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Abstract: We propose a coupled bootstrap (CB) method for the test error
of an arbitrary algorithm that estimates the mean in a Poisson sequence,
often called the Poisson means problem. The idea behind our method is
to generate two carefully-designed data vectors from the original data vec-
tor, by using synthetic binomial noise. One such vector acts as the training
sample and the second acts as the test sample. To stabilize the test error
estimate, we average this over multiple bootstrap B of the synthetic noise.
A key property of the CB estimator is that it is unbiased for the test error
in a Poisson problem where the original mean has been shrunken by a small
factor, driven by the success probability p in the binomial noise. Further,
in the limit as B → ∞ and p → 0, we show that the CB estimator recovers
a known unbiased estimator for test error based on Hudson’s lemma, under
no assumptions on the given algorithm for estimating the mean (in partic-
ular, no smoothness assumptions). Our methodology applies to two central
loss functions that can be sused to define test error: Poisson deviance and
squared loss. Via a bias-variance decomposition, for each loss function, we
analyze the effects of the binomial success probability and the number of
bootstrap samples and on the accuracy of the estimator. We also investi-
gate our method empirically across a variety of settings, using simulated as
well as real data.
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1. Introduction

We study the problem of estimating the test error of an algorithm in the Poisson
many means problem, also called the Poisson compound decision problem. The
importance of test error estimation in general rests on the fact that such esti-
mates can be used in many dowstream applications, such as model assessment,
selection, or tuning. To fix notation, given a data vector Y = (Y1, . . . Yn) ∈ Z

n
+

(where we write Z+ = {0, 1, 2, . . . } for the nonnegative integers) distributed
according to

Yi ∼ Pois(μi), independently, for i = 1, . . . , n, (1)
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we seek to estimate the mean vector μ = (μ1, . . . , μn) ∈ R
n
+ (where we use

R+ = {x ∈ R : x ≥ 0} for the set of nonnegative real numbers). Let g : Zn
+ → R

n
+

be a measurable function that estimates μ from the data Y , so that we can write
μ̂ = g(Y ). We will often refer to g as an algorithm, in the context of estimating
μ in the Poisson many means problem.

To evaluate the performance of g, we can use various metrics. One class of
metrics evaluate what we call test error, based on a loss function L : Zn

+ ×R
n
+ →

R,

Err(g) = E[L(Ỹ , g(Y ))], where Ỹ is drawn from (1), independently of Y ,
(2)

which measures how well g tracks an independent copy Ỹ of the data. A second
class of metrics evaluate what we call risk, again based on a loss function L,

Risk(g) = E[L(μ, g(Y ))], (3)

which measures how well g tracks the mean μ = E[Y ] of the data. Admittedly,
many authors use the terms “test error” and “risk” interchangeably, but in this
paper we are careful to use terminology that distinguishes the two, for reasons
that we will become apparent in the next subsection.

1.1. Test error versus risk

In the classical normal means problem, where instead of (1) we observe Yi ∼
N(μi, σ2) independently, it is straightforward to show that under a squared loss
L, the test error (2) and risk (3) differ only by the noise level σ2. In the Poisson
means problem, there is no direct analogy for typical loss functions of interest,
and the difference between (2) and (3) will generally depend on μ. This means
that an estimator of one metric (test error or risk) does not as easily translate
into an estimator of the other, since μ is of course unknown, and the primary
estimand of interest.

Thankfully, as we show here, when L is a Bregman divergence the difference
between test error and risk does not depend on g. A Bregman divergence is a
loss function of the form L(a, b) = Dφ(a, b), where

Dφ(a, b) = φ(a) − φ(b) − 〈∇φ(b), a − b〉, (4)

for a convex, differentiable function φ : Rn → R, where here an subsequently we
use 〈u, v〉 = uTv for vectors u, v. In this case it is straightforward to see that

Err(g) − Risk(g) = E[Dφ(Ỹ , g(Y ))] − E[Dφ(μ, g(Y ))]

= E[φ(Ỹ )] − E[φ(g(Y ))] − E[〈∇φ(g(Y )), Ỹ − g(Y )〉]
− φ(μ) + E[φ(g(Y ))] + E[〈∇φ(g(Y )), μ − g(Y )〉]

= E[φ(Y )] − φ(μ), (5)

where the cancellation of terms in the third line holds because Y, Ỹ are i.i.d.,
and thus E[〈∇φ(g(Y )), Ỹ 〉] = 〈E[∇φ(g(Y ))], μ〉. Observe that (5) is the gap in
Jensen’s inequality. Therefore it is always nonnegative, and Err(g) ≥ Risk(g).
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In this paper, we will focus on estimating the test error (2) in the Poisson
means problem (1), for two special instances of a Bregman divergence: squared
loss and Poisson deviance, as will be discussed in the next subsection. Since
Err(g) − Risk(g) = E[φ(Y )] − φ(μ) depends on μ, it will not be the case that we
can automatically translate an estimator of the test error of g into an estima-
tor of its risk. However, we can still unbiasedly estimate the difference in risk
between two models g and h, as discussed next.

Model comparisons The gap (5) does not depend on g. Thus for a compari-
son between two algorithms g and h, we always have (provided we use Bregman
divergence to define the test error and risk metrics):

Err(g) − Err(h) = Risk(g) − Risk(h),

To be clear, this means that if Êrr(g) is an unbiased estimator of Err(g) for any
g, just as we will produce in this paper, then

Êrr(g) − Êrr(h) is unbiased for Risk(g) − Risk(h), for any g, h.

As such, we can still use the tools developed in this paper to perform model
comparisons, or more broadly, model tuning (where gs is indexed by a tuning
parameter s ∈ S, and we select s to minimize an unbiased estimate of test error,
or equivalently, risk).

Fixed-X Poisson regression A special case of our problem setting to keep
in mind is fixed-X Poisson regression. Here we view Y ∈ R

n as a response vector
and we have an associated feature matrix X ∈ R

n×p. The algorithm g typically
performs a kind of Poisson regression of Y on X. As long as we consider X to
be fixed (nonrandom), we can still interpret this as a problem of the form (1),
with μ = μ(X). In this setting, the test error metric (2) translates to what
is called fixed-X prediction error, where we evaluate predictions at the same
feature vectors (rows of X), but against new responses (elements of Ỹ ).

While fixed-X analyses are more typical in classical statistics, the random-X
perspective is great interest in modern prediction problems. Here the feature
vectors at which we make predictions are random, giving rise to random-X pre-
diction error as the metric of concern. Estimating random-X prediction error is
not in general equivalent to estimating fixed-X prediction error and the two can
behave quite differently (see, e.g., Rosset and Tibshirani (2020) for an extended
discussion). The random-X perspective eludes the framework of the current pa-
per, but is an important topic for future work.

