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Abstract. Homomorphic encryption can address key privacy challenges
in cloud-based outsourcing by enabling potentially untrusted servers to
perform meaningful computation directly on encrypted data. While most
homomorphic encryption schemes offer addition and multiplication over
ciphertexts natively, any non-linear functions must be implemented as
costly polynomial approximations due to this restricted computational
model. Nevertheless, the CGGI cryptosystem is capable of performing
arbitrary univariate functions over ciphertexts in the form of lookup
tables through the use of programmable bootstrapping. While promising,
this procedure can quickly become costly when high degrees of precision
are required. To address this challenge, we propose Ripple: a framework
that introduces different approximation methodologies based on discrete
wavelet transforms (DWT) to decrease the number of entries in homo-
morphic lookup tables while maintaining high accuracy. Our empirical
evaluations demonstrate significant error reduction compared to plain
quantization methods across multiple non-linear functions. Notably, Rip-
ple improves runtime performance for realistic applications, such as logis-
tic regression and Euclidean distance.

Keywords: Cryptography - Homomorphic Encryption - Lookup
Tables

1 Introduction

Cloud computing enables corporations to leverage powerful computational
resources, while avoiding the cost and upkeep associated with maintaining local
computing infrastructure. Along with numerous benefits, this gives rise to pri-
vacy concerns over outsourced data as cloud service providers can possibly view
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data stored on their servers, and malicious actors have increasingly targeted
cloud servers as they can be treasure troves of proprietary information from
multiple clients [22,31]. While encryption techniques such as AES can be used
to protect data confidentiality, the encrypted data must be static and the cloud
cannot apply meaningful processing on ciphertexts (aside from storage). Thus, if
a client wants to modify their data, they will have to download the ciphertexts,
decrypt them, perform a computation to update the plaintext data, re-encrypt
them, and re-upload the result to the cloud.

Fully Homomorphic encryption (FHE) is a powerful technique that helps
address privacy concerns in cloud computing by allowing computation on
encrypted data [13]. With FHE, a client can encrypt sensitive data, upload the
corresponding ciphertexts to the cloud, have the cloud apply an arbitrary algo-
rithm such as image classification, and then receive a valid encryption of the
results, which can only be decrypted with the client’s secret key. In this way, the
cloud learns nothing about the contents of the input data, intermediate results,
or the output of the encrypted computation.

Nevertheless, for many FHE schemes such as BGV [3] and CKKS [5], eval-
uating non-linear functions directly remains impossible, as only addition and
multiplication operations can be executed over ciphertexts. Conversely, CGGI [7]
allows encrypted lookup tables (LUTSs), which allow non-linear functions to be
computed exactly. Unfortunately, this operation is quite costly and becomes sig-
nificantly more expensive as the plaintext modulus increases. Likewise, both the
time and memory required to generate the lookup tables scale exponentially with
the input’s precision, with LUT sizes of 32 bits and larger becoming impractical.!

One solution to this problem is to simply quantize the LUT inputs (i.e.,
reduce the bit width) to lower the number of entries in the lookup table, result-
ing in faster evaluation and LUT generation times. The reduced precision caused
by quantization, however, can negatively impact a wide variety of applications
that require high precision. For instance, quantization in deep neural networks
can result in non-negligible accuracy loss [20] and thus lead to incorrect classifica-
tions. Particularly, errors occurring due to quantization in early layers will prop-
agate to subsequent layers, resulting in an avalanche effect, where the errors are
compounded in each layer. Indeed, this effect is not limited to privacy-preserving
inference and can happen in any application.

In this work, we propose the Ripple framework that offers new efficient tech-
niques for encrypted LUT evaluation. Ripple provides all of the same benefits
of quantization in terms of latency reduction while minimizing the accuracy loss
resulting from reduced precision and bit widths. Our approach leverages the
discrete wavelet transform (DWT) [28] to approximate non-linear functions and
generate significantly smaller lookup tables while maintaining high accuracy.
Moreover, Ripple employs multiple DWT families and introduces bespoke FHE-
friendly protocols tailored to each family to maximize accuracy and minimize

! We empirically observed even 32-bit encrypted LUTs with the state-of-the-art
TFHE-rs [32] FHE library require approximately 515 GB of RAM and 65 min. For
reference, 30-bit LUTSs took almost 15 min requiring over 120 GB..



Ripple: Accelerating Programmable Bootstraps for FHE 275

latency. For instance, we find that some DWT families benefit from multiple
LUTs while others need only a single LUT evaluation. We apply Ripple to a
variety of non-linear functions that are widely used across several domains from
machine learning [4,11] to statistics [26], as well as multiple realistic applica-
tions for homomorphic encryption [17,29], such as logistic regression inference
and edge detection. Our contributions can be summarized as follows:

— We introduce Ripple to construct smaller encrypted LUTs with wavelet tech-
niques without sacrificing accuracy.

— We propose multiple protocols for evaluating wavelet-encoded LUTs in the
encrypted domain.

— We implement a suite of commonly adopted non-linear functions and optimize
with Ripple, along with a set of benchmarks from various domains.

2 Preliminaries

2.1 Fully Homomorphic Encryption Overview

The key characteristic of all FHE schemes is malleability, where ciphertexts can
be manipulated to change the underlying plaintext data predictably. All FHE
schemes can be roughly divided into two categories depending on the primary
computational domain: arithmetic-based schemes and Boolean-based schemes.

We focus on the latter class, where instead of encrypting integers or floating
point numbers, Boolean schemes encrypt individual bits (or low-precision inte-
gers in certain cases). The addition and multiplication primitives are replaced by
encrypted gate operations, such as AND, OR, and NOT gates. In practice, most logic
gates are implemented as a series of linear operations between ciphertext polyno-
mials followed by a functional bootstrap, which serves to scale the output to the
expected value. Because Boolean schemes can support all standard logic gates,
they are capable of executing arbitrary algorithms. Contrary to arithmetic-based
schemes, this class of cryptosystems is capable of evaluating non-linear functions
directly through the use of Boolean circuits.

