — (18, 0N a2
202(1+ (k + 1)d,,) 202(1+ (k+1)d,)
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k k
k4 10ullpts|® = 2005 (0 S50 @3) + 6 00 [@il® (k4 Ddltall® — 2007 (0, S04 @) 46, S0 [
202(1 + (k +1)5,.) 202(1 + (k +1)6,)
O Gl — il S Gl — 2
205(1+ (k+1)6,) 203(1+ (k+1)6,)
S s — il = S e — @i
202(1+ (k+1)d,) ’

H.3.2. DERIVATION OF ¥, (v, §)

This section collects the derivation of W, (a, 8) in Eq. 7 of Sec. H.1:

V(a, B)
= log(cg/ /c§)

2 =112
_Hwnf” _H“’a'i'k‘sww‘|(I+k5w)’:w)—1
exp 252

=1
o8 o (_ G AL e )
U?U
_ ||wBH2 = [lws + kéwu_j”%[+k5w2w)fl ”wa”2 — [lwa + kéww“?prk&wf}w)*l
B 202 202,
k k
(Note kb, w = dy, Z T;Y; = O Z mia}jw* = kdyDpw™.)
i=1 i=1
sl s koS w e+ oS s
B 202, 202,
B lws]* = [[(wp — w*) + (I + k5w2w)1U*||%I+k5wz‘;w),1 _ [wal* = [[(wa — w*) + (I + kéwzw)“’*n%l-s-kéwiw)*l
202, 207,
_ ||w3H2 - Hwﬁ - w*H?IJrk&uwa)*l - Z(w,@ - w*)Tw* _ ||wa||2 - ”wa - w*H%IJrszu,wa)ﬂ - Q(wa - w*)Tw*
202, 202
B lws — w*||* — [wg — w*”%I-&-k&wf:w)*l _ [wa — w*[*  [lwa — w*”%I-',-kéwi:w)*l
202 202
B lws — w*||§—(1+k6w2w)—1 = Jlwa - w*||12r—(1+k5w2w)—1
202 ’

H.4. Derivation Collection of (i, and w,,
This section collects derivations for ft,, and w,,. The derivation of fi,, is collected in Appendix H.4.1, and the derivation
of w,, is collected in Appendix H.4.2.
H.4.1. DERIVATION OF fi,
This section collects the derivation of fi,, in Eq. 12 of Sec. H.1:
P = (I + (k + 1)5u2u)71(/1'm + (k + 1)5#/7')

k+1
=T+ (k+1)0,I) " (pm + 0, Y _ ;)
=1

1+ (k+ D)3,
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H.4.2. DERIVATION OF w,,

This section collects the derivation of w,, in Eq. 13 of Sec. H.1:

Wy, = (I + k6yXw)  Hwy, + kd,w)
k k
(Recall kd,w = 0y, Z T;Y; = Ow Z a:ia:iTw* = kb Zpw™.)
=1 =1
(I + kb Zop) (w4 kb Epw™)
(I + k6 X)  H(wey, — w* + (I 4 k6o )w™)
(I + kb Zop)  Hw,, — w*) + w™. (14)

I. Additional Experiments for Early Ascent
L.1. Early Ascent and Bounded Efficacy under Noisy Labels

We further examine phenomena of early ascent and bounded efficacy with noisy labels under varied noise levels. The results
show that these two phenomena are robust to label noises to some extend.

[— Risk of ICL under Label Noise 7, =00 ==+ Risk Upper Bound of ICL] [— Risk of ICL under Label Noise 7, —0.01 ]
d=1 d=73 d=18 d=1 d=73 d=28
10 T T 10
e \ ! E
\
3 \ 1 3
@5 \ 1 @ 5
< \ 1 ~
2 \ \ ©
x \ o
\\
— = Mixture Weight of Component 1 (Misleading) ==+ Mixture Weight of Component 3 — = Mixture Weight of Component 1 (Misleading) ==+ Mixture Weight of Component 3
2| Mixture Weight of Component 2 (Target) =N Mixture Weight of Component 2 (Target)
PP < e~ Piciaininininb P < e~ Piaiaiaiainlabs
é; P /// \\ - N ;u L - \\ - N
) LRy ——— SSSeoeo <. I %0 R, T T ’_. SSammm
=V 35 anan 0 of 3T oT s 0 20 2'2”2“ =g 5 T oan 0 2° 27 2M2b 0 20 2 2“2“
Numbser of In-Context Examples (k) Numbser of In-Context Examples (k)
(a) ICL risk under label noise level 7, = 0.0. (b) ICL risk under label noise level 7, = 0.01.
[— Risk of ICL under Label Noise 7, =0.1 ] [— Risk of ICL under Label Noise 7, =1 o]
d=1 d=3 d=38 d=1 d=3 d=38
10 10
o o
c c
5 5
3 5 3 5
~ ~
5 =
x x
(\
==+ Mixture Weight of Component 1 (Misleading) ==+ Mixture Weight of Component 3 ==+ Mixture Weight of Component 1 (Misleading) ==+ Mixture Weight of Component 3
2|7 Mixture Weight of Component 2 (Target) N Mixture Weight of Component 2 (Target)
%Dl R N /”____\\ oo A ‘%01 /” _______ s ,”-___\\ Pasninink N
= ., S, ’ = , . .,
(3 [
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2_00 2 2 211211 0 23 2 21121) 0 2”5 2 21121) 2_00 2 2/ 211211 0 2 2/ 21121) 0 23 27 211211
Numbser of In-Context Examples (k) Numbser of In-Context Examples (k)
(c) ICL risk under label noise level 7, = 0.1. (d) ICL risk under label noise level 7, = 1.0.

Figure 17: Early ascent under varied label noises. Results show that the early ascent phenomenon maintains for noise
level 7, € [0,1.0]. Label noise level o, = 1.0 is used for pretraining.

L.2. Early Ascent under Non-Linear Regression and Discrete Token Prediction

This section uses Fig. 19 to show the existence of the early ascent phenomenon on non-linear regression and discrete token
prediction with our designed distributions of pretraining and in-context samples. Fig. 19(a) shows that the early ascent
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Figure 18: Bounded efficacy under varied label noises. Results show that the bounded efficacy phenomenon maintains for
noise level 7, € [0, 0.1]. Label noise level o, = 1.0 is used for pretraining.

phenomenon exists when a 2-layer neural network with Tanh Activation function serves as the non-linear function, and
Fig. 19(b) shows that the early ascent phenomenon exists when the dataset consists of sequences of tokens with discrete
values rather than sequences of vectors with continuous values. For the details of experiments including our designed
distributions of pretraining and in-context samples, please refer to Sec. I.2.1 for the experiment with non-linear regression
and Sec. 1.2.2 for the experiment with discrete token prediction.

Early Ascent (Non-linear Regression) Early Ascent (Discrete Token Prediction)

0.6
S . /* ‘ E[(F - Vi)'l — Bl
. ‘ —— Bl |
wi0.12 Ayl
- " 0.4 Yk+1
o <}
$0.10 =
n S
§0.08 0.2
(5}
=
0.06
0 i 3 7 15 31 007 i 3 7 15 3l
Number of In-Context Examples (k) Number of In-Context Examples (k)
(a) Experiment under non-linear regressions. (b) Experiment under discrete token prediction.

Figure 19: F indicates the prediction by a pretrained Transformer model and F™ indicates the prediction by numerical
computation following a Bayes optimal predictor. While we cannot derive the optimal predictor under non-linear regression,
we can derive the optimal predictor under discrete token prediction.

1.2.1. EXPERIMENT DESIGN FOR NON-LINEAR REGRESSION

The following assumption shows the data generation model to generate a non-linear sequence [x1,y1, .. ., Tk, Yk, where
x; is a vector and y; is a scalar. The non-linear function mapping « to y is highlighted in red in the assumption.
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Assumption 5 (Pretraining Data Generative Model for Non-linear Regression).
(a) sample a task from the task distribution: (g, W, v) ~ DPiO" P(pu, W, v) = fozl TP, W, v|T,,), where T, is

W—-W,,||?
I —— exp(IW=Wnlle) - A/ (v; 0, 021), and
(2m)d ol

T is the mixture weight. A/(x; u, ) denotes the probability of & in the multivariate normal distribution with mean p and
covariance matrix X, || - ||p indicates the Frobenius norm, Z%:l Tm = 1,0 < T < 1, (b, Wiy ) is the center of the
mixture component 75, and all components share the same covariance matrix controlled by o, oy, and o;

(b) input variable distribution: within a sequence, Vi € [K], &; ~ Dy (), P(z|p) = N (z|u, 021);

(c) label distribution: within a sequence, Vi € [K], y;|@; ~ Dyjz,(W,v), P(yi|z:, W,v) = N (y;|(tanh(Wz;), v), 07),
where tanh() is a Tanh Activation function;

(d) x, @, o, v, v, €RY and W, W, € R4>¥4,

the m™ mixture component, i.e., P(p, W, v|Tyn) = N (; pom, 07,

For experimental setting of Fig. 19(a), wesetd = 2,0, = 1,0 =0, =0.5,0, =0y =1, M =2, m = 0.1, = 0.9,

= [170]T,/,L2 =0, 1]T, W, = [(1) 8] Wy = {8 (1)], and v; = [1,O}T,v2 = [0, 1]T. In-context samples follows

task (p*, W*, v*), where pu* = pi, W* = Wy, v* = vy, and 0, = 1. Notice that although we add label noise to
in-context samples, when evaluating the prediction, we calculate error/loss based on the clean label.

