

Casual Competition by Design: A Study of the All Random All Mid (ARAM) Mode in League of Legends

ZINAN ZHANG, The Pennsylvania State University, USA

YUBO KOU, The Pennsylvania State University, USA

Competitive gaming, a long-standing study context for CSCW, has recently faced criticism due to its design emphasis on competition and achievement, which is associated with adverse phenomena such as player toxicity and anxiety. Recognizing this limit, game designers have proactively made design attempts to ameliorate these unintended consequences of competitive gaming. A notable example is the All Random All Mid (ARAM) mode in League of Legends (LoL), designed to introduce casualness into competitive gaming. To understand how players experience both casualness and competitiveness, a seemingly contradictory pair, we conducted an interview study with ARAM players, finding that ARAM supports ‘casual competition’ through decentering competition, diversifying interpersonal dynamics, and filling gaps in player needs. We further discuss how game design and player agency co-constitute casual competition, reflect on key aspects of competitive gaming design such as diversity and fairness, and provide implications for competitive gaming design, which may help combat toxicity.

CCS Concepts: • **Human-centered computing** → Human computer interaction (HCI) → Empirical studies in HCI

Additional Key Words and Phrases: All Random All Mid; ARAM; Player Experiences; Competitive Gaming; Player Enjoyment; Game Motivation; Casual Game; League of Legends; MOBA

ACM Reference format:

Zinan Zhang, Yubo Kou. 2024. Casual Competition by Design: A Study of the All Random All Mid (ARAM) Mode in League of Legends. *Proc. ACM Hum.-Comput. Interact.*, 8, CSCW2, Article 453 (November 2024), 28 pages, <https://doi.org/10.1145/3686992>

1 Introduction

The computer-supported cooperative work (CSCW) community has shown sustained interest in video games (e.g., [9, 20, 58]), including competitive ones (e.g., [25, 34, 78]). Competitive gaming involves two or more opposing parties (e.g., such as individuals or teams) competing for an exclusive reward (e.g., a win). Competitive gaming satisfies various players’ needs and motivations such as competence and achievement [30, 32, 71]. Popular competitive game titles such as League of Legends, Fortnite, and Call of Duty are tremendously successful today, with each enjoying tens of millions of daily active players [12, 15, 100]. However, competitive

Authors’ Contact Information: Zinan Zhang, zzinan@psu.edu, The Pennsylvania State University, E342 Westgate Building, University Park, Pennsylvania, USA; Yubo Kou, yubokou@psu.edu, The Pennsylvania State University, E353 Westgate Building, University Park, Pennsylvania USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

2573-0142/2024/11 - 453

© Copyright is held by the owner/author(s). Publication rights licensed to ACM.

<https://doi.org/10.1145/3686992>

gaming has also been widely observed to have unintended consequences such as toxicity (meaning disruptive or uncooperative player behavior), high pressure, and player anxiety and frustration [7, 25, 30, 37]. These drawbacks can hinder player enjoyment and harm player wellbeing [3, 59].

Generally speaking, scholars have criticized video game culture and industry for prioritizing meritocracy over other values such as cooperation and community, engendering a breeding ground for player toxicity [64]. While competition and its associated pressure are inherently built into competitive gaming, it is still unclear what specific aspects of such games lead to adverse consequences. There has been a growing attention within the research community to understanding what key design dimensions and constituents lead to these adverse consequences [25, 48, 50], as well as exploring what contributes to positive competitive gaming experiences [1, 7, 36].

Against this backdrop, game designers have attempted to mitigate the negative impacts of competitive gaming by tuning certain competitive gameplay features. For example, players of Call of Duty: Modern Warfare II, a popular first-person shooter game, can follow a few steps to disable skill-based matchmaking and choose to play with randomly matched players [76]. Games like Fortnite [101] and Rocket League [90] maintain an unranked mode to cater to casual players.

Rather than simply removing competitive gameplay features, League of Legends (LoL) has moved further down the direction by designing and maintaining the All Random All Mid (ARAM) mode to inject casualness into players' competitive gaming experience [102]. LoL has been widely known for its classic, competitive gaming mode, the Summoner's Rift. Both the Summoner's Rift and the ARAM modes require players to defeat an enemy team by destroying their base.

However, there are striking differences between the designs of the two modes. In the Summoner's Rift, each player can choose a champion to play for their assigned position on the map, and there are three lanes and a jungle area in between the lanes, which requires players' complex strategic planning based on the map [22].

In ARAM mode, "All Random" stands for that the system randomly assigns champions to players, and "All Mid" stands for that there is only one lane in this mode. With champions assigned at random by the system, players are less likely to get their most familiar ones, lowering the degree of competitiveness brought by skillfully playing a champion. With a single-lane map, players do not need to watch out for detailed information all over the map and plan strategies accordingly. These consequential actions require less cognitive effort to play. Still, ARAM is competitive gaming, as it matches the notion by involving two teams competing for an exclusive reward. As such, the competitive nature and the casual nature brought by randomness and the simple map make ARAM to be a casual competitive mode (for detailed information on the two modes, please refer to section 2).

Since the beginning of its release, the ARAM mode has been highly popular for its purposive design of randomness and casual play [21, 69, 98, 102]. While considerable prior work on competitive gaming has started to identify its unintended consequences, not much attention has been paid to developers' conscious design choices that are intended to ameliorate them. In ARAM's case, it is the careful design of casualness through aspects such as simple map and randomness. In this paper, we aim to understand this careful design of casualness by understanding the experiences it brings to players. Thus, we propose the following research question: **How does the blend of casualness and competitiveness in game design influence player experience?** Specifically, this research question entails two research objectives: 1) to document and characterize player experience with ARAM; and 2) to identify experiential qualities of ARAM tied to casualness and/or competitiveness.

Thus, we conducted 13 interviews with LoL players on the North American server who had extensive experiences in playing both ARAM and Summoner's Rift mode in LoL, and performed

an inductive thematic analysis [13] of the collected data. Our analysis led to a characterization of ‘casual competition,’ or *casual ‘competitive gaming’*. While casual gaming is often associated with a casual attitude characterized by leisure and low cognitive state, and is viewed as the opposite of competitive gaming that entails intense competition and a high degree of involvement (see [43] for a detailed discussion of casual gaming), what we found in this study is an intermediate form, where both casualness and competitiveness are mutually constitutive within player experience (PX). PX refers to the unique and subjective experiences of players during and immediately after playing games [91].

Specifically, our study shows that casual competitive gaming in ARAM is enacted through both conscious design consideration and player agency in three primary ways: First, classic competitive gaming elements like achievements are still present but decentered from PX, overshadowed by other sources of gratifications such as randomness and game process. Second, players’ interpersonal dynamics with both teammates and opponents are diversified in various playful ways. Third, players actively arrange their ARAM play to fill gaps between their needs for casual gaming and competitive gaming in their everyday gaming practices. These findings enable us to discuss the nature and characteristics of casual competitive gaming as an intermediate form between casual gaming and competitive gaming, and to reflect on key aspects of competitive gaming design such as diversity and fairness. We suggest that game designers can be the architects in creating a friendly environment to combat online toxicity in the gaming environment based on the casual competitive designs we discussed.

Our contributions to the CSCW community include 1) extending our understanding of competitive gaming through a rich, empirical account of player actions and social dynamics in the understudied context of ARAM, 2) characterizing casual competitive gaming as an intermediate form that bridges casual and competitive gaming, and 3) a nuanced, comparative look at the intertwinement of conscious design choice and player experience in the broader context of competitive gaming. Our design implications offer valuable insights for game designers to rethink competitive gaming design.

2 Background: League of Legends and the All Random All Mid Mode

League of Legends (LoL), a multiplayer Online Battle Arena (MOBA) game developed by Riot Games, is one of the most popular competitive games. LoL currently has more than 100 million monthly players around the world [100]. In addition, it features a unique mode, ARAM, an alternative to its classic competitive mode ‘Summoner’s Rift,’ which incorporates distinctive gaming design decisions to provide a casual player experience.

As a match-based game, LoL divides 10 players in a match into two teams, each consisting of five players: a blue team and a red team. After a match starts, players spawn, or respawn after death, near their respective base on the map (Fig. 1): The blue team starts the game in the bottom left corner and the red team in the top right corner. In order to win, players need to destroy the enemy team’s base and protect their own. Players need to choose a character (also called a champion by LoL players) before a match starts.

Fig. 1. Screenshots for the two modes in LoL. The figure on the left is the map called “Summoner’s Rift” [103]. This is the map for the game mode “Summoner’s Rift.” This map and the game mode share the same name in LoL. The figure on the right is the map called “Howling Abyss” [92]. It is the map for the mode “All Random All Mid” (ARAM).

There are two primary game modes, Summoner’s Rift and All Random All Mid (ARAM). Each game mode has its own map: The former uses the map named Summoner’s Rift (Fig 1.a), while the latter is played on the map named Howling Abyss (Fig 1.b). In the rest of the paper, we consider the former game mode as competitive gaming, and the latter game mode, our study context, as casual competitive gaming. In the rest of this section, we detail the differences between the two modes (Summoner’s Rift and ARAM) and summarize these in Table 1.

Summoner’s Rift, as described in the LoL game client, is a game mode where players aim to “crush the lane, dive into epic five-on-five team fights, and destroy enemy’s base in premier competitive mode” [68]. It is the dominant mode/map that is played in eSports [104] and has been studied by many researchers (see [33, 38, 55, 56, 81]). LoL offers both ranked and unranked sub-modes under this game mode. The key difference between the ranked and the unranked modes is that the former provides a visible player rank, while the latter hides it. Whether or not it is ranked, LoL calls all modes on this map as “premier competitive mode” [68]. Therefore, in the rest of the paper, we refer to both the ranked and the unranked modes as competitive mode.

In this mode, players can choose their own champions (i.e., characters) from all the champions they have in LoL before a match starts. LoL had a total of 166 champions by the time of writing this paper [105]. Minions regularly spawn from each base and go on three lanes: top, mid, and bottom. The three lanes are all noticeable on the map (Fig. 1.a). Between the lanes, complex jungle paths weave through dense jungle areas. These paths are strategically important for players to navigate and plan their moves.

Additionally, within these jungle areas, there are various objectives that players can defeat to gain bonuses and advantages in the game. Each team consists of five players, with each player assigned one of the following roles: Top (who goes to the top lane), Mid (who goes to the mid lane), Bottom (who goes to the bottom lane), Support (who goes to the bottom lane to support Bottom), and Jungle (who goes to the jungles between each lane). A typical Summoner’s Rift match lasts between 30 to 40 minutes.

In order to generate fair matches for tens of millions of players, LoL maintains two systems: the ranking system and the matchmaking system. For Summoner’s Rift, the ranking system calculates players’ rank, and the matchmaking system matches players with similar rankings. However, only the ranked mode makes such player ranking visible. Players can play the ranked

mode of Summoner's Rift and win games to level up their ranks (from low to high: Iron, Bronze, Silver, Gold, Platinum, Diamond, Master, Grandmaster, and Challenger). A higher ranking usually indicates higher mastery.

All Random All Mid (ARAM), as described in the LoL client interface, is a mode where “ten randomly selected champions assemble on a narrow bridge in two teams and destroy everything in their path to cross to the other side” [68]. It has gained enormous popularity in recent years, and has its unique map, Howling Abyss [21, 98, 106].