Additionally, unlike arithmetic-based schemes, Boolean schemes do not need
to utilize polynomial approximations. Indeed, non-linear operations can be
implemented exactly as a Boolean circuit. As an example, the ReLU activa-
tion function is directly mapped to a multi-bit comparator circuit followed by a
multiplexer. However, this may require a larger number of Boolean gates and the
majority of gate types require at least one bootstrapping operation, resulting in
relatively high latency for large circuits. Prior frameworks, such as the Google
Transpiler [15], ArctyrEX [19], and HELM [16], exploit the inherent circuit-level
parallelism to reduce the latency of circuit evaluation. Still, the performance
of these frameworks is limited by the critical path (or greatest depth) of the
homomorphic circuit. Additionally, all three approaches rely on logic and/or
high-level synthesis methods to convert input programs to optimized Boolean
circuits, which results in high pre-processing cost for non-trivial applications.
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Alternatively, with proper parameter selection, Boolean schemes can encrypt
low-precision integers. In the case of the CGGI cryptosystem [6], this allows for
ciphertext addition and multiplication with a public constant, but not multipli-
cation between two ciphertexts. Notably, it still retains the functional bootstrap,
which can be utilized to evaluate N:N lookup tables. This approach combines
some of the key strengths of both arithmetic-based schemes and the Boolean
mode of operation in the form of natively supported multi-bit arithmetic and a
mechanism for exactly evaluating non-linear functions.

The primary challenge is the restriction on the size of the plaintext space,
but this can be overcome by representing high-precision plaintexts as vectors of
ciphertexts, where each encryption encodes a low-precision chunk of the original
message. This very methodology is employed in the TFHE-rs library [32] in
two different ways: a Chinese remainder theorem (CRT) method and a radix
method. The former involves generating multiple residues by reducing an input
message by a series of co-prime bases and encrypting each residue as a separate
ciphertext. Upon decryption, the residues are combined to form the final higher-
precision result. The second method involves decomposing the input data into
a series of digits, each of which is decrypted individually. Ripple utilizes the
latter approach as it provides a convenient way to truncate ciphertexts, which is
an integral operation in the DWT protocols explained in the following section.
Truncating the digits of a ciphertext array encoded with the radix decomposition
can be done with negligible latency overhead as no FHE operations are required.

Programmable Bootstrapping (PBS). A crucial feature of the DM and
CGGI FHE cryptosystems is the functional bootstrap, which takes advantage of
the programmability of the bootstrapping algorithm employed in these schemes.
A polynomial with crafted coefficients that encodes the set of desired output
messages is rotated by an encrypted value and the first encrypted coefficient
corresponding to the constant term of the polynomial is extracted. These two
procedures, blind rotation and extraction, form the core bootstrapping steps.

By encoding chosen lookup table (LUT) entries in the coefficients of the
polynomial to be rotated, one can evaluate a LUT T over a ciphertext. Essen-
tially, this can be done by rotating the LUT polynomial by an encrypted amount
(corresponding to the input ciphertext) and extracting the entry corresponding
to the constant term. The result is a valid encryption that encodes the map-
ping from a LUT input to a desired LUT output. Thus, it allows computing
arbitrary univariate functions by evaluating a function in the plaintext domain
across all possible inputs and encoding them in the polynomial utilized during
bootstrapping. This generalized bootstrapping technique is called programmable
bootstrapping (PBS) [9,24]. Although the LUT needs to be relatively small to
maintain efficient cryptographic parameter sets, it has two main advantages.
First, it can encode any arbitrary univariate function, and second, it leads to a
significant performance boost as it replaces expensive operations that otherwise
would require multiple additions and multiplications.
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Original
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Approximations a Details d

Fig.1. Two DWT iterations. The signal s can be represented by the approximation
a'® (green) and the details d® (gray). (Color figure online)

2.2 The Discrete Wavelet Transform (DWT)

A Discrete Wavelet Transformation (DWT) is a process of splitting a discretely
sampled signal into two parts: the approximation and the detail coefficients [28].
The former is half of the size of the original signal but encompasses the most
interesting parts of it, while the latter contains information about the error
incurred by the approximation coefficients. When combining both the detail coef-
ficients and the approximation, one can reconstruct the original signal. Figure 1
illustrates the original signal on top and two applications of the DWT. In the

first level (LO), we deconstruct the signal on top to approximation (aés)) and

detail coefficients (d(()s)). Then, we can repeat the same process by treating the

L0 approximation as a new signal and thus get new approximation (ags)) and

detail coefficients (d(ls)) at level 1, and so on. In Fig. 1, notice that given the L1
approximation and detail coefficients along with the L0 detail coefficients, it is
sufficient for recovering the original signal.

There exist multiple wavelet families such as the Daubechy (Db) and the
Biorthogonal wavelets. A special case of Db wavelets is the Db-1 — or Haar —
wavelet. The core idea in all families is a matrix multiplication with a constant
matrix M, where M differs based on the family. Haar uses an orthogonal matrix
to obtain the approximation coefficients, which are calculated by averaging every
two consecutive points of the original signal. Biorthogonal, on the other hand,
relies on two different matrices, where the transpose of one matrix is the inverse
of the other. We delve more into the details of both wavelet families in Sect. 3.

Haar DWT. Haar applies a linear transformation to the input and generates the
approximation and detail coefficients. Starting with a signal s = [sq, ..., San—1]
of length 2N, the Haar DWT generates the approximation coefficients a =
[ag, - ..,an—1] and the detail coefficients d = [dy, . .., dn—_1], each with NV entries.
More specifically, the approximations are generated as ar = (sop + Sop+1)/2,
while the details are generated by dy = (s2r — s2r11)/2 for k € [0,...,N).
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It is easy to see that when the Haar DW'T is applied to a one-hot vector, it
results in yet another one-hot vector, albeit scaled. The index of the non-zero
value in the new vector is in fact the old index divided by 2, which is akin to
removing the last bit of the index. Therefore, we can simply truncate the value
to get rid of the least significant bits and end up with the value that we want to
do the lookup at. In effect, we have manually applied the Haar DW'T transform
to the one-hot vector using only truncation.