1.2.2. EXPERIMENT DESIGN FOR DISCRETE TOKEN PREDICTION

The following assumption shows the data generation model to generate a non-linear sequence [x1,y1, ..., %k, Yx|, where
x; and y; are both integers (discrete tokens).

Assumption 6 (Pretraining Data Generative Model for Discrete Token Prediction).

(a) sample a task from the task distribution: (p1, w) ~ DP" € [M],w € [M], P(u,w) = Zf\le Tm P (1, w|T,y,), where
Ty, is the m™ mixture component, i.e., P(1, w|Tm) = jy—w,,] (1 = (M = 1)0.) 1 {ump,] + 0ul[ustpn))» and my, is the
mixture weight.

(b) input variable distribution: within a sequence, Vi € [K], z; ~ D (p), P(zi|p) = (1 — (M — 1)04)ljp—p) + 0oz
(c) label distribution: within a sequence, Vi € [K], y;|z; ~ Dy, (w), P(yi|2i, w) = (1= (M —1)0y) [y, —2; 4w mod M] +
Uyl[yﬁéx,--i-w mod M]-

For experimental setting of Fig. 19(b), we set M = 6,m; = 0.04, 73 = 0.481, 75 = 0.479, m3 = 74 = g = 0, 0, = 0.05,
oy =004, 0y =013, 1y = w1 = 1,3 = w3 = 3, u5s = ws = 5. In-context samples follows task (p*, w*), where
W = p1, w* = ws, and o, = 0.13. Notice that although we add label noise to in-context samples, when evaluating the
prediction, we calculate error/loss based on the clean label.

J. Mathematical Derivation for Early Ascent

‘We show that the early ascent phenomenon occurs under a specific setting in Sec. J.1. Then, we give formal theory with
proof to show when early ascent happens in Sec. J.2.

J.1. A Specific Setting of Early Ascent

To have a cleaner mathematical understanding of this phenomenon, this section uses the setting of d = 1, the first row,
in Table 2 to show the mathematical logic. (Some parameter settings are described in Table 2’s caption.) Following
Theorem 5.1, the upper bound of ICL risk is as follows:

]Esk Drr41 [ﬁﬂ
2

<D llws = wPEs g [Follenl*A1(A)?)
B=1

= w1 — W PEs,@w [T1 o1 ]?A1(A)%] + lws — w[IPEs, o, [Follene A1 (A)?]
(Notice wy = w*, |w; — w*|* =22 = 4.)

= 4Es, @2y [T1 T4 ] A1 (A)7)]

(Notice 1 + T2 = 1.)
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nmﬂnhmﬂ

m

(Recall — =1r(1,2) asEq. 4.)
r(

’ﬂmHWMmﬂ.

= 4E5k@mk+1 |:1—~_(

Noticing 4, = 0'?252 and 6, = 0'3252 are very small, when k is small, we have kd,, ~ 0 and \;(A) = (I +

k — (1,2 r(1,2
Ouw Zi:l wzsz) '~ I, thus Esk@mk+1 {Tl)z)‘lxk-&-lHQ)‘l( ) } ~ ]ESkéBwkH [H(ri(l,)Q)Hwk-i-l HQ} and a larger 7(1, 2)
means a larger upper bound. In the following, we will examine whether the increase of & leads to the increase of (1, 2).

Following Eq. 4:

r(1,2) = 1;3 exp(¥,,(1,2) + ¥, (1,2))

=exp(V,(1,2) + ¥, (1,2)).

We first analyze ¥, (1, 2), following Eq. 5:

k k
r 203,(1+(k+1)§#)

(Since d,, ~ 0, thus when k is small, we have:)

k41 k+1
~E S s — > = 6 (e — ]

202
kE+1 9 9
=22 E [[lp2 — 21 [* — [|pe1 — 21 )°]
k+1
= E(E[Hm —z1|°] = E[f|1 — 21 [?))
k+1

= 5oz Ellls = 0PI+ 72) = (Elllpr — p[7] + 72)

(p* is the same as 1, but different from po.)
E+1 .

= H(E[HL’Q - 1] - 0)

k41

2% 12

=2(k+1).

x 22

We then analyze ¥,, (1, 2), following Eq. 7:

E[U,(1,2)] =E |— s — w*Hi—(Hkawz‘:w)ﬂ
o 202,

(Since 6, = 0, thus when k is small, we have:)

[(wy — w*) Tk, T (wy — w*)
~—E
202
o _ izl
(Notice the feature dimension d = 1,33, = %)

2
202

_ * )
Q_Em—wn%%z_wawl
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Ty
2k
= — 3B [ ]
Y
2k .
= ——(Iw[* +72)
1 Loo L) =exp(k +2)/(1-+exp(k +2))
2k _
B 22 (1 + 1) k 0.75
=050
Therefore, when k is small, 7(1,2) = ¥,,(1,2) 4+ W,,(1,2) ~ exp(k + 2), and the -
upper bound is approximately equal to: -
. - -2 0 2 |
AR _opktd) o 0
kBT h+1 1+ exp(k + 2) + s Figure 20: Hustation of the func.

tion k+2)/(1+ k+2
which increases as the number of in-context examples increases. ion exp(k+2) /(1+exp( )

J.2. Theorem of Early Ascent

Theorem 5.2 (Early Ascent). Assume Eg, [(.F*(mﬂ—(w*,mﬁ)z} < Eg, [(®1, we —w*)?], where a =

. —u*|? — A2 || wm —
arg min “"’“’205‘ = 4 l(wom—w Dw !: 7w —w”||* . Then, when §,, and §,, are small enough, we have the early as-

m
cent phenomenon on the risk:

Jk > 1s.t. By, [(]—'*(wl) — (w*,wl))Q] < Esiezii [(}'*(Sk @ Tpt1) — <w*,wk+1>)2} .

Proof. We examine the following case, when o, and o, are small enough, and k is also big enough to retrieve a task, i.e.,
making a center dominate:

klg]go (auxoggg(o,O) Es o [(]:* (Sk & Tpi1) — (w7, mk+1>)2}
. . [ M ~
- klggo (ama}gg(o,o) Esioers <Zm_l T AW $k+1> 1
- Ny 2
- klgrolo (ou ,UH?L(O,O) ESk@kaA <Zm=1 om (wm ): 1 ‘|
[ )M * 2
Cim Im Esge.. <zm_1 i exXp(¥y (. 1) £ Wiy (. 1)) (w1 = ") mk+1>
k=00 (0,05)—(0,0) Y me1 Tm €xp(¥y, (m, 1) + oy (m, 1))

_ 2 _ _ 2
(Following Eq. 9, we have (aH,oE?L(o,o) U, (m, 1) + Wy (m, 1) = | — Trya || 2Ui”lﬁ Tpot1]|

k *
+Z (”p’m —ZL'iH2 B HIJ/I _wi||2 + ||y'zn —Y; ||2 2||y1 _yz ||2>)

202 207,

2

m

Zﬁf:l Tom €XP (”Ffm*mkﬁ—l” + Ez* (Hum—;zll + Ily; —Z/L [ )) (W, — w*) >
- Tht1

M Hﬂm—karIH llpem —ai]|? Hv —U 112
D G e N e = )

2
= Esk@mk+1 [<w0& - w*v wk+1> ]

= Eml Kwa - ’11)*,.’131>2],

= Jim s, e, <

*H2

: m—p|? m— dr2||wm—
where o = arg min 12 -t 2 4 lwom—w?) e g(ﬁ 7o |[m —w Il O
m x
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K. Proof Tools

This section introduces the inequalities used in our proofs for Theorems 5.1 (finegrained upper bound for ICL risk), 6.1
(upper bound for ICL with biased labels), C.1 (coarse upper bound for ICL risk) and Lemma 6.2 ((informal) upper bound
for zero-shot ICL):

K.1. Gaussian Tail Bound
If Z; ~ N(0, 1), then for ¢ > 0 we have:

K.2. Chi-squared Tail Bound

If X ~ x(k), ie., X = Y5 | Z2 where Z; ~ N'(0,1) then (Boucheron et al., 2013):
X 2
P ?—1>2m+2t1 < exp (—kt}) ,
X 2
P T 1< =21 | < exp (—ktl) .

