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Abstract
We study a simple first-order mean field game in which the coupling with the mean field is
only in the final time and gives an incentive for players to congregate. For a short enough time
horizon, the equilibrium is unique. We consider the process of iterating the game, taking the
final population distribution as the initial distribution in the next iteration. Restricting to one
dimension, we take this to be a model of coalition building for a population distributed over
some spectrum of opinions. Our main result states that, given a final coupling of the form
G(x,m) = ∫

ϕ(x − z)dm(z) where ϕ is a smooth, even, non-positive function of compact
support, then as the number of iterations goes to infinity the population tends to cluster into
discrete groups, which are spread out as a function of the size of the support of ϕ. We discuss
the potential implications of this result for real-world opinion dynamics and political systems.

Keywords Mean field games · Dynamical systems · Long time behavior · Polarization

1 Introduction

Mean field games describe the strategic Nash equilibrium behavior of large (continuum)
populations [3, 5–7, 14]. A typical mean field game of first order can be described by a
system of PDE as follows:

−∂su + H(x,∇xu) = F(x,m),

∂sm − ∇x · (
DpH(x,∇xu)m

) = 0,

m(x, 0) = m0(x), u(x, t) = G(x,m(x, t)).

(1.1)
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The Lasry-Lions monotonicity condition [14] can be defined as
∫

(F(x,m1) − F(x,m2)) d(m1 − m2)(x) ≥ 0 ∀m1,m2 ∈ P(Rd). (1.2)

It is well-known that when F and G satisfy the Lasry–Lions monotonicity condition, players
have an incentive to spreadout fromone another, and for this reasonone can expect uniqueness
of the equilibrium on an arbitrarily long time horizon t . If we assume, to the contrary, that F
and G exhibit an anti-monotonicity property, then players have an incentive to congregate,
i.e. form clusters. It is this latter case which interests us in the present study. In such a
case, we do not in general expect uniqueness of the equilibrium, unless the time horizon t is
sufficiently small. Cf. [2, 4, 8, 11] for some general results on existence, non-existence, and
non-uniqueness under this anti-monotonicity assumption.

As we seek to model cluster formation, a lack of uniqueness for the equilibrium presents a
problem. One way around this is to assume the game is played over a sufficiently small time
horizon, and then iterate, that is, take the final distribution of players to be our new initial
distribution, and then repeat this process overmany iterations. Such an iterative process can be
taken as a model for population dynamics resulting from a string of small strategic decisions
on the part of relatively myopic individuals. In the limit as the time horizon converges to zero,
it has been shown in [12] that there is a connection between such a process and the “best-reply
strategy,” in which players choose their moves based on a gradient descent along their own
cost function, via what is called “model predictive control.” See also [1]. In this paper, our
goal is to study the explicit long-term behavior of this iterative process. Assuming the cost to
player provides an incentive to congregate, we expect that after sufficiently many iterations,
we will see players accumulate in tighter and tighter clusters. Our results provide some
conditions under which we can prove that clustering occurs as well as numerical simulations
showing the location of the clusters for specific examples.

We are going to keep the focus on the clustering phenomenon described above and not
on abstract results for mean field games. For this reason we posit a simple game by making
the following assumptions. We will take F = 0, so that only the final cost depends on
the distribution. In addition, we will assume H(x, p) = 1

2 |p|2. Then the game becomes
equivalent to the following fixed point problem. Define

Jt (x, y,m) = |x − y|2
2t

+ G(x,m). (1.3)

Let ymt (x) := argmin Jt (x, ·,m). We will specify below conditions under which ymt (x) is a
well-defined (single-valued) function. Define Ft

m0
: P(Rd) → P(Rd) by

Ft
m0

(m) := ymt �m0, (1.4)

where m0 ∈ P(Rd) is the given initial measure. Then m is a Nash equilibrium if and only if
m = Ft

m0
(m). The interpretation of this game is that individuals are willing to make a small

move from their present state if and only if it will land them in a region of sufficiently high
population density to justify the move.

By taking t sufficiently small, we will be able to ensure that Ft
m0

has a unique fixed
point in the Wasserstein space P1(R

d), defined below. We now define the equilibrium map
Et : P1(R

d) → P1(R
d) to be the map which, for any given initial measure m0, outputs

the equilibrium measure m = Ft
m0

(m). We then wish to consider the following dynamical
system:

m0 is given,

mk+1 = Et (mk), k = 0, 1, 2, . . .
(1.5)
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The main theoretical contributions of this paper are as follows:

(1) We give a straightforward algorithm to reliably compute Et (m) by discretizing the mea-
sure, i.e. by putting an empirical measure in its place.

(2) We study the asymptotic behavior of the dynamical system (1.5). We prove that for
dimension d = 1 and couplings of the form G(x,m) = ∫

ϕ(x − y)dm(y), where ϕ is
an even, non-positive, smooth function of compact support, we can explicitly locate the
fixed points of Et and show that they are asymptotically stable.

The motivation behind this analysis is an interest in the implications for human behavior.
Humans instinctually like to form groups. People form groups of different sizes for numerous
reasons, but specifically, people join social groups to access grouping utility that is otherwise
unavailable to lone individuals. Social groups also benefit when new members join. A larger
platformcould provide the necessary leverage to accomplish a group’s goals.Moreover, group
membership transforms individuals by providing them with a group identity and inviting
members to take part in a shared belief system, and individuals affect their groups by adopting
organizational roles and relating to other members. How people group and their groups’
actions can completely change a population’s status quo and reshape society at large. Cf. [9,
10, 13, 16]. Given the impact of grouping behavior on society, how does a population arrange
itself considering only the individual proclivity to group?

The results of this paper show that a population may “cluster” into multiple discrete
groups, despite having no aversion whatsoever to one another. Specifically, assume that
G(x,m) = ∫

ϕ(x−y)dm(y) is as in point (2) above and that the initial population distribution
is sufficiently spread out over an interval compared to the radius of the support of ϕ. Then
after a sufficient number of iterations of the game, players will myopically cluster into small
clusters sufficiently separated from each other so that they will not see any incentive to
move toward each other. For example, consider a population whose ideological positions on
an issue are distributed over some interval (say, between “left” and “right”). If the initial
distribution is sufficiently spread out, then over time the incentive to congregate will in fact
induce “polarization,” i.e. the formation of two distinct groups with no incentive to move
toward one another. This occurs despite the fact that no individual has any preference for
moving one direction over another; they are driven solely by the incentive to find themselves
in a crowded region. Somewhat counter-intuitively, the desire to maximize crowd size results
in multiple insular groups rather than all players congregating in the middle. We find this to
be a thought-provoking result that may have implications for social science.

In the remainder of this introduction, we introduce some notation and assumptions on the
data which will hold throughout this study. Then in Sect. 2 we provide a simple proof that
the problem is well-posed and give an algorithm to explicitly compute solutions when the
initial condition is a given discrete (empirical) measure. In Sect. 3 we study the dynamical
system (1.5) over the set of discretemeasures; this section contains our key theoretical results.
Section4 discusses numerical simulations that illustrate our main results. Finally, we give
some concluding remarks in Sect. 5.