Biorthogonal DWT. The linear transformation in Haar can be seen as a matrix
multiplication with some public orthogonal matrix.? The Biorthogonal DWT
on the other hand, requires two different matrices, where the transpose of one
matrix is the inverse of the other, i.e., M{ = My . In this case, M; is used for
the decomposition of the signal, while M5 is used for the reconstruction.

In Haar, we observe that the points in the approximation coefficient are
averaged from the input signal S and the details are complementary in order to
be able to recover S. Conversely, in Biorthogonal wavelets, the approximations
and details are computed with weighted averages [28]. Since the Biorthogonal
wavelets have more non-zero filters, when the transform is applied to a one-hot
vector, the result is not a one-hot vector. Even so, we can manually calculate
the resulting vector as it is a weighted average of the two consecutive values
starting at the most significant bits of the original index. The weights depend
on the least significant bits of the original index; hence, by splitting the original
index into the MSBs and LSBs, we can calculate the transformed vector.

3 The Ripple Framework

As mentioned in Sect. 2.1, a key feature of the CGGI cryptosystem is the abil-
ity to evaluate a lookup table with the programmable bootstrapping mecha-
nism. Complex non-linear functions can now be encoded as LUTs and evaluated
homomorphically, eliminating the need to perform expensive polynomial approx-
imations. Unfortunately, as the size of the LUT grows, this technique becomes
prohibitively expensive (recall footnote 1), and thus many non-linearities are
impossible to evaluate in applications that require high precision.

We address this challenge by utilizing the DWT to reduce the size of LUTs
without sacrificing correctness. Ripple is the first framework to explore wavelet
approximations for FHE as a way to accelerate programmable bootstrapping.
Our key observation is that if we apply the DWT to signals that represent
smooth functions (e.g., logarithm, square root, sigmoid, etc.), then the detail
coefficients are relatively small compared to the approximation coefficients. This
means that our approximation is sufficient to represent the original signal and
we can completely disregard the detail coefficients while maintaining a minimal
error relative to the original function. Utilizing this observation, we can zero
out the details in Fig. 1, and by just applying the DWT a single time, we can

2 An orthogonal matrix M has the property that MM7T = I, where I is the identity
matrix. A matrix M is orthogonal if its transpose (M7 is equal to its inverse (M ~1).
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halve the size of the LUT. This signal might still be quite big, so we can repeat
the same process and half the LUT size even further. Of course, as this is an
approximation, the smaller the LUT size, the higher the error we might have.
With Ripple, however, these errors are marginal as we show in Sect. 5.

Ripple’s Key Observation. The core idea behind Ripple relies on the orthog-
onality or biorthogonality of the DWT transform applied to the inner product.
Consider the fact that the inner product between two vectors v and wu is equal
to the product between the transpose of the first vector and the second, i.e.,
(v,u) = vT - u. As described in Sect. 2.2, the DWT of both v and w is a multi-
plication with a matrix M, which we can view as DWT(v) = M - v. This results

in a vector [%], where a(”) and d(*) represent the approximation and detail

coefficients of v, respectively. Similarly for DWT(u) = M - u we get a(*) and
d™) . Observe that using orthogonality,

(DWT (v), DWT(w)) = (M -v, M -u) = (M -v)T - M -u

1)
=T M M u=v" - T-u=v" u=(v,u). (

We remark that the inner product of two vectors is equal to the sum of the
inner product of the approximation coefficients and the inner product of the
detail coefficients of the DWT transforms of the vectors, as follows:

a® a®)
(M-v)T - M-u= [w]T . [W} = a7 . g L g)T | g(u),

In Ripple, we represent (v, u) as (a(*),a™) + (d®),d™) which is approxi-
mately equal to the inner product of their respective approximation coefficient
vectors a(¥) and a(*). By dropping the detail coefficients, we get the approx-
imation of the original inner product via the inner product of the approxi-
mation coefficients, which is key to our proposed lookup methodology. Thus,
(v,u) = (DWT(v),DWT(u)) ~ (a®,a™).

This works nicely for orthogonal DWTs, but for the Biorthogonal DWT, we
need extra considerations. Instead of applying the same transformation to both
v and u, we have to apply the decomposition matrix to one, while applying the
reconstruction matrix to the other. Then, by biorthogonality of these matrices,
the same observation holds and (v, u) = (M) - v, My - u) = (a(*),a®).

Applying Our Observation to the Encrypted Domain. In Eq. (1), we
can view v as a one-hot vector where the non-zero value is at the index of
the ciphertext and w as a public LUT T” that approximates the full-precision
LUT T. Then, the inner product (v,u) will yield the lookup value in table
T’ at the non-zero index of v, which is the lookup value at the ciphertext. In
particular, (a(),a(™) will be an approximation of this lookup. Notably, the
approximation of the LUT is easy to calculate since it is in plaintext, while we
need a way to efficiently calculate the approximation vector of the one-hot vector
that represents the ciphertext. Fortunately, it turns out that this approximation
vector can be calculated by a weighted sum of lookups.
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Of course, the aforementioned technique is not practical in FHE, but pro-
grammable bootstrapping (PBS) can be leveraged for this purpose. Starting with
a ciphertext x’ (which is a truncated version of the full-precision x) we can eval-
uate the LUT T on 2’ homomorphically and obtain ciphertext 3’ = T"(z’). The
novelty of Ripple lies in that 2’ has fewer bits than x and 7" has fewer entries
than T, while ¢’ is a close approximation to y = T'(x). Ripple focuses on the
two most popular DWT families: Haar and Biorthogonal, which are both viable
and constitute a tradeoff between accuracy and latency (as discussed in Sect. 5).
In the following subsections, we describe how Ripple formulates and evaluates
encrypted lookup tables with each of the two DWT families.

x MSB  mq y1 =T (m1) 0
W bits J bits WV bits
( ) T ( l ) - > (W bits)

J bits

T ma =mi — 1 Y
(W bits) Ty LSB 2(J bitls) o vz =T(me) -t
. (W bits)
¢ (W/2 bits) b=l ont B
' Y y o
e v LSB (d bits) l
(W/2 bits) (W bits) v IS
Tz (W — J bits) ’ (W bits)
(/2 bits) | MSB & :(é . ‘;;)* Be
(a) Haar DWT. (b) Biorthogonal DWT.