1.2. Squared loss versus Poisson deviance

When φ(x) = ‖x‖2
2, it is easy to check that

Dφ(a, b) = ‖a − b‖2
2,
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which is the squared loss. Meanwhile, when φ(x) = 2
∑n

i=1 xi(log xi − 1), it fol-
lows that

Dφ(a, b) = 2

n∑

i=1

(
ai log

ai

bi

+ bi − ai

)
,

which is known as Poisson deviance. We will take these to be the two loss
functions of primary interest in our work. Accordingly, we introduce the notation
for test error under squared loss and Poisson deviance:

Errsqr(g) = E‖Ỹ − g(Y )‖2
2, (6)

Errdev(g) = 2E

[ n∑

i=1

(
Ỹi log

Ỹi

gi(Y )
+ gi(Y ) − Ỹi

)]
. (7)

Squared loss is a standard choice in many estimation and prediction prob-
lems and does not really need further motivation. Poisson deviance can be moti-
vated from different perspectives; one nice perspective is that, if we parametrize
gi(Y ) = exp(θi) for i = 1, . . . , n, then fitting g to minimize Poisson deviance on
the given data is equivalent to maximum likelihood in the Poisson model,

minimize
g

2

[ n∑

i=1

(
Yi log

Yi

gi(Y )
+ gi(Y ) − Yi

)]

⇐⇒ minimize
θ

n∑

i=1

(
− Yiθi + exp(θi)

)
. (8)

In the same vein, evaluating g by Poisson deviance on Ỹ is equivalent to evalu-
ating g by Poisson likelihood on an independent copy of the training sample.

In our view, squared loss and Poisson deviance are each important loss func-
tions, and are each deserving of study. This is only strengthened by the fact
that they can have very different behaviors in certain problem settings. As a
simple example, suppose n = 1, and we have two scenarios: in the first Ỹ = 1
and g(Y ) = 2, while in the second Ỹ = 500 and g(Y ) = 501. The squared loss
in each scenario is 1. However, the Poisson deviance in first scenario is ≈ 0.307,
and in the second scenario it is ≈ 0.001. The difference here is driven by the
fact that in the Poisson model the variance scales with the mean. Hence accord-
ing to Poisson deviance (equivalent to Poisson likelihood), a prediction of 502
when the predictand is 501 is not nearly as bad as a prediction of 2 when the
predictand is 1.

In Sections 5 and 6, we will present and discuss several examples that expose
differences in the behavior of squared loss and Poisson deviance in different
settings. That said, our primary focus is on estimating test error defined with
respect to these loss functions, and not on comparing them. A comprehensive
analysis of their differences is beyond the scope of the current paper.

1.3. Hudson’s lemma

A fundamental result in this area is Hudson’s lemma, due to Hudson (1978).
Hudson actually derived two identities, one each for continuous and discrete
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exponential families. These can be viewed as extensions of Stein’s celebrated
identity (Stein, 1981) for the Gaussian family.1 For concreteness, we state Hud-
son’s result for the Poisson case.

Lemma 1.1 (Hudson 1978). Let Yi ∼ Pois(μi), independently, for i = 1, . . . , n.
Let g : Zn

+ → R
n be such that E|gi(Y )| < ∞, i = 1, . . . , n. Then, denoting by

ei ∈ R
n the vector whose ith entry is 1, with all others 0,

μiE[gi(Y )] = E[Yigi(Y − ei)], i = 1, . . . , n, (9)

where by convention we set gi(−1) = 0, i = 1, . . . , n.

Compared to Stein’s identity, which requires that g is weakly differentiable,
Hudson’s identity (9) holds without any smoothness assumptions on g (of course,
even formulating precisely what smoothness would mean over a discrete domain
like Z

+
n would be tricky, but the lack of assumptions needed for Lemma 1.1 are

remarkable nonetheless). Hudson’s main interest was in developing inadmissi-
bility results for estimators of the location parameter in an exponential family
distribution. The identities he established were used as tools in his analysis,
which parallels Stein’s use of his own identity in Stein (1981).

Moreover, analogous to what can be done with Stein’s lemma, Hudson’s
lemma can be used to derived unbiased estimators for various risk metrics in
exponential families. An important contribution in this area is Eldar (2009), and
further contributions (along with a comprehensive summary of available tools
and results from the literature) are given in Deledalle (2017).

1.4. Unbiased estimation

Our focus in this paper is slightly unique, since we consider test error (2) as
the primary target and not risk (3), as considered by Eldar (2009); Deledalle
(2017), and most other authors in the literature. Nonetheless, the estimators
developed by these authors have natural analogues for test error. In fact, the
story is for test error is simpler, and an unbiased estimator can be obtained for
any Bregman divergence loss function.

To see this, we first recall a general decomposition of test error for Bregman
divergence losses known as Efron’s optimism theorem, due to Efron (1975, 1986,
2004): this shows that for any Bregman divergence Dφ in (4) and any algorithm
g, this difference in test error and training error satisfies

E[Dφ(Ỹ , g(Y ))] − E[Dφ(Y, g(Y ))] = E[φ(Ỹ )] − E[φ(g(Y ))]

− E[〈∇φ(g(Y )), Ỹ − g(Y )〉]
− E[φ(Y )] + E[φ(g(Y ))]

+ E[〈∇φ(g(Y )), Y − g(Y )〉]
1Stein’s work was actually completed as a technical report in 1973, and was a motivation

for Hudson’s work, even though the publication dates of their papers do not reflect this.
According to Hudson, Stein already knew of the result in (9).
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= E[〈∇φ(g(Y )), Y 〉] (10)

− E[〈∇φ(g(Y )), μ〉].

The second line follows from the fact that E[φ(Ỹ )] = E[φ(Y )].2 Simply rewriting
the above, we see that if we are able to construct an unbiased estimator V (g)
of E[〈∇φ(g(Y )), μ〉] then

Dφ(Y, g(Y )) + 〈∇φ(g(Y )), Y 〉 − V (g)

will be an unbiased estimator for E[Dφ(Ỹ , g(Y ))]. In the Poisson case, Hudson’s
identity (9) precisely gives the unbiased estimator V (g) that we require, which
leads to the following result.