ARAM is known for its casualness, manifest in several key design considerations. First, different from Summoner's Rift, ARAM features a selection of ten random champions. The system randomly assigns ten champions to ten players across two teams, with each player having no more than two times to reroll for a new random champion. Players can also switch champions with their teammates or choose from the champions disowned by teammates through rerolls. Still, the set of available champions to play is rather limited, compared to modes on the Summoner's Rift. Players don't have control over the champions they get in ARAM. Therefore, they cannot always pick the strongest or most comfortable champions. This feature adds surprises and challenges to the gameplay.

Second, another unique feature of ARAM is that it consists of only one lane (as shown in Fig. 1.b), in contrast to the three lanes found in Summoner's Rift (as shown in Fig. 1. a). Therefore, players are not assigned specific roles for different lanes. With only one lane to focus on, the map is much simplified. Players do not have to worry about managing multiple lanes, objectives, or complex jungle paths. The absence of top and bottom lanes, as well as jungle areas, translates to fewer strategic options for players. This simplification reduces the need for complex map awareness and strategic decision-making, bringing a casual nature to the game.

ARAM is intended to provide players with a fun mode to play [102]. The casual design of ARAM results in the shortening of play time. A typical ARAM match lasts between 15 to 20 minutes. Since its release, ARAM has been known as a casual, less stressful, and fun play mode compared to the competitive mode [4, 107].

Despite its heavy casualness, ARAM is competitive in nature as it involves two teams competing for an exclusive reward. Thus, players seem to experience the tension between its casualness and competitiveness. Recently, the LoL community even criticized ARAM's new designs for detracting from its casual nature [66, 108, 109]. Thus, the blend of casualness and competitiveness is not static, but consistently contested in player experience. It is important to note that Riot Games has updated a new patch including several new gaming designs on the ARAM map in late 2022, such as transporting doors, bushes, and fallen towers [108]. Our study's data collection took place before this update. Therefore, our study does not take these recent gaming design changes into account.

Table 1. Major differences between Summoner's Rift mode and ARAM mode. The first column notes the name of the features. The second and third columns note the detailed information on the different features of Summoner's Rift mode and ARAM mode accordingly.

Features	Summoner's Rift Mode	ARAM Mode
Map name	Summoner's Rift	Howling Abyss
Lanes	Three lanes	One lane
Has jungle areas	Yes	No
Has objectives	Yes	No
Has ranking system	Yes	No
Played in e-sports	Yes	No
Has assigned roles	Top/Jungle/Mid/Bottom/Support	No
Champion selection	Chose by players	Randomly assigned
Average match time	30-40 minutes	15-20 minutes

3 Related Work

3.1 Competitive Gaming in the Context of CSCW

Video games, especially online games, have become an important research area in the computer-supported cooperative work (CSCW) community since the early 2000s [9, 20, 58]. In the early days, CSCW researchers already recognized how play is not just for fun, but also a form of work, which pertains to the “W” in CSCW. Thus, online games have been studied as important social spaces, much like other online venues such as social media and Wikipedia, affording many opportunities for people to learn [42], form community [58], perform tasks [94], and engage in teamwork [26].

In parallel, CSCW’s interest in competitive gaming has grown considerably in recent years, exploring the social aspects of competition in the gaming context. A few studies have explored competitive gaming in a primarily collocated setting. For example, Voida et al. [86] studied 12 groups of console game players and recognized how console gamers in a collocated setting could simultaneously enjoy the collaborative, cooperative, and competitive elements. Su [78] analyzed player culture following the release of Street Fighter IV, which was available on both the arcade and the console (hence online play). This marked a contrast to earlier versions, which were on the arcade-only, leading players to negotiate and redefine what constitutes legitimate competitive gaming.

More recently, CSCW researchers have started to uncover competitive gaming in an online setting. Many competitive online games such as LoL and DOTA 2 feature fast-paced teamwork, presenting a unique challenge to virtual teamwork, where teammates must make fast decisions and tight coordination.

Against this backdrop, Kim et al. [34] measured the collective intelligence of teams in LoL in order to evaluate their performance and observed that the fast-paced setting expects teammates to rely more on tacit coordination than verbal coordination. Kou and Gui [39] observed that emotional management and leadership play an important role in virtual teamwork when players are experiencing intense competition. Zhang et al. [99] conducted a survey study to detail players’ expectations (in areas such as instrumental skills and communication strategies) for AI teammates in competitive gaming. Taken together, this body of work aligns with CSCW’s traditional interest in understanding and supporting virtual teamwork but acknowledges the distinctive characteristics of competitive gaming.

Meanwhile, several studies have also noted the negative side of competitive gaming. For example, Grandprey-Shores et al. [25] explored deviant behaviors in LoL and reported that more competitive game modes in LoL are associated with higher frequency of deviant behaviors. Kou and Gui’s interview study [38] with LoL players found that performance tracking data provided by the game could help players to learn but also cause stress and anxiety. Tally et al. [80] found that some players believed that there were stigmas associated with competitive gaming and would adopt privacy regulation strategies to keep their gaming habits in secret.

In sum, although prior work has focused on several disparate threads of interest, it collectively characterizes competitive gaming as a unique context where competitive game players engage in fast-paced, intense coordination and experience emotional challenges. Such uniqueness holds valuable social, cultural, and emotional implications for CSCW. Thus, in alignment with the observation that elements of gaming design have meaningful influence on social dynamics [86], this study focuses on the ARAM mode of LoL to understand how its gaming design choices impact LoL players’ experiences with competitive gaming.

3.2 Competitive Gaming and its Unintended Consequences

Competitive gaming, due to its popularity, has been studied for years to understand players’ motivation and gratification [77, 84, 96]. Gratifications derived from competitive gaming are broadly categorized into two types, competitive and hedonic [89].

The competitive gratification comes from extrinsic enjoyment, including competition, achievement, challenge, reputation, and reward [89]. For example, players find enjoyment in the intense engagement of competition [87] and derive pleasure from the challenges it presents [51].

Hedonic gratification stems from intrinsic enjoyment, including social relationships, escapism, self-fulfillment, fun, and virtual identity [89]. For example, players enjoy playing competitive gaming with friends [84]. Besides the gratifications listed above, scholars also found other sources of enjoyment sought by players. For example, when competition happens between two teams, the combination of intra-team collaboration and inter-team competition becomes a distinctive enjoyment [73].

While there are multiple gratifications and enjoyments in competitive gaming, players do not always have positive experiences in games. Negative emotions are widely reported in competitive gaming [39, 50]. For example, players show more frustration in highly competitive gaming compared to other types of video games [30]. Negative emotions such as “tilt” (which refers to depression due to losing) are also highly common in competitive gaming [41].

In addition, several studies have found that toxicity, behaviors that are disruptive or uncooperative, in competitive gaming can lead to players’ frustration and depression [8, 37, 45, 48, 73]. Toxic behaviors do not happen in competitive gaming by coincidence. In fact, competitiveness has been identified as a major contributing factor to toxic behavior. Players are more prone to exhibit toxic behavior when engaged in competitive mode and play high-damage characters that demands intense focus on in-game combat [25]. Unfortunately, online games’ moderation systems often fall short in articulating definitions of toxicity and having a low report rate from the player community [46].

Players’ enjoyment in competitive gaming further relies on and sometimes is jeopardized by fairness issues. Although fairness is a crucial norm in competitive gaming community [75], competitive games can be plagued by cheating behaviors, such as bug exploiting, which creates unfair advantages by inappropriately exploiting programming failures [27, 110]. A few competitive games use a “pay to win” mechanism, giving advantages to players who have made purchases, which renders unfair matches between non-paying players and pay-to-win players [23]. Matchmaking systems are also criticized for being unfair when they pair players with significantly different levels of skill or mastery [41]. Fairness issues not only frustrate players on the losing side, but also diminish the PX of those on the winning side. When players find a game either too easy or too hard, they may feel less challenged in both scenarios, leading to a negative PX [41, 60].

In sum, players enjoy competition in competitive gaming but also suffer from its unintended consequences such as negative emotions, toxicity, and fairness concerns. Given that ARAM is designed intentionally to mitigate these unintended consequences, it provides a unique study context for understanding and rethinking how players might experience competitive gaming in a different way.

4 Methodology

In this paper, we conducted a qualitative study to understand PX in casual competitive gaming, particularly focusing on All Random All Mid (ARAM) in League of Legends (LoL). Our specific research objectives are 1) to document and characterize player experience with ARAM and 2) to identify experiential qualities of ARAM tied to casualness and/or competitiveness. To address the research objectives and answer the research question of how players experience the blend of casualness and competitiveness in ARAM, a casual competitive mode, in LoL, we carried out 13 semi-structured interviews (see more details in Section 4.1) and conducted a thematic analysis of the data (see more details in Section 4.2). The study was approved by the university’s IRB office prior to the data collection. All the members of the research team are experienced LoL

players, having engaged with all its modes for years and understanding the differences between these modes.

4.1 Data Collection

Our research comprised a pilot interview study with five LoL players (P1-P5) and 13 semi-structured interviews (P6-P18) with LoL players experienced in both ARAM mode and Summoner's Rift mode on the North America Server.

We recruited our participants via the first author's personal contact (n=8), snowball sampling (n=2), and recruitment messages posted on our university campus (n=8). Among the eight participants recruited through the first author's personal contact, five of them were friends with the first author and had previously played LoL with the first author (P1-P5). Two participants were recruited from snowball sampling, a widely employed method in qualitative research [57, 62]. Snowball sampling relies on network and referral-based participant recruitment, starting with a small set of initial contacts and expanding through recommendations from existing participants, ultimately aiming to achieve a target sample size or saturation point [62].

Our participants aged between 21 and 28, including 2 females and 16 males. All of them had played both the ARAM and Summoner's Rift modes. All the participants had played LoL for at least 2 years, and more than half of them had played for more than 7 years. Among all the 18 participants, 11 of them are from the same institution as the authors (P6, P7, P9, P11-P18), 7 of them are from outside of the institution (P1-P5, P8, P10).

Table 2. Participants' demographic information. Note: For recruitment, DC: Direct Contact; SS: Snowball Sampling; UR: University Recruiting; The Mode column represents usual game mode of participants. ARAM: All Random All Mid Mode; SR: Modes with Summoner's Rift Map. The Classes column shows the champion classes participants like and dislike to play in general (like/dislike). According to Riot Games [105], there are six classes in total: Assassins (A), Fighters (F), Mages (MG), Marksmen (MK), Supports (S), and Tanks (T). For participants who do not have a specific class they like or dislike, we mark as not available (n.a.).

No.	Gender	Age	Playtime	Recruitment	Occupation	Mode	Classes
1	M	22	6 Years	DC	Software engineer	ARAM	F/MG
2	F	22	2 Years	DC	Student	ARAM	S, MG, MK/F, A
3	M	22	6 Years	DC	Student	SR	MK, F, T/S
4	M	25	4 Years	DC	Student	ARAM	F, T/MK
5	F	26	5 Years	DC	Data analyst	Both	S, MK, MG/T
6	M	22	8 Years	DC	Student	ARAM	F, MG/n.a.
7	M	22	8 Years	DC	Student	ARAM	MK/MG
8	M	23	5 Years	SS	Student	SR	n.a./MG
9	M	24	9 Years	UR	Student	ARAM	MG/A, MK
10	M	25	7 Years	DC	Student	SR	F/T
11	M	21	6 Years	UR	Student	SR	A, MG, MK/n.a.
12	M	28	6 Years	UR	Student	Both	MG/A
13	M	22	9 Years	UR	Student	SR	F, T/n.a.
14	M	24	9 Years	UR	Student	Both	A, F/S
15	M	26	7 Years	UR	Student	ARAM	MG, F/MK
16	M	24	8 Years	SS	Student	SR	A/S
17	M	22	10 Years	UR	Student	SR	MG, MK/F
18	M	23	3 Years	UR	Student	SR	F, A/n.a.