Fig.2. DWT LUT approximating y = T'(z). In (a), the approximation computes y =
Ti(z") || To(z"), where 2’ = (z > W/2). In (b), we compute y = T'(m1) - €1 + T’ (m2) - £2,
where my = (x > (W — J)), ma = m1 — 1, £ =  mod 2W=J 4y =0 a1+ B1, and
ly =L - as + B2 with ai, as, f1, B2 being public scalars.

3.1 PBS with Haar DWT

Let W be the bit width of our input radix-decomposed ciphertext vector, where
each ciphertext encodes a plaintext digit (as explained in Sect.2). Naturally,
we can represent the function that we want to approximate as a LUT T that
maps k-bit inputs to k-bit outputs. For simplicity, we can assume that k = W.
Creating a LUT of 2" entries, however, is not always feasible. For instance,
W = 64 requires generating and storing 264 LUT entries, which is completely
impractical. A straightforward option is to truncate our input ciphertexts by J
bits and limit 7" to only have 2"~/ entries and operate over W — J bit inputs
and outputs. Notably, this truncation simply involves deleting encrypted digits
and corresponds exactly to truncation in the plaintext domain. As it turns out,
this approximation incurs high errors and is not sufficient for most applications.

Ripple takes a different approach: First, we apply the Haar DWT over the
public LUT T iteratively J times by dropping the detail coefficients to end
up with an approximation 7" of our original function. The new table T’ now
operates over W — J bits. Observe, however, that our input ciphertext vector
is still W-bits long. To index T”, Ripple truncates the vector to encode W — J
bits so it can be used during PBS to index the LUT. As long as W — J bits is a
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multiple of the size of our radix digits, the truncation is free. Conveniently, this
is the index needed for the approximation vector a(*). This results in an output
ciphertext vector also encoding W — J bits.

As we started with an W-bit input ciphertext vector, after approximating the
function we need to end up with a W-bit output as well. To do so, we repeat the
same process twice by building two LUTs (T} and 7T3); one for the LSBs and one
for the MSBs. In both cases, the truncated W — J bit input ciphertext vector is
used to index the LUT. This is illustrated in Fig. 2a, where J = W/2. Note that
each of T1 and T5 has W/2 bits and thus takes approximately half the time to be
evaluated compared to a W-bit LUT (which is not even possible to practically
create for large W). Additionally, both tables can be evaluated in parallel and
finally, the two outputs can be concatenated to get the final encrypted result
encoding W bits of data.

We remark that, in certain functions, we only need to evaluate the LSB table
and we can avoid evaluating 75 altogether. For instance, any function where the
output can fit in less than half the bit width, such as the square root or Sigmoid
activation function, only needs a single LUT evaluation.

3.2 PBS with Biorthogonal DWT

The Haar DWT is quite efficient since its approximation vector is again one-hot
and hence only has a single approximation that needs to be looked up; however,
this benefit also comes at a limitation. Namely, all the points that have the
same most significant bits evaluate to the same value. The Biorthogonal DWT
overcomes this challenge by making use of the least significant bits of the input
ciphertext, as well as the most significant bits. This comes at the cost of doing
two lookups followed by two multiplications and an addition, but results in more
accurate approximations. In the end, we get significantly better compression, in
fact, the same compression used in JPEG2000 [27].

The Biorthogonal DWT follows a similar approach as the Haar DWT, yet
incurs more operations as its linear transformation computes weighted averages.
Contrary to Haar where we had to evaluate two separate LUTSs, in Biorthogonal
wavelets we need to evaluate a single LUT (T"”) across two different indices. We
observe that this can also be done using two LUTSs, where, as an optimization,
the second table T5 equals the first one (77) shifted by an index: To(x) = Ty (x+1
mod |T4]), where |Ty| refers to the size of T;.

Figure 2b demonstrates how Ripple approximates an LUT with Biorthogonal
wavelets. First, we extract the most significant bits (MSBs) from the input to
be used for the lookup, and the least significant bits (LSBs), which will be
used to combine the lookups via their weighted average. Starting with a W-bit
input x, we split it into two parts of J and W — J bits, which we call m; and ¢,
respectively. Here, J is equal to the depth of the DWT applied. The former (m;)
represents the J MSBs of = and it serves two purposes. First, from m1, we create
mo as mq — 1. Then, we use both my and m» to index two consecutive entries of
the DWT-encoded LUT and end up with ciphertexts T”(my) and T”(mz). The
latter (¢) represents the W — J LSBs of x and is used to compute two linear
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expressions with public constant values a1, oo, 31, and (B2 as €1 = £-aq + 31, and
ly = L-a+ (. These values come from the non-zero entries of the approximation
coefficients vector a("): a; = —1, ap = 1, f; = 27, and f; = 0. Lastly, we
multiply 7”(my) by ¢; and T'(mg) by ¢3 computing the inner product in the
DWT domain, so we go back to W bits and sum the two ciphertexts together
to get our final output.

We are usually able to compress the LUT for the Biorthogonal DWT into J
bits as these values do not have to cover the entire output range, unlike Haar
which requires a W-bit LUT output. However, when this is not possible, we
employ a similar method of evaluating multiple LUTSs in parallel with the same
J-bit inputs and combine the J-bit outputs to form a higher bit-width result.

4 Function-Centric Compression

In this Section, we investigate two optimizations to further reduce the LUT sizes
of specific classes of non-linear functions; namely, we propose optimizations for
symmetrical functions and functions where the complex non-linearity converges
to some value outside a certain interval.

Symmetrical Functions. First, we exploit the symmetry of certain functions
to further reduce the LUT size. This class includes common functions in machine
learning, such as reciprocal, sigmoid (o), hyperbolic tangent (tanh), and the error
function (erf). More formally, these functions exhibit the following property:
L = -1 5(—2) =1-0(2), tanh(—2z) = —tanh(z) and erf(—z) = —erf().
Therefore, if we know the sign of the input, we can evaluate the function strictly
in the positive domain and then use this intermediate result to calculate the
actual value by taking into account the sign of the input.