1.1 Notation and Assumptions

We denote by P1(R
d) the set of all Borel probability measures m on R

d such that the first
moment

∫ |x | dm(x) is finite. It will be endowed with the Wasserstein metric

W1(μ, ν) = inf

{∫
|x − y| dπ(x, y) : π ∈ �(μ, ν)

}

(1.6)
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where �(μ, ν) denotes the set of all couplings between μ and ν. By Kantorovitch duality,
we also have the characterization

W1(μ, ν) = sup

{∫
φd(μ − ν) : ‖∇φ‖∞ ≤ 1

}

. (1.7)

When A and B are symmetric matrices, we write A ≥ B to mean that A − B is positive
semi-definite, i.e. all of its eigenvalues are non-negative.

The basic assumptions on the data are given here:

Assumption 1.1 G : Rd ×P1(R
d) → R is continuous in both variables, twice differentiable

with respect to the variable x ∈ R
d . DxG(x,m) is L1-Lipschitz with respect to the measure

variable in the W1 metric, i.e.

|DxG(x,m) − DxG(x, m̃)| ≤ L1W1(m, m̃) ∀x ∈ R
d , ∀m, m̃ ∈ P1(R

d). (1.8)

Both DxG and D2
xxG are bounded. In particular, there exists λ1(G) ≥ 0 such that

D2
xxG(x,m) + λ1(G)I ≥ 0 for all x,m.

2 Computation of Solutions

The purpose of this section is to propose an algorithm to compute Et (m), based on discretiza-
tion of the measure. To begin with, however, we prove that our problem is indeed well-posed.
We then provide a simple algorithm for computing solutions whenm is an empirical measure,
i.e. a sum of Dirac masses.

2.1 Well-posedness

Theorem 2.1 Assume 0 < t∗ < 1
λ1(G)+L1

, where L1 and λ1(G) are defined in Assump-
tion 1.1. If 0 < t ≤ t∗, then

(1) Jt (x, ·,m) has a unique minimizer for every x and m, hence ymt (x) and Ft
m0

(m) are
well-defined;

(2) Ft
m0

is a contraction on P1(R
d) with Lipschitz constant α = t L1

1−tλ1(G)
< 1 and therefore

has a unique fixed point, so that Et is well-defined;
(3) Et is continuous with the respect to the Wasserstein metric, i.e. if {m0,n} is a sequence

in P1(R
d) such that W1(m0,n,m0) → 0, then W1

(
Et (m0,n), Et (m0)

) → 0.

Proof Step 1
To find the minimizer for Jt (x, ·,m) we start by taking the derivative with respect to y

and setting it equal to 0

Dy[Jt (x, y,m)] = y − x

t
+ DyG(y,m) = 0 (2.1)

So we see there is a critical point:

y + t DyG(y,m) = x (2.2)

Then taking the 2nd derivative with respect to y and using 1.1, we see

D2
yy[Jt (x, y,m)] = 1

t
I + D2

yyG(y,m) ≥
(
1

t
− λ1(G)

)

I (2.3)
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where I is the identity matrix. Thus D2
yy[Jt (x, y,m)] is positive definite provided that 0 <

t ≤ t∗ < 1
λ1(G)

, and since 1
λ1(G)+L1

≤ 1
λ1(G)

this is satisfied. Then by the second derivative
test, the critical point in 2.2 is the unique minimizer.
Step 2

Let ϕ be Lipschitz with ‖ϕ‖Lip ≤ 1
∫

ϕd(ymt #m0−ym̃t #m0) =
∫

[ϕ(ymt (x))−ϕ(ym̃t (x))]dm0(x) ≤
∫

|ymt (x)−ym̃t (x)|dm0(x).

(2.4)
Using (2.2), we get

ymt − ym̃t = x − t DyG(ymt ,m) − x + t DyG(ym̃t , m̃)

= −t[DyG(ymt ,m) − DyG(ymt , m̃) + DyG(ymt , m̃) − DyG(ym̃t , m̃)] (2.5)

Taking the dot product of each side with ymt − ym̃t yields

|ymt − ym̃t |2 = −t[(ymt − ym̃t ) · (DyG(ymt ,m) − DyG(ymt , m̃))

+ (ymt − ym̃t ) · (DyG(ymt , m̃) − DyG(ym̃t , m̃))] (2.6)

Since (ymt − ym̃t ) · (DyG(ymt , m̃) − DyG(ym̃t , m̃)) ≥ −λ1(G)
∣
∣ymt − ym̃t

∣
∣2,

(1 − tλ1(G))|ymt − ym̃t |2 ≤ |t(ymt − ym̃t ) · (DyG(ymt ,m) − DyG(ymt , m̃))| (2.7)

Now we have

|ymt − ym̃t | ≤ t

1 − tλ1(G)
|DyG(ymt ,m) − DyG(ymt , m̃)| ≤ t L1

1 − tλ1(G)
W1(m, m̃) (2.8)

where L1 is the Lipschitz constant of DyG with respect to m in the W1 metric. Therefore,
∫

|ymt (x) − ym̃t (x)|dm0(x) ≤ t L1

1 − tλ1(G)
W1(m, m̃) (2.9)

So,

W1(y
m
t #m0, y

m̃
t #m0) = sup

||ϕ||Lip≤1

∫
ϕd(ymt #m0− ym̃t #m0) ≤ t L1

1 − tλ1(G)
W1(m, m̃) (2.10)

We deduce that for t ≤ t∗ < 1
λ1(G)+L1

, Ft
m0

is a contraction on P1(R
d)

Step 3
Set μ0 := Et (m0) and μn := Et (m0,n). By using the inverse function theorem on

Equation (2.2), we deduce that for 0 < t ≤ t∗ < 1
λ1(G)+L1

we have ∇ yμn
t (x) = (I +

t D2
yy G(yμn

t (x), μn))
−1. Since D2

yyG is bounded we get
∥
∥∇ yμn

t

∥
∥ < C0 such that C0 does

not depend on n, but only on t and the bound on D2
yyG.

Let φ such that ‖∇φ‖∞ ≤ 1. Then
∫

φd(μ0 − μn) =
∫

(
φ ◦ yμ0

t − φ ◦ yμn
)
dm0 +

∫
φ ◦ yμn

t d(m0 − mn)

≤
∫ ∥

∥yμ0
t − yμn

t

∥
∥ dm0 +

∫
φ ◦ yμn

t d(m0 − mn).

(2.11)

Since
∥
∥∇φ ◦ yμn

t

∥
∥∞ ≤ C0, by taking the supremum with respect to φ and applying (2.8) we

have

W1(μ0, μn) ≤ t L1

1 − tλ1(G)
W1(μ0, μn) + C0W1(m0,mn). (2.12)
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Since t ≤ t∗ and t∗L1
1−t∗λ1(G)

< 1, we let n → ∞ to conclude that μn converges to μ0 respect
to the W1 metric. �


2.2 Discretization

We will now discretize the problem by considering only empirical distributions as initial
measures. We then give an algorithm, based on standard Picard iteration, to compute the
equilibrium to any specified degree of accuracy. As empirical measures are dense in P1(R

d),
by part 3 of Theorem 2.1, our algorithm can in fact approximate the equilibrium for arbitrary
initial measures to any specified degree of accuracy.

Let us now suppose that the initial measure is an empirical distribution, i.e. m0 =∑N
j=1 a jδx j for some points x1, . . . , xN ∈ R

d and some non-negative numbers a j that
sum to 1. Then

Ft
m0

(m) = ymt �m0 =
N∑

j=1

a jδymt (x j ). (2.13)

It follows that any equilibrium m must itself be an empirical measure of the form m =∑N
j=1 a jδz j for some points z1, . . . , zN ∈ R

d . For any vector z = (z1, . . . , zN ) ∈ R
dN ,

define

ỹzt (x) = ymt (x) where m =
N∑

j=1

a jδz j ,

F̃ t
x(z) = ỹzt (x) := (ỹzt (x1), . . . , ỹ

z
t (xN )).