The first author conducted all the interviews via Zoom and recorded them with the participants' consent. Semi-structured interviews enabled us to ask open-ended and follow-up questions that encouraged participants to discuss their PX in a natural flow without a rigid

sequence [17]. This method afforded depth and insights into new concepts emerging from conversations with participants [17].

All interviews took place in October or November 2022, and lasted between 20 minutes and an hour. The variation of the interview time depended on players' willingness to express and the number of details they remembered from past experiences. We conducted the first 5 interviews as a pilot study (P1-P5), where we aimed at a set of general research questions.

Our interview questions for pilot study mainly focused on participants' favorite modes and their overall experiences in LoL. Through these pilot interviews, we noticed how participants shared their experiences with ARAM in LoL enthusiastically and in great detail. Thus, we refined the interview questions to focus on ARAM. Our finalized interview protocol included the following interview questions: 1) participants' demographic information and their past general experiences in LoL; and 2) participants' player experiences in LoL, especially in ARAM. For details of the interview protocol, please see Appendix A1. The questions allowed us to develop an understanding of players' enjoyment and concerns about ARAM. For the sake of data integrity, we excluded the pilot data from this paper.

All the interview audio was transcribed using Sonix.ai, an audio transcription service. Interview transcripts and coding data were stored and analyzed in Word and Excel on password-protected computers. Each of the participants received compensation (a \$20 Amazon Gift Card) after their interviews. To ensure participants anonymity, we refer to them using code names (i.e., P1, P2, P3, ...) when quoting their interviews.

4.2 Data analysis

We conducted a thematic analysis [13] of the interview data, focusing on how players experience the combination of casualness and competitiveness in ARAM. Our analysis was contextualized within the broader scope of competitive gaming, often linked with intense competitiveness, performance pressure, anxiety, and toxicity, while ARAM presents an alternative approach to this gaming paradigm.

Two researchers participated in the data analysis process. Both researchers have years of experiences in playing both ARAM and competitive modes in Summoner's Rift of LoL and can easily understand participants' experiences.

They first reviewed each transcript, noting down preliminary ideas about ARAM for the first-round discussion. Then, both of them conducted an initial coding independently by going through every transcript and coded quotes that were related to ARAM. This step generated over 280 initial codes. Through several meetings, the researchers discussed their codes and resolved disagreements, moving back and forth to reach a final set of initial codes. They finally agreed on a list comprising over 130 second-level codes. After this phase, the researchers went through next round of discussions to develop higher-level concepts and themes in the codes for the players' behaviors, motivations, and thoughts, until they reached an agreement on a thematic map, meeting the principles of internal homogeneity and external heterogeneity in thematic analysis [63]. Theme names were defined and established after several rounds of discussions, culminating in the creation of the thematic map. Finally, the most representative quotes were selected carefully and documented with theme names and codes in a coding book using Excel.

The resulting thematic map included three overarching themes, including 'decentering achievement in favor of other sources of gratification,' 'diversifying interpersonal dynamics with teammates and opponents,' and 'filling gaps in everyday gaming practices.' As an example of how initial codes were categorized into one of the overarching themes, 'playing with friends' was initially categorized under the theme 'diversifying interpersonal dynamics with teammates and opponents.' After discussion, we had an agreement that even though playing with friends creates interpersonal fun when socializing, it is more likely to be the reason and context why players play ARAM, and thus could be categorized under 'filling gaps in everyday gaming practices.'

5 Findings

Our participants acknowledged how ARAM offers the experience of casual competitive gaming, distinct from being solely causal or purely competitive. Specifically, they highlighted three primary ways in which ARAM's designs intersected with their ways of gaming, pertaining to the aspects of achievement, interpersonal dynamics, and gaps in their everyday gaming practice.

5.1 Decentering Achievements in Favor of Diverse Sources of Gratification

Much previous work [5, 41, 96, 97] has shown that competitive gaming design tends to prioritize achievements such as win and performance statistics. However, our participants acknowledged how the design of ARAM decenters achievements, facilitating them to explore diverse sources of gratification. In other words, players self-define their enjoyment rather than relying on achievement as the sole way of evaluating their gaming experiences. Such sentiment was evident in several participants' upfront comments on the meaning of 'win' in ARAM. For example, one player told us:

"Since there is no rank, win or loss does not matter that much to me. If I play ranked, then I need to pay more attention to that (loss)." P10

ARAM, albeit involving competition, does not offer a visible player rank like many other competitive games do. In the quote above, the participant explained that he deprioritized win because ARAM did not show a rank for him. The participant further contrasted ARAM with the ranked mode on Summoner's Rift which shows a player rank, explaining how achievements became less important in evaluating his overall enjoyment of ARAM. Clearly, the intentional gaming design choice to hide player rank played a significant role in players' appraisal of win in their experience. Some participants also pointed to other reasons for deprioritizing the win. For example, a player stated:

"If I could rank enjoyment [in ARAM], I would say having a lot of fun and winning is the happiest, then having fun and losing, and then winning and losing [if not having fun]." P9

In competitive gaming, having fun and winning can be two separated, and sometimes opposing, experiences. One might win but not have fun, and vice versa. In this regard, P9, in the quote above, attached more importance to the 'fun' experience than the 'win' experience.

When a win or a loss, the outcome of competition, is made less consequential via gaming design, players can develop their own ways of enjoyment. For example, a participant reported how he could focus on smaller, self-defined goals in ARAM:

"You can see four or five opponent players in just one area and the fact that you can blast them with your AOE abilities and see the big numbers is just something that I enjoy the most." P12

AOE stands for "area of effect." LoL's champions have vastly different abilities and strengths. Champions with AOE abilities are able to make damages targeted at an area, within which all the opponent players receive a high number of damages. P12 enjoyed playing mage or range champions, who usually can attack enemies from a far distance or have AOE effects. He explained that his enjoyment stemmed from leveraging a champion's advantages, in this case, the AOE effects, rather than focusing on traditional achievement-related outcomes in the game, such as game results or kills.

ARAM players have diverse gratifications other than winning the game. In this section, we illustrate what are their gratifications, or, in other words, self-defined enjoyment, such as freshness brought by randomness and process of playing. Their in-game actions which aim at achieving such gratification may conflict with pursuit of achievements, such as unfairness brought by randomness and potential for losing by prolonging the gameplay.

5.1.1 Enjoying Randomness over Fairness What further undermines the importance of win is the sheer amount of randomness that is designed into ARAM. As we described in the Background section, players do not get to pick their champions in ARAM. They receive a randomly assigned champion, have up to two opportunities to reroll for a randomly new champion, and are able to switch champions with their teammates. Thus, the available pool of champions is limited. Although this design constrains players' autonomy to pick champions, our participants appreciated how such randomness infuses elements of surprise, excitement, and freshness in their experiences. Some participants explained how open and optimistic they were about playing a random and oftentimes unfamiliar champion:

"It is common to have some unfamiliar champion [even though I don't usually play Top champions]. There is no pressure that you must win the game." P17

"Randomness is fine, even if I get some unfamiliar champions. [In Summoner's Rift, I mostly play fighters and tanks.] But trying new things is the ethos of ARAM." P13

Since champions assigned to players are random, there is no guarantee that players would be assigned with champions they are good at. Hence, it is possible to get unfamiliar champions, which may result in not playing well or a loss. However, both P17 and P13 were open to playing unfamiliar champions. Although P17 did not play the Top role in Summoners' Rift mode and was thus unfamiliar with champions that fit the role, he was open to trying such unfamiliar champions in ARAM since there was no pressure to win. P13 usually played fighters and tanks in Summoner's Rift mode but he also tried and enjoyed ranged champions such as mages in ARAM. P13 applauded the chance to step out of their comfort zone and to experience new gameplay styles. In addition, one player explained the pleasure from observing other players playing unfamiliar champions in ARAM:

"So, I always find this funny to see. People cannot play the champion that they get... You can tell that they are just using their abilities randomly in order to figure out what this champion is capable of." P12

When players get an unfamiliar champion that they have rarely played before, they could spend considerable time figuring out how to play and act in a clumsy way in game. Some players may choose to experiment with their abilities in a trial-and-error fashion. This renders a match less competitive but brings entertainment value to the players involved. P12 described how he enjoyed observing other players trying to cast abilities in unorthodox ways. This randomness typically results in a fresh combination of five champions, contrasting with the often predictable and optimal team composition in Summoner's Rift's competitive mode. For example, one player said:

"I like ARAM because of its randomness. Everyone can get a random champion. But in Rank/Normal, everyone just picks the powerful champions in the current season." P16

In the ranked mode of Summoner's Rift, players make their best effort to win and level up the ranks, so they are likely to choose strong champions in the current season. To the opposite, the design of ARAM prevents players from picking the strongest champions (for the purpose to win). P16 enjoyed the freshness coming out of champion randomness, instead of playing with the same champions or similar compositions all along in the same season. For ARAM players, randomness yields uncertainty, freshness, and a variety of player experience.

The randomness of ARAM also challenges the 'fairness' expectation inherent in competitive gaming. In competitive gaming, players expect fair matches so that they have an equal chance to win. But ARAM players could enjoy the game with less regard to its unfairness. For example, a player said:

"[If I see the enemy team has better champions than us,] I would say it is more challenging, but I'm not discouraged by that. I would think more on how to deal with it like how to create advantages... I'm not going to say we definitely lose something like that." P16

In LoL, a good champion composition means 5 champions' abilities have synergies. In the quote above, P16 encountered an unfair match since the enemy team had a better composition. However, P16 did not give up and still devised strategies to play along. ARAM players enjoy the challenges of turning the table by working out on strategies. A participant shared another example of enjoyment in 'turning the table' in ARAM:

"In fact, the sense of accomplishment from turning the tables and winning in adverse situations brings stronger positive feedback than the positive feedback from smoothly advancing to the opponent's base all the way." P17

Similar to P16, P17 had a tolerant attitude towards unfair disadvantages. He even further emphasized that he would have more satisfaction if he had disadvantages at the beginning but won at the end, compared to not having challenges and winning the game. As such, ARAM players consider randomness and related challenges as their enjoyment.

However, enjoyment for ARAM players diminishes if the matchup is excessively unfair, making the game less playable, regardless of whether it leads to an easy win or loss. For example, participants said:

"I would lose passion in this game [in ARAM] if it is an easy-win game since it would be boring." P13

"If we got weak champion composition like five supports, there is no chance to win so I will surrender as soon as possible." P6

Support in Summoner's Rift serves both as a role and champion type, offering abilities like healing and shielding rather than high damage. Their importance lies in team fights, where they protect allies and disrupt enemies' attacks. However, maintaining balance is crucial. An all-support team lacks damage and becomes weak, as noted by P6. Obviously, extremely unfair matchups offer limited opportunities for meaningful engagement right from the start. At this point, both the winning side, according to P13, and the losing side, according to P6, lost passion for engagement. Therefore, although ARAM players have high tolerance for unfairness, such tolerance has clear bounds.