To apply this technique, the function must exhibit symmetry around zero, but
we note that any symmetric function can be shifted to exhibit this required sym-
metry. For example, sigmoid becomes symmetric around zero after it is moved
down on the y-axis by 0.5: o(—z) — 0.5 = —(o(z) — 0.5). We stress that this
technique easily generalizes to any symmetric function and reduces the size of
the LUT by 2x as only half the domain needs to be evaluated.

In general, we call a function f(z) symmetric around the symmetry point
(xsymv ysym) if f(xsym_x) —Ysym = Csyn* (f(xsym+x) _ysym)a for symmetry constant
Csyn- The symmetry constant defines the symmetry relationship; for instance if
Csyn = 1 then the function is reflected along the y-axis (like f(x) = z?) while
if csyn = —1 then the function is reflected along both the x and y axes (like
f(x) = tanh(z)). It is easy to see that, given f(z) at some value xgyy + 0, we can
compute f at Ty, — 6 simply by noting:

f(msym - 6) = f(xsym - 5) — Ysym + Ysym = Csym * (f(l‘sym + 6) - ysym) + Ysym
= Csym * f(xsym + 5) + (1 - csym) * Ysym-

Figure 3 demonstrates a function with Zsyn, Ysym and ceyn = —1. Notice that for
sigmoid, we have Zgym = 0,¥Ysyn = 0.5 and cgyn = —1, hence we get o(—z) =
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—o(x) 4+ 1. Further, if we set g(z) = f(Zsyn + ) and use the absolute value
|z — xgyn| and the condition (z — Tgym < 0):

f(m) = g(x - xsym) = {Q(I B stm) L — Tsym > 07

Coyn * 9(Tsym — @) + (1 — Coyn) - Ysyn T — Tgyn < 0.

Note that this equation holds for all positive or negative values x. Thus, we build
our LUT based on g(z); we can use this equation to evaluate f at any value x.

Convergent Functions. We also optimize the class of functions that can be
approximated by polynomials outside a region. We refer to these functions as
piecewise functions and we specifically study the case where we have three inter-
vals: two that we approximate with polynomials and an interval defined by a
non-polynomial function that we evaluate with a LUT. Note that this technique
can be generalized to any number of intervals.

A special case of this includes functions that are nearly constant outside a
certain bounded interval. Coincidentally, sigmoid, tanh, and erf are also promi-
nent examples of this. For instance, sigmoid is nearly 1 above a threshold of 8
and nearly 0 below —8 with less than 0.0003 of maximum difference. For tanh,
the maximum difference is 0.0003 outside [—4, 4], while for erf the difference is
1.54 - 108 outside the same interval as tanh.

1
Uright === == f - m e e e e e e e e - - — o g

Tleft !
1

Fig. 3. Sigmoid like function where the symmetry point is zsym and yYsym. Tiers and
Zright are the convergence bounds for yrignt and yieft, respectively.

Given a function f(z) and an interval [Zieft,Zrignt], We say this func-
tion is convergent if there exists a piecewise polynomial p(x) such that for
T & [Treer, Trigne], |f(2) — p(x)| < € for a small constant e. To approximate
such convergent functions, we can check whether the input is inside the interval
and select the lookup value T'(z) or the polynomial value accordingly as:

f(x) = (@ € [T1ett, Trignt]) - T(x) + p(z).

Convergent Symmetrical Functions. Bringing together optimizations for
symmetrical and convergent functions, we devise a function evaluation protocol
in Algorithm 1 (note that only f(x) — p(z) needs to be symmetric). We start
by extracting the most significant bit, which is the sign bit of ct (called 1tz for
“less than zero” since this bit is 0 for positive values and 1 for negative). Then we
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Algorithm 1. LUT Evaluation for Symmetric Convergent Functions

Public Inputs: func > Function to be evaluated
Xsym, ysym > X and Y coordinates of the symmetry point
csym > Symmetry coefficient
threshold > LUT boundary

Private Input: ct > Encrypted input value

1: procedure EVALUATE(func, xsym, ysym, csym, ct)

2 ct < ct - xsym > Shift to symmetry point
3 1tz «— EXTRACTSIGN(ct) > Get the sign bit
4 sign« 1-2 -1tz > Calculate the sign as -1 or 1
5: abs < sign - ct > Compute the absolute value
6: eval «— PBs(abs) > The LUT evaluation on abs
7 sym < (1+1tz- (csym — 1)) - eval + 1tz - (1 — csym) - ysym

8: check «— CMP(abs, threshold) > Is abs in LUT domain?
9: poly <« PoLy(abs, 1tz, check) > Polynomial evaluation
10: return check - sym + poly

calculate the sign as -1 (if 1tz is 1) or 1 (if 1tz is 0) and the absolute value (abs
in line 5 in Algorithm 1) of the ct by multiplying it by the sign. Next, we use the
LUT method to look up the function value at abs. Note that this could be the
desired DWT LUT and involves truncation and multiplication operations. We
bring it all together using the symmetry of the function (in line 7 in Algorithm 1).
Next, we check if the abs is in the LUT domain. Notice that since the function
is symmetric, we only have to check one end of [xleft,xright], which we call
threshold = Zrignt — Tsyn- Then we evaluate the polynomial approximation at
abs. Finally, we merge the results using the convergence property.

For example, to evaluate sigmoid, we define PBs(abs) := o(abs) for abs €
[0,8], CMmP(abs, threshold) := abs < threshold, and PoLy(abs, 1tz, check)
= (1 — check) - (1 —1tz). Then we call EVALUATE with Zgyn = 0, Ysyn = 0.5 and
Csymn = —1. On the other hand, for a non-convergent symmetrical function like
reciprocal f(z) = %, we set CMP(...) =1 and Pory(...) = 0.