(2.14)

To find an equilibrium, it is enough to find a fixed point of F̃ t
x . To see this, note that if

z = F̃ t
x(z), then we have

Ft
m0

⎛

⎝
N∑

j=1

a jδz j

⎞

⎠ =
N∑

j=1

a jδỹzt (x j ) =
N∑

j=1

a jδz j . (2.15)

It is not hard to see that under the same hypotheses as in Theorem 2.1, F̃ t
x is a contraction

with Lipschitz constant α = t L1
1−tλ1(G)

with respect to the 1-norm ‖x‖1 = ∑n
j=1

∣
∣x j

∣
∣, and it

therefore has a unique fixed point, which we will denote

Ẽ t
N (x) := z = F̃ t

x(z). (2.16)

By classical theory, one can define

z0 = x,

zk+1 = F̃ t
x(zk)

(2.17)

and get zk → z = F̃ t
x(z). The error estimate is

‖zk − z‖ ≤ αn

1 − α

∥
∥
∥F̃ t

x(x) − x
∥
∥
∥ , (2.18)

where α ∈ (0, 1) is the Lipschitz constant for F̃ t
x .

Remark 2.2 Although the contractionmapping theorem allows us to take any initial condition
we like, we choose z0 = x for the following common sense reason. Since the time horizon
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is small, players cannot move much from their initial distribution, so the final distribution is
sure to be close to x; hence a good initial guess is x itself.

In principle, this simple algorithm is enough to solve our problem. However, we cannot
compute F̃ t

x(z) explicitly. We will now point out that it is enough to approximate F̃ t
x(z)

sufficiently well.

Lemma 2.3 Suppose {zk} is a sequence such that
∥
∥
∥zk+1 − F̃ t

x(zk)
∥
∥
∥ ≤ εk, (2.19)

where εk ≤ αk and α < 1 is the Lipschitz constant for F̃ t
x . Then zk → z, where z is the

unique fixed point of F̃ t
x . We have an error estimate:

‖zk − z‖ ≤ αk
(
2 (k − αk + 1)

(1 − α)2
+ ‖z1 − z0‖

1 − α

)

. (2.20)

Remark 2.4 We can take any norm in Lemma 2.3, not just the Euclidean norm. In particular,
it may be convenient to take the 1-norm ‖x‖ = ∑n

j=1

∣
∣x j

∣
∣.

Proof We have
∥
∥
∥F̃ t

x(zk+1) − F̃ t
x(zk)

∥
∥
∥ ≤ α ‖zk+1 − zk‖ for every k. Applying (2.19) and the

triangle inequality,

‖zk+1 − zk‖ ≤
∥
∥
∥zk+1 − F̃ t

x(zk)
∥
∥
∥ +

∥
∥
∥F̃ t

x(zk) − F̃ t
x(zk−1)

∥
∥
∥ +

∥
∥
∥zk − F̃ t

x(zk−1)

∥
∥
∥

≤ εk + α ‖zk − zk−1‖ + εk−1.

By iteration we get

‖zk+1 − zk‖ ≤ αk ‖z1 − z0‖ +
k∑

j=0

αk− j (ε j+1 + ε j
)
. (2.21)

Now taking m, n ∈ N with m > n, we use (2.21) to estimate

‖zm − zn‖ ≤
m−1∑

k=n

‖zk+1 − zk‖ ≤
m−1∑

k=n

αk ‖z1 − z0‖ +
m−1∑

k=n

k∑

j=0

αk− j (ε j+1 + ε j
)

≤ αn

1 − α
‖z1 − z0‖ +

m−1∑

k=n

k∑

j=0

αk− j (ε j+1 + ε j
)
.

Now we focus on the double sum. Using the assumption εk ≤ αk , we get

m−1∑

k=n

k∑

j=0

αk− j (ε j+1 + ε j
) ≤

m−1∑

k=n

(k + 1)
(
αk+1 + αk

)
≤ 2

∞∑

k=n

(k + 1) αk .

For a closed form we compute

2
∞∑

k=n

(k + 1) αk = 2
d

dα

[ ∞∑

k=n

αk+1

]

= 2
d

dα

[
αn+1

1 − α

]

= 2αn (n − αn + 1)

(1 − α)2
.

We then deduce

‖zm − zn‖ ≤ αn
(
2 (n − αn + 1)

(1 − α)2
+ ‖z1 − z0‖

1 − α

)

.



Dynamic Games and Applications

Therefore {zk} is Cauchy and thus converges. The error estimate (2.20) is derived by taking
m → ∞ and replacing n with k. �


Thanks to Lemma 2.3, we can now specify a fully formed algorithm to compute the
equilibrium:

• Set z0 = x.
• Given zk , useNewton’smethod to approximate ỹzkt (x j ) for j = 1, . . . , N , until we obtain

a vector zk+1 satisfying ∥
∥
∥zk+1 − F̃ t

x(zk)
∥
∥
∥ ≤ αk . (2.22)

Then zk will converge to the equilibrium, with error estimate given by Lemma 2.3. We
remark that, since empirical measures are dense in theWasserstein space and the equilibrium
map Et (m) is continuous, this algorithm can also be used to approximate Et (m) for any
m ∈ P1(R

d) within an arbitrary specified margin of error.

3 Asymptotic Behavior of the EquilibriumMap

Recall that Et (m0) is defined to be the equilibrium measure, i.e. the final distribution, given
an initial distribution m0. In this section we study the dynamical system (1.5). We will focus
in this paper on determining stability for the dynamical system (1.5) for initial measures
of the form m0 = ∑n

j=1
1
n δx j . Such empirical measures are also dense in the Wasserstein

space P1(R
d). As discussed in Sect. 2.2, for such initial measures we can replace Et (m)

with Ẽ t
n(x), so it is equivalent to study the classical dynamical system

x0 ∈ (Rd)n is given,

xk+1 = Ẽ t
n(xk), k = 0, 1, 2, . . .

(3.1)

We determine the asymptotic behavior by identifying

• the fixed points of Ẽ t
n , and

• the spectrum of the derivative of Ẽ t
n at fixed points.

Our results in this section will hold for a particular case, namely when d = 1 and the cost
function G takes the form

G(y, μ) =
∫

ϕ(y − z)dμ(z),

where ϕ is a smooth function. However, we will start with some more general properties of
Ẽ t
n before restricting to this special case.

3.1 General Properties of DẼtn

Proposition 3.1 Recall the definition yμ
t (x) = argmin Jt (x, ·, μ). Let 0 < t ≤ t∗, where t∗

is as in Theorem 2.1. Then Dyμ
t (x) is a positive definite symmetric matrix for each x.

Proof Let y(x) = yμ
t (x). Then

y(x) − x

t
+ DyG(y(x), μ) = 0. (3.2)
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Taking the derivative with respect to x yields

Dy(x) − I

t
+ D2

yyG(y(x), μ)Dy(x) = 0 (3.3)

(I + t D2
yyG(y(x), μ))Dy(x) = I (3.4)

Note: D2
yyG(y(x), μ) is a symmetric matrix and I + t D2

yyG(y(x), μ) is as well. Moreover,

by Assumption 1.1 and the condition t ≤ t∗ < 1
λ1(G)

, we see that I + t D2
yyG(y(x), μ) is

positive definite, hence its inverse Dy(x) is positive definite as well. �

Now we may use this result to determined the fixed points of the dynamical system.