5.1.2 Weighing the Process over the Outcome Game results are not the primary or only sources of enjoyment. ARAM players seek to define their own way of enjoyment during gameplay. Our participants placed more emphasis on the process of a match than on its outcome. For example, a player said:

"People in ARAM are more inclined to just dance at the Nexus instead of ending the game. I've actually lost a lot of games where my teammates, they would just like, dance around the Nexus and then get ace, and then we would lose. This also happens several times with the enemy team as well. Like they would just dance at our nexus, and we aced them and then we won. But yeah, I think winning is less important in ARAM for fun than as ranked. But for something else." P11

"Ace" means a situation where all the enemies are killed and at the respawn stage. Dancing near the Nexus typically occurs when the enemy team has been aced, leaving only an unprotected base that is easy to destroy. As P11 said above, players danced in front of the enemy team in a playful manner instead of being serious about destroying the base and winning the match. Despite the risk of losing, players often ignore or accept this risk in ARAM, since they find more enjoyment in the playful act of dancing than in securing a win. (Fig 2 is a screenshot of the dancing scenario, and Fig 3 shows how characters dance)



Fig. 2. A screenshot where ARAM players chose not to end the match by destroying the nexus in the center but wait for the opponents to respawn to have another team fight.



Fig. 3 Three screenshots where a LoL character, Ornn, is in standing position and dancing position. The figure on the right shows Ornn is in standing position. The figure in the middle shows Ornn in dancing position, with their left arm up and right arm down. The figure on the left shows Ornn in dancing position, with their right arm up and left arm down.

Some participants provided reasons as to why they would dance instead of securing a win: *"I felt the game would end too fast (if we choose to destroy the enemy's base) when we were approaching it, and I did not have enough fun. So, I wanted to wait for enemy's respawn and fight to kill them."* P8

Waiting for the enemy team to respawn is risky in terms of securing a win since it would give the enemy team a chance to save the base by fighting the player's team again. P8 accepted this risk, preferring to wait for enemies to respawn and engage in additional fights, finding greater enjoyment in these repeated confrontations. As such, one of the self-defined enjoyments of ARAM players is to prolong the game to have fights and kills. A player explained other reasons for prolonging the game:

“Sometimes if we got a really good champions that can fight hard later in the game... I feel like no matter how long we prolong the game, we still can win. So, at this time, I will choose not to destroy the base.” P17

In LoL, champions' growth is all different and depends on the length of the match. P17 preferred late-game champions that would grow much stronger with time, considering them “good champions.” This preference contrasts with choosing champions who excel in early-game high damage or champion combos that excel in coordinated surprise attacks. He preferred to extend the game to maximize the strength of late-game champions, as this approach aligns with his preferred style of gameplay. Thus, the motivation to secure a win does not always drive ARAM players to promptly end a match. ARAM players define their own enjoyment by extending the game duration and growing stronger. As such, ARAM players author their own enjoyment in a variety of ways.

5.2 Diversifying Interpersonal Dynamics with Teammates and Opponents

In competitive gaming that emphasizes achievement, players are disposed to approach their teammates based on their instrumental value, and view opponents as barriers to win. However, ARAM players have adopted a more playful approach in their interactions with teammates and opponents, deriving fun from such interpersonal interactions. In this section, we illustrate comparatively peaceful interpersonal relationship in ARAM, as opposed to those in competitive modes. Our findings show that in ARAM, players have fewer arguments with all players in the game, are more negotiable about strategies, and have playful communication with both their teammates and the enemy team.

5.2.1 Amicable Teammates

Participants usually used the ranked mode of Summoner’s Rift (which is highly competitive and showing player rank) as a reference point to acknowledge how amicable their teammates were in ARAM. In competitive gaming, the pressure to perform is prevalent, as one’s performance affects their rank and how they are perceived by others, often leading to stress and anxiety [7]. However, participants reported experiencing less performance pressure from both their peers and themselves in ARAM. For example, a player said:

“I think ARAM is more casual. You don’t have to be good to not get flamed or something. You could just AFK for like 2 minutes and nobody would even say anything. But in ranked, if you do that, you probably lose a huge significant advantage. In ARAM you’re not as punished as hard if you’re not trying. And it’s kind of just like it’s more relaxed in ARAM, like people are willing to just flash like waste flash at the start when they see each other, and flash emotes.” P11

AFK is short for “away from keyboard,” which indicates that a player is, or acts, disconnected from the game, which creates a disadvantage for the team. Conditions such as AFK create unfairness when the game falls into an imbalanced situation of four players versus five players. Flash is considered a valuable resource since it is normally used to start a sudden fight or run away from enemies’ attacks. In competitive gaming, both AFK and ‘wasting flash’ can create significant disadvantages for the team and are sometimes reportable as toxic behaviors. P11 noted that in ARAM, teammates are less likely to blame players for being temporarily AFK or for ‘wasting flash,’ reflecting the game’s less competitive, more casual nature. Teammates have low expectations of each other and low pressure to perform.

In addition to the tolerance of teammates losing advantages, ARAM players are also cooperative and ready to take teammates’ advice in a peaceful way. For example, a participant said:

"In ARAM, if my team chase the enemy but do not push the lane to destroy the tower, I will ask them to push the lane instead... then they would listen to me and push the lane."

P17

Pushing the lane to destroy the tower is a typical strategy to win the game in LoL. As explained previously, participants had their self-defined enjoyment other than win, which resulted in chasing the enemy instead of pushing the lane to win the game. However, as P17 explained, other teammates would adopt his advice when he asked and give up seeking their own gratification. By accepting teammates' advice and minimizing conflicts over strategy communication, ARAM players foster a harmonious teamwork atmosphere. As such, nonverbal signals such as pings and emotes are rarely perceived as aggressive. For example, a participant said:

"Normally, ARAM players are nice. There is hardly any argument. A question mark just simply means someone is missing." P13

The question mark is a non-verbal communication to mark someone who is missing on the enemy team. In competitive modes, the question mark, one of the pings, can be used as an offensive signal to express incomprehension or contempt for a player's behavior [48]. P13 in the quote above said that since ARAM players were amicable, the question mark was simply used as a 'someone is missing' signal, instead of an offensive signal. Thus, ARAM mode is more harmonious and has fewer offensive behaviors or arguments, compared to the competitive mode on Summoner's Rift.

5.2.2 Friendly Opponents The enjoyment of interacting with others is more evident in participants' accounts of how they engaged with their opponents. For example, one participant said:

"There was one time where we asked the enemy to stay back and let us feed Poro, so they did." P15

Poro, a nonplayer character, is a charming and magical creature within the game's lore, and it plays no role in the progress or outcome of the game. Poro hangs out somewhere on the map where both teams are able to 'feed' it, which triggers a special visual effect once it is fully fed. P15 in the quote above once asked the enemy team to stay back so that his team could feed Poro. Meanwhile, even though champions feeding Poro might be vulnerable, the enemy team kept their word and did not attack. As such, players on both teams in ARAM often view each other not as fierce competitors, but as friends sharing common interests in enjoying the game.

Such interpersonal harmony with opponents also eases the communication between the two competing teams. For example, one participant said:

"Turn the chat off in League of Legends [in ARAM], I would say that 80% of the players would say no. We wanted to have chats in League of Legends because that's something that we enjoy. I mean, even though I'm not a toxic person, even though I don't have too many interactions with other players, I wanted to see the conversation that they have 'Hey noob, try to play your character.' ...I mean, if the player cannot play the champion, there's nothing that I can do about it, right? At least I can have fun with the game itself." P12

In LoL, players can chat with every player in the game, including both the player' team and the enemy team. According to P12, opponents sometimes engage in offensive chats to tease players who do not perform well. However, ARAM's casual and playful atmosphere encourages players to adopt a more open and light-hearted approach to interpersonal communication. As such, P12 would not be offended by certain statements, and had fun watching such chats instead.

5.3 Filling Gaps in Everyday Gaming Practices

The casual competition afforded by ARAM possesses a unique position in our participants' everyday gaming practices. Participants viewed ARAM as an intermediate between casual gaming and hardcore/competitive gaming and mentioned using it to fill various gaps in their gaming needs. Players' motivations for and enjoyment of ARAM could be understood by connecting to a broader context where they choose to play ARAM. In this section, we illustrate players' clear reasonings about when and why to transit between ARAM and the competitive modes on Summoner's Rift. Such decisions are influenced by their offline work, temporal, and social circumstances.

Participants who played both ARAM and the ranked mode carefully evaluated these modes in a comparative way and made decisions about when and how to switch between ARAM and other modes. One reason they often cited was how ARAM supported their learning and preparation before they entered other competitive modes. For example, a participant said:

"I would try some unfamiliar champions in ARAM. In other competitive modes [when I try unfamiliar champions], I have to pay attention to other things such as ganking other lanes.

In ARAM, I use no brain to play the champion. All I have to do is cast abilities." P13

Ganking refers to helping other lanes to kill enemies. It is a typical strategy to gain advantages in Summoner's Rift. However, it could be cognitively burdensome. P13 usually played the Jungle role, which was expected to help their teammates by ganking other lanes. According to P13, he was not able to focus on learning champions when playing in Summoner's Rift because each uncalculated step in ganking could be costly. Thus, P13 switched to ARAM to try unfamiliar champions first. Players tend to try unfamiliar champions in ARAM before playing them in competitive mode. As such, ARAM served as a transitional point before playing competitive mode. A participant justified another reason for playing ARAM before competitive mode:

"If I haven't played LoL for a long time, I would play ARAM first to remind myself of that game. I feel embarrassed if I go straight to competitive mode and cause a loss." P17

Players who have not played LoL for a while may be unfamiliar with the gameplay and recent updates. This unfamiliarity can lead to frustrations and negatively impact their performance, potentially causing a loss. According to P17, such loss due to lack of practice would make him feel ashamed. Therefore, P17 tended to practice in ARAM first to get used to the game.

Besides treating ARAM as a transition to competitive mode, players also tended to play ARAM based on offline context. Here, offline context refers to offline circumstances outside LoL, such as players' working context, temporal context, and (offline) social context. For example, a participant said:

"I play that mode at the end of my working day like around 10, 11 at night just to have some fun in a short amount of time." P12

ARAM usually takes 15-20 minutes to end the game, while competitive mode usually takes 30-40 minutes. Therefore, players are able to end the game in a short period of time in ARAM, compared to competitive mode. As such, P12 chose to play ARAM when he had limited time for gaming late at night.

Short play time also can fill the gap in social contexts. For example, a participant reported that they play ARAM to wait for friends:

"(I'm going to play ARAM...) If we have to wait for a friend to play together and then they happen to start the game (competitive mode) themselves, the rest of us would play ARAM since it is fast (waiting for him). After ten minutes or so it can be done, and we all can play together later." P13

According to P13, he would have to wait for friends who already started competitive mode. While waiting, he tended to play games to kill the time. Playing competitive mode would take longer time, and his friends already in a game would have to wait for him again. Thus, he tended to play ARAM instead to fill the gap.

6 Discussion

We reported on players' enjoyment of All Random All Mid (ARAM) in League of Legends (LoL), finding and characterizing the unique experience of casual competitive gaming. Participants' deep familiarity with LoL's competitive gaming culture enriched their insights on experiences on ARAM. Thus, although our interviews were focused on ARAM, their insights extended beyond ARAM, often involving implicit or explicit comparisons with other competitive modes in LoL. In alignment with Voids et al.'s observation [86] that elements of gaming design may have a material impact on people's behavioral and social patterns. Our results showed that an alternative design approach to competitive gaming mobilizes players to seek diverse ways to interact with the game and other players. These findings allow us to reflect on the design of competitive gaming in aspects such as the diversity of enjoyment, casual gaming, randomness in competitive gaming, and inward PX.