Proposition 1. Let Yi ∼ Pois(μi), independently, for i = 1, . . . , n. Let g : Zn
+ →

R
n be any algorithm and Dφ be any Bregman divergence loss function (indexed

by a convex, differentiable function φ : Rn → R) such that E|φ(g(Y ))| < ∞ and
E|∇iφ(g(Y ))| < ∞, i = 1, . . . , n. Then

UE(g) = Dφ(Y, g(Y )) + 〈∇φ(g(Y )), Y 〉 − 〈∇φ(g−(Y )), Y 〉 (11)

is unbiased for Err(g) = E[Dφ(Ỹ , gi(Y ))], where we abbreviate g−(Y ) = (g1(Y −
e1), . . . , gn(Y − en)), and as usual, Ỹ denotes an independent copy of Y .

As a consequence, we have the following unbiased estimators for squared loss
and Poisson deviance:

UEsqr(Y ) = ‖Y ‖2
2 + ‖g(Y )‖2

2 − 2〈g−(Y ), Y 〉, (12)

UEdev(Y ) = 2

n∑

i=1

(
Yi log Yi − Yi log gi(Y − ei) + gi(Y ) − Yi

)
. (13)

These are altogether highly similar to the unbiased risk estimators in Eldar
(2009); Deledalle (2017), and to be clear, we do not consider (12), (13) to be
major (or even original) contributions of our work. That said, we have not
yet seen the general unbiased estimator for Bregman divergence (11) noted in
the literature, thus we believe it may be useful to record it (along with the
observation that estimation of test error can be easier than estimation of risk).

The estimators in (12), (13) have a clear strength: they are unbiased for any
algorithm g. This is a strong property; recall that by comparison, in the Gaussian
model, the analogous estimator is Stein’s unbiased risk estimator (SURE), which
requires g to be weakly differentiable. The estimators in (12), (13) also have a
clear downside: they require the algorithm g to be run n+1 times, once to obtain
the original fit g(Y ), and then n more times to obtain g−(Y ), which recall has
entries gi(Y − ei), i = 1, . . . , n. Thus we can liken (12), (13) to leave-one-out
cross-validation, in terms of computational cost.

2This exposes the reason why the analogous decomposition for risk can be more complex:
when we replace Ỹ with µ in the calculation that led to (10), we are left with an extra term
φ(µ) − E[φ(Y )] that does not cancel and must be estimated.
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This draws a clear line of motivation to the main contribution of our paper:
in what follows, we develop an unbiased estimator of test error, for any Bregman
divergence loss function Dφ and any algorithm g, using a carefully-crafted para-
metric bootstrap scheme. The computational cost (number of runs of g) here
is tied to a user-controlled parameter B, the number of bootstrap samples. In
general, increasing B decreases the variance of the estimator, but any choice of
B ≥ 1 yields an estimator that is unbiased for the test error in a mean-shrunken
Poisson problem, with mean (1 − p)μ, where p > 0 is another user-controlled
parameter.

1.5. Summary of contributions

The following gives a summary of our main contributions and an outline for this
paper.

• In Section 2, we introduce the coupled bootstrap (CB) estimator, and
prove that it is unbiased for the test error in a mean-shrunken Poisson
problem.

• In Section 3, we analyze the behavior of the CB estimator as B → ∞ and
p → 0, and prove that the limiting CB estimator is exactly the unbiased
estimator (11) from Hudson’s lemma.

• In Section 4, we study the bias and variance of the CB estimator and
quantify how they depend on B, p and other problem parameters.

• In Section 5, we compare the CB and the unbiased estimator on various
simulated data sets, and find that the performance of the CB estimator is
favorable, especially when the algorithm g is unstable.

• In Section 6, we examine the use of the CB estimator for model tuning—
selecting from a family gs, s ∈ S of algorithms—in two applications: image
denoising and density estimation. We find that using Poisson deviance (to
define the test error metric) consistently delivers more regularized models
than using squared loss.

• In Section 7, we conclude with a brief discussion and ideas for future work.

1.6. Related work

Estimating risk and test error is of central importance in statistics and ma-
chine learning. In the random-X prediction setting (which recall does not fit in
the framework of our work) the most ubiquitous estimator is arguably cross-
validation, which itself carries a long line of literature. We do not describe this
literature here, but highlight Bates, Hastie and Tibshirani (2021) as a nice re-
cent paper that carefully reexamines this classic estimator, and also provides a
nice overview of literature on cross-validation.

In the fixed-X prediction setting—or in general, parametric many means
problems—there has also been a long history of work in statistics, with Akaike
(1973); Mallows (1973); Efron (1975); Stein (1981); Efron (1986) marking early
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important contributions. This has been particularly well-studied in the Gaus-
sian means problem, and in this area, we draw attention to Breiman (1992); Ye
(1998); Efron (2004), and particularly to Oliveira, Lei and Tibshirani (2021),
as motivation for our current work in the Poisson means problem. These pa-
pers use auxiliary noise—they inject synthetic (Gaussian) noise into the data at
hand—in order to estimate the risk or fixed-X prediction error of an arbitrary
algorithm g. Our previous work, Oliveira, Lei and Tibshirani (2021), proposes a
coupled bootstrap (CB) scheme for doing so that has a simple, intuitive target
of estimation for any auxiliary noise level. In particular, for any auxiliary noise
level α > 0 (a user-controlled parameter), the CB method produces an unbiased
estimator for the risk in a Gaussian means problem that has an inflated noise
variance (1 + α)σ2 (where σ2 denotes the original noise level). The current pa-
per builds off this idea, and develops a coupled bootstrap scheme in the Poisson
model that enjoys analogous properties.

Relative to the Gaussian case, risk and test error estimation in the Poisson
means model has been less well-studied. However, there has still certainly been
important and influential work in the area. This includes Hudson (1978), as al-
ready described in the introduction, and also Shen, Huang and Ye (2004); Eldar
(2009); Deledalle (2017). Meanwhile, the literature on mean estimation—the
role played by what we are calling the algorithm g—in the Poisson many means
problem is vast. Quite a lot of work on this topic has been done in the signal
processing community, where it is often called Poisson denoising; see, e.g., Har-
many, Marcia and Willett (2009); Luisier et al. (2010); Raginsky et al. (2010);
Harmany, Marcia and Willett (2012); Salmon et al. (2014); Cao and Xie (2016).
Therefore we believe that the techniques we develop for estimating test error
in the Poisson means model should have widespread practical applications, in
signal processing and elsewhere.

Lastly, we mention a concurrent, related line of work on auxiliary random-
ization approaches that allow for rigorous post-selection inference in parametric
many means models, including the Poisson means model. We highlight Leiner
et al. (2021); Neufeld et al. (2023) as two nice recent papers in the area. In
particular, a core piece of the auxiliary randomization procedure in our work
was directly inspired by the former paper, and their use of binomial auxiliary
noise in the Poisson model.

2. Coupled bootstrap estimator

In this section, we introduce the CB estimator in the Poisson means model, and
investigate some of its basic properties.