As a looser but symmetric bound, for any ¢t > 0, we have:
X kt?
X kt?
Pl——1<—-t)< —— .
( T ) = ( 3 )

K.3. Norm Tail Bound
If €, ~ N(0,72I), ¢; € R4 T € R, then for t > 0 we have:
Zk_l €; T2d kt?
P || == 21+t | < _
(H = i) <o (-1,
where || - || indicates the Lo norm.
Proof.

k 2
H Dic1€i

(=)
A ()

Jj=1

M&

1

<.
Il

=l ‘z:‘w

: S €iy
Notice €; ; ~ N(0,72) and let Z; = ==1"2 ~ N(0,1).
(Notice e ~ A 0,72 190 (0,1))

d
77.12d2i:1Z1'2
k d ’
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Therefore, by applying Appendix K.2 we have:

2dS% 72 72 kit
P T i=1 1% (1 < — ).
(k a g A —exp< 8)

O
K.4. Eigenvalue Concentration Bound
k .
Lemma K.1. If Vi, z; ~ N (u, 721), |p||=1, A= Z:% and €; = x; — p, we have ¥t > 0:
Z 1 €; kt?
PlL<A(A) <M(A)<Uand | ==—| < TuvV/v(1+1t)] >1—3exp <)
where L=12(1— % —7)? = 27,9V/1+t,U=1+72(1 + 5 +7)% + 27.9V1 + t, \i(A) is the i™ biggest eigenvalue of
the matrix A and v = %.

ieiel | SN (e (uten)” b el
Shaee] _ ShiGewre)’ _ 7 Shiad |

We begin with decomposing A to three components A =

k T T
% then consider the eigenvalue bound of each of them.

For the first component ppt |, we have:

0 < Aa(pp’) < M(pp') <1

k
Then, we analyze the second component M

1—\/%>5>0:
d ’ 1 Zf:l e’ieiT 1 Zf:l eiel‘T d 2 ks?
P((l—s—\/?) <T£>\d<k)<7_£>\1(k><<1+s+ ]4}) >1—2€Xp<—2>,

k T, T
Finally, we examine the third component M We have for all ||a|| = 1:

k k
O,T Ei;l € /I,TCL < 2HZ'L;1 €

. Following Vershynin (2018, Theorem 4.6.1, p. 97), we have for any

k T T
al Zi:1(ﬂ€;€ +e&p )aH —9

Zf:l €
k

(Notice by Norm Tail Bound in Appendix K.3, we have P (

:>P<a

— P (—27’1

2 2

de(l +t)> < exp (—’Z) )
E (el + e 3 2

Bt o) e ()

(1+4) < M(Zi:l(“e; il )) <\ (Eizl(“i * G”‘T)> < mm> S 1 —exp (-%) .

Lety = \/; s = t/2, and summarize three components by union bound, we have:

Y

2

kt?
<Tp/y(14+1t) ] >1—3exp -5 )

2 2 2
t t kt
P(Tf (1—2—fy> — 27,9V 1 +t < Ag(A) < M (A) <1472 (1++7) +27w7\/1+t>>1—3exp<—8).

As a summary, we have:

P(Lg)\d(A)g)\l(A <UandHZ’ L6
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where v = \/g, L=72(1-Lf—9)? =271+, U=1+72(1+ %+ 7)2 +27,7V1 +t, and \;(A) is the i™ biggest

eigenvalue of the matrix A.
L. ICL to Learn the In-Context Function
This section introduces the proof of Theorem C.1 (coarse upper bound for ICL risk) and Theorem 5.1 (finegrained upper

bound for ICL risk). The upper bound of Theorem 5.1 is derived at Eq. 15.

Proof. Assuming we are using in-context examples following Assumption 3, i.e., ; ~ N(u*,721),y; = {(x;, w*),
[|*|| = [[w*|| = 1, and we aim to have the prediction of Sj, ® @41 to be (i1, w*), i.e., to learn the function (w*) of
the in-context task (p*, w*). Let £} indicate the squared loss (F* (S & @41) — (Tp41, w*))?, where F* (S & Tp1)
is the prediction of Sy @ 41 by the Bayes-optimal next-token predictor F* under Assumption 6 for pretraining data
generation. We derive the upper bound of the expected squared loss as follows:

E3k®wk+1 [‘CZ]
= Es, 0w |(F(Sk @ Tpy1) — (w07, $k+1>)2}

(By Corollary 4.4.)

2
M
= Esk®wk:+1 (Zm—l 77—m</wm7 wk+1> - <U’*7 wk+1>> ]

- Ny )
= ]E$k®mk+1 <<Zm—1 T (Wi — w™), wk+1>>
(See Eq. 14 for the derivation of w,,.)
i 2
M ~ S —1 * * *
= Es 0. <<Zm_1 T (L + k6w Xiay) ™ (W, — w") + w" —w ),a:k+1>> ]

(Let A = (I + k6,,%,,)" ", and notice A is symmetric positive definite.)

_ o )
- ]E5k®wk+1 <Z 7~Trr144(7177rL - w*)a mk+1> ‘|

m=1

M 2 M
(Notice (Zﬁ_l ﬁ'ﬁaﬂ> < 25:1 frga%, since E[a)? < E[a?].)

[—M
< ESk@wk+1 Zm:l ﬁ-m<A(wm - w*)a wk+1>2:|

M
- Zm:l Es,oera [Tm((Wn —w") " Azpi1)?]
M s *
< Zm:l Es.omi [7rm||wm —w H2/\1(A)2||$k+1”2}
M ~
- Zrn:l me B w*||2ESk@mk+l |:7Tm||$k+1H2)\1(A)2} (15)
M
S 4E8k@wk+1 |:Zm—1 7~Tm||33k+1||2)\1(A)2]

= 4E8k@mk+l [Hwk+1”2)‘1(A)2]
(Notice A is a random matrix only depends on @1, xa, . .., Ty, but not &x41.)

= 4B, ., [|@r41]%] Es, [A2(A)]
= 4(1+ dr2)Es, [\2(A)] .

We further simplify Es, [A}(A)] using Lemma K.1:
Es, DTpt1 [‘CZ]
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< 4(1+dr2)Es, [A{(A)]

2
1
< 4(1+d7))Es, ( S — )
1+ kb Ag(==1250)

Z?:l ziz]
k

(By applying Lemma K1 to

< 4(1 +dr})Es, _(1ﬂ

7,.)

1+ koL

i 2
1 3 ( k:t2>
ex _—
1+ k0u(r2(1— £ —4)2 — 2r,y/1 1+ ) P\

< 4(1+dr)

Let ¢t = k%~ 2, where % > ¢ > 0 and § is arbitrary small. We have:

4(1 +dr?)

§5—35
e O

E3k®mk+1 [‘CZ] <

We further validate our analysis with numerical computations in Fig. 21, including the trend of 7, for m € [M],
L mia] : _ N ’ )

Aj (%Z%) for j € [d], \; (I + 0w Zle a:txj) for j € [d], 1/||w — w*||, 1/E[F*(Sk ® r41) — yj, ). and

1/E[(F*(Sk @® @xt1) — yjs1)?] as k increases.

L.1. Case When In-context Input Variable Spans in Subspace

In this section, we refine Eq. 15 for the finegrained bound in Theorem 5.1. Specifically, we refine the following inequality for
case when in-context input variable ; only spans in the subspace of R?, resulting in \; (A) = 1 constantly as mentioend in
Theorem 5.1:

M
Zm:l Esiowis [ﬁm((wm - U’*)TACBk:H)z}

M
>~ me1 S PTr41 7~Tm m — W 1 k+1 )
< _E [ml|w P A (A)? |l ]|]

where A = (I + Zle x;x; )~!is derived in Lemma 4.1. Violating Assumption 3(a), in this section we consider the
case that ©; ~ N(u,diag(1,...,1,0,...,0)), where u = [p,0,...,0,q,0,...,0]". (If p does not follows the format
& d'—1

[p,0,...,0,q,0,..., O]T, we can always rotate the coordinates so p has this format.) Therefore, we have matrix A (after
——
-1

rotation) with the following format:

k T
[Id’xd’ + i T A T 04 x (a—ar)
A=

-1
,ifg=0
O(a—aryxa Tg_qyx(d—d)

k T -1
L@ v1yx(@+1) + 2im1 Tii(@+0) T 1) O@+1)x(d—d'—1) ifg>0
)
O(g—ar—1)x(d'+1) Tig_q—1yx(d—d'—1)
where ©; 1.0 = [%i1, %2, ..., a:Ld/}T, I, «, indicates an identity matrix with shape a by a, and 0, indicates a zero

matrix with shape a by b. Finally, we can revise the upper bound for the case when ; only spans in a subspace of R? using
the new format of A as follows:
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x 100

100000
— VEIF = yin)]

o Bu= 8, =1/9 o Bu=d=1 o Bu=0,=9
. . . #
0.5 0.5 ﬁ—/ 0.5 =
i ——e 3
0.0 A\ 0.0 ——— 0.0 ™
02 2 20 —— )\[) of [SWLI]"Ii
—— A of g, =5
— Xy of §, =%l
0.0 0 0
20 200 2000 — XNof I +6,% :17),.10;
— X\ ofIJr()"sz;;z,‘T
— Nof I+,
0 0 0
500
2000
20 — fw—w
0 0 0
2000
20 / 250 / / — VENF = yiall
0 0 0

\

0 0
0 21 42 63 84 105126 0 21 42 63 84 105126

Number of In-Context Examples (k)

0
0 21 42 63 84 105126

Figure 21: The numerical computation of the task learning. The second and third rows show the eigenvalues of the matrices

k T
S Z’ﬂ% and I +6,, 37 @] . The fourth row shows the distance between the predicted @ and w* has a reciprocal
decreasing rate with respect to k. The fifth and sixth rows indicate the expected squared loss follows a quadratic decreasing
rate with respect to k.