6.1 Situating Casual Competition in a Competitive Gaming Landscape

Extending previous research on competitive gaming in LoL [2, 18, 28, 47, 52, 88] and observations of how such gaming prioritizes ranking for high scores [54] and optimizes in-game strategies to win [6, 48, 70, 95], our study of ARAM revealed that while players do compete against another team, they place less importance on calculation, optimization, and strategization. Instead, they focus more on in-the-moment experiences such as making damage and engaging in playful activities like dancing. For instance, P12 enjoyed the clumsiness of others and the friendly banters with the opponents.

While competitive gaming usually provides competitive and hedonic gratifications [77, 89, 96], the gaming design of ARAM intentionally hides the competitive ones [69, 102], such as achievement and reputation, in order to amplify hedonic ones such as social relationship and fun. For example, P16 enjoyed the challenges brought by reasonable degrees of randomness and unfairness. As P9 pointed out, he would rather have a lot of fun and lose rather than win and not have fun. P15 and P8 also pointed out that even if they had a chance to win the competition (either win a game or win an in-game combat), they might consider other factors more important than wins, such as feeding a Poro or killing the enemy team again after they respawn.

ARAM also lends players a comparative lens, by propelling them to compare ARAM and other competitive modes in LoL, particularly the ranked mode, and to reflect on how the ranked mode of LoL prioritizes competitive gratifications and the associated emotional burden. For example, P17 pointed out he would be ashamed if his low performance caused a loss in the ranked mode. P11 also mentioned that players might be blamed for losing the advantage of wins in competitive mode.

Competitive gaming often comes with an implicit association with hardcore gaming. Hardcore gaming describes how players invest large amounts of time and money in games [31]. Indeed, prior research on traditional competitive gaming identified parallels between competitive gaming and hardcore gaming in terms of competition [24, 96] and achievement [35, 96]. Meanwhile, casual gaming, the opposite of hardcore gaming, is oftentimes considered as an easy-to-learn game with engaging content, simple controls, quick rewards, and short playing time [43]. However, what we observed of ARAM challenges that implicit association and offers a unique blend of casualness and competitiveness as casual competition.

The casual competition in ARAM uniquely blends elements of both competitiveness and casualness. Such casual competitive gaming design satisfies a unique combination of players'

needs. For example, ARAM is designed to give players a short time competitive gaming experiences [69], which was appreciated by participants like P12. P11 enjoyed the straightforward gameplay and casualness of ARAM. In fact, previous research has found a rise of casual game and one of the casual game types “minigames” represents the game with more flexibility, simplicity, and acceptability by its short time session and simple design [44]. Although ARAM is not a minigame, it can be considered a “mini version” of competitive mode in LoL. Playing this casual competitive mode allows players to develop a casual attitude and not think about the risk of losing, but more about the in-the-moment experiences they can have and enjoy the process, regardless of the unfairness led by randomness. In traditional competitive gaming, aggressive behavior is often considered the norm [72]. But in ARAM, players can enjoy friendly, playful social dynamics with teammates and enemies.

Even though ARAM resonates with many characteristics of a casual game, it also carries some of the engaging elements from traditional competitive gaming. The majority of our participants reported that they enjoyed some intense elements of ARAM, such as killing and fighting. However, this does not mean that ARAM is cognitively or physically demanding like competitive mode, since participants acknowledge how ARAM removes the demanding elements that competitive mode has, such as making strategies, farming, and ganking. To ARAM players, character control is not demanding. Previous research found that cognitive flexibility and decision-making are the main factors for in-game performance [85]. Both factors are highly demanding for competitive players because they have to process the information based on the whole map, which is significantly more than character control. ARAM provides players an environment with reduced cognitive efforts. Thus, ARAM provides a new perspective on how to infuse casualness into competitive gaming.

6.2 Diversity Matters in the Player Experience of Competitive Gaming

Our study discovered that diversity in the design of competitive gaming, or lack thereof, has a profound impact on PX. This includes aspects such as *diversity in achievement, diversity in interpersonal interaction, and diversity in reactions*.

Diversity in achievement shapes how players set goals and anticipate enjoyment in games. Traditional competitive gaming design that stresses player achievements, commonly seen in competitive gaming and competitive mode in LoL, has oriented players towards external achievements, such as hierarchy and competition and shaped how players interact with others in the community [40, 64]. This focus on external achievements, indicating a lack of diversity, has been shown to diminish players’ autonomy and consequently, their enjoyment [10, 29, 30].

Even though previous scholars have discussed diversity in achievement [5, 96, 97], the achievements mostly are external ones. However, ARAM’s design deemphasizes external achievements such as winning and leveling up ranks, encouraging players to pursue a broader range of goals. For example, P12 enjoyed making high damages in a range in playing certain champions (AOE champions), and P8 enjoyed fighting the enemy after they respawn. Without the single-minded goal of winning a match, ARAM players are able to enjoy a competitive match, for different purposes. When the primary and visible external achievements are stripped away, ARAM players get to define their own vocabulary of achievement, and thus enjoy diversity in it. Therefore, their enjoyment and autonomy are enhanced in the casual competitive gaming setting, ARAM.

Such *diversity in achievement* helps reconfigure players’ in-game *diversity in interpersonal interactions*. *Diversity in interpersonal interaction* matters in terms of how players develop mental models of their teammates and opponents. In traditional competitive gaming, players tend to see their teammates’ instrumental values, and the relationship between teams is usually hostile as both of them try to win. Such traditional competitive gaming has been reported to be the reason for interpersonal aggression [19]. In our study, players enjoyed the diverse

interpersonal dynamics offered by the game, easing tensions with teammates and hostilities with opponents, which are endemic to competitive gaming. As competition plays a much less significant role in each team's goals, the interpersonal relationship also becomes more amicable.

Previous research has shown that players may overcriticize teammates for their poor performance [82]. Taking this to the traditional competitive gaming context, players may emphasize the instrumental value of teammates but ignore other interpersonal relationships with them. When teammates make mistakes, the blame attribution to teammates may outweigh other aspects of their interpersonal relationships. However, when the competition is not the only focus of the gaming environment, the behavior of blame attribution is de-emphasized among players, and diverse social dynamics between teammates emerge consequently. This partially aligns with previous study that reduction on competitiveness reduced aggression of players [19].

Diversity in achievement also contributes to *diversity in reactions* to in-game actions. In traditional competitive gaming, toxic players are seen as detrimental to win and thus could harm others' PX. Such toxic behaviors are reported for leading to more toxic behavior and leading players to stop playing the game [37, 84]. However, in our study, given the diversity in achievement, players see toxicity more tolerantly and thus lead to diversity in reactions to toxicity. For example, P12 enjoyed watching offensive chat, and was not necessarily offended. In traditional competitive gaming, players hold their own opinions on game strategy to win. It has been reported that different opinions on in-game strategies lead to team conflict and thus toxicity [37]. In our study, the diverse achievements pursued by players tend to reduce the initiation of team conflicts over strategic differences. For example, the team of P17 followed the P17's advice instead of sticking with their own strategies of chasing the enemy. As such, players' reactions to strategy communication with teammates are diverse due to their openness to others' opinions and strategies.

Importantly, the call for *diversity in achievement* is not to eliminate achievement, a defining characteristic of competitive gaming [72]. Rather, it seeks to open up more conversations about how to (re)balance player motivations and needs in light of the identified issues associated with contemporary competitive gaming design such as toxicity, high pressure, and player anxiety. For example, instead of viewing player rank visibility as a binary concept, we can reframe it as a spectrum, where visibility becomes customizable depending on players' needs.

6.3 Striking a Balance between Randomness and Fairness in Competitive Gaming

Traditional competitive gaming emphasizes fairness and implements multiple mechanisms to achieve it. For example, LoL's competitive modes require players from the opposing sides to take turns picking champions and banning champions to ensure fairness. This is similar to ensuring fairness through symmetrical positioning, where the symmetry of the situation is considered a sign of fairness [61, 65]. This fairness model is popular especially in eSports to prevent one side from getting a higher win rate than the other side. Another fairness mechanism commonly found in many competitive games is fairness by manipulation [93]. This fairness mechanism ensures balance in each match. Thus, the element of randomness still exists but is oftentimes seen as undesirable [74].

Randomness inherent to the ARAM design in our study can be understood as unsteerable fairness [65], meaning randomness without control. Such unsteerable fairness gives players equal chance to get a champion but cannot guarantee the balance of every single match. In addition, randomness in ARAM results in unpredictable in-game consequences, such as the selection of unfamiliar champions. Playing with such unfamiliar champions could lead to an imbalance in skill mastery. In competitive gaming, such unpredictable experiences are undesired especially when players are in high ranks [49]. However, in our study, many of our participants reported enjoying the unsteerable fairness given its various benefits such as freshness, excitement, and challenge. For example, P16 liked random team composition for freshness.

Participants also enjoyed the unpredictable consequences brought by unfamiliar champions. For example, P13 enjoyed exploration of having unfamiliar champions. Players who enjoyed the unsteerable fairness also accepted the imbalance, such as P6, enjoying challenges of an unbalanced champion composition.

But players' sense of symmetric and manipulated fairness could be at odds with the randomness design. When randomness is involved in the selection of champions in ARAM, it is possible for one team to end up with a weaker champion combination, and thus creating imbalance and unfairness. ARAM players embrace imbalance as part of the unsteerable fairness, and thus have a tolerance range of the imbalanced situation brought by unsteerable fairness, aligning with previous findings [93]. Both P16 and P17 explained how they accepted challenges brought by certain types of imbalanced situations. However, such range has clear limits, as both P6 and P13 are frustrated with extreme imbalances, where they would rather "dodge" the game. This points to the need to strike a balance between randomness (i.e., unsteerable fairness) and symmetric and manipulated fairness.

6.4 An Inward Mindset in Player Experiences

An inward mindset describes people who care about their personal goals and feelings. Conversely, people with an outward mindset prioritize team goals and can adjust their behavior to align with these goals. In the workplace, researchers are trying to find the transition from inward to outward mindset to improve group performance [53]. Such behaviors are also common in competitive gaming, where players often make personal sacrifices to support other players to win the game [16], even though these sacrifices might diminish their personal player experience. However, we found that ARAM players focus more on their own experience rather than on the team goal. For example, ARAM players would enjoy making meaningful actions by playing their own champions regardless of losing the game as a team. ARAM players would also prolong the game for their own enjoyment instead of ending the game for a team victory, despite understanding the associated risk of loss.

Such inward mindset is connected to how ARAM players emphasize intrinsic motivation, meaning people do things 'for its own sake,' while extrinsic motivation means people do things for an 'instrumental goal' [67]. Winning is the instrumental goal for many competitive games. In LoL, players in competitive mode are likely to be affected by the goal to win. Even though some of them might not only aim to win, based on the potential criticism from the teammate, they have to perform as "expected." Previous research also shows that players use quantitative data to design strategy and collaborate with teammates by assigning roles according to data on their profiles [38]. When there is no performance measurement to describe players' in-game performance, players feel less pressure to achieve the goal to win as a team. In ARAM, game settings deemphasize instrumental goals such as achievement defined by rankings and winning, and there are lower expectations of performance from teammates. As a result, players can be self-motivated and enjoy the game in their preferred style of play. A recent study indicates that players tend to behave 'selfishly' when they play alone than when they play in a team because they care about the team more than themselves [83]. In this study, we found that because of the ARAM design, players could act in a more "selfish" way and have less concern for the team.