2.1. Proposed estimator

The following is a simple but key “three-point” formula for expected Bregman
divergence loss from Oliveira, Lei and Tibshirani (2021) that will drive our main
proposal in this paper.
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Proposition 2. Let U, V, W ∈ R
n be independent random vectors. For any g,

and Bregman divergence Dφ,

E[Dφ(V, g(U))] − E[Dφ(W, g(U))] =E[φ(V )] − E[φ(W )]

+ 〈E[∇φ(U)],E[W ] − E[V ]〉, (14)

assuming all expectations exist and are finite. In particular, if U, V are i.i.d.
and E[U ] = E[W ], then

E[Dφ(V, g(U))] = E[Dφ(W, g(U))] + E[φ(U)] − E[φ(W )]. (15)

Proof. The first statement (14) follows from the definition of Bregman diver-
gence (4), and the independence of U, V, W . The second result (15) follows from
the first, by noting that if U, V are i.i.d. and E[U ] = E[W ] then E[V ] = E[W ],
thus the last term on the right-hand side in (14) is zero, and the first term is
E[φ(U)].

While simple to state and prove, the results in Proposition 2 are useful ob-
servations. To map them onto to the problem of estimating of test error in the
Poisson model, consider the following. Given a Poisson data vector Y from (1),
suppose that we can generate a pair of vectors (U, W ) = (Y ∗, Y †) that are in-
dependent of each other and have the same mean. Then (15) says that

Dφ(Y †, g(Y ∗)) + φ(Y ∗) − φ(Y †) is unbiased for E[Dφ(Ỹ ∗, g(Y ∗))], (16)

where Ỹ ∗ is an independent copy of Y ∗. In other words, the above constructs
an unbiased esitmator for the test error in a problem in which the original data
vector was Y ∗, rather than Y . Thus if Y ∗ was “close” in distribution to Y , then
this estimator would be meaningful. (Ideally, we would like Y ∗ to be be identical
in distribution to Y , but that will not be generically possible without knowledge
of μ.)

What remains is a precise scheme in the Poisson setting to generate the pair
(Y ∗, Y †) from Y such that Y ∗, Y † are independent, E[Y ∗] = E[Y †], and Y ∗, Y
are “close” in distribution. The next lemma does the trick and fulfills these three
properties precisely. It was brought to our attention by Leiner et al. (2021) who
used it in a distinct but generally related post-selection inference context. For
completeness, we provide a proof in Appendix A.1. Here and henceforth we
use the following abbreviations: we write Y ∼ Pois(μ) to mean that we draw
Yi ∼ Pois(μi), independently, for i = 1, . . . , n, and similarly Z ∼ Binom(N, p)
to mean that we draw Zi ∼ Binom(Ni, p), independently, for i = 1, . . . , n.

Lemma 2.1. Given Y ∼ Pois(μ), fix any 0 < p < 1 and let ω | Y ∼ Binom(Y, p).
Then, defining Y ∗ = Y − ω and Y † = (1 − p)/p · ω, it holds that:

(i) Y ∗, Y † are independent;
(ii) E[Y ∗] = E[Y †]; and

(iii) Y ∗ ∼ Pois((1 − p)μ).
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Lemma 2.1, combined with the observation in (16), forms the basis for the
CB test error estimator in the Poisson many means problem. To stabilize the
estimator, we can simply repeat the draws of binomial noise from Lemma 2.1
over independent repetitions b = 1, . . . , B. To be concrete, this leads to the
following method: we first generate samples according to

ωb | Y ∼ Binom(Y, p), independently, for b = 1, . . . , B,

Y ∗b = Y − ωb, , Y †b =
1 − p

p
ωb, for b = 1, . . . , B,

(17)

for an arbitrary binomial success probability 0 < p < 1, and a number of
bootstrap draws B ≥ 1; then we define the coupled bootstrap (CB) estimator,
for test error under Bregman divergence loss Dφ, by:

CBp(g) =
1

B

B∑

b=1

(
Dφ(Y †b, g(Y ∗b)) + φ(Y ∗b) − φ(Y †b)

)
. (18)

We can view each Y ∗b as a synthetic training set for g, and each Y †b as a
synthetic test set. The correction term φ(Y ∗b) − φ(Y †b) accounts for the fact
that Y ∗b, Y †b do not have the same distribution (though recall they do have the
same mean, by construction).

For the two loss functions of primary interest, squared loss and Poisson de-
viance, the CB estimator in (18) becomes, respectively:

CBsqr
p =

1

B

B∑

b=1

(
‖Y †b − g(Y ∗b)‖2

2 + ‖Y ∗b‖2
2 − ‖Y †b‖2

2)
)

, (19)

CBdev
p =

2

B

B∑

b=1

n∑

i=1

(
Y ∗b

i log Y ∗b
i − Y †b

i log gi(Y
∗b) + gi(Y

∗b) − Y †b
i

)
. (20)

Interlude: special care with deviance estimators We take a brief but
practically important detour to note that special care must be taken with test
error estimators with respect to Poisson deviance loss. In this case, each of
the unbiased (13) and the coupled bootstrap (20) estimators can diverge if the
coordinate functions of g can output zero. For the unbiased estimator this occurs
when Yi �= 0 and gi(Y −ei) = 0; for the coupled bootstrap estimator this occurs
when Y †b

i �= 0 and gi(Y
∗b) = 0. As a safety mechanism, we can simply pad the

output of g so that zero is never in the range of its coordinate functions: say,
we can define a modified algorithm

g̃i(y) = gi(y)1{gi(y) �= 0} + c1{gi(y) = 0}, i = 1, . . . , n,

for a small constant c > 0. This is reasonable because even the population Pois-
son deviance (7) can itself diverge when the coordinate functions of g can output
zero. With a modified rule like the one above, we may ask how frequently the
padding is actually in effect in the computation of the estimators (13) and (20).
We study this in Appendix A.2 and show that, in a sense, it is typically in effect
less frequently in the CB estimator (20) than in the unbiased one (13).
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2.2. Unbiasedness for mean-shrunken target

The next result is immediate from Lemma 2.1 and (16).

Corollary 1. Let Y ∼ Pois(μ). Let g : Zn
+ → R

n be any algorithm, let Dφ be
any Bregman divergence loss function, and let 0 < p < 1 and B ≥ 1 be arbitrary.
Then the CB estimator CBp(g) in (18) is unbiased for Errp(g) (assuming all
terms in (18) have finite expectations), where Errp(g) is the test error of g with
respect to a mean-shrunken Poisson problem:

Errp(g) = E[Dφ(Ỹp, g(Yp))] (21)

where Yp, Ỹp ∼ Pois((1 − p)μ), and Yp, Ỹp are independent.