When ¢ = 0, we have:

M
mel E5k®wk+1 [ﬁ-m((wm - w*)TA$k+l)2]

M
. T T 2
<> Esen [Fnl(@n — w0) Lo Avaga@ii g + @n =0 Gyala-ax @-a) @, @)’

M

< Zmzl ]Eskeamkﬂ [ﬁm(”(wm - 'w*)l:d’||2)‘1(‘41:d’,1:d’)2||‘1:k+1,1:d’||2 + ”(wm - w*)(d’+1):d||2|‘wk+1,(d’+1):d||2)] ’
(Notice ka+1,(d’+1):d”2 =0)

M - « 2 2 2

= Zm:l Es oz [Tmll(Wm — w*) e |* M1 (Avar 1) 1k e 7]

When ¢ > 0, we skip the analysis since the analysis for ¢ > 0 is the same as the analysis for ¢ = 0. The only difference is
that d’ for ¢ > 0 is one bigger than d’ for ¢ = 0.
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- s 2 dZk utik
S P(Q)E[X g 75 ((Wg — Wa» Xpe41)) " IC] 167 (M — 1)Cy—g exp —5.7 )P | — 5z
© Oy ay
=
8 Eskﬂaxkﬂ [‘Cl‘:] P(C)]E[ﬁa((wa - Wq, xk+1))2|C] ”Wa - W*“Z(l + dT}%) min{l' 4k25\%/(1 + Tazc)z}
©
g 1
o P(=C)E [2“ 7t (W — Wa Xiea1))” |ﬁc 2 k2
foa) B=1Ttp\\Wp a X+l 48(1 + dtz) exp Y

8r(M — 1), d? + 4 \/Hk‘l dz

= [z 2 r(M — - —dj + 4t 2 =
P(OE[X g2q g ({Wpg — Wa, X, |C] K= H x VY =7
- Bra ﬁ(( B (7 k+1)) Ko, 2 exp 202 exp 202 +0(k™?)
5
o - *
@ P(OE([Y pq gl [Xiesr 12 |C][IW* — e |?
Q a
:§ [Eskeaxkﬂ [Lk ]
£ P(OE[fg (Wa — Wes %12 (C] llwe —w*[[2(1 + de2)
)
< 2 k29
P(~O)E [B4_, 725 (W — Wa Xie41))” | -C 48(1 + d2) exp (— ?>

Figure 22: Proof roadmap of ICL with biased labels, Theorem. 6.1.

M. ICL with Biased Labels to Retrieve A Task

This section details the proof of Theorem 6.1, with Fig.22 serving as a visual guide. The non-asymptotic bound for the
bounded efficacy phenomenon and the asymptotic bound share the same foundational elements in the proof. However, they
are different in handling the components marked in pink. Fig. 22 is thus provided to offer a clearer understanding of its
overall framework and assist readers in navigating through the proof. In the following sections, Sec. M.1 introduces the
non-asymptotic bound revealing the bounded efficacy phenomenon, and Sec. M.2 introduces the asymptotic bound.

M.1. Non-Asymptotic Bound for the Bounded Efficacy Phenomenon

This section proves the non-asymptotic bound in Theorem 6.1: Consider a next-token predictor attaining the optimal
pretraining risk. When ¢,, and 6., are sufficiently small, there exists a particular interval (refer to Sec.M.1.5 for the interval)
for k such that ICL risk with biased labels is upper bounded by:

a d2 u‘?DTJ,Q 2 k%
Es, [£7] < Csexp <—k <8@:§, + 802 +48(1 + d7) exp Y

+ l[wa = w*[P(1 + dr?) min{1, 4k°5,% (1 + 72)°).

where L = (F(Sk ® Trs1) — yp1)? = (F(Sk ® Tpg1) — (Try1, wa))? Cs is a constant depending on the prior setting,
Tz, and (p*, w*). With small &, the first and second terms dominate and exponential decay. With large k, the third term
dominates and increases. Thus, the upper bound reveals a bounded efficacy phenomenon.

Proof. Assuming we are using in-context examples following Assumptions 3 and 4, i.e., &; ~ N (u*, 721), y; = (x;, w*),
[[e*|| = ||lw*|| = 1, and we aim to retrieve the function w,, of the prior center (i, w,,) which is close to the in-context task.
Let £ indicate the squared risk (F*(Si @ @p41) — (Tht1, wy))?, where F* (S @ x4 1) is the prediction of Sy, @ Ty 1
by the Bayes-optimal next-token predictor F*. In order to have an upper bound on the risk, we consider @; ~ N (u*, 721)
. Sk @] k wiw] Sk e

in two cases: (1) C: L < Ny (%) <X\ (%) < Uand H%H < Tzy/7(1 4+ t) (see Lemma K.1 for ¢,
v, L and U) and (2) —C: at least one of the previous inequalities does not hold. Following Lemma K.1, the probability of

—C is bounded by: P(—C) < 36Xp(—%2))'
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We start our upper bound analysis on the expected squared risk by splitting the risk into three parts:

Esk@mk+1 [‘Cg]
=Es 014, [(]:*(Sk ® Th11) — (Wa, Sﬂk+1>)2]
(By Corollary 4.4.)

M ~ 2
— E8k®wk+1 ZB:l T3 <wﬂa mk+1> - <wa7 wk+1>

M
(Notice Zﬁ_l g =1.)

M

2
= ESkGBwarl (Zﬁ_l 7?5 (<IIIJB7 mk+1> - <wa7$k+1>)>

2
M M
(Notice ( E 5t ﬁﬂag) < E 5 #gag, since Ela]” < E[a”].)

<Es S (s, whn) — (wa, @is1))?
= K DTE+1 B=1 B By Lk+1 ay Lk+1

[—M
= Esk@karl Zﬂ:l 7T[3 <w[3 — We, wk+1>2:|

M ~ ~
= P(C)Esk@mk+1 Zﬁ:l Tl'[3<’w5 — wa7mk+1>2 C

M

+ P(_‘C)Esk@mk+1 |:Zﬁ—l 7?,8<1I]5 — Weq, SCk,+1>

2 _\C:|

= P(C)ESk@mk+1 _Z,B;éa 7~Tﬂ<'lz)ﬁ — wa7wk+1>2 C_

+ P(C)Esk@mk+1 [ﬁ-a <1IJ(I — Weq, mk+1>2|C]

M

+ P(_‘C)Esk@mk+1 |:ZB_1 ﬁ-ﬁ<wﬁ — Wgq, wk+1>2

-]

We will analyze three parts one by one in the following three sections respectively.

M.1.1. BOUNDED EFFICACY - PART A
Proof. We firstly analyze the term P(C)Es, ey, D540 T5(Ws — Wa, xp11)2|C], Part A:
P(C)Es, .. {Z#a 73t — wa, i) [C]

< POEsosir Y, 7lbs — wal*l@is |*|C]

(See Eq. 14 for the derivation of wg.)

= PCEs o0 [, ol (T + K60 T0) ™ (wg — w") + w" — wa*llea ]| C]

(Let A = (I +k6,3) ", and \;(A) is the largest eigenvalue of matrix A.)

= POEs.carn [, 7ol Aws - w") + 0" - waP2e?|C]

< POBsonc Y, Fall Ay — )] + [w" = wa])? i |C]

(Notice |[wg — w*|| < 2.)

< P(C)Esk@karl [Z

oo FolTa 220 (4) + " —wal)?|c]

(Notice A = (I + k6, 3,,) " and conditioned on C we have L < \g(Z4) < A1 (Ze) < U.)
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. 2 . 2
< P(C)Es o111 [Z#a 7r5||a;k.+1||2’C} (1—|—l€5L + lw* - wa”)

(Notice ||lw* —w,| < 2.)
c|.

s 2
< P(OBs a1 |5, 2o
(By applying Egs. 4, 5, 7, and Assumption 2(e) on

5
T )
k+1 k+1
rexp *Zi:} lps *$i||2+2,:1 | o *%‘HQ

202(1+ (E+1)4,)

<16P(C)Es, ga; . [ ZB;&@

* (|2 * (|2
—[lwg —w ||I—(I+k6w2w)—1 + [lwa —w ||I—(I+k6w2w)—1 9
exp — e ]%|C
UT,U
In the first tial t by splitti kﬂt ; di=k+1:
(In the first exponential term, by splitting Zi:l 0 Zi:l andi=k+1:)
k 2 k 2
=i s — il ® 4 3 (e — i
< 16P(C)E = =
(COEs,om.i. [Zﬁ;mrexp ( 202(1+ (k +1)68,,)
Part A-1
(—||w5 - w*||§—(1+k5w2_:w)*1 + [wa - w*Hi—(I-&-kéwiw)l)
- exp
202
Part A-2
—llps — e |® + o — T | >
. C
P ( 202(1+ (k +1)3,) i
Part A-3
(Note that x4, . . ., ), are dependent on C but &1 is not. Thus, we split them for further analysis.)