5 Experimental Evaluation

We implemented Ripple using the state-of-the-art TFHE-rs [32] library. In our
experiments, we compare Ripple against HELM [16], Romeo [18], and Google
Transpiler [15], as well as baseline implementations in TFHE-rs that use LUTs
configured for the full bit width of each application. For Ripple, we implemented
three variants: (a) a quantized version that is similar to the baseline, but, in this
case, we truncate before applying the LUTSs in a similar way to preparing inputs
for a Haar DWT lookup, (b) a Haar DWT variant, and (c¢) a Biorthogonal DWT
variant. It is expected that the quantized version will outperform both the Haar
and Biorthogonal DWT-encoded LUTs in terms of latency, with the last two
incurring significantly fewer errors.
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Table 1. Overview of runtime improvement (in seconds) and mean absolute error
(MAE) over non-linear operations for Ripple using quantization, Haar, and Biorthog-
onal wavelets. Our baseline uses LUT sizes (T) to be equal to the word size (W), while
the Ripple quantized version, as well as the Haar and Biorthogonal DWT variants, use
approximations with T bits; k represents the precision.

Op. W k T Base Quant. Haar Biortho.
Time MAE Time MAE Time MAE
N 9.5 24 2793 2.3 1.37e-3 3.1 1925
e 9.5 24 2.45e4 2.4 1.26e-4 3.1 8.62e-6
N 181 4.8 2.19e4 24 1.14e4 3.1 8.24e-6
logz 24 16 12 9.5 24 1.73e-3 2.3 8.6le4 3.1 7.42e-6
o(x)* 19.0 4.8 1.97e-2 2.3  6.37e-5 3.3  6.73e-6
erf(x)* 9.4 24 3.96e-3 2.4  1.28e-4 3.3 8.8%-6
tanh(z)* 9.5 24 3.96e-3 24 1.28e4 3.3 9.4le-6
NG N/A 32 6.93e4 3.2 3.45e-4 4.2 1.35e-6
e N/A 32 1.57e5 3.2  8.03e-6 4.2 5.37e-7
N N/A 6.3 1.49e-5 3.2 7.70e-6 4.1  5.07e-7
logz 32 20 16 N/A 3.2 3.99e-4 3.2 1.47e-4 4.1 1.3le4
o(x)* N/A 6.3 7.68e-6 3.2  3.97e-6 4.3  4.20e-7
erf(z)” N/A 31 1.54e5 3.2 7.95e-6 4.3 5.3le-7
tanh(z)* N/A 32 1.54e5 3.2 709le-6 4.3  5.19e-7

We perform a series of experiments varying from simple non-linear func-
tions to more elaborate applications (depicted in Appendix A). We utilized a
c5.12xlarge AWS EC2 instance with 48 virtual cores running Ubuntu 22.04.
For all TFHE-rs modes, we used a parameter set corresponding to approxi-
mately 128 bits of security [2]. Specifically, we utilized parameters that allow
ciphertexts to hold two data bits and two bits of carry used for intermediate
computations. All radix ciphertexts are constructed as vectors of ciphertexts
constructed with these parameters. Also, in our experiments, the LUT genera-
tions are pre-computed by the server.

Ripple Approximations. In Table1l we compare the Ripple approximations
with both the Haar and Biorthogonal wavelet families against a baseline TFHE-
rs implementation (using a non-DWT LUT with the full bit-width) and also a
quantized (i.e., approximation) version that truncates half of the bit-width of the
inputs. Specifically, we consider non-linear functions including reciprocal, square
root, and the sigmoid activation function. Our comparisons emphasize the time
to evaluate each non-linear function in seconds as well as the mean absolute error
(MAE), which is the sum of absolute errors divided by the number of samples.
We perform three blocks of experiments for the same functions with different
combinations of word sizes (W), precision values (k), and LUT sizes (T). We
experimentally observed that setting T to W/2 yields the fastest runtime while
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minimizing the MAE. We set the precision k between the T and W because
otherwise, quantization misses all the information in the fractional bits.

In Tablel, we observe that the runtime of all quantization, Haar DWT,
and Biorthogonal DWT is faster than baseline, and increasingly so as the word
size increases. This is intuitive as the LUTs are smaller, and therefore there are
fewer PBS operations across the radix ciphertext. In the case of the Biorthogonal
DWT, the extra computation associated with the multi-bit additions and multi-
plications is offset by the parallelism inherent in the algorithm. We observe that,
for word size 24, the speedup is around to 3 —4x, and for word size 32, the base-
line is not possible to evaluate on our experimental server, as the RAM required
to generate the encrypted LUTs exceeds 500 gigabytes for 32-bit tables. The
Haar DWT is usually the same speed as quantization as both involve reducing
the bit-width of the input by half and evaluating an LUT, but it is more accu-
rate by halving the error observed. On the other hand, the Biorthogonal DWT
is slower than the other two due to the overhead of multiplications, however, it
is an order of magnitude more accurate.

107X, —+— Quantization 102 7\\. 10 \.\\
B Haar AR 102 2
- RN Eie N T
& 0N T 5 N NG
104 10 \?\, NN 10 \{, '\'\.\
10 N s . 107 IS
4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
Compressed LUT Size Compressed LUT Size Compressed LUT Size Compressed LUT Size
(a) Sqrt. (b) Reciprocal. (c) Reciprocal Sqrt. (d) Logarithm.
107 T
N B
1072 53 0, 1072 30,
s WS b ol N
g 1o A\ ol S 10 NS oy
& S & N T
104 \\7 e 104 \'\ N
NN NS BN N
5 I o s . .
10~ NonsNININ 105 NS ot Sty
4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
Compressed LUT Size Compressed LUT Size Compressed LUT Size
(e) Sigmoid. (f) Error Function. (g) Tanh.

Fig. 4. Approximation errors for multiple non-linear functions for varying compressed
LUT sizes with Ripple.