The strength of Corollary 1 rests on the fact that the estimand in (18) of
CBp(g) for any choice of p > 0 is highly intuitive: it is Errp(g) in (21), which is
the test error that we would encounter in a slightly harder version of our original
problem, where the mean μ has been replaced by (1 − p)μ.

Why is this important? It means that we do not have to send p → 0 in
order to be able to interpret the estimand of the CB estimator, and thus justify
its use. Any nonzero (noninfinitesimal) p will still result in a target that has
a clear, intuitive meaning. This is good news for the CB estimator, because
when p is away from zero, we can generally choose a reasonably small number
of bootstrap draws B in order to stabilize the variance of the estimator, which
presents a computational advantage over the unbiased estimator in (11). We
will learn more about the behavior of the CB estimator, as we vary p and B, in
Sections 4 and 5 (where we formally analyze the bias and variance, and carry
out empirical comparisons, respectively).

2.3. Smoothness of mean-shrunken target

Now that we have shown that CBp(g) is unbiased for Errp(g), it is natural to
ask whether Errp(g) will be close to Err(g) for small p. Our next result gives a
partial answer by proving that if g satisfies some mild moment conditions, then
the map p �→ Errp(g) will be continuous (and in fact, it can be continuously
differentiable, depending on the number of moments assumed) in an interval
containing p = 0. Later on, in Section 4, we will derive results that give a more
quantitative sense of how close Errp(g) can be to Err(g).

Proposition 3. For 0 ≤ p < 1, let Errp(g) be as defined in (21). If for some
integer k ≥ 0,

E
[
Dφ(Ỹ , g(Y ))〈Ỹ + Y, 1n〉m

]
< ∞, m = 0, . . . , k,

where in the above above Y, Ỹ ∼ Pois(μ) are independent, and 1n ∈ R
n denotes

the vector of all 1s, then the map p �→ Errp(g) has k continuous derivatives on
[0, 1).
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The proof of this result is not difficult but a bit technical and deferred to
Appendix A.3. We remark that when k = 0, the assumption in Proposition 3
is simply Err(g) = E[Dφ(Ỹ , g(Y ))] < ∞ (i.e., the original test error is finite),
which is extremely weak, and even in this case we get that Errp(g) → Err(g) as
p → 0.

3. Noiseless limit

In this section, we consider the infinite-bootstrap version of the CB estima-
tor, CB∞

p (g) = limB→∞ CBp(g). By the law of large numbers, this estimator is
equivalent to taking the expectation over the binomial noise,

CB∞
p (g) =E[CBp(g) | Y ]

=E

[
Dφ

(
1 − p

p
ω, g(Y − ω)

)
+ φ(Y − ω) − φ

(
1 − p

p
ω

)]
, (22)

where ω | Y ∼ Binom(Y, p), as in (17).
The next result considers the noiseless limit of the infinite-bootstrap version

of the CB estimator (22), where p → 0. Its proof is deferred until Appendix B.

Theorem 3.1. Let Y ∼ Pois(μ). Let g : Z
n
+ → R

n be any algorithm, let
Dφ be any Bregman divergence loss function, and assume that |φi(g(Y ))| < ∞,
|∇iφ(g(Y ))| < ∞, and |∇iφ(g(Y −ei))| < ∞ almost surely, for each i = 1, . . . , n.
Then

lim
p→0

CB∞
p (g) = UE(g), almost surely, (23)

where UE(g) is the unbiased estimator defined in (11). Thus as a consequence,
the noiseless limit of CB∞

p (g) is unbiased for Err(g).

That the limiting CB estimator (18) recovers the unbiased estimator (11)
based on Hudson’s lemma, as B → ∞ and p → 0, is certainly an encouraging
property for the former. We recall that in the Gaussian many means problem,
the analogous result was derived in Oliveira, Lei and Tibshirani (2021): there,
the CB estimator recovers the unbiased estimator based on Stein’s lemma, in
the noiseless limit. However, this Gaussian result requires g to be weakly dif-
ferentiable (which is the condition required for Stein’s unbiased estimator to be
valid in the first place). In the current Poisson many means problem, note that
Theorem 3.1 requires no such restrictions on g (and indeed, recall, the unbiased
estimator does not either, from Proposition 1).

Figure 1 illustrates this difference via a simple simulation; see the figure
caption for details.

4. Bias and variance

In this section, we study a bias-variance decomposition of the estimator CBp(g)
in (18), when targeting the original error Err(g). We will consider an arbitrary
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Fig 1. Density of the CB and unbiased estimators of test error in Gaussian and Poisson
settings, where the CB estimators effectively take large B and a small amount of auxiliary
noise. This is based on a simulation with n = 30, where we generate Gaussian or Poisson data
with constant mean, and consider two estimators: soft-thresholding and hard-thresholding (the
latter violating weak differentiability). The black vertical line in each panel marks the true
test error. For small auxiliary noise in the Gaussian hard-thresholding setting, it is clear that
CB and the unbiased estimator are separated (and the latter is far from unbiased).

Bregman divergence loss (used to define Err(g)), and use the decomposition

E[CBp(g) − Err(g)]2 =
[
Errp(g) − Err(g)

]2
︸ ︷︷ ︸

Bias2(CBp(g))

+ E
[
Var(CBp(g) | Y )

]
︸ ︷︷ ︸

RVar(CBp(g))

+ Var
(
E[CBp(g) | Y ]

)
︸ ︷︷ ︸

IVar(CBp(g))

. (24)

This is the usual bias-variance decomposition of squared error loss, where we
have used E[CBp(g)] = Errp(g) in the bias term, and we have further expanded
the usual variance term (using the law of total variance) into two components
which we call the reducible and irreducible variance, respectively, as in Oliveira,
Lei and Tibshirani (2021). We note that as the number of bootstrap draws B
grows, the reducible variance shrinks, but the irreducible variance does not; the
latter does not depend on B at all, and in fact, it can be viewed as the variance
of the infinite-bootstrap version of the estimator, CB∞

p (g) = E[CBp(g) | Y ].

In what follows, we will analyze each of the three terms in (24) to understand
their behavior as functions of p and B, with a focus on small p and large B. As
usual, we assume throughout that Y ∼ Pois(μ), where Yp ∼ Pois((1 − p)μ) for
p ≥ 0, and we denote by Ỹ , Ỹp independent copies of Y, Yp, respectively. Lastly,
Dφ represents an arbitrary Bregman divergence loss.