In the following, we separately analyze the three terms, Part A-1, Part A-2, and Part A-3. The high-level idea is that, as k
increases, due to the concentration of Part A-1 and Part A-2, they can be upper bounded by a function of k. Then, regarding
Part A-1 and Part A-2 as constant values (their upper bounds), the expectation of Part A-3 can be upper bounded.

Part A-1. We first deal with Part A-1. When conditioned on case C, we have:
k
i (=l — 2l + e — 2i||?)

1+ (k + 1)d,
(Letx; = " + €;)

% * &712 — Ko ,€i
B e T T s s
14+ (k+1)o,
k €
B e R o O e
= 1+ (k+ 1)5,

ke
D R e Al
- 1+ (k+1)d,

< TyV1+t)

k
(Recall we have V3 € [M], ||pg — pall < 2, and in case C we have: ‘2311_61‘51

< B = B2 = g — | + Ay /T + 1
1+ (k+1)o, '
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Let t = k~ 7. Recall in Assumption 4, we have V3 # «, ls — pw*[* = lpa — p*|I> > d2,. M6, < 1st. T

{k|(k+1)d, <1and %’L > 47,7V 1+ k™ 1} # @, then when k € I,, we have:

* * d,
It = w112 = s — ' |2+ 42V TFE o — I = s — P+ 5%
k k-
L+ (k+1)0, 2 4

Part A-2. We then deal with Part A-2. When conditioned on case C, we have:

2 2
—llws — w7 (1116501 T IlWa = W7 (145,51

(A1(A) and \g(A) indicate the largest and smallest eigenvalues of the matrix A € R%*?))
< —Jlws — wPAad = (I + k6w Bw) ™) + [lwa — w0 [PA (L = (I + kb 3w) ™)
(Recall in case C we have: L < \g(Z4) < A1 () < U.)

< —fws — w2 (1= —— ) 4 fjwa — w2 (1 - ———
A 1+ k6L « 1+ ké,U

ko, L ko, U
— — w2 _ w2
s =P s, L e = P s o
< —llws — w220, — w20l
g 1+ kb, 72 o 1+ kb, 72
Lett = k3. If 6, < 1st. Iy = {k|kd,72 < landL|ws — w*||> — UJw, — w*[> > %} # @, (note
limy 0 Ll|wg — w*||? — Ullw, — w*||? = 72||ws — w*||? — (1 + 72)||we — w*||? > 72u2,)) then when k € I, we
have:
kd,L kd,U 7202 ké T2u2
*[12 w *112 w x “Yw w x w
_ _ _rwe o — < — < —kby .
s =l s, Tl s,z 2 1+ k72 4

Part A-3. We finally deal with Part A-3. Part A-3 is independent to case C, and we have:

s~ @asa | + o~ @i
P(C)E$k®mk+1 [exp ( ’ 202.& + (k+ 1)5u) : I°

[ (=l — a2+ [0 — T | 2
< Es, ¢z
Sk OTi+1 _exp( 20%(1+(/€+1)5H) |51l

(Let x4 = p* +€.)

[ —lls — 1" — el +[|pa — p* —€? 2
=E
Sk @1 | CXP ( 20_%(1 ¥ (k + 1)6u) Hwk+1”

—ls — w12+ lpa — 1 )1% + (2(pp — pa), €) 5
Si® k+1 exp( 20_2(1+ (k+1)6 ) ||$k+1‘|

(Let — [l — p*|* + ta — w*||> = =D, 202(1 + (k + 1)6,) = E,b = 2(ps — pa).)
—-D+b'e
— Es.om, exp( )|wk+1||2]

(Notice ||:ck+1 = [l + eII2 < 2[p)1* + 2llel|*)

D+b'e .
< Es,om |o ( ) @l + 2|e|2>}

(Notice ||p* + ¢5||2 =1.)

—D+b'e —D+b'e
= 2<E8k®wk+1 {exp (E )] + Es, 004, [GXP (E ) |€2} >
b2 D D+bTe
:2<exp( IO 2+ Bsomn [om (22 el
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72|bl|2 D 72||b]|2 72|62 D 72|62 D
(o (B B) o (1o (B - 2) w0 vt (- 3)

2 2 2 2
_ 2 (72l 2|p|> D
—2(”% (‘”Ez P\ 9@ T F

= Cp=o.

Summary of Part A. Thus, summarizing Part A-1, Part A-2, and Part A-3, we have:

P(O)Es, gz, |3

Sa 77'5<1I)g — wa,wk+1>2‘C}

— Y s — @il + S0 (e — @i
< 16P(C)E i= i=
( ) Sk@Tri1 lzﬁ¢a T exp < 20%(1 n (k n 1)5M)
Part A-1
—lws = w7 (r4hs,30) 1 1% — " IT (145,50
- exp
202
Part A-2
—llpes — s l® + e — @pa | 2
: C
P < 202(1+ (k + 1)5,,) @l
Part A-3
A3k u2 72k
[ ad T
< 167(M — 1)Cr=o exp <— 80%) exp (— ;’05 )

d2 2 2
— 16r(M — 1)Chg exp <_k< b +m)>

2 2
8oz 8oy,

M.1.2. BOUNDED EFFICACY - PART B

Proof. We then deal with the second term P(C)Es, aa,,,, [Ta (W5 — Wa, Tx11)?|C], Part B:

P(C)]Esk@wk+1 [ﬁ'oz (wq — wavwk+1>2|c]

< P(C)Es, 0, [Tal[Wa — wa | [zr41]?|C]

(See Eq. 14 for the derivation of @,,.)

= P(C)Es,aa: [Tall (I + k6uSw) ™ (wa — w*) + " — wa | @r41]*|C]
= P(C)Es, 04 [Tal(I = (I + k6wZw) ™) (w* — wa)|*[|@r+1]|C]

(Let A1 (A) be the maximal eigenvalue of the matrix A.)

< |[wa = w*P(C)Es, gy [Ta X (T = (I + kduwSBw) ™) | @rs1]*|C]
(Recall that conditioned on C we have L < A\3(X,,) < A1 (Zy) < U.)

* ~ 1 2

< Nwa — w*[|?P(C)Es, o, |jTa (1 - W) @k 41]?|C
1 2
— 0 = 0" PPC)Esy 5o a2 1] (1 1)
1 2
<o = 0" B, (o) (1 15 )
1 2

*(12 2

= |lwa — 14dr2)(1- —
oo w01+ d72) (1= 15 )
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k6, U )2

= |lw, — w*||?(1 2y _wx
oo w0+ ar2) (550

Lett =k 3.if 6, < 1s.t. Iy = {k|U < 2(1 + 72)} # @, then when k € Iy we have:

kd,,U

2
1+k:6wU) < Jwa — w*||2(1 4 dr2) min{1, 4,262 (1 + 72)?}.

e — w*|P(1 + dr2) (

M.1.3. BOUNDED EFFICACY - PART C

Proof. Finally, for the third term P(—C)Es,, [Zgil Tg{p — Wa, Tp41)?|~C], Part C:

"

[«—M
< P(ﬂC)Esk@le Zﬁ:l 71'/3”'11)[3 — wa||2||-’13k+1”2

M ~

P(=C)Es, e [Zﬁl Ta(ws — ’wa,wk+1>2

(See Eq. 14 for the derivation of wg.)

ﬁc]

M _
= P(=C)Es,aa;,., 25:1 ol (I + kbwSw) ™ (ws — w") +w” — wal[*||pr1]

_ ‘

< P(~C)E M AN + k0w Sw)  (ws — w2 + 2w — we?) ||z |
SpPTr11 B=1 B w—w B 67 k+1

M
< P(_‘C)Esk@wk+1 ZB

"

g (2lwg — w223 (I + k6wBw) ") + 2/lw” — wal?) lze

ﬁc}

=1

"

e ,
< P(ﬁC)ESkGBwk-H ZB:I 71-5(2 4-1+2- 4)||wk+1H

ﬁc}

M
— 16P(C)Bsymres |3, Follonsal?

< 16P(_‘C)]E$k+1[Hwk+1||2|_'c]
(Notice C is defined on {z1, ..., xx})
< 16P(_‘C)Eﬂ:k+1ka+1”2]

< 16(1 + dr2)P(—C)

(Lett =k~ 7.)

k2
< 48(1 + d7?) exp <_8> .