In addition to in-game intrinsic motivation, players also show an inward mindset based on offline context. Several participants reported that they would switch modes based on their personal offline context. For example, when feeling tired or in the late of the night, P12 would choose ARAM to have a relaxed and short game for fun. Players also choose to play with friends, disregarding waiting times, to enjoy the social aspect of gaming. This aligns with previous research which found that the social factors are one of the MOBA motivation [84]. ARAM players with the inward mindset evaluated their overall feelings to choose the game mode that satisfied them the most.

6.5 Design Implication

Our study of ARAM revealed how game designers can be the architects in shaping how players interact with the game environment and each other. Such findings point to several design considerations for rethinking the design of competitive gaming.

First, the enjoyment players derive from competitive gaming can be diverse and extended beyond merely achieving a win. Players in competitive gaming come from a wide range of backgrounds, each with different motivations, preferred intensity of gameplay, and varying amounts of available time and efforts. Game designers should consider designing competitive gaming to cater to different player groups. Players might not focus solely on winning; they also enjoy the game in their own ways. This approach can release their pressure and alleviate potential toxic behavior resulting from game outcomes. For example, for players who walk between casual gamers and hardcore/competitive gamers, game designers may consider incorporating casual gaming design elements into certain game modes to speed up the game pace and reduce cognitive efforts. At a more granular level, designers could also consider how to enhance players' autonomy in adjusting their needs for competitive gaming characteristics such as achievement and competition. For example, players could be allowed to decide how visible they desire their player rank to be, from being visible to all players, to being visible to only friends, to being visible only to themselves, to being entirely invisible.

Second, designers can leverage randomness in game to create freshness and unexpectedness. Previous literature [5, 96], along with our findings, demonstrates players' eagerness to explore the game and experience new things. Introducing randomness to create unexpected situations can provide not only the thrill of luck but also new surprises and challenges for players. Therefore, randomness can provide players with unpredictable and unique experiences, encouraging them to enjoy the game in the moment. This can help reduce potential toxic behavior in a highly competitive environment. Not only in MOBA, but randomness could also provide freshness in other competitive games, such as weather changes in Battlefield, an FPS (First-person shooter) game. Nevertheless, designers should keep in mind the balance between fairness and randomness. Thus, we recommended manipulating randomness to maintain an appearance of randomness to players while preserving symmetrical fairness. This approach is similar to the manipulated randomness in music shuffle, which creates a feeling of randomness for users [14].

Finally, game designers should support diverse means of interactions between players and opponent teams to improve interpersonal tensions, such as creating friendly and fun interactions. Instrumentalized interpersonal relationships rooted in achievement-driven design can easily lead to extreme hostility including cursing or mocking, and thus toxicity. Should game designs aim to reduce tension between teams, it could lead to less toxicity in communication channels and other in-game interactions.

7 Limitations and Future Work

This paper focused on PX of casual competitive gaming in the ARAM mode. We did not use the interview data resulting from the pilot study. However, initial insights from the pilot study informed the development of our ARAM-focused interview protocol.

Our participant sample was skewed toward male, with a ratio consistent with LoL players' demographics [79]. Our interview protocol did not include gender-specific questions to differentiate experiences among individuals of different genders. Future research should aim to diversify participants' gender distribution and include quantitative studies to explore correlation between gender and PX.

Given the small-scale nature of the qualitative study, our findings may not apply to all players in the LoL community. Our sample size is consistent with the typical sample sizes of qualitative research published in HCI [11]. Future studies may benefit from recruiting more participants using social media platforms, such as Reddit, X (formerly Twitter), and Instagram. It is also possible that players may have a different understanding of casual and competitive gaming beyond the North American region. Therefore, we recommend that future research include players from diverse cultures beyond North America to incorporate more cross-cultural perspectives.

Although we included interview questions about participants' favorite and least favorite classes of champions, we noticed that some participants do not have a static class they prefer or do not prefer. Many participants also have defined their own "types" of champions, such as "champion with long range," "late-game champion" and "debuffed champion in ARAM." Some participants also claimed that their preferences of classes could change over time or sometimes depend on their teammates' choice of champion. We did not record this contextual information in our demographic table as it is not the focus of this study. We marked these answers as n.a. However, we do observe a trend that participants' champion preferences are dynamic. Therefore, we encourage researchers to consider the contextual factors that influence players' choices of champion classes or "types" of champions in the future.

Furthermore, the LoL community is part of the larger competitive gaming culture. Thus, a variety of sources of PX on casual competitive gaming are recommended in future work to triangulate with our findings. Even though we identified a certain range of fairness and randomness, the boundaries of these concepts remain unclear. Therefore, we suggest future researchers try and use diverse methods to collect PX for the fairness range.

8 Conclusion

In this study, we conducted a semi-structured interview study to achieve two research objectives. First, we documented and characterized player experience with ARAM by explaining how players self-define their diverse enjoyment in gameplay, diversify interpersonal relationships with teammates and enemy teams, and play games based on various contextual factors. Second, we identified experiential qualities of ARAM tied to casualness and/or competitiveness by demonstrating how ARAM design diversifies player experiences by not prioritizing winning and providing diverse achievements, facilitates interpersonal relationships between teammates and opponents by providing diverse in-game interactions, and creates casual gaming spaces for players to situate their contextual factors in gaming. Through thematic analysis, we were able to reveal how alternative approaches to competitive gaming like ARAM can prompt us to rethink competitive gaming design along several dimensions, including but not limited to diversity, casualness, and randomness. Our study may be limited by the demographics of our participants and subjective nature of their responses to interview questions. We suggest that future research can include quantitative studies with a more diverse participants pool to deepen our understanding of players' perceptions of casual competitive gaming. Moving forward, future research should broaden our focus on competitive gaming, exploring various modes of play and reimagining diverse approaches to competitive gaming. This study provides a critical reflection on existing competitive gaming designs in terms of their potential negative impacts on PX. It also provides direct and practical implications into how competitive gaming designs can be tailored to enhance players' wellbeing.

Acknowledgments

We truly appreciate all the anonymous reviewers at CSCW 2024 and all lab members in Health and Play Lab at Penn State for their insightful and constructive feedback. This work was partially supported by National Science Foundation under grant #2326505.

References

- [1] Lucy A. Sparrow, Martin Gibbs, and Michael Arnold. 2021. The ethics of multiplayer game design and community management: industry perspectives and challenges. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 2021. 1–13.
- [2] Callum Abbott, Matthew Watson, and Phil Birch. 2022. Perceptions of Effective Training Practices in League of Legends: A Qualitative Exploration. *Journal of Electronic Gaming and Esports* 1, 1 (October 2022). <https://doi.org/10.1123/jege.2022-0011>
- [3] Sonam Adinolf and Selen Turkay. 2018. Toxic Behaviors in Esports Games: Player Perceptions and Coping Strategies. In Proceedings of the 2018 Annual Symposium on Computer-Human Interaction in Play Companion Extended Abstracts, October 23, 2018. ACM, Melbourne VIC Australia, 365–372. <https://doi.org/10.1145/3270316.3271545>
- [4] Steven Bogos Legacy Author. 2013. League Of Legends' "All Random All Mid" Mode Gets Official. *The Escapist*. Retrieved June 26, 2023 from <https://www.escapistmagazine.com/league-of-legends-all-random-all-mid-mode-gets-official/>
- [5] Richard Bartle. 1996. Hearts, clubs, diamonds, spades: Players who suit MUDs. *Journal of MUD research* 1, 1 (1996), 19.
- [6] Thomas E Batsford. Calculating Optimal Jungling Routes in DOTA2 Using Neural Networks and Genetic Algorithms. 8.
- [7] Nicole A. Beres, Madison Klarkowski, and Regan L. Mandryk. 2021. Under Pressure: Exploring Choke and Clutch in Competitive Video Games. *Proc. ACM Hum.-Comput. Interact.* 5, CHI PLAY (October 2021), 1–22. <https://doi.org/10.1145/3474666>
- [8] Jeremy Blackburn and Haewoon Kwak. 2014. STFU NOOB!: predicting crowdsourced decisions on toxic behavior in online games. In Proceedings of the 23rd international conference on World wide web - WWW '14, 2014. ACM Press, Seoul, Korea, 877–888. <https://doi.org/10.1145/2566486.2567987>
- [9] Barry Brown and Marek Bell. 2004. CSCW at play: 'there's as a collaborative virtual environment. In Proceedings of the 2004 ACM conference on Computer supported cooperative work, 2004. 350–359.
- [10] Florian Brühlmann, Philipp Baumgartner, Günter Wallner, Simone Kriglstein, and Elisa D. Mekler. 2020. Motivational Profiling of League of Legends Players. *Front. Psychol.* 11, (July 2020), 1307. <https://doi.org/10.3389/fpsyg.2020.01307>
- [11] Kelly Caine. 2016. Local Standards for Sample Size at CHI. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI '16), May 07, 2016. Association for Computing Machinery, New York, NY, USA, 981–992. <https://doi.org/10.1145/2858036.2858498>
- [12] Tom Chapman. 2023. What Is The Fortnite Player Count in 2023? GGRECON. Retrieved February 19, 2023 from <https://www.ggrecon.com/guides/fortnite-player-count-how-many-people-play/>
- [13] Victoria Clarke and Virginia Braun. 2021. Thematic Analysis: A Practical Guide. SAGE Publications Ltd, London. Retrieved from <http://digital.casalini.it/9781526417305>
- [14] Ben Cohen. 2020. Spotify made its shuffle feature less random so that it would actually feel more random to listeners — here's why. *Business Insider*. Retrieved February 17, 2023 from <https://www.businessinsider.com/spotify-made-shuffle-feature-less-random-to-actually-feel-random-2020-3>
- [15] Dalton Cooper. 2023. Call of Duty: Warzone 2 Player Count is Dropping. Game Rant. Retrieved February 19, 2023 from <https://gamerant.com/call-of-duty-warzone-2-player-count-dropping/>
- [16] Bethany Davies, Christopher J. Headleand, and Kieran Hicks. 2020. Exploring the Impact of Gender on Character Mechanics in Multiplayer Online Battle Arena (MOBA) Games. In 2020 International Conference on Cyberworlds (CW), 2020. IEEE, 71–78.
- [17] Christine Dearnley. 2005. A reflection on the use of semi-structured interviews. *Nurse Researcher* (through 2013) 13, 1 (2005), 19–28.
- [18] Scott Donaldson. 2017. Mechanics and Metagame: Exploring Binary Expertise in League of Legends. *Games and Culture* 12, 5 (July 2017), 426–444. <https://doi.org/10.1177/1555412015590063>
- [19] Andre Dowsett and Mervyn Jackson. 2019. The effect of violence and competition within video games on aggression. *Computers in Human Behavior* 99, (2019), 22–27.
- [20] Nicolas Ducheneaut and Robert J. Moore. 2004. The social side of gaming: a study of interaction patterns in a massively multiplayer online game. In Proceedings of the 2004 ACM conference on Computer supported cooperative work, 2004. 360–369.
- [21] Tyler Esguerra. 2020. Riot says a ranked mode is "not the right answer" to bring a competitive feel to ARAM. Dot Esports. Retrieved December 23, 2022 from <https://dotesports.com/league-of-legends/news/riot-says-a-ranked-mode-is-not-the-right-answer-to-bring-a-competitive-feel-to-aram>

[22] Simon Ferrari. 2013. From Generative to Conventional Play: MOBA and League of Legends. In DiGRA Conference, 2013. 1–17. Retrieved December 12, 2023 from http://www.digra.org/wp-content/uploads/digital-library/paper_230_formattingfixed.pdf

[23] Guo Freeman, Karen Wu, Nicholas Nower, and Donghee Yvette Wohn. 2022. Pay to Win or Pay to Cheat: How Players of Competitive Online Games Perceive Fairness of In-Game Purchases. *Proc. ACM Hum.-Comput. Interact.* 6, CHI PLAY (October 2022), 1–24. <https://doi.org/10.1145/3549510>

[24] Tobias Fritsch, Benjamin Voigt, and Jochen Schiller. 2006. Distribution of Online Hardcore Player Behavior: (How Hardcore are You?). In Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games (NetGames '06), 2006. Association for Computing Machinery, New York, NY, USA, 16–es. <https://doi.org/10.1145/1230040.1230082>

[25] Kate Grandprey-Shores, Yilin He, Kristina L. Swanenburg, Robert Kraut, and John Riedl. 2014. The identification of deviance and its impact on retention in a multiplayer game. In Proceedings of the 17th ACM conference on Computer supported cooperative work & social computing, February 15, 2014. ACM, Baltimore Maryland USA, 1356–1365. <https://doi.org/10.1145/2531602.2531724>

[26] Yun Huang, Wenyue Ye, Nicholas Bennett, and Noshir Contractor. 2013. Functional or social? Exploring teams in online games. In Proceedings of the 2013 conference on Computer supported cooperative work, 2013. 399–408.