Proposition 3.2 Let

μ = 1

n

n∑

i=1

δxi (3.5)

where xi ∈ R for 1 ≤ i ≤ n. Suppose y#μ = μ, and y is strictly monotone increasing, then
y(x) = x for all x ∈ supp(μ).

Proof Since μ is an empirical measure, supp(μ) = {xi }ni=1. Also, since y#μ = μ,

supp(y#μ) = supp(μ) = {xi }ni=1 (3.6)

Therefore for each 1 ≤ i ≤ n, y(xi ) = x j for some 1 ≤ j ≤ n. Without loss of generality
we may assume x1 < x2 < · · · < xn . Suppose y(x1) = xi for some i > 1. Then since y
is increasing, y(x j ) > xi for all j > 1. Then by the pigeonhole principle, this implies y is
not injective. This contradicts that y is strictly monotone increasing, so y(x1) = x1. This
argument can be repeated to show y(xi ) = xi for each 1 ≤ i ≤ n. Therefore y(x) = x for
all x ∈ supp(μ). �


Now we know fixed points of Ẽ t
n correspond to measures μ = 1

n

∑n
j=1 x j such that

yμ
t = I on the support of μ. Our next goal is to linearize Ẽ t

n around fixed points to check if
the system is stable. We do this by computing DẼt

n(x) and showing that the eigenvalues of
DẼt

n(x) are small if x is a fixed point.
Let us introduce the notation

μx = 1

n

n∑

j=1

x j ∀x = (x1, . . . , xn).

Then we define g(y, x) = G(y, μx). Now μy is the equilibrium for an initial measure μx if
and only if for each 1 ≤ j ≤ n, y j is the optimal move for x j given μy as a final measure,
i.e.

y j + t Dyg(y j (x), y) = x j . (3.7)

Hence we can define
y(x) = (y1(x), . . . , yn(x)) = Ẽ t

n(x) (3.8)

implicitly through (3.7).
We want to compute DẼt

n(x) = Dy(x). To do this we take the implicit partial derivative
of (3.7) with respect to xk for 1 ≤ k ≤ n

∂

∂xk
[y j (x) + t Dyg(y j (x), y(x)) = x j ] (3.9)
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to get

∂ y j
∂xk

+ t D2
yyg(y j (x), y(x))

∂ y j
∂xk

+ t
n∑

i=1

D2
yxi g(y j (x), y(x)) · ∂ yi

∂xk
= ∂x j

∂xk
= δ j,k . (3.10)

We get a system of equations which is presented in matrix form as ADẼt
n(x) = I where

A = (Ai, j )
n
i, j=1,

Ai, j = δi, j (1 + t D2
yyg(y j (x), y(x))) + t D2

yxi g(y j (x), y(x)). (3.11)

Next we will determine the spectrum of A and thereby obtain the spectrum of DẼt
n(x).

3.2 Spectral Properties

For simplicity, we will look specifically at the case

G(y, μ) =
∫

ϕ(y − z)dμ(z).

In this case,

g(y, y) = G

(

y,
1

n

n∑

k=1

δyk

)

= 1

n

n∑

k=1

ϕ(y − yk), (3.12)

where ϕ is C2. Then we compute

D2
yyg(y j , y) = 1

n

n∑

k=1

ϕ′′(y j − yk) (3.13)

and

D2
yxi g(y j , y) = −1

n
ϕ′′(y j − yk). (3.14)

We see A can be written in the following form

A = I + t

n

⎛

⎜
⎜
⎜
⎝

∑n
k=1,k �=1 ϕ′′(y1 − yk) −ϕ′′(y2 − y1) · · · −ϕ′′(yn − y1)

−ϕ′′(y1 − y2)
∑n

k=1,k �=2 ϕ′′(y2 − yk) · · · −ϕ′′(yn − y1)
...

...
. . .

...

−ϕ′′(y1 − yn) −ϕ′′(y2 − yn) · · · ∑n
k=1,k �=n ϕ′′(yn − yk)

⎞

⎟
⎟
⎟
⎠

=: I + t

n
B

(3.15)

Assumption 3.3 ϕ ∈ C2 is even, has a minimum at x = 0, is increasing on the interval (0, r),
and ϕ(x) = 0 for x ≥ r .

Note: Since we work with points x ∈ R
n which describe an empirical measure, without

loss of generality, we may arrange the components of x so that x1 ≤ x2 ≤ · · · ≤ xn .

Theorem 3.4 Suppose ϕ meets Assumption 3.3. Then x = (x1, x2, . . . , xn) (where each
xi ∈ R) is a fixed point of Ẽ t

n if and only if for any 1 ≤ j, k ≤ n, x j = xk or |x j − xk | ≥ r .
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Proof Now if x is a fixed point of Ẽ t
n , then for each 1 ≤ j ≤ n

y j + t

n

n∑

k=1

ϕ′(y j − yk) = x j , (3.16)

and by Proposition 3.2 y j = x j , so for 1 ≤ j ≤ n

n∑

k=1

ϕ′(x j − xk) = 0. (3.17)

For j = 1,
∑n

k=1 ϕ′(xk − x1) = 0. Now if x1 = xk for any k, ϕ′(xk − x1) = 0. Suppose
k1 + 1 is the first k such that xk − x1 > 0, then

n∑

k=k1+1

ϕ′(x j − xk) = 0 (3.18)

and since ϕ′(xk − x1) ≥ 0 for k > k1, we need |xk − x1| ≥ r for k > k1. So x1 = xk for
k ≤ k1 and |xk − x1| ≥ r for k > k1.

Now suppose x j is such that |x j − xk | ≥ r for k < j , then

j∑

k=1

ϕ′(xk − x j ) = 0. (3.19)

So we still need
n∑

k= j+1

ϕ′(xk − x j ) = 0. (3.20)

If x j = xk for any k > j , ϕ′(xk − x j ) = 0, and if k j + 1 is the first k such that xk − x j > 0,

n∑

k=k j+1

ϕ′(xk − x j ) = 0. (3.21)

Therefore ϕ′(xk − x j ) = 0 for k > k j , so |xk − x j | ≥ r for k > k j . Thus if x is a fixed point
of Ẽ t

n , for all 1 ≤ j, k ≤ n either x j = xk or
∣
∣x j − xk

∣
∣ ≥ r .

Now suppose for any 1 ≤ j, k ≤ n either xk = x j or |xk − x j | ≥ r . Then if x j = xk ,
ϕ′(x j − xk) = ϕ′(0) = 0, and if |xk − x j | ≥ r , ϕ′(xk − x j ) = 0. So

n∑

k=1

ϕ′(xk − x j ) = 0 (3.22)

for all 1 ≤ j ≤ n. Thus x is a fixed point for Ẽ t
n . �


Let x be a fixed point of Ẽ t
n . By Theorem 3.4, there exist indices km such that:

xk1 = xk, 1 = k0 ≤k ≤ k1

xk2 = xk, k1 <k ≤ k2
...