4.1. Bias

First we give an exact expression for the bias, Bias(CBp(g)) = Errp(g)−Err(g),
and an upper bound on its magnitude for small p, under an assumption of
monotone variance. The proof is given in Appendix C.1.
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Proposition 4. Assume that E[Dφ(Ỹp, gp(Y ))〈Yp + Ỹp, 1n〉] < ∞. Then for all
p ∈ [0, 1),

Errp(g) − Err(g) = −

√√√√2

n∑

i=1

μi

∫ p

0

(
1√

1 − t
Cor

(
Dφ(Ỹt, g(Yt)), 〈Ỹt + Yt, 1n〉

)

×
√

Var
[
Dφ(Ỹt, g(Yt))

])
dt. (25)

Further, if Var[Dφ(Ỹp, g(Yp))] is decreasing in p on [0, 1/2], then for any p in
this range,

|Errp(g) − Err(g)| ≤ 5p

3

√√√√Var
[
Dφ(Ỹ , g(Y ))

] n∑

i=1

μi (26)

We remark that the assumption of decreasing variance of the loss is fairly
natural (because the variance of each component of Yp decreases monotonically
to 0 as p increases to 1). We can also drop this condition, and replace the
variance term in the bound (26) by supt∈[0,p) Var[Dφ(Ỹt, g(Yt))].

4.2. Reducible variance

Next we bound the reducible variance, RVar(CBp(g)). We focus on the depen-
dence on p and B, for small p and large B. The notation O(·) is to be interpreted
in this regime (small p, large B), and hides factors that may depend on the mean
μ, which may in turn depend on the dimensionality n. The proof is given in Ap-
pendix C.2.

Proposition 5. Assume the variables f(Yp), f2(Yp), f(Yp) 〈Yp, 1n〉, f2(Yp)
〈Yp, 1n〉 all have finite L1 norm, uniformly bounded over all functions f ∈ F
and all p ∈ [0, q), for some q > 0, where

F =
{

y �→ Dφ(y, g(y))
}

∪
{

y �→ ∇iφ(g(y)) : i = 1, . . . , n
}

.

Then for all p ∈ [0, q),

RVar(CBp(g)) ≤ 2

B
Var

[
Dφ(Y, g(Y ))) + 〈Y, ∇φ(g(Y ))〉

]

+
2

Bp

n∑

i=1

μiE
[
∇iφ(g(Yp))2

]

+
2

B

n∑

i=1

μ2
i Var

[
∇iφ(g(Yp))

]
+ O

(
p

B

)
. (27)

A simple simulation, whose results are presented in Figure 2, shows that the
reducible variance bound (27) appears to have the right dependence on μ and
B. See the figure caption for details.
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Fig 2. Comparison of the true reducible variance (approximated by Monte Carlo) and the
bound given in (27), for squared and deviance loss, in a simulation with n = 100 and p = 0.1.
The data vector Y has Poisson entries, and µ denotes the common mean of each component;
we use a simple linear shrinkage estimator g. We can see that the behavior for varying B, µ

looks qualitatively similar across the true reducible variance heatmap and the bound heatmap,
for each loss function.

4.3. Irreducible variance

Last we analyze the irreducible variance, IVar(CBp(g)). The proof is given in
Appendix C.3.

Proposition 6. Assume that E[D2
φ(Y, g(Y ))] < ∞ and E[〈∇(g(Y )), Y 〉2] < ∞.

Define Φg to have component functions

Φg,i(y) = sup
0fzfy

∣∣∇iφ(g(y))
∣∣, i = 1, . . . , n.

(Here when we write 0 ≤ z ≤ y, all inequalities are to be interpreted componen-
twise.) Then,

lim
p→0

IVar(CBp(g)) ≤2Var
[
Dφ(Y, g(Y )) + 〈∇φ(g(Y )), Y 〉

]

+ 2E
[
〈Φg(Y ), Y 〉2

]
. (28)

4.4. Discussion of bias and variance results

We discuss interpretation of the results above. The bias bound (26) decreases
linearly with p, which suggests that we should take p to be as small as possible
in order to decrease the bias. The irreducible variance bound (28) provides no
resistance to this idea, as it has a stable noiseless limit, as we send p → 0. The
behavior of the reducible variance bound (27), however, is more intricate. The
second term on the right-hand side in (27) diverges as p → 0, but this can be
offset by sending B → ∞.
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How large do we need to take B? Altogether, there are really only two quan-
tities on the right-hand side in (27) that B needs to balance out, which are the
second and third terms. First, let us normalize the target error by the num-
ber of samples, because this would be the natural scale of concern, in general
(our original definition of Err(g) in (6) or (7) is a sum, rather than an average,
over samples). We can see from (24) that rescaling each of Err(g) and CBp(g)
by 1/n multiplies all terms in the error decomposition—bias, reducible vari-
ance, and irreducible variance—by a factor of 1/n2. Now, ignoring constants,
the (squared) bias bound (26) and the second and third terms in the reducible
variance bound (27) are, after multiplying by 1/n2:

p2

n2
‖μ‖1 and

1

n2Bp
‖μ‖1 +

1

n2B
‖μ‖2

2,

respectively, where recall, we use μ = (μ1, . . . , μn) ∈ R
n
+ for mean vector. As we

can see, increasing the total signal energy ‖μ‖1 adversely affects the control we
have over the bias and reducible variance. In a moderate signal regime, where
‖μ‖1/n is moderate or small, the rough orders for the bias and the reducible
variance in the above display would be small, even for only modest values of
p and B. However, in a large signal regime, where ‖μ‖1/n is large (possibly
increasing as the sample size n grows), we may need to take p to be small to
offset this (if we want the bias to be held small), which requires us to take B
large enough to dominate ‖μ‖1/(n2p) or ‖μ‖2

2/n2 (depending on which is larger)
in the reducible variance bound.

In practice, for any given problem at hand, we would generally recommend
choosing p to be small, such as p = 0.05 or p = 0.1, but not tiny. This choice is
made in favor of keeping the variance under control (for a reasonable number
of bootstrap samples B), at the potential expense of incurring a nontrivial bias
in the CB estimator. However, this brings us back to a primary feature of the
CB estimator—recall, for any p > 0, it is unbiased for Errp(g). This represents
a shift in focus, where we now consider estimating error in a problem setting
where the mean has been shrunk from μ to (1 − p)μ, which is intuitively a
conservative bet and often a reasonable undertaking even for moderately small
but not infinitesimal values of p.