DWT Compression. To better understand the accuracy difference between
quantization and various DWT methods (i.e., Haar and Biorthogonal), we plot
the average approximation errors for various compressed LUT sizes in Fig. 4.
We also evaluate a third DWT variant, Db-2 (which is the second wavelet after
Haar in the Debauchies family of wavelets), to illustrate the benefits of Haar
and Biorthogonal. We start with a word size of 20 and a precision of 16 and
proceed to compress the tables to varying sizes from 4 to 18 bits (the x-axes).
Interestingly, the errors vary based on the approximated non-linear function.
From the trend, it is clear that the Haar DWT is twice as accurate as quan-
tization, while Db-2 and Biorthogonal DWTs are (in most cases) orders of mag-
nitude more accurate. The difference in accuracy is most drastic around half the
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word size, which is 10 in this case. As the LUT size increases, the error of quan-
tization and Haar DWT decreases linearly to the LUT size, while the respective
errors of Db-2 and Biorthogonal DWTs decay exponentially to the LUT size
until we reach a LUT size of 10-14 bits. The accuracy of the Biorthogonal DWT
seems almost equivalent to Db-2 DWT and better by a factor of approximately
2 after some compression threshold. This suggests that Biorthogonal DWT gives
better accuracy for the functions under evaluation.

Biorthogonal’s superior accuracy, coupled with the fact that Db-2 is more
expensive to evaluate due to an increased number of LUT evaluations, leads us
to discard it altogether. On the other hand, since Biorthogonal is more expensive
than Haar, we can evaluate the trade-off based on our application. If we need
higher accuracy, we can go with Biorthogonal DWT, while if speed is of the
essence, we can choose Haar DW'T.

We observe the trends across the board, however, there are some differences
between functions. For square root (Fig. 4a), Db-2 starts performing very poorly
as the compressed LUT size decreases past 14. Reciprocal (Fig.4b) and recip-
rocal square root (Fig. 4c) follow this trend, except for sizes 15-18 we have that
Haar and quantization are more accurate than Biorthogonal and Db-2. Loga-
rithm (Fig. 4d), sigmoid (o, Fig.4e), and tanh (Fig.4g) follow the same trend
with slight boundary effects (i.e., divergent behavior around the boundaries) for
compressed LUT sizes over 16. Error function (Fig.4f) experiences boundary
effects when DWT is applied an odd number of times, hence we get a zigzag
pattern for the error for compressed LUT sizes between 10 and 20 bits. Other
functions experience this boundary effect for compressed LUTs with larger bit
sizes, resulting in a paradoxically higher error when the compressed LUT size
is above 16. The boundary effects can be attributed to DWT filters wrapping
around the columns of the DWT matrix.

Table 2. Overview of bounded symmetrical function optimizations. Baseline: we com-
press a LUT with size equal to the word size (W) to LUT size (T); Optimization: we
compress LUT with size (T+3) to LUT size (T). We report the maximum absolute
€erTor.

Op. W Haar Bior.
Baseline Opt.  Diff. Baseline Opt.  Diff.
o(x) 7.82e-3 2.57e-4  30x 3.60e-5 1.65e-5 2.2x
erf(x) 24 16 12 3.52¢-2 1.11e-3 32X 3.34e-4  3.43e-5 9.7x
tanh(z) 3.12e-2  9.82e-4 32x 2.67e-4 3.0le-5 8.9x%
o(x) 7.81e-3 1.6le-5 485X 3.16e-5 1.04e-6 30x
erf(x) 32 20 16 3.52e-2 6.93e-5 508x 3.16e-4 2.15e-6 147x
tanh(z) 3.12e-2  6.15e-5 507 2.51e-4  1.90e-6 132x

Function-Centric Compression. In Table2 we compare Ripple’s optimiza-
tions for convergent symmetrical functions with both Haar and Biorthogonal
wavelet families, against a baseline without the optimizations. We start with a
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word size equal to 24 bits (or 32 bits) and using the optimizations, we bring this
down to 19 bits (or 23 bits), respectively, by reducing the domain of the inte-
ger part of the LUT from [—256,256] to [0, 8] (or from [—2048,2048] to [0, 8]).
This means that we now have 19 (or 23 bits) to represent a significantly smaller
domain. We compare the maximum absolute error observed using the baseline
and optimizations. Specifically, we observe a large decrease in the error for Haar
DWT on the order of 30x for 24 bits and 500x for 32 bits, while the decrease
for Biorthogonal is about 10x for 24 bits and 100x for 32 bits, respectively. The
improvement in Biorthogonal is lower due to its already remarkable compression
capabilities. Given the great increase in accuracy, applying these optimizations
is beneficial when the computational overhead is acceptable.

6 Related Works

Ducas and Micciancio [12] first proposed the idea of using LUTSs to evaluate
arbitrary binary gates in FHE, while Chillotti et al. [8] extended this to eval-
uate arbitrary function evaluation as a tree of leveled multiplexers. Adoption
was very limited, however, as it required expressing programs as deterministic
automata and needed the control inputs of the multiplexers to be fresh cipher-
texts (i.e., could not perform computation with them before to multiplexer). The
programmable bootstrapping technique (PBS) introduced in [9] allows for effi-
cient and general-purpose LUT evaluation. HELM [16] built on this technique
and introduced a framework for automated conversion from Verilog hardware
description language (HDL) to encrypted circuits. HELM employs three modes
of operation, one that operates over binary gates, one that operates over inte-
gers and utilizes secure LUT evaluations, and a mixed mode that operates over
binary circuits and “bridges” to integers to securely evaluate a LUT and then
“bridges” back to the binary domain. However, HELM is only compatible with
low-precision LUTSs as bridging from an integer to bits requires multiple N to
1 LUTs. Conversely, Ripple has high precision and requires smaller LUTs to
encode the same amount of information with negligible errors.

Romeo [18] and Google Transpiler [15] follow a similar approach as HELM, in
that of relying on an HDL and logic synthesis. The latter, provides two different
front-ends, one based on Yosys [30] and another one based on Google XLS [14].
Both works, however, rely on Boolean circuits and neither of them supports
LUTs, resulting in costly operations for evaluating non-linear functions.