...

xki = xk, ki−1 <k ≤ ki = n

and xkm − xkm−1 ≥ r for 2 ≤ m ≤ i .
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Definition 3.5 We define x to be sufficiently spread out if we have the strict inequality xkm −
xkm−1 > r for 2 ≤ m ≤ i .

Recall, we are evaluating DẼt
n(x) for x a fixed point of Ẽ t

n . So it suffices to look at
the spectrum of B evaluated at fixed points. According to Theorem 3.4, if xk �= x j , then
|x j − xk | > r and ϕ′′(x j − xk) = 0. But if xk = x j , then ϕ′′(x j − xk) = ϕ′′(0) = 1.

B =

⎛

⎜
⎜
⎜
⎝

∑n
k=1,k �=1 ϕ′′(x1 − xk) −ϕ′′(x2 − x1) · · · −ϕ′′(xn − x1)

−ϕ′′(x1 − x2)
∑n

k=1,k �=2 ϕ′′(x2 − xk) · · · −ϕ′′(xn − x1)
...

...
. . .

...

−ϕ′′(x1 − xn) −ϕ′′(x2 − xn) · · · ∑n
k=1,k �=n ϕ′′(xn − xk)

⎞

⎟
⎟
⎟
⎠

(3.23)
We see B has a block diagonal form:

B =

⎛

⎜
⎜
⎜
⎝

B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...

0 0 · · · Bi

⎞

⎟
⎟
⎟
⎠

(3.24)

where for 1 ≤ m ≤ i , Bm is the (km − km−1) × (km − km−1) matrix given by

Bm =

⎛

⎜
⎜
⎜
⎝

(km − km−1 − 1) −1 · · · −1
−1 (km − km−1 − 1) · · · −1
...

...
. . .

...

−1 −1 · · · (km − km−1 − 1)

⎞

⎟
⎟
⎟
⎠

. (3.25)

Lemma 3.6 Let Cn be an n × n matrix with the following form:

Cn =

⎛

⎜
⎜
⎜
⎝

n − 1 −1 · · · −1
−1 n − 1 · · · −1
...

...
. . .

...

−1 −1 · · · n − 1

⎞

⎟
⎟
⎟
⎠

. (3.26)

Then if n ≥ 2, Cn is a positive matrix.

Proof We proceed by induction on n.
Base case: n = 2

C2 =
(

1 −1
−1 1

)

(3.27)

Let v =
(

v1
v2

)

be an arbitrary real vector. Then

vT C2v = (v1 − v2)
2 ≥ 0. (3.28)
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Now supposing the hypothesis holds for Cn−1 for n > 2, we want to prove it holds for

Cn . Let v =
⎛

⎜
⎝

v1
...

vn

⎞

⎟
⎠. Now,

vTCnv = (
v1 · · · vn−1

)
Cn−1

⎛

⎜
⎝

v1
...

vn−1

⎞

⎟
⎠ − 2vn

n−1∑

k=1

vk +
n−1∑

k=1

v2k +
n−1∑

k=1

v2n

= (
v1 · · · vn−1

)
Cn−1

⎛

⎜
⎝

v1
...

vn−1

⎞

⎟
⎠ +

n−1∑

k=1

(vk − vn)
2

(3.29)

By our inductive hypothesis,

(
v1 · · · vn−1

)
Cn−1

⎛

⎜
⎝

v1
...

vn−1

⎞

⎟
⎠ ≥ 0.

Additionally, (vk − vn)
2 ≥ 0 for all 1 ≤ k ≤ n − 1, so we can conclude Cn is a positive

matrix. �


Corollary 3.7 If n ≥ 2, the eigenspace for Cn for the eigenvalue λ = 0 is one dimensional

and spanned by

⎛

⎜
⎜
⎜
⎝

1
1
...

1

⎞

⎟
⎟
⎟
⎠
.

Proof

Cn

⎛

⎜
⎜
⎜
⎝

1
1
...

1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

n − 1 −1 · · · −1
−1 n − 1 · · · −1
...

...
. . .

...

−1 −1 · · · n − 1

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

1
1
...

1

⎞

⎟
⎟
⎟
⎠

= 0 (3.30)

So our vector is an eigenvector for the eigenvalue λ = 0. Now we’d like to show that it spans
the eigenspace. Without loss of generality, suppose vn �= vk for some 1 ≤ k ≤ n − 1 where

v =

⎛

⎜
⎜
⎜
⎝

v1
v2
...

vn

⎞

⎟
⎟
⎟
⎠
. Then from (3.29) we have

vTCnv = (
v1 · · · vn−1

)
Cn−1

⎛

⎜
⎝

v1
...

vn−1

⎞

⎟
⎠ +

n−1∑

k=1

(vk − vn)
2 (3.31)
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As before, the first piece is nonnegative and since vn �= vk for some k, the sum is strictly

greater than 0 so any v not in the span of

⎛

⎜
⎜
⎜
⎝

1
1
...

1

⎞

⎟
⎟
⎟
⎠

is not an eigenvector for λ = 0. �


So eigenvalues for B are greater than or equal to 0. Recalling DẼt
n(x) = A−1 and

A = I + t
n B, eigenvalues for DẼt

n(x) are λ ≤ 1.

Definition 3.8 Consider the dynamical system

yk+1 = F(yk)

y0 ∈ R
n (3.32)

where F : Rn → R
n and D ⊂ R

n . An fixed point y∗ of F is said to be asymptotically stable
if there exists an ε > 0 such that whenever |y0 − y∗| < ε, then the trajectory yk converges
to y∗ as k → ∞.

Throughout the rest of this section we will make use of the following theorem to show
asymptotic stability of fixed points of Ẽ t

n .

Theorem 3.9 [15, Theorem 1.3.7] If F ∈ C2(Rn,Rn), then a fixed point y∗ of the dynamical
system (3.32) is asymptotically stable if the eigenvalues of DF(y∗) lie strictly inside the unit
circle.

From our spectral analysis, we see DẼt
n(x

∗) has eigenvalues λ ≤ 1. To be able to apply
Theorem 3.9, we use the following lemmas to restrict to a subspace W that is both invariant
under Ẽ t

n and where DẼt
n(x

∗) has eigenvalues strictly less than 1.

Lemma 3.10 If g(y j + α, y + α(1, . . . , 1)) = g(y j , y) for any α ∈ R and y ∈ R
n, then

Ẽ t
n(x + α(1, . . . , 1)) = Ẽ t

n(x) + α(1, . . . , 1).

Proof Recall: Ẽ t
n(x) = y if and only if for all 1 ≤ j ≤ n

y j (x) + t Dyg(y j (x), y(x)) = x j . (3.33)

So if Ẽ t
n(x + α(1, . . . , 1)) = z then

z j + t Dyg(z j , z) = x j + α (3.34)

Equivalently,
z j − α + t Dyg(z j , z) = x j (3.35)

Now since g(y + α, y + α(1, . . . , 1)) = g(y, y)

z j − α + t Dyg(z j − α, z − α(1, . . . , 1)) = x j (3.36)

This implies Ẽ t
n(x) = z − α(1, . . . , 1), so Ẽ t

n(x + α(1, . . . , 1)) = Ẽ t
n(x) + α(1, . . . , 1) as

desired. �

Remark 3.11 Lemma 3.10 essentially says that if the cost function g is invariant under trans-
lations, then the translation operation commutes with the equilibriummap. More precisely, if
we move all the players’ initial positions by α and then find the equilibrium measure, we get
the same result as when we first find the equilibrium measure and then translate it by α. Note
that, by Assumption 3.3, g(y, y) = 1

n

∑n
k=1 ϕ(y − yk) meets the criteria of Lemma 3.10.
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Lemma 3.12 Let g(y, y) = 1
n

∑n
k=1 ϕ(y− yk)where ϕ satisfies Assumption 3.3. If x ∈ W =

[
span{(1, . . . , 1)}]⊥, then so is Ẽ t

n(x).