M.1.4. BOUNDED EFFICACY - SUMMARY

Proof. Summarizing Part A, Part B3, and Part C', we have:

]Esk Dxp 41 [ﬁg]

a2k uZ, 72k
7 w'x
< 16r(M — 1)Cr—g exp (— 802> exp (— 802 )

x

+ ||lwa — w*HQ(l + dTﬁ) min{1,4k:2512u(1 + T§)2} +48(1 + dez) exp <—I€82>
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a2 u2, 72 k2
_ u 2
= 03 exp <—I€ <&f% + 811;_53?)) +48(1+d7'£)exp <—8

+ [|[we — w*||?(1 4 dr2) min{1, 462 (1 + 72)%}.

M.1.5. THE PARTICULAR INTERVAL

The particular interval for the non-asymptotic bound is the union of I,,, I, and Iy:

kgmin{(si—l7 L

L O T2
/ ! d?
Ay 14+ k1) < ?’L

x
Llwg — w’|* = Ullwg — w*||* > 7}u3, /2

U< 2(1+73).

}

M.2. Asymptotic Bound

This section proves the non-asymptotic bound in Theorem 6.1: Consider a next-token predictor attaining the optimal
pretraining risk. As k — oo, ICL risk with biased labels is upper bounded by:

c 1
Esy[£7] < Jwa = w'[2(1+dr?) + =L exp (Cok™8) + O(k72),

where LY = (F (S ® Ti+1) — y,‘éﬁrl)2 = (F(Sr @ xps1) — (Try1,ws))?, and C; and Cy are constants depending on the
prior setting, 7., and (p*, w*).

The proof of the asymptotic bound is heavily overlapped with the proof of the non-asymptotic bound. We will hide the
overlapped derivations with “(...)”.

Proof. Assuming we are using in-context examples following Assumptions 3 and 4, i.e., &; ~ N (u*, 721), y; = (x;, w*),
[[ee*]] = |lw*|| = 1, and we aim to retrieve the function w,, of the prior center (g, W, ) Which is close to the in-context task.
Let £¢ indicate the squared risk (F*(Sk & Tg11) — (Th+1, Wa))?, where F* (S @ @j1) is the prediction of Sy @ xy41
by the Bayes-optimal next-token predictor F*. In order to have an upper bound on the risk, we consider x; ~ N (p*, 721)
in two cases: (1) C: L < \g (M) <\ (M) < Uand H%H < Txy/7(1 4+ t) (see Lemma K.1 for ¢,
v, L and U) and (2) —C: at least one of the previous inequalities does not hold. Following Lemma K.1, the probability of
—C is bounded by: P(—C) <3 exp(f%ﬁ)).

We start our upper bound analysis on the expected squared risk by splitting the risk into three parts:

]Esk@mk+1 [‘Cg]

(...)

= P(C)Es, 0m,., [ZB#Q Fa(tbs — wa, i) [C] (Part A")
+ P(C)Es,@as 1 [Fa(Wa — Wa, Tii1)?|C] (Part B')
M 9 ,
+ P(ﬁC)ESkGBwkH Zﬁ:l T3 <wﬁ — Wa, mk+1> -C|. (Part C”)
We will analyze three parts one by one in the following three sections respectively. O
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M.2.1. ASYMPTOTIC BOUND - PART A’

Proof. We firstly analyze the term P(C)Es, ey, D540 T5(Ws — Wa, xp11)2|C], Part A

POEsco [, 75— wa, @in)?|C]

(.)

9 2
< P(C)Es, e, [ZB;&@ ﬁﬂ\\wkH”Q‘C} (Hk&uL + [lw* — wa)
(Notice |[w* — wq| < 2.)

7Tﬁ 2 4 8
< P(C)Es, oz ~ Tk
_.(C)&@kﬂ[};#aﬁﬂlewc}Q1+MMU2+1+k%L)

+ P(CBs, 0w [, Fsllwni|[C] ™ - wall® a7
Line 17 will be merged with Part B’ and analyzed in Sec. M.2.2. The current section will analyze the line 16. We start by
analyzing the term P(C)Es, oz, ., {Zﬂ;ﬁa ;—i ks ‘C} . By Egs. 4, 5, 7, and Assumption 2(e) on ;—f, we have:
e 2
PO 0ms |3, il

q
(...)

S s — w2+ S0 e — a?
P(CE i= i=
< P(OEs.0m1. lza;eareXp( 202(1 + (k + 1)5,)

(16)

Part A’-1
2 2
—[lws — w*||I—(I+k6w2w)—1 + [lwa — “’*”1—(1+k5w2w)—1
. eXp 202
w
Part A’-2

202(1+ (k +1)3,,)

Part A’-3

2 2
— — Ty + —x
p( s — @rsa | + 10 = @asa | )w}m”g

y

.,z are dependent on C but x 1 is not. Thus, we break them for further analysis.)

(Note that x4, . .

In the following, we separately analyze the three terms, Part A’-1, Part A’-2, and Part A’-3. The high-level idea is that, as k
increases, due to the concentration of Part A’-1 and Part A’-2, they can be upper bounded by a function of k. Then, regarding
Part A’-1 and Part A’-2 as constant values (their upper bounds), the expectation of Part A’-3 can be upper bounded.

Part A’-1. 'We first deal with Part A-1. When conditioned on case C, we have:

k
Yima(Zllps = @il + e — 2:]?)

1+ (k+1)6,

(..)

_ g llpa = prlI? = s — p*]? 4 4V + 1t
1+ (k+1)0, '

With Assumption 4, we have d, < ||ups — p*||> — || o — p*||*. With Lemma K.1, we have y = \/%. Lett = k%~ 2 and
0<d< %, we have:

el = w2~ s = P Arr VTS VAo
1+ (k+1)0,, Oy Op '

45



Dual Operating Modes of In-Context Learning

Part A’-2. We then deal with Part A’-2. When conditioned on case C, we have:

- Hwﬁ - w*‘|§7(1+k§w2w)fl + [[wa — w*H%f(IJrk&wEw)*l

(..)
1 1
B . 12 1~ o — * |12 1 - —
< —|lwg w( HkéwL)*”w w’| 1+ koyU
e — w12 — T — a2 4 (s =W fwe — |
= ~(Jws — w*||* — ||Jwq w||)+< 1+ kd,L 1+ kU

With Assumption 4, we have d2, < ||lwg — w*||? — ||w, — w*||?. Lemma K.I gives the definitions of L and U. Let
t=k"Zand0 <6 < % we have:

_ *||2 _ * |2

kb2 kdy(1 4 72)
_ * |2
< -+ 7”“’26 = = on2)
S
< —d% + ﬁk—l +O(k™%)

Part A’-3. We finally deal with Part A’-3. Part A’-3 is independent to case C, and we have:

—llps = ®ppall® + e — ®pga |
P(C)Esk@mk+l {exp( ) 20261_'_ (k+1)3,) ~ ||wk+1||2
T 2

= Ck:().

d

Summary of Part A’. Thus, summarizing Part A’-1, Part A’-2, and Part A’-3, we have:

78 g | : °
POEs 5o [, Llenil?|C] (e + 1oL

=3 s = w4 0 e — @l
< P(C)Egs, s i= i=
(CEs.@0ns [Z#arexp ( 202(1 + (k +1)d,)
Part A’-1
—|lws — w*”i(wksw)’:wrl + [lwa — w*Hif(IJrkai:w)*l
- exp
202,
Part A’-2

C

g — @ |2+ e — @ )
P < 202(1+ (k + 1)3,) e

Part A’-3

4 .8
(1+ kopL)2 1+ ko,L

2
t
Notice lim L= lim 72 (1—= —~ ) —2myV/1+t=12.
xr 2 xT

k—o0 k—o0
d? dro/d—1 —1 2 4 1.-1 -2
ey AnVdp—g 4 Ok Y) —d2 4 Ak + O(k72) 8

E P w Oy T2 -2

<r E exp : : 203 exp ( 205} Ck:() (kj(SwTTZ + O(k’ ))
BF#a ’ ’
—d? + A7,k E + Ok —dy, + 5=k + O(K?) 8
=r(M —1)Cj— i x wTy —2
7( )Clr—o €xp < 202 exp ) (k&wﬂf +O(k ))
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M —1)Ch— —d2 + 47, VdE3 + Ok —d, + 5=k O(R?)
~8r( )Cl=0 exp ( o AT Vd ( )) exp < o2 Lo

kb, 72 202 202
1
8r(M — 1)Cr—g —d2, + 47,k —d2, L
_ O(k
kb2 P 202 b 202, +O(*™)

M.2.2. ASYMPTOTIC BOUND - PART B’

Proof. We then deal with the second term P(C)Es, ¢a,,, [Ta(Ws — Wa, Tx41)?|C], Part B:

P(C)Esk@fﬂkJrl [ﬁ-a <1I}a — Wq, $k+1>2|C]

(...)