In a different line of work, Chung et al. [10] evaluate LUTs under FHE with
the BGV, BFV, and CKKS cryptosystems. Their idea is to transform LUTSs into
low-degree multivariate polynomials and utilize the packing (or batching) capa-
bilities of the aforementioned cryptosystems to simultaneously evaluate multiple
LUTs. They demonstrate their approach by evaluating AES on an A-100 GPU in
over 9.5 min (while batching 2048 ciphertexts). Although the amortized cost per
ciphertext is under a second, the latency of this approach is far from practical.
On the other hand, Ripple shows a way to accelerate LUT evaluation without
sacrificing correctness and is orthogonal to the underlying cryptosystem. As a
matter of fact, our techniques introduced in Ripple can be extended for BGV,
BFV, and CKKS as well and further accelerate LUT evaluation.
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7 Concluding Remarks

In this work, we introduce the Ripple framework that leverages different approx-
imation techniques based on discrete wavelet transform families to reduce the
number of homomorphic LUT entries in PBS. Previous works focused either on
polynomial approximations or on full-size LUTSs; these techniques incur high-
performance overheads when high precision is required while the former also
introduced non-negligible errors. Ripple, on the other hand, maintains high accu-
racy while it reduces the LUT sizes. Our empirical evaluations have shown sig-
nificant error reduction compared to plain quantization methods across various
non-linear functions, varying from square root and reciprocal computations to
more elaborate sigmoid and hyperbolic tangent functions. A key benefit of Ripple
is that it improves performance for several realistic benchmarks without sacrific-
ing accuracy, compared to equivalent applications that utilize the full bit widths
and incur slower LUT evaluation runtimes.

A Evaluation of Applications

Euclidean Distance. This application constitutes a formula for computing the
distance between two n-dimensional points w and v in the Euclidean space. It
has a plethora of applications from statistics and cluster analysis [4] to facial
recognition [25] and has drawn the interest of recent FHE works [17,29]. The
Euclidean distance can be computed by d(u,v) = />, (u; — v;)?; however,
computing non-linearities (e.g., the square root) in the encrypted domain is not
a trivial task. Thus, many prior FHE works resort to computing the squared
Euclidean distance and return it to the user, who needs to compute the final
square root in the clear.

[ Ripple (Quant.) I TFHE-rs (Baseline) [ Transpiler (Yosys)
[ Ripple (Haar) [ HELM (Arithmetic) [ Transpiler (XLS)
[ Ripple (Bior.) [ HELM (LBB) [0 Romeo

10°

1o Al HHH ZNM HH

Input Size (N)

Runtime (sec.)
=)
2

Fig. 5. Runtime comparisons for Euclidean distance between Ripple’s three variants
(Quantization, Haar DWT, and Biorthogonal DWT), TFHE-rs (baseline), HELM,
Google Transpiler, and Romeo for vectors of 32 and 64 elements. Note that HELM,
Transpiler, and Romeo only implement the squared Euclidean distance (i.e., without
the square root computation). We use a word size W of 32 bits for all frameworks.
Lastly, for 32 and 64 bits, TFHE-1s is not applicable (N/A) as the resources required
for the LUT are impractical (see footnote 1).
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For this benchmark, shown in Fig.5, we use W = 32 bits and use vector
lengths 32 and 64 to demonstrate scalability. All Ripple variants perform the full
Euclidean distance computation, while the related works compute the squared
Euclidean distance and neglect the final square root calculation. We note that the
TFHE-rs baseline is unable to evaluate the Euclidean distance with the required
wordsize due to the astronomical cost of building 32-bit encrypted LUTs. For
the Google Transpiler, we utilize both logic synthesis backends (i.e., Google
XLS and Yosys), which optimize the circuit in different ways. For HELM, we
utilize both LUT circuit modes (i.e., many-to-many LUTs for the arithmetic
mode and a circuit of 2:1 LUTs for “lossless bidirectional bridging” or LBB).
Overall, all three Ripple configurations outperform the related works in terms of
latency while still taking into account the square root operation. However, as we
observed in Table 1 the Haar and Biorthogonal approaches achieve significantly
better approximations than the quantization variant. Notably, Haar also exhibits
very competitive latencies across all non-linear functions and benchmarks.

10° B Ripple (Quant) I Ripple (Bior.) I HELM (Arithmetic) ~ E0 Transpiler (Yosys) [0 Romeo
23 Ripple (Haar) @ TFHE-rs (Baseline) @ HELM (LBB) [0 Transpiler (XLS)
3
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P
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Fig. 6. Runtime comparisons for the logistic regression application for 4 attributes
for word sizes of 16, 24, and 32 bits. For 24 bits, the arithmetic mode of HELM as
well as both modes of the Google Transpiler are not applicable (N/A) as they rely on
native word sizes. Lastly, for 32 bits, the TFHE-rs baseline is also N/A as the resources
required for the LUT are impractical (see footnote 1).

Logistic Regression. Logistic Regression (LR) is a widely studied application
in FHE from genome-wide association studies [23] to more generic applications
[17,29] such as natural language processing [1]. This construction is well-suited
to binary classification problems and is akin to a single-layer neural network
with a sigmoid activation. In Ripple, we use DWT-encoded LUTs to directly
compute the sigmoid activation function. The client decrypts the result, which
represents the probability that the encrypted input belongs to the first class.
We utilize the Palmer penguin dataset [21], where each input consists of eight
attributes that correspond to the physical characteristics of penguins (e.g., bill
length, flipper length, etc.). Since logistic regression is particularly well-suited for
binary classification, we remove entries in the dataset corresponding to the Chin-
strap species. Figure 6 showcases our LR inference benchmark for four attributes.
While our chosen dataset is composed of entries with eight attributes, we trun-
cate it to match the dimensions used in related works. We observe that Ripple is
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significantly faster than related works and also outperforms the TFHE-rs base-
line using the full-bit width. The only exception is W = 16 bits, where the base-
line outperforms the Biorthogonal DWT; however, for 24 bits, the Biorthogonal
DWT exhibits lower latency than the baseline.

To achieve high accuracy with our chosen dataset we utilize all eight
attributes with a wordsize of 24 bits. For this binary classification, all modes
achieve 100% accuracy; the baseline latency is 13.3s per inference, while the
Biorthogonal DWT variant classifies in 7.8s. Lastly, the quantized variant that
truncates half of the bits of the LUT input exhibits a latency of 6.2 s, while the
Haar DWT slightly outperforms this with a latency of approximately 6 s.
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