Proof Let y = Ẽ t
n(x) and x ∈ W . We are going to show that

∑n
j=1 y j = ∑n

j=1 x j = 0,
from which the claim follows as a particular case. Recall that

y j + t

n

n∑

k=1

ϕ′(y j − yk) = x j (3.37)

for each j , so
n∑

j=1

y j + t

n

n∑

j=1

n∑

k=1

ϕ′(y j − yk) =
n∑

j=1

x j . (3.38)

It is enough to show that
n∑

j=1

n∑

k=1

ϕ′(y j − yk) = 0. (3.39)

Recall from Assumption 3.3 that ϕ′ is odd, and in particular ϕ′(0) = 0. Rewrite the double
sum as follows:

n∑

j=1

n∑

k=1

ϕ′(y j − yk) =
n∑

j=1

j−1∑

k=1

ϕ′(y j − yk) +
n∑

j=1

n∑

k= j+1

ϕ′(y j − yk)

=
n∑

j=1

j−1∑

k=1

ϕ′(y j − yk) +
n∑

k=1

k−1∑

j=1

ϕ′(y j − yk)

=
n∑

j=1

j−1∑

k=1

ϕ′(y j − yk) −
n∑

k=1

k−1∑

j=1

ϕ′(yk − y j ) = 0,

(3.40)

and the proof is complete. �


Let
W = [span{(1, . . . , 1)}]⊥ (3.41)

Now, let x0 be a point in our system. Then x0 has the following orthogonal decomposition

x0 = w0 + α(1, . . . , 1) (3.42)

where α ∈ R and w ∈ W . (One way to look at this decomposition is that the component
w0 ∈ W corresponds to the initial distribution translated so that its barycenter lies at the
origin,whileα/n is equal to the original barycenter.)ByLemmas3.10 and3.12, the dynamical
system (3.1) is equivalent to one restricted to W :

w0 ∈ W is given,

wk+1 = Ẽ t
n(wk), k = 0, 1, 2, . . .

(3.43)

since for all k we must have xk = wk + α(1, . . . , 1) and wk ∈ W . It is therefore sufficient to
study the asymptotic stability of fixed points of Ẽ t

n that lie in W . We begin with the origin,
which corresponds to a simple Dirac mass.
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Theorem 3.13 Suppose
xk+1 = Ẽ t

n(xk)

x0 ∈ W
(3.44)

where Ẽ t
n : W → W is as defined in (3.1) and ϕ meets assumption 3.3. Then the fixed point

x∗ = (0, . . . , 0) of the system is asymptotically stable.

Proof Wejust need to show (3.44) satisfies the assumptions ofTheorem3.9. Ẽ t
n ∈ C2(Rn,Rn)

by a routine application of the Implicit Function Theorem, and therefore by restricting to W
we have Ẽ t

n ∈ C2(W ,W ), where W is isomorphic to R
n−1. From Corollary 3.7, we deduce

that the eigenspace of DẼt
n(x

∗) corresponding the eigenvalue λ = 1 is W⊥. So DẼt
n(x

∗) as
a linear map from W to W has eigenvalues λ < 1, thus the fixed point x∗ is asymptotically
stable. �

Corollary 3.14 Suppose

xk+1 = Ẽ t
n(xk)

x0 ∈ R
n (3.45)

where Ẽ t
n : Rn → R

n is as defined in (3.1) and ϕ meets assumption 3.3. Then a fixed point
x∗ ∈ span {(1, . . . , 1)} of the system is asymptotically stable.

Proof For any x ∈ R
n , x = w + α(1, . . . , 1) for w ∈ W and α ∈ R. We see α(1, . . . , 1)

simply produces a translation of Ẽ t
n by α, which does not affect asymptotic stability. By

Theorem 3.13, the fixed point x∗ = (0, . . . , 0) is asymptotically stable for Ẽ t
n restricted to

W , so any translation x∗ ∈ span {(1, . . . , 1)} is also stable on Ẽ t
n : Rn → R

n . �


Of course, there are more fixed points of Ẽ t
n than just the ones that correspond to a single

dirac mass. To prove stability for these general fixed points, we use the following lemma to
split up the game, inspect stability of the fixed points of each smaller game, and use these
results to prove stability for the whole game.

Lemma 3.15 Suppose x is sufficiently close to a fixed point x∗, where x∗ is sufficiently spread
out (Definition 3.5), so that

x1 ≤ · · · ≤ xk1 ≤ xk1+1 ≤ · · · ≤ xk2 ≤ · · · ≤ xki

are such that xkm+1 − xkm > r for 1 ≤ m ≤ i − 1. Then

Ẽt
n(x) = (Ẽ t1

k1
(x1, . . . , xk1), Ẽ

t2
k2−k1

(xk1+1, . . . , xk2), . . . , Ẽ
ti
ki−ki−1

(xki−1+1, . . . , xki ))
(3.46)

where tm = t(km+1−km )
n .

Proof Let us consider Ẽ tm
km+1−km

(xkm+1, . . . , xkm+1) for 0 ≤ m ≤ i − 1 and ki = n.

Ẽ tm
km+1−km

(xkm+1, . . . , xkm+1) = (ykm+1, . . . , ykm+1) (3.47)

if and only if, for each km + 1 ≤ j ≤ km+1

y j + tm
km+1 − km

km+1∑

k=km+1

ϕ′(y j − yk) = x j . (3.48)
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Now we show ykm+1 − ykm > r . Plug j = km + 1 into (3.48) to get

ykm+1 + tm
km+1 − km

km+1∑

k=km+1

ϕ′(ykm+1 − yk) = xkm+1. (3.49)

Now ϕ′(ykm+1 − yk) ≤ 0 for each k in this summation, since ϕ′ is odd and ykm+1 ≤ · · · ≤
ykm+1 . Therefore the sum is non-positive, andwededuce ykm+1 ≥ xkm+1.By similar reasoning
(with m replaced by m − 1 in (3.48) and plugging in j = km), we get ykm ≤ xkm . Therefore,

ykm+1 − ykm ≥ xkm+1 − xm > r . (3.50)

Thus ϕ′(y j − yk) = 0 for k ≥ km+1 + 1 and k ≤ km . So we can write

y j + tm
km+1 − km

n∑

k=1

ϕ′(y j − yk) = x j . (3.51)

Now taking tm
km+1−km

= t
n yields

y j + t

n

n∑

k=1

ϕ′(y j − yk) = x j . (3.52)

and this is true if and only if Ẽ t
n(x1, . . . , xn) = (y1, . . . , yn). �


This allows us to look at asymptotic behavior for each Ẽ tm
( jm− jm−1)

, which allows us to
prove the main result of this section:

Theorem 3.16 Suppose
xk+1 = Ẽ t

n(xk)

x0 ∈ R
n (3.53)

where Ẽ t
n : Rn → R

n is as defined in (3.1) andϕmeets Assumption 3.3 Then every sufficiently
spread out (see Definition 3.5) fixed point x∗ of the dynamical system is asymptotically stable.