. _ 1 g
< |lwa — w*|2P(C)Es, gays [Falrrt]|*|C] (1 - HmU) :

‘We add the line 17 in Sec. M.2.1 back:

P(OEs 60 [Fa (@0 — wa, @501) ) + POEs g0, [ Y, Fallw|?|C] w" - wal?

line 17 in Sec. M.2.1
1 2

< 100 = w0 PPOES, m, Fallwrnt €] (1= 55 )

+ POEs.cmn [,
< e — w0 [P PUCIES, 1, i |21+ [0 — w2 P(CES, o, [3

. M ~
(Notice Z[ﬁ:l 73 =1)
= s 0" |2 P(O)Bs, o [ 11

< |wa — w*||*Ea,,, [lok41]?]

= |lwe — w*|*(1 + dr)

Fallzs|2]C] w” - w1

oo Foll@rsal?[C]

M.2.3. ASYMPTOTIC BOUND - PART C’

Proof. Finally for the third term P(—C)Eg, [224:1 Tp{Wp — Wa, Tpy1)?|-C], Part C”:

"

M ~ ~
P(_‘C)]Esk@mkdrl [zﬁ_l B <w[3 — Wa, mk+1>2

(..)
< 16(1 + d2)P(—=C)
(Lett = k:‘s_%.)

k26
< 48(1 +dr?2)exp (_8> .

47



Dual Operating Modes of In-Context Learning

M.2.4. ASYMPTOTIC BOUND - SUMMARY

Proof. Summarizing Part A’, Part B’, and Part C’, we have:

ESk Dxpt1 [‘Cg]

8r(M — 1)Ch_o ~d? + 4,k 3 —d2 -
< S Ok
kT2 P ( 207, P 202, +O(+)
k26
+ [[we — w*||*(1 4 dr2) + 48(1 + d7?) exp <_8)
i} 8r(M — 1)Che ~d2 + 47,k —d? _
= ||lwa — w*||*(1 + dr?) + WQO exp < B 201% exp 20121:’ +O0(k™?)

C 1
= [[wa — w*[I*(1 + dr7) + ?1 exp(Cek™%) + O(k™?)

N. Proof of Lemma 6.2

In this subsection, we introduce the proof of Lemma 6.2. We first give the full version of the lemma:

Lemma 6.2 (Upper Bound for Zero-Shot ICL). Assume a next-token predictor attains the optimal pretraining risk, and
Assumption 6 has only two components « and /3, with centers (o, wo) = (—pg, —wg). When performing ICL with
x; ~ N (p*|721), assume ||p*|| = 1, and y; = 0, i.e., y; has the same preference to prior component c as 3. When §,, and
0., are sufficiently small, there is a particular interval for & that ICL risk is upper bounded by:

1

2 1.

d k .
Es, [L}] < Cyexp (—8”2> +12(1 + d72) exp (—S) + (1 + dr?) min{1, k25,2 (1 + 72)?},
O’fL'

where L = (F(Sk ® Trt1) — Ypy1)? = (F(Sk ® @pq1) — (Trg1, wa))?, Cy is a constant depending on the prior, 7,
and (p*, w*). When £ is small, the first and second terms dominate and exponential decay. When £ is large, the third term
dominates and increases.

Proof. The proof techniques are very similar to the proof techniques used in Sec. M.1. Assuming we are using in-context
examples following z; ~ N (p*, 72I), ||p*|| = 1,y; = 0, i.e., w* = 0, and we aim to retrieve the function w,, of the prior
center (f4q, W, ) which is close to the in-context task. Let £¢ indicate the squared loss (F*(Sk @ @x+1) — (Tht1, Wa))?,
where J*(Sj, @ xj1) is the prediction of Si, @ @11 by the Bayes-optimal next-token predictor F*. In order to have an

k sz k xix]
upper bound on the loss, we consider z; ~ N (u*,72I) in two cases: (1) C: L < )y (Z’ﬂ%) <M (21:1#) <
koo
U and H # < Tx/7(1 4+ t) (see Lemma K.1 for ¢, , L and U) and (2) —C: at least one of the previous inequalities
does not hold. Following Lemma K.1, the probability of =C is bounded by: P(—C) < 3exp(— %2)).

Similar to Sec. M. 1, we split the expected squared loss into three parts:

]Esk DT t1 [,Cg]

< P(C)Es, 0y, [75(Ws — Wa, Tr+1)?[C] (Part A"
+ P(C)Es, a1 [Fa(Wa — Wa, Tp11)°|C] (Part B")

+ P(—=C)Es, 0z, {Zﬁe{aﬁ} T (W — Wa, Thoy1)?|-C| . (Part C"")

O
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N.1. Proof of Lemma 6.2: Part A"
Proof. We first analyze the term P(C)Es, aa,,, [73(Ws — Wa, Tj41)?|C], Part A”. Similar to Sec. M.1, we have:
P<C)E5k€9mk+1 [ﬁﬁ <ﬂ)ﬁ — W, wk+1>2|c]

~ 2
5, - 2 «
N A H Cem R Lot )

=5 s — il + 0 e — @)
< P(C)ESk@2k+l [T exXp ( 20%(1 Tkt 1)(;”)

—lws — w*H?f(IJrkéwiw)*l + [lwa — w*Hif(IJrk:éw)iw)*l
- exp
202,

2 2
- — Ty + — Ty
- exp ( ”/JB +1|| ”l"a +1H ) ||wk+1||2 C

202(1+4 (k+1)d,)
(Notice w* = 0, wg = —w,.)

8 s — @l 8 e — @l
rP(C)Es o [eXp ( 202(1+ (k +1)3,,)

2
(g o el
1+ ké,L @

2 2
- — & + [|ha — Tk
o (sl el pele].
"

202(1+ (k+1)

=i s — il + S e — i
=9rP(C)E i= i=
T ( ) Sp@xp i1 |f3Xp < 20_925(1 n (k+ 1)5#)

A1

s = et e — i ? )
. C
P ( 202(1 + (k + 1)3,) e

A”-3

Same to Sec. M.1.1, when conditioned on case C, for Part A”-1 we have:

k * *
Yoy (=l — ®i)* + llpa — =) N I = llps — p*|1* + 4ray V1 + 1
1+ (k+ 1)d, 1+ (k+ 1)d, '

Let ¢ = k3. Recall in Assumption 4, we have V3 # a, ||ug — p*||2 — || tta — p*]> > di. 16, < 1st I, =
d? 1
{k|(k 4+ 1), < 1and 4* > 47,7V 14k~ 3} # @, then when k € I, we have:

pltte = 1P = o — | + 4rn VTHE
1+ (k+1)d, 4’

Same to Sec. M.1.1, when conditioned on case C, for Part A”-3 we have:

—lles — e | + e — 2pia|? 2
P(C)Es, e
( ) Sr®xp i1 [exp( 20%(1+ (k+1)5u) ||wk+1||

C:| = Ck:().

As a summary of the above analysis, we have:

i d%k
P(C) Byt [T {5 — wa, @41)?|C] < 97 Cim 0P <_80> |
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N.2. Proof of Lemma 6.2: Part B”
Proof. We then deal with the second term P(C)Es, aa, ., [Ta((Wa — Wa, Tp+1))?|C], Part B”. The analysis is exactly the

same as Sec. M.1.2, and we have:

. ) 2 o [ k6,U N2
P(C)Es, 0y, [Ta(Wa — Wa, 2k41)?|C] < [wa — w*|2(1 + dr2)

1+ kd,U
Lett = k™ 3.if 6, < 1s.t. Iy = {k|U < 2(1 + 72)} # @, then when k € Iy we have:

kd,,U

2
1+k:6wU) < Jwa — w*||2(1 4 dr2) min{1, 4,262 (1 + 72)?}.

e — w*|P(1 + dr2) (

N.3. Proof of Lemma 6.2: Part C”’

Proof. Finally, for the third term P(=C)Es, @241 [>re (a1 Tr(Wk — Wa, @p11)2|~C], Part C”. Similar to Sec. M.1.3,
we have:
ﬁc}

P(_'C)Esk@mk+1 [Zne{a 8} 7~T,{(<IIJ,{ — Wq, wk+1>)2
< PO Es ms [ 3,y e CI 505) 100 = ) + 20" = ) [
ﬁc]

"

re{a,f}
(Recall w* = 0.)

< P(~C)Es, 0., [Z Fu(2 1142 1) g |2

"

= 4P(-C)Es, ga . |:Zne{a 5 7~Tﬁ||.’13k+1||2
<AP(2C)Ea,., [llzk+1]*|~C]

(Notice C is defined on {x1,...,xx}.)
<AP(=C)Ea,, [l|l2kr1]]
<4(1+dr})P(=C)

(Lett = k*%.)

< 12(1 + d7?) exp (—k;) .

O
N.4. Proof of Lemma 6.2: Summary
Proof. Summarizing Part A”, Part B”, and Part C"’, we have:
ESk@zk+1[£%]
2 1
k )12 2y, 262 k2
< 9rCr—o exp + [Jwa — w*||*(1 4 d72) min{1, 4k?62 (1 + 72)*} + 12(1 + d72) exp -3
252 2 k2
= 9rCl—o exp 1+ dr2) min{1,4k%62 (1 + 72)} + 12(1 + d72) exp e
P2k ik
= Cyexp ( “ 1+ dr2)exp <_8> + (14 dr2) min{1,4k%52 (1 + 72)*}.
O
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N.5. The Particular Interval

The particular interval for the risk bound revealing bounded efficacy is the union of I, and Iy:

1
k< ——-1
6#
L4
drey\1+k77) < 7”
U< 2(1+72).