5. Simulated experiments

In this section, we run and analyze two sets of simulations. The first, presented in
Section 5.1, compares the unbiased estimator (UE) in (11) and the CB estimator
in (18), across four settings. Each setting is defined by a different data model and
algorithm g, and we examine the performance of CB versus UE in estimating
the true error, as we vary the binomial noise parameter p, for a fixed sample size
n. We find that CB performs favorably overall: it delivers similar error estimates
to UE for small values of p, and importantly, it can have much smaller variance
than UE when g is unstable.
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The second set of simulations, presented in Section 5.2, focuses on just one
setting in which UE generally behaves favorably. The motivation here is to
compare the variability of CB and UE after stratifying the two to have roughly
equal computational cost—which is accomplished by sampling summands in (12)
or (13). In this simulation, we fix the binomial noise parameter p, and vary the
sample size n and signal size μ. We find that CB has lower variability unless the
signal size μ is very large.

5.1. CB versus UE, varying p

Here we compare the CB and UE estimators, for squared and deviance loss
functions: see (19), (20) for CB and (12), (13) for UE. Throughout, we set
n = 100, and use B = 100 bootstrap samples for CB. We consider the following
combinations of different data models for Y , and algorithms g:

• Low-dimensional regression. We set p = 10, draw features Xi ∼ N(θ, Ip),
independently, i = 1, . . . , n, where each θj = 3 and Ip denotes the p × p
identity matrix; then we draw responses Yi ∼ Pois(XT

i β), independently,
i = 1, . . . , n, where each βj = 0.05. This corresponds to a signal-to-noise
ratio (SNR) of approximately 2. We examine two choices for g, a Poisson
regression and a regression tree.

• High-dimensional regression. We set p = 200, and use a similar setup
to the above, except with features Xi ∼ N(0, σ2Ip), where σ2 = 1.5,
and responses Yi ∼ Pois(XT

i β), where each βj = 0.13. This was done to
maintain an SNR of roughly 2. In this setting, we take g to be a lasso
Poisson regression, with the tuning parameter λ chosen by 5-fold cross-
validation (CV).

• Denoising. We draw Yi ∼ Pois(μi), independently, i = 1, . . . , n, where
μi = 10 for i ≤ 10 and μi = 0.5 for i > 10. In this setting, we take g to be
a 1-step improvement on an empirical Bayes (EB) estimator as described
in Brown, Greenshtein and Ritov (2013), with tuning parameter fixed at
h = 0.85.

In each setting, we perform 100 repetitions (i.e., we draw the data vector Y ∈ R
n

100 times from the specified data model); but we note that in the regression
settings, the features are drawn once and fixed throughout. We consider a range
of noise levels p for the CB estimator: 0.05, 0.1, 0.3, 0.5, and 0.7. All error
metrics and error estimators, here and throughout all empirical examples, are
scaled by 1/n.

The results are displayed in Figure 3, with each panel (a)–(d) displaying a
different combination of data model and algorithm g. In each panel, the average
test error estimate is displayed for each method (CB or UE), as well as standard
errors measured over the 100 repetitions. Furthermore, the black points denote
the true estimands (computed via Monte Carlo): Err(g) for UE, and Errp(g)
for CB. As expected, all estimators are seen to be roughly unbiased for their
targets: Err(g) or Errp(g). Interestingly, we also see that for squared loss, the
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Fig 3. Comparison of CB and UE across different data models, algorithms, and loss functions.

target Errp(g) clearly decreases as p grows, but for deviance loss, the behavior
of Errp(g) tends to be more robust to growing p (and can increase or decrease,
depending on the setting).

In panel (a), which is the low-dimensional regression setting, with Poisson
regression as the algorithm g, we can see that UE has a noticeably lower stan-
dard error than CB at the lowest binomial noise level of p = 0.05, particularly
for deviance loss. This is the only setting in which this happens. In all others,
the CB estimator at the lowest noise level has either comparable or smaller vari-
ability than UE. In fact, in panel (c), which is the high-dimensional regression
setting, with CV-tuned lasso as the algorithm g, we see that UE has a dramat-
ically higher standard error than CB at any level of noise p. The algorithm g is
inherently unstable here, because CV (operating in high-dimensions, and at a
moderate SNR) can choose very different tuning parameter values across differ-
ent data instances. Despite this, CB is able to deliver estimates of reasonably
low variance, since it averages across draws of auxiliary binomial noise, which
acts as a method of smoothing (like bagging). We note that the analogous phe-
nomenon also occurs in the Gaussian setting, as observed by Oliveira, Lei and
Tibshirani (2021).
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5.2. CB versus UE, sampling summands

The unbiased estimator in (11) requires n + 1 runs of the algorithm g, making
it computationally expensive for large sample sizes. In contrast, the number of
runs of g required by the CB estimator in (18) is B, which is a user-chosen
parameter (recall that any choice of B results in an unbiased estimator CBp(g)
for Errp(g), whereas larger B reduces the variance of the estimator). In the last
subsection, we fixed n = B = 100. In this one, we consider larger much sample
sizes, with n ranging from 103 to 105. We maintain B = 100, but we equate
computational costs between UE and CB by sampling m = 100 summands
uniformly at random (and without replacement) from (12) or (13), and then
scaling up the resulting sum by n/m. We denote the estimator resulting from
this “sampling summands” approach by UEss(g), which is unbiased for Err(g).

For the data model, we draw Yi ∼ Pois(μ), independently, i = 1, . . . , n,
where μ ranges from 0.5 to 30. For the algorithm, we use a simple linear shrink-
age estimator: g(y) = 0.8y + 0.2ȳ + 0.011{ȳ = 0}. We note that this choice is
generally favorable to UE, and more unstable algorithms g would only create
more variability for UE relative to CB, and thus look more favorable to CB,
as observed in the last subsection. For the binomial noise parameter, we set
p = min{0.1,

∑n

i=1 μi/
∑n

i=1 μ2
i }, which roughly balances the leading terms in

the reducible variance upper bound (27).

The results are displayed in Figure 4. For deviance loss, the results are overall
quite favorable for CB: it has a lower variance than UEss (darker shade of blue)
in all but the top left corner, which corresponds to small n and large μ. In
fact, the variability of CB is quite similar (across all n, μ) to that of UE for
deviance loss, even though the former is considerably cheaper (B = 100 runs
of the algorithm g, versus n runs). For squared loss, there is more of a clear
tradeoff: for large values of μ (i.e., roughly log μ > 2, or μ > 7.38), we see that
CB has greater variability than UEss; for moderate values of μ (roughly log μ
between 0 and 2, or μ between 1 and 7.38), CB has comparable variability for
small n and smaller variability for large n; while for small values of μ (roughly
log μ < 0, or μ < 1), CB has smaller variability than UEss.