Proof Let x∗ be sufficiently spread out fixed point of Ẽ t
n . Then it has the following form

x∗
1 = · · · = x∗

k1 < x∗
k1+1 = · · · = x∗

k2 < · · · < x∗
ki−1 = x∗

ki

with x∗
km+1 − x∗

km
> r . In other words, x∗ = (

x1∗, . . . , xi∗
)
, where xm∗ = x∗

km
(1, . . . , 1).

Using Lemma 3.15, for |x − x∗| < ε with ε > 0 sufficiently small,

Ẽ t
n(x) = (Ẽ t1

k1
(x1, . . . , xk1), Ẽ

t2
k2−k1

(xk1+1, . . . , xk2), . . . , Ẽ
ti
ki−ki−1

(xki−1+1, . . . , xki ))
(3.54)

Then by Corollary 3.14, a fixed point xm∗ ∈ span {(1, . . . , 1)} of the dynamical system with
Ẽ tm

( jm− jm−1)
is asymptotically stable. So x∗ = (x1∗, x2∗, . . . , xi∗) is asymptotically stable for

the dynamical system with Ẽ t
n . �


4 Numerical Simulations

In this section we report on some numerical simulations, based on the algorithm outlined at
the end of Sect. 2, that confirm the main result of Sect. 3. The structure of the algorithm is as
follows.
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(1) For an initial measure m = ∑n
j=1 a jδx j , let x0 = (x1, . . . , xn). Let ε be a fixed small

error (we took ε = 10−6) and let N be the number of iterations (e.g. in the experiments
below, N is taken in the range [1500, 13000]). Let t > 0 be a fixed small time horizon
such that the map Et

n is well-defined, and let α = t L1
1−tλ1(G)

be a Lipschitz constant of

F̃ t
x , as guaranteed by Theorem 2.1.

(2) For k = 1, . . . , N calculate xk as follows:

(a) Set z0 = xk−1.
(b) For 
 = 1, 2, . . . define z
 as follows:

(i) For j = 1, . . . , n, use Newton’s method to compute an approximation z
, j ≈
ỹz
−1
t (z0, j ), where z
, j is the j th component of z
, so that the error is at most
1
nα
.

(ii) The vector z
 so defined necessarily satisfies
∥
∥
∥z
 − F̃ t

z0(z
−1)

∥
∥
∥ ≤ α
.

(c) Repeat until α

(
2(
−α
+1)

(1−α)2
+ ‖z1−z0‖

1−α

)
≤ ε, then set xk = z
.

By Lemma 2.3 we necessarily have
∥
∥
∥xk − Ẽ t

n(xk−1)

∥
∥
∥ ≤ ε.

We examined four different empirical population measures distributed across a vector of
1000 evenly spaced points between [−4.995, 4.995]. The coupling function was given to be
G(x,m) = ∫

ϕ(x − z)dm(z) where −ϕ is a standard “bump function” of the form

− ϕ(x) =
{
exp

(
− 1

1−x2

)
, −1 < x < 1,

0, otherwise,
(4.1)

which satisfies Assumption 3.3. The radius of the support of ϕ is 1, and so any fixed point
of the dynamical system is “sufficiently spread out” by Definition 3.5 as long as the clusters
have distance greater than 1 between them.
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Group Coalescing
point

Algorithm
iterations
to coalesce

Total % of
population

Range
of initial
positions

Average
initial
position

Average
total
move-
ment

Average
total cost

1 −3.8225 1260 20.50 [−4.9950,
−2.9550]

−3.9750 0.5335 −241.9120

2 −1.8275 1417 20.10 [−2.9450,
−0.9450]

−1.9450 0.5134 −225.6389

3 0.0000 1508 18.80 [−0.9350,
0.9350]

0.0000 0.4700 −208.5507

4 1.8275 1417 20.10 [0.9450,
2.9450]

1.9450 0.5134 −225.6389

5 3.8225 1260 20.50 [2.9550,
4.9950]

3.9750 0.5335 −241.9120

Group Coalescing
point

Algorithm
iterations
to coalesce

Total % of
population

Range
of initial
positions

Average
initial
position

Average
total
move-
ment

Average
total cost

1 −3.1619 1535 19.94 [−4.9650,
−2.4650]

−3.4983 0.6729 −227.6249

2 −1.0379 1169 30.03 [−2.4550,
−0.0050]

−1.2026 0.6533 −321.4321

3 1.0379 1169 30.03 [0.0050,
2.4550]

1.2026 0.6533 -
321.4321

4 3.1619 1535 19.94 [2.4650,
4.9650]

3.4983 0.6729 -
227.6249
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Group Coalescing
point

Algorithm
iterations
to coalesce

Total % of
population

Range
of initial
positions

Average
initial
position

Average
total
move-
ment

Average
total cost

1 −3.5989 5131 4.93 [−4.9550,
−3.4350]

−3.9527 0.6052 −206.4532

2 −2.0759 1355 22.75 [−3.4250,
−1.2850]

−2.2094 0.6614 −943.5018

3 0.0000 639 44.65 [−1.2750,
1.2750]

0.0000 0.6087 −1869.5074

4 2.0759 1355 22.75 [1.2850,
3.4250]

2.2094 0.6614 −943.5018

5 3.5989 5131 4.93 [3.4350,
4.9550]

3.9527 0.6052 −206.4532
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Group Coalescing Algorithm Total % of Range of Average Average Average
point iterations population initial initial total total

to coalesce positions position movement cost

1 −3.4234 12806 2.00 [−4.6650, −3.1550] −3.6028 0.4675 −209.4471
2 −1.8900 1604 15.68 [−3.1450, −1.2850] −1.9927 0.5479 −1653.3058
3 0.0000 406 64.62 [−1.2750, 1.2750] 0.0000 0.5369 −6841.9609
4 1.8900 1604 15.68 [1.2850, 3.1450] 1.9927 0.5479 −1653.3058
5 3.4234 12806 2.00 [3.1550, 4.6650] 3.6028 0.4675 −209.4471

In the graphs above, the initial and final distribution are graphed by plotting points (x, y)
where x is the location and y is the total proportion of the population holding position x . The
“Position by Round” graph displays only the distribution of x-values at each round, starting
from the top (the population density itself is not directly visible in this graph). In all four
cases, the iterative process of each agent minimizing their own total cost function divided the
majority of the population into clusters, but only the Uniform Distribution simulation saw
every agent eventually belong to a cluster. The other three distributions ended the simulation
with a small number of isolated agents at the extreme ends of each distribution in the lowest
density regions (i.e. the simulation ended before reaching a stable fixed point). These isolated
agents represented 0.0431% of the Semi-Circle Distribution, 0.0065% of the Triangular
Distribution, and 0.0224% of the Inverted Semi-Circle Distribution. Isolated agents in these
low density regions begin the iterative process with the same ingathering behavior as their
interior neighbors and move towards the distribution’s mean for many iterations. However
as their inlying neighbors start moving inwards faster towards a nearby accumulating mass
of other agents, the isolated agents get left behind, and the innermost isolated agents begin
moving outwards towards the still ingathering, most extreme isolated agents. These low
density regions of isolated agents may eventually coalesce into groups, but themeager benefit
of gathering in such low density regions results in incredibly slow movement from residing
agents. Consequently, waiting for these regions to coalesce would take more iterations than
can be reasonably observed.