O. Toy Example for Component Shifting and Component Re-weighting

We study how in-context examples affect the prediction of ICL by a pretrained Bayes-optimal next-token predictor and how
the pretraining distribution affects this phenomenon. Assume the next-token predictor f is initially pretrained on a dataset
distribution to produce the minimum risk minimizer f*, and then the pretrained f* is used to predict the next token y of the
token . Instead of direct inference via f*(z), we consider inference with additional k in-context examples {z;}%_, via the
format f*([z1, ..., %k, x]). We aim to theoretically examine the effect of in-context examples {z;}*_, on the prediction
f*([z1,- .., zk, z]). While the formal problem setting may involve verbose math, this demo section illustrates the basic
phenomenon for better delivering our work.

The following demo subsections are organized as follows. We first introduce the problem setting in Sec. O.1. We then
connect ICL with Bayesian inference in Sec. O.2. Further, we introduce the assumptions for the pretraining dataset in
Sec. O.3. Finally, we derive a closed-form posterior and introduce two phenomena, “Component Shifting” and “Component
Re-weighting” in Sec. O.4.

0O.1. Toy Example: Pretraing Data Generative Modela

ICL involves two important components: the pretraining dataset, and the next-token predictor supporting varied input
lengths. We assume the next-token predictor f : Ugeqo, ..., K,l}Rk x1 5 RI*1 can fit the pretraining distribution exactly
with enough data and expressivity. To generate a training sample, we first sample a task g from underlying task distribution
D,,, and then we generate tokens of the sequence from a distribution D, (1) based on the task pt. The sample generation
process is described as follows:

Assumption 7 (Demo: Pretraining Data Generative Model). Given a task prior distribution D,,, and a conditioned = sampler
D..() conditioned on task i, the process of generating a sequence Sk = [z1, X2, . . ., x| with length K follows:

(a) Sample a task p from the task prior: ;1 ~ D,,, and the probability of 1 is indicated by P(u);

(b) Sample K samples, each denoted by x;, from the chosen task: Fori € {1,2,..., K}, x; ~ D,(u), and the probability
of x; = x is indicated by P(x|u);

(c) Define a Sequence Sy: For capital K, S = [21, ..., zk]; and for lowercase k, the sequence of the first k demonstrations
of Sk is indicated by Sy, = [z1, ..., 2], e.g., S2 = [21, X2].

The generation process is related to real-world scenarios via two points: (i) For sampling step 7(a), the LM is trained on
varied tasks; (ii) For sampling step 7(b), when one person/agent produces texts for one task, the generated text could be
noisy. For instance, given a task such as describing a football game, one person has multiple ways to describe it.

0.2. Toy Example: Bayes-Optimal Next-Token Predictor
Now we consider training f(-) using sample Sk generated via the above generation process 7:
] Kl ) = )
Lf)=E |+ Z(f(sk) — Tp41) ] = E E lK Z(f(sk) — Tht1)

Sk kao u~Dy | z;~D(p), =0
- i€{l,....K} -

|

f can be viewed as K separate models fy, ..., fx_1, where f; takes a sequence of k tokens as input. Therefore, when
the model f has enough expressivity, the optimization problem f* = argmin; £(f) could be regarded as K different
optimization problems:

fi = argmin E [(f(Sk) — 2r41)?],Vk € {0,..., K —1}.

fr Sk
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Figure 23: The left part of the figure indicates the pretrained next-token predictor is pretrained on the task prior distribution
according to Assumption 8, and the prediction is based on the prior without in-context examples. The right part of the figure
indicates that with in-context samples, the prediction is based on posterior, regarding the in-context examples as observed
samples.

Thus, the solution f}; for each k is a minimum mean square error (MMSE) estimator (Van Trees, 2004, page 63), and the
prediction of f*(Sy) satisfies:

[ (Sk) = ElzptlS]= E [ E  [zes1lp, SellSel= E [ E_ [zg41|p]|Sk]- (18)
Sk w~Dy z;~D(p), u~Dy g1 ~D (1)
i€{l,...,K}
The prediction f*(Sy) is the expectation of E  [zg+1]p] on the task posterior observing Sk.
Tp1~D(p)

0.3. Toy Example: Gaussian Assumptions on Pretraining Data Generative Model

In Sec. 0.2, we connect ICL with Bayesian inference, and in Eq. 18, we observe that the prediction f*(S;) depends on the
posterior. We are interested in how the in-context examples affect the prediction and the posterior. We make assumptions on
the pretraining dataset to have a closed-form expression of the posterior facilitating further analyses:

Assumption 8§ (Demo: Gaussian Assumptions for Generative Model for Pretraining Data).

(a) Task distribution: p ~ Dy, P(n) = Zf\nlzl 7m P (11|T)n), where Ty, is the m™ mixture component of the Gaussian
mixture, i.e., P(u|Tyn) = N (ju|ftm, 02), and 7, is the corresponding mixture weight. S _ 7, = 1,0 < 7 < 1, i is
the center of the mixture component 7},,, and all components share the same covariance matrix controlled by o;

(b) Token distribution: & ~ D, (1), P(x|p) = N (2|pm, 72).

0.4. Toy Example: Posterior Analysis

With Assumption 8, we derive the closed-form expression of the posterior as follows:

M
P(u|Sk) o< > wemN (ptlfim, 57). (19)
m=1
SE )
. k ('“m - Tl> . 2 + 020w, 202
(7Tm = Tm €Xp y Bm = 3 O = )
2(12 + ko?) 72 + ko? 72 + ko?

See Sec. O.5 for proof details. From Eq. 19, we observe two factors when comparing the posterior with the prior in
Assumption 8: (i) Component Shifting: after observing Sy, = [z1, 22, ..., zx], the center of each mixture component is
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shifted to % (ii) Component Re-weighting: the mixture weight 7, of each mixture component is re-weighted
2

k Lom — Z;c:k] Zq

by multiplying exp QN TCe ) (which needs to be further normalized so that re-weighted mixture weights sum

to 1). Fig. 23 illustrates the phenomena of Component Shifting and Component Re-weighting by observing in-context
examples.

0.5. Proof of Posterior Derivation in Toy Example

In this section, we give a detailed derivation of the posterior in Eq. 19 of Sec. O.4:

P(ulSx) o< P(u, Si)
— P(Selu)P (1)
<Hk VPl ) P (1)

- Z TN (] o, 0 )(Hle,/\/'(xi‘,u,Tz)).

m=1

We then show N (pa|pim, o2) (TTE_ ;N (; |, 72)) is proportional to a Gaussian distribution:

log (N (plpm, 0%) - TN (]2, 72))

) S )2
(Let C1o = log (\/170> + klog <¢Tm>)

(b= pm)? um “ (@ — w)?
- ClO - Z 27_2

=Cho — 1 < (1= pm) +022 )

(Abbreviate Z as Z for simplicity.)

=1

1
= o~ g (12 4 1) = 2 (P 4 0* L) + (28, +0* L) )
c TZ_HWZ(( 72“7”"“722“’5’)24-72#%1‘1'02290? (Tzum—FoZin)?)
= V10 — Q55 o - -

72 4 ko2 72 + ko? 72 4 ko?

c T2+'~w?<( T2um+022x¢)2+<T2u3n+o22x%><72+k02>—<T2um+a22mi>2>
kL

27202 72 + ko? (72 + ko?2)2
=Cho— T+ ko? ( < T + 07 le)z 4 ko?m?p2, + 023 22 (12 + ko?) — 2umt?0? > x; — (02 ) 1;)?
27252 T2 + ko2 (7_2 T k02)2
T2+ ko 0?3 ai(r? + ko?) = (0? Y wi)? — 20 (F i) [k
Let Ci; = Cio — . i |
( et L1 10 27252 (7_2 + k0'2)2 )
=C _M _72“77l+‘722$i 2—|—k0.27—2p“12n_2ﬂm7' o? Y xi+ 7m0 (X @)k
11 27252 72 4 ko? (72 1 ko?)2

72 + ko? T2 g + 02> w5 2 kr20? S\’
=Cun——F5 5| (k- 2 2 T3 22 "\ Hm T
2720 72+ ko (12 + ko?) k
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k N2 2
ok (1o = E) (0 - B
=Cy — _
2(12 + ko?) 2. 727117@202

Notice C1; is independent to m,Vm € [M] and u. Therefore, we have:

m 'N(N|Nma02) 'Hf:1N($i|u772) X Ty 'N(N‘ﬁm752),

E( ppm — =152 2 2 <k
Hm™ % O D S

TR | i Bm = Py Thus:

~ =2 _
where 7, = m,, exp ,and &

2+k 2 -

P(u|Sk) o Zﬂm (ttl o Y (T N (i |1, 7))

o FonN (Hlfims 72).
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