[27] Sidney V. Irwin and Anjum Naweed. 2020. BM’ing, Throwing, Bug Exploiting, and Other Forms of (Un)Sportsmanlike Behavior in CS:GO Esports. *Games and Culture* 15, 4 (June 2020), 411–433. <https://doi.org/10.1177/1555412018804952>

[28] Josh Jarrett. Fountain Hooks, Emergent Exploits and the Playful Co-Creativity of MOBAs.

[29] Daniel Johnson, John Gardner, and Penelope Sweetser. 2016. Motivations for videogame play: Predictors of time spent playing. *Computers in Human Behavior* 63, (October 2016), 805–812. <https://doi.org/10.1016/j.chb.2016.06.028>

[30] Daniel Johnson, Lennart E. Nacke, and Peta Wyeth. 2015. All about that Base: Differing Player Experiences in Video Game Genres and the Unique Case of MOBA Games. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, April 18, 2015. ACM, Seoul Republic of Korea, 2265–2274. <https://doi.org/10.1145/2702123.2702447>

[31] Jesper Juul. 2010. *A casual revolution: Reinventing video games and their players*. MIT press.

[32] Adam S. Kahn, Cuihua Shen, Li Lu, Rabindra A. Ratan, Sean Coary, Jinghui Hou, Jingbo Meng, Joseph Osborn, and Dmitri Williams. 2015. The Trojan Player Typology: A cross-genre, cross-cultural, behaviorally validated scale of video game play motivations. *Computers in Human Behavior* 49, (August 2015), 354–361. <https://doi.org/10.1016/j.chb.2015.03.018>

[33] Dominik Kayser, Sebastian Andrea Caesar Perrig, and Florian Brühlmann. 2021. Measuring Players’ Experience of Need Satisfaction in Digital Games: An Analysis of the Factor Structure of the UPEQ. In Extended Abstracts of the 2021 Annual Symposium on Computer-Human Interaction in Play, October 15, 2021. ACM, Virtual Event Austria, 158–162. <https://doi.org/10.1145/3450337.3483499>

[34] Young Ji Kim, David Engel, Anita Williams Woolley, Jeffrey Yu-Ting Lin, Naomi McArthur, and Thomas W. Malone. 2017. What makes a strong team? Using collective intelligence to predict team performance in League of Legends. In Proceedings of the 2017 ACM conference on computer supported cooperative work and social computing, 2017. 2316–2329.

[35] Ben Kirman and Shaun Lawson. 2009. Hardcore Classification: Identifying Play Styles in Social Games Using Network Analysis. In *Entertainment Computing – ICEC 2009*, 2009. Springer Berlin Heidelberg, Berlin, Heidelberg, 246–251.

[36] Bastian Kordyaka and Björn Kruse. 2021. Curing toxicity—developing design principles to buffer toxic behaviour in massive multiplayer online games. *Safer communities* 20, 3 (2021), 133–149.

[37] Yubo Kou. 2020. Toxic Behaviors in Team-Based Competitive Gaming: The Case of League of Legends. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play, November 02, 2020. ACM, Virtual Event Canada, 81–92. <https://doi.org/10.1145/3410404.3414243>

[38] Yubo Kou and Xinning Gui. 2018. Entangled with Numbers: Quantified Self and Others in a Team-Based Online Game. *Proc. ACM Hum.-Comput. Interact.* 2, CSCW (November 2018), 1–25. <https://doi.org/10.1145/3274362>

[39] Yubo Kou and Xinning Gui. 2020. Emotion Regulation in eSports Gaming: A Qualitative Study of League of Legends. *Proc. ACM Hum.-Comput. Interact.* 4, CSCW2 (October 2020), 1–25. <https://doi.org/10.1145/3415229>

[40] Yubo Kou, Xinning Gui, and Yong Ming Kow. 2016. Ranking Practices and Distinction in League of Legends. In Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play, October 15, 2016. ACM, Austin Texas USA, 4–9. <https://doi.org/10.1145/2967934.2968078>

[41] Yubo Kou, Yao Li, Xinning Gui, and Eli Suzuki-Gill. 2018. Playing with Streakiness in Online Games: How Players Perceive and React to Winning and Losing Streaks in League of Legends. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, April 21, 2018. ACM, Montreal QC Canada, 1–14. <https://doi.org/10.1145/3173574.3174152>

- [42] Yong Ming Kow and Timothy Young. 2013. Media technologies and learning in the starcraft esport community. In Proceedings of the 2013 conference on Computer supported cooperative work, 2013. 387–398.
- [43] Jussi Kuittinens, Annakaisa Kultima, Johannes Niemelä, and Janne Paavilainen. 2007. Casual games discussion. In Proceedings of the 2007 conference on Future Play - Future Play, 2007. ACM Press, Toronto, Canada, 105–112. <https://doi.org/10.1145/1328202.1328221>
- [44] Annakaisa Kultima. 2009. Casual game design values. In Proceedings of the 13th international MindTrek conference: Everyday life in the ubiquitous era, 2009. 58–65.
- [45] Haewoon Kwak and Jeremy Blackburn. 2015. Linguistic analysis of toxic behavior in an online video game. In Social Informatics: SocInfo 2014 International Workshops, Barcelona, Spain, November 11, 2014, Revised Selected Papers 6, 2015. Springer, 209–217.
- [46] Haewoon Kwak, Jeremy Blackburn, and Seungyeop Han. 2015. Exploring Cyberbullying and Other Toxic Behavior in Team Competition Online Games. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, April 18, 2015. ACM, Seoul Republic of Korea, 3739–3748. <https://doi.org/10.1145/2702123.2702529>
- [47] Kiran Lakkaraju, Gita Sukthankar, and Rolf T. Wigand. 2018. Social Interactions in Virtual Worlds: An Interdisciplinary Perspective. Cambridge University Press.
- [48] Alex Leavitt, Brian C. Keegan, and Joshua Clark. 2016. Ping to Win?: Non-Verbal Communication and Team Performance in Competitive Online Multiplayer Games. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, May 07, 2016. ACM, San Jose California USA, 4337–4350. <https://doi.org/10.1145/2858036.2858132>
- [49] Choong-Soo Lee and Ivan Ramler. 2015. Investigating the Impact of Game Features on Champion Usage in League of Legends. In FDG, 2015. .
- [50] Daniel Madden and Casper Hartevelde. 2021. “Constant Pressure of Having to Perform”: Exploring player health concerns in esports. In Proceedings of the 2021 CHI conference on human factors in computing systems, 2021. 1–14.
- [51] Thomas W. Malone. 1981. Toward a Theory of Intrinsically Motivating Instruction. *Cognitive Science* 5, 4 (October 1981), 333–369. https://doi.org/10.1207/s15516709cog0504_2
- [52] Eric Mao. 2021. The structural characteristics of esports gaming and their behavioral implications for high engagement: A competition perspective and a cross-cultural examination. *Addictive Behaviors* 123, (December 2021), 107056. <https://doi.org/10.1016/j.addbeh.2021.107056>
- [53] Joan Marques. 2011. Turning inward to connect outward: Interbeing as motivational path in today’s workplace. *Interbeing* 5, 1 (2011), 19–29.
- [54] Lindsey Migliore. 2021. What Is Esports? The Past, Present, and Future of Competitive Gaming. In *Handbook of Esports Medicine: Clinical Aspects of Competitive Video Gaming*, Lindsey Migliore, Caitlin McGee and Melita N. Moore (eds.). Springer International Publishing, Cham, 1–16. https://doi.org/10.1007/978-3-030-73610-1_1
- [55] Marçal Mora-Cantallops and Miguel-Ángel Sicilia. 2018. Player-centric networks in League of Legends. *Social Networks* 55, (October 2018), 149–159. <https://doi.org/10.1016/j.socnet.2018.06.002>
- [56] Marçal Mora-Cantallops and Miguel-Ángel Sicilia. 2018. Exploring player experience in ranked League of Legends. *Behaviour & Information Technology* 37, 12 (December 2018), 1224–1236. <https://doi.org/10.1080/0144929X.2018.1492631>
- [57] Mahin Naderifar, Hamideh Goli, and Fereshteh Ghaljaie. 2017. Snowball Sampling: A Purposeful Method of Sampling in Qualitative Research. *Strides in Development of Medical Education* 14, 3 (September 2017). <https://doi.org/10.5812/sdme.67670>
- [58] Bonnie Nardi and Justin Harris. 2006. Strangers and friends: Collaborative play in World of Warcraft. In Proceedings of the 2006 20th anniversary conference on Computer supported cooperative work, 2006. 149–158.
- [59] Joaquim A. M. Neto, Kazuki M. Yokoyama, and Karin Becker. 2017. Studying toxic behavior influence and player chat in an online video game. In Proceedings of the International Conference on Web Intelligence, August 23, 2017. ACM, Leipzig Germany, 26–33. <https://doi.org/10.1145/3106426.3106452>
- [60] Mark Newheiser. 2009. Playing Fair: A Look at Competition in Gaming. *Strange Horizons*. Retrieved December 14, 2022 from <http://strangehorizons.com/non-fiction/articles/playing-fair-a-look-at-competition-in-gaming/>
- [61] Eftymia Paparistodemou, Richard Noss, and Dave Pratt. 2008. The Interplay Between Fairness and Randomness in a Spatial Computer Game. *Int J Comput Math Learning* 13, 2 (July 2008), 89–110. <https://doi.org/10.1007/s10758-008-9132-8>
- [62] C. Parker, S. Scott, and A. Geddes. 2019. Snowball Sampling. *SAGE Research Methods Foundations* (September 2019). Retrieved November 8, 2023 from <http://methods.sagepub.com/foundations/snowball-sampling>
- [63] Michael Quinn Patton. 1990. *Qualitative evaluation and research methods*. Sage Publications, Inc, Newbury Park, CA.
- [64] Christopher A Paul. 2018. The toxic meritocracy of video games: Why gaming culture is the worst. U of Minnesota Press.