Conversely, agents in the highest density regions tend to coalesce the fastest. Group 3 in
the Inverted Semi-Circle Distribution simulation comprised 64.62% of the population and
coalesced in a speedy 406 iterations. Altogether, the Uniform Distribution had completely
coalesced into clusters after 1508 iterations with its tails coalescing first after 1260 iterations.
This observed behavior of the highest density regions coalescing the fastest and lowest density
regions moving too slow to coalesce completely aligns with the structure of the individual’s
total cost function. High density regions present a larger reward for gathering, so individual
agents can justify more movement in a single iteration. The opposite is true for low density
regions. As a result, the region centered about the mean contained the largest group at the end
of the simulation in almost every case. The Uniform Distribution simulation notably deviates
from this trend with the outermost groups containing 1.7% more of the population than the
central group at the mean. This is a direct result of the distribution’s fat tails. Agents in the
tail ends of the distribution are markedly incentivized to get away from the empty regions
next to them and generally move inwards quickly until enough of their inlying neighbors
find their accumulating mass sufficiently attractive to meet them to form a single mass. In
the Uniform Distribution simulation, this quick piling up of the already dense tails produces
a large, attractive mass that outsizes the more inward accumulating masses.

Moreover, agent mobility varied across distribution and final group assignment. The aver-
age total movement across all iterations to coalescence for a single agent was 0.5135 in the
Uniform Distribution simulation, 0.6609 in the Semi-Circle Distribution simulation, 0.6323
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in the Triangular Distribution simulation, and 0.5374 in the Inverted Semi-Circle Distribution
simulation. Due to their fatter tails, the Uniform and Semi-Circle Distribution simulations
had decreasing average total movement from the outermost groups to the innermost group(s),
which is a result of the outermost agents trying to rapidly get away from the empty region
next to them. The least mobile groups in the Triangular and Inverted Semi-Circle Distribu-
tion simulations with thinner tails were the outermost groups, but similar to the Uniform
and Semi-Circle Distribution simulations, the middling groups had a higher average total
movement then the innermost group. Low population density in the outermost regions slows
down the groups and negatively affects the groups’ average total movement. Meanwhile,
the middling regions may not have completely empty regions next to them, the outermost
regions are comparatively empty to the innermost regions, producing the same effect on the
middling and innermost groups as the Uniform and Semi-Circle Distribution simulations.
Within groups, agents that happened to begin the simulations near the coalescing point for
their group did not have to move very far to converge on their final position, while agents
that happened to begin further away from the coalescing point for their group had to move
significantly to converge on their final position.

Population density had the biggest impact on average total cost. Groups with the highest
population density had the lowest average total cost accumulated across all rounds to coa-
lescence. Like total movement for individual agents, the agents that happened to begin the
simulations near the coalescing point for their group had lower total cost than the agents that
happened to begin the simulations farther away from the coalescing point for their group.

Finally, in every case we examined, the final distribution was narrower than the initial
distribution, but not every agent consistently moved towards the mean. 35.20% of agents
in the Uniform Distribution, 41.04% of agents in the Semi-Circle Distribution, 23.26% of
agents in the Triangular Distribution, and 16.96% of agents in the Inverted Semi-Circle
Distribution ended up farther away from the mean of the distribution in their final position
than in their initial position. However, the final coalescing point of every group is closer
to the mean of each distribution than their average initial position. The narrowing of the
population in addition to the difference between the final coalescing point and average initial
position of each group indicates an overall mean-convergent behavior, but the existence of
separate groups that do not all converge to the mean as well as the not insignificant portion
of each population distribution moving away from the mean implies something interesting
is going on. If the population in all four simulations has an overall ingathering behavior,
why do distinct groups form? The observed effect of the iterative process of each agent
minimizing their own total cost function is not wholesale “polarization” because the vast
majority of agents end the simulation in more moderate positions than they started in. Rather
in all four simulations, we can see the flight of the relative-moderate who is attracted to
the mass of agents with more extreme positions that are willing to compromise and exhibit
mean-converging behavior.

Altogether, a population distribution’s density and concavity affects the formation of
groups, especially at the tails.

5 Conclusion

In this paper we have studied a simple mean field game in which players have an incentive
to congregate, and we have analyzed the resulting dynamical system formed by iterating
the game. We have identified the fixed points and rigorously proved the asymptotic stability
for this dynamical system. Our numerical simulations both demonstrate the validity of these
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results and also provide thought-provoking details about the dynamics. We now conclude
this paper with some open questions for both theory and applications.

5.1 Equilibrium for a Long Time Horizon

One natural question is whether the stable fixed points of the dynamical system (3.1)
correspond (at least approximately) to Nash equilibrium points for the game with a very
long time horizon. A heuristic argument in favor of this conjecture is as follows. We take
G(y, μ) = ∫

ϕ(y − z)dμ(z) and consider its discrete analog g(y, z) = 1
n

∑n
k=1 ϕ(y − zk).

Recall that the cost to each player moving from position x to y is

|x − y|2
2t

+ 1

n

n∑

k=1

ϕ(y − zk).

Taking t → ∞, we see that x is almost irrelevant. The optimal strategy is essentially to find
a minimizer of y �→ ∑n

k=1 ϕ(y − zk). If z = (z1, . . . , zn) is to represent an equilibrium
measure, then each z j must in fact be a minimizer of this function. Assume −ϕ is a bump
function as in (4.1).Glancing at the graph of y �→ ∑n

k=1 ϕ(y−zk) suggests z is an equilibrium
if and only if the points z1, . . . , zn form equal sized clusters z1 = · · · = zk < zk+1 = · · · =
z2k < · · · < zmk such that z( j+1)k − z jk is sufficiently large for each j . Hence z should also
be a stable fixed point of the dynamical system (3.1) according to Theorem 3.4. Since we
cannot expect the equilibrium to be unique for an arbitrary time horizon, this infinite time
limit case might provide some meaningful way of selecting among multiple equilibria for
large time horizon games. We intend to investigate this in future research.

5.2 Stability for Non-empirical Measures

A natural extension of this paper would be to consider the same question of stability
analysis for non-empirical measures. That is, for m a non-empirical measure, what is
limk→∞

(
Et

)k
(m)? It is not clear whether fixed points are stable, since the eigenvalues

computed in Sect. 3 could possibly move toward 1 as n → ∞. It is nevertheless tempting
to conjecture that the limit limk→∞

(
Et

)k
(m) can in many cases be well-approximated by

discretizing m.

5.3 Opinion Dynamics

One particularly compelling application for our model is where the population measure
represents the distribution of people on a spectrum of opinions, e.g. a single-issue political
spectrum. The iterated game could model a process in which people change their positions
incrementally, trying to find communitieswith valuable social identities of like-minded peers,
or perhaps trying to build coalitions to win political capital. On an optimistic note, we observe
that in our simulations the entire population becomes more moderate as a whole, and most
individuals elect to compromise to join less extreme communities. However, the population’s
separation into distinct, consolidated groups gives dissidents platforms with greater leverage
than they began with, and the most extreme dissidents are left behind entirely with their
voices completely drowned out bymore popular groups. Our model shows that the individual
proclivity to group can reshape a population at large, but the effects of the population’s new
shape on society are harder to determine.
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It would be interesting to use game theoretic models to further investigate the impact of
grouping on political or other social systems.
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