[65] Dave Pratt. 2000. Making Sense of the Total of Two Dice. *Journal for Research in Mathematics Education* 31, 5 (November 2000), 602–625. <https://doi.org/10.2307/749889>

[66] Sadakshi Kalyan Ramun. 2022. League of Legends Players Feel ARAM Is Simply Not Fun Anymore. AFK Gaming. Retrieved June 26, 2023 from <https://afkgaming.com/esports/news/league-of-legends-players-feel-aram-is-simply-not-fun-anymore>

[67] Steven Reiss. 2012. Intrinsic and Extrinsic Motivation. *Teaching of Psychology* 39, 2 (April 2012), 152–156. <https://doi.org/10.1177/0098628312437704>

[68] Riot Games. 2009. League of Legends. Retrieved from <https://www.leagueoflegends.com>

[69] Riot Maxw3ll. 2022. ARAM new design. Twitter. Retrieved February 17, 2023 from <https://twitter.com/ExasperatedDan/status/1601086993760686081>

[70] François Rioult, Jean-Philippe Métivier, Boris Helleu, Nicolas Scelles, and Christophe Durand. 2014. Mining Tracks of Competitive Video Games. *AASRI Procedia* 8, (2014), 82–87. <https://doi.org/10.1016/j.aasri.2014.08.014>

[71] Richard M. Ryan, C. Scott Rigby, and Andrew Przybylski. 2006. The Motivational Pull of Video Games: A Self-Determination Theory Approach. *Motiv Emot* 30, 4 (December 2006), 344–360. <https://doi.org/10.1007/s11031-006-9051-8>

[72] Mike Schmierbach. 2010. “Killing Spree”: Exploring the Connection Between Competitive Game Play and Aggressive Cognition. *Communication Research* 37, 2 (April 2010), 256–274. <https://doi.org/10.1177/0093650209356394>

[73] Mike Schmierbach, Qian Xu, Anne Oeldorf-Hirsch, and Frank E. Dardis. 2012. Electronic Friend or Virtual Foe: Exploring the Role of Competitive and Cooperative Multiplayer Video Game Modes in Fostering Enjoyment. *Media Psychology* 15, 3 (July 2012), 356–371. <https://doi.org/10.1080/15213269.2012.702603>

[74] Tobias M Scholz. 2012. New Broadcasting Ways in IPTV – The Case of the Starcraft Broadcasting Scene. *World media economics & management conference* (2012). Retrieved from <https://ssrn.com/abstract=1997378>

[75] Yuri Seo. 2016. Professionalized consumption and identity transformations in the field of eSports. *Journal of Business Research* 69, 1 (January 2016), 264–272. <https://doi.org/10.1016/j.jbusres.2015.07.039>

[76] Shreyansh Shah. 2022. How To Turn Off Skill-Based Matchmaking (SBMM) In MW2 & Warzone 2. Gamer Tweak. Retrieved February 20, 2023 from <https://gamertweak.com/disable-sbmm-mw2/>

[77] John L. Sherry, Bradley S. Greenberg, Kristen Lucas, and Ken Lachlan. 2012. Video game uses and gratifications as predictors of use and game preference. In *Playing video games*. Routledge, 248–262.

[78] Norman Makoto Su. 2010. Street Fighter IV: braggadocio off and on-line. In *Proceedings of the 2010 ACM conference on Computer supported cooperative work*, 2010. 361–370.

[79] Peter Susic. 2023. How Many People Play League of Legends & Average LoL Player Stats (2023). Headphones Addict. Retrieved February 19, 2023 from <https://headphonesaddict.com/league-of-legends-statistics/>

[80] Anne Clara Tally, Yu Ra Kim, Katreen Boustani, and Christena Nippert-Eng. 2021. Protect and Project: Names, Privacy, and the Boundary Negotiations of Online Video Game Players. *Proceedings of the ACM on Human-Computer Interaction* 5, CSCW1 (2021), 1–19.

[81] Evelyn T S Tan, Katja Rogers, Lennart E. Nacke, Anders Drachen, and Alex Wade. 2022. Communication Sequences Indicate Team Cohesion: A Mixed-Methods Study of Ad Hoc League of Legends Teams. *Proc. ACM Hum.-Comput. Interact.* 6, CHI PLAY (October 2022), 1–27. <https://doi.org/10.1145/3549488>

[82] Wee-Kheng Tan and Lu-Ming Chen. 2022. That’s not my fault: Excuses given by players exhibiting in-game intra-team aggressive behavior in online games. *Computers in Human Behavior* 127, (2022), 107045.

[83] Sagguneswaraan Thavamuni, Mohd Nor Akmal Khalid, and Hiroyuki Iida. 2023. What makes an ideal team? Analysis of Popular Multiplayer Online Battle Arena (MOBA) games. *Entertainment Computing* 44, (2023), 100523.

[84] April Tyack, Peta Wyeth, and Daniel Johnson. 2016. The Appeal of MOBA Games: What Makes People Start, Stay, and Stop. In *Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play*, October 15, 2016. ACM, Austin Texas USA, 313–325. <https://doi.org/10.1145/2967934.2968098>

[85] Carlos Valls-Serrano, Cristina de Francisco, Eduardo Caballero-López, and Alfonso Caracuel. 2022. Cognitive Flexibility and Decision Making Predicts Expertise in the MOBA Esport, League of Legends. *SAGE Open* 12, 4 (October 2022), 21582440221142728. <https://doi.org/10.1177/21582440221142728>

[86] Amy Volda, Sheelagh Carpendale, and Saul Greenberg. 2010. The individual and the group in console gaming. In *Proceedings of the 2010 ACM conference on Computer supported cooperative work*, 2010. 371–380.

[87] Peter Vorderer, Tilo Hartmann, and Christoph Klimmt. 2003. Explaining the enjoyment of playing video games: the role of competition. In *Proceedings of the second international conference on Entertainment computing*, 2003. 1–9.

[88] Lisanne Wartna. 2023. “You suck, pls uninstall” - Towards a Better Understanding of Toxic Behaviour in Online Multiplayer Video Games. Leiden University.

[89] Thomas Weiss and Sabrina Schiele. 2013. Virtual worlds in competitive contexts: Analyzing eSports consumer needs. *Electron Markets* 23, 4 (December 2013), 307–316. <https://doi.org/10.1007/s12525-013-0127-5>

[90] Alan Wen. 2021. “Rocket League” players upset about change to casual mode rules. NME. Retrieved February 20, 2023 from <https://www.nme.com/news/gaming-news/rocket-league-players-upset-about-change-to-casual-mode-rules-3016681>

[91] Josef Wiemeyer, Lennart Nacke, Christiane Moser, and Florian ‘Floyd’ Mueller. 2016. Player Experience. In *Serious Games: Foundations, Concepts and Practice*, Ralf Dörner, Stefan Göbel, Wolfgang Effelsberg and Josef Wiemeyer (eds.). Springer International Publishing, Cham, 243–271. https://doi.org/10.1007/978-3-319-40612-1_9

[92] Wokendreamer. 2017. Matchmaking for ARAM in League of Legends. Retrieved December 12, 2022 from <https://www.gameskinny.com/7c8rf/matchmaking-for-aram-in-league-of-legends>

[93] Mingyang Wu, Shuo Xiong, and Hiroyuki Iida. 2016. Fairness mechanism in multiplayer online battle arena games. In 2016 3rd International Conference on Systems and Informatics (ICSAI), 2016. IEEE, 387–392.

[94] Yan Xu, Xiang Cao, Abigail Sellen, Ralf Herbrich, and Thore Graepel. 2011. Sociable killers: understanding social relationships in an online first-person shooter game. In Proceedings of the ACM 2011 conference on Computer supported cooperative work, 2011. 197–206.

[95] Pu Yang, Brent Harrison, and David L Roberts. Identifying Patterns in Combat that are Predictive of Success in MOBA Games. 8.

[96] Nick Yee. 2006. Motivations for play in online games. *CyberPsychology & behavior* 9, 6 (2006), 772–775.

[97] Nick Yee, Nicolas Ducheneaut, and Les Nelson. 2012. Online gaming motivations scale: development and validation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, May 05, 2012. ACM, Austin Texas USA, 2803–2806. <https://doi.org/10.1145/2207676.2208681>

[98] Shadman Sabik Zaim. 2022. League of Legends ARAM Rework 2022. GameRiv. Retrieved December 23, 2022 from <https://gameriv.com/league-of-legends-aram-rework/>

[99] Rui Zhang, Nathan J. McNeese, Guo Freeman, and Geoff Musick. 2021. “An ideal human” expectations of AI teammates in human-AI teaming. *Proceedings of the ACM on Human-Computer Interaction* 4, CSCW3 (2021), 1–25.

[100] League of Legends Live Player Count and Statistics. Live Player Count. Retrieved December 13, 2022 from <https://activeplayer.io/league-of-legends/>

[101] Epic brings building back to Fortnite’s casual queue. Engadget. Retrieved February 20, 2023 from <https://www.engadget.com/fortnite-building-battle-royale-mode-165925141.html>

[102] State of Modes 2023 - League of Legends. Retrieved June 26, 2023 from <https://www.leagueoflegends.com/news/dev/dev-state-of-modes-2023/>

[103] Map (League of Legends). League of Legends Wiki. Retrieved December 12, 2022 from [https://leagueoflegends.fandom.com/wiki/Map_\(League_of_Legends\)](https://leagueoflegends.fandom.com/wiki/Map_(League_of_Legends))

[104] LEC Winter Split 2023: Schedule, Standings, Teams & More. RiftFeed. Retrieved February 16, 2023 from <https://riftfeed.gg/esports/lec-winter-split-2023-schedule-standings-teams-more>

[105] Champions - League of Legends. Retrieved November 9, 2023 from <https://www.leagueoflegends.com/en-us/champions/>

[106] Why ARAM’s the trainer you never knew you needed. Red Bull. Retrieved December 23, 2022 from <https://www.redbull.com/us-en/league-of-legends-aram-trainer-red-bull-esports>

[107] League of Legends: Everything you need to know. Stryda. Retrieved June 26, 2023 from <https://stryda.gg/>

[108] ARAM 2023: Preview - League of Legends. Retrieved December 13, 2022 from <https://www.leagueoflegends.com/en-pl/news/game-updates/aram-2023-preview/>

[109] League of Legends: Is Riot Making ARAM More Competitive? EarlyGame. Retrieved June 26, 2023 from <https://earlygame.com/lol/is-riot-making-aram-more-competitive>

[110] Teams come to agreement not to use “crouch jump.” HLTv.org. Retrieved January 9, 2023 from <https://www.hltv.org/news/21067/teams-come-to-agreement-not-to-use-crouch-jump>

Appendix

A1. Interview Protocol

Question regarding games/League of Legends

1. What types of games do you play?
2. How you choose what to play? Or how do you compare League to other games?
3. How long have you played League? (in terms of years or months)
4. How do you choose to play Aram instead of other mode? Can you describe your recent experiences on this?
5. What mode do you play?

6. Why do you play this mode?
7. What role do you prefer (if not Aram)?
8. What classes of champions do you like/dislike to play?
9. What do you like/dislike the most about League? And why?
10. What makes you dodge? Can you describe your recent experiences on this?
11. How do you interact with teammate/enemy/friends in a game?
12. Is there any Toxic/argument/offensive communication you have experienced in League?
13. Would you add friends with teammate/opponent? Can you describe recent experiences on this?

Question regarding to ARAM

1. Could you describe in your own words what the ARAM mode is?
2. How do you compare ARAM to other modes?
3. What do you like or dislike about ARAM?
4. Some people may want to end the match to secure the win. How do you think about this considering your experiences in ARAM?
5. Do you have any goals you want to reach before the game ends?
6. Do you think the winning side can have fun in winning in ARAM? And why?
7. Do you think the losing side can have fun in losing in ARAM? And why?

Ending

1. Any questions for me?
2. Anything you want to share?

Received July 2023; revised January 2024; accepted March 2024.