6. Applications

6.1. Image denoising

We consider the following Poisson image denoising framework from Harmany,
Marcia and Willett (2012) (motivated by the study of Poisson noise or shot
noise in areas such as microscopy and astrophotography). We observe data
Yi ∼ Pois(f∗

i ), independently, i = 1, . . . , n, where f∗ ∈ R
n
+ is an unknown sig-

nal of interest, which we assume has the structure of an N × N image, where
n =

√
N . We consider an estimator f̂ = g(Y ) for f∗ given by solving the opti-
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Fig 4. Variability of CB, UEss, and UE as functions of n and µ, for a simple linear shrinkage
estimator.

mization problem:

minimize
fg0

n∑

i=1

(
− Yi log(fi + ρ) + fi + ρ

)
+ τ

∑

i∼j

|fi − fj |, (29)

where ρ is a small positive constant to avoid the singularity f = 0, and we write
i ∼ j to indicate that indices i, j are adjacent to each other in the ordering
determined by the underlying image. This estimator is a form of total varia-
tion (TV) regularized Poisson image denoising; we note that the loss term is
equivalent (up to constants) to the Poisson deviance between f and Y , and the
penalty term encourages the estimated image f̂ to be piecewise constant, with
the tuning parameter τ ≥ 0 determining the strength of regularization.

As an example, we consider the well-known synthetic phantom image f∗, of
resolution 128×128 (so that n = 16384). We use CB to estimate the test error of
f̂ , the Poisson image denoising estimator defined in (29), over a range of values
of the tuning parameter τ . We consider both squared (19) and deviance (20)
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Fig 5. Comparison of CB and true test error curves, as functions of the tuning parameter τ ,
for a Poisson image denoising estimator.

Fig 6. Original, noisy, and denoised estimates at the CB-optimal value of τ , for squared and
deviance loss.

loss, and set B = 50 and p = 0.1. We did not consider the unbiased estimator
in (12) or (13) in this experiment, due to its prohibitive computational cost (it
requires n = 16384 refits of the TV denoising estimator (29)).

Figure 5 displays the CB error curve and true error curve (approximated by
Monte Carlo), as functions of τ , with separate panels for squared and deviance
loss. There are two points worth noting. First, despite the gap between the CB
and true test error curves (unsurprising, because p = 0.1), their curvature is
similar; in particular, the value of τ minimizing the CB curve is close to the
value minimizing test error. This is the case for both squared and deviance loss,
and it shows that the CB estimator can be useful for model tuning, even when
p is not small. Second, the value of τ minimizing the CB curve is larger for
deviance loss than it is for squared loss, marked by the dotted lines in each
panel. This translates into a greater degree of regularization, as can be seen
clearly in Figure 6, which plots the denoised estimates themselves at the CB-
optimal values of τ , for squared and deviance loss.

6.2. Density estimation

We study density estimation, which can be turned into a Poisson regression
via Lindsey’s method (Lindsey, 1974; Lindsey and Mersch, 1992; Efron and
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Tibshirani, 1996). The basic idea is to discretize the domain into bins, and model
the count in each bin as a Poisson random variable, with the mean parameter
constrained or regularized to be smoothly varying across the bins. We can then
estimate the mean parameter by (regularized) maximum likelihood, which in
turn gives a discretized density estimate.

In particular, we consider an example from Phillips, Anderson and Schapire
(2006) on the distribution of Bradypus variegatus, a lowland species of sloth
found across Central and South America. Each data point consists of latitude
and longitude pair, representing a site where a sloth was seen, and the data
set contains 116 total sightings. To form a 2d density estimate, we apply Lind-
sey’s method, with 200 equally-spaced bins along the latitude and longitude
axes, and we use a P-spline to model the Poisson mean parameter. P-splines
were first proposed by Eilers and Marx (1996); details for the 2d case can be
found in Eilers and Marx (2003); Eilers, Currie and Durbán (2006); Eilers and
Marx (2021). We use a 2d cubic B-spline parametrization for the mean function
with 30 knots in each dimension, and we use a penalty on the sum of squared
second-order differences across adjacent B-spline parameters along each dimen-
sion. Moreover, we consider two versions of this penalty: an anisotropic version,
which decouples the regularization strength along each dimension, and has two
tuning parameters λ1, λ2 ≥ 0; and an isotropic version, which ties together the
regularization strength over the dimensions, and has a single tuning parameter
λ ≥ 0.

Figure 7 shows the results of using the CB method, with B = 100 and p = 0.1,
to estimate both squared and deviance loss, across a range of tuning parameter
values. For either the anisotropic or isotropic penalty, it is clear that mini-
mizing CB-estimated deviance loss leads to larger tuning parameter values—
and hence more regularized density estimates—than minimizing CB-estimated
squared loss. As we can see in Figure 8, this leads to more plausible looking
density estimates (top row). The estimates obtained optimizing CB-estimated
squared loss (bottom row) appear too concentrated around the observations
themselves.

7. Discussion

We proposed and analyzed a coupled bootstrap (CB) method for test error
estimation in the Poisson means problem, with a focus on squared and Poisson
deviance loss functions. The CB estimator, for any choice of the binomial noise
parameter p > 0, is unbiased for an intuitive target: Errp(g), the test error of the
given algorithm g, when the mean vector in the Poisson model has been shrunk
from μ to (1 − p)μ. Importantly, this unbiasedness requires no assumptions on
g whatsoever. Furthermore, we proved that in the noiseless limit p → 0, the CB
estimator (with infinite bootstrap iterations) reduces to the natural unbiased
estimator (UE) for test error that comes from an application of Hudson’s lemma.
However, CB has two key advantages over UE. First, it requires running the
algorithm g in question B times (which is a user-controlled parameter in CB),
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Fig 7. CB curves for anisotropic and isotropic penalties as a function of the tuning parame-
ter(s).

versus n + 1 times (which comes directly from the form of UE). Second, as
we show in our experiments, CB can often have smaller variance than UE,
particularly when the underlying algorithm g is unstable.

We finish by emphasizing that it would be interesting to extend the CB frame-
work to other data models, beyond Gaussian, as in Oliveira, Lei and Tibshirani
(2021), and Poisson, as in the current paper. To explain what would be required
for this, it may be helpful to first recap the general developments in Section 2.
Given any random vector Y , suppose that we can generate a pair (Y ∗, Y †) such
that:

(i) Y ∗, Y † are independent; and
(ii) E[Y ∗] = E[Y †].

Then letting Ỹ ∗ denote an independent copy of Y ∗, Proposition 2 implies (as
stated in (16), which we copy here for convenience):

Dφ(Y †, g(Y ∗)) + φ(Y ∗) − φ(Y †) is unbiased for E[Dφ(Ỹ ∗, g(Y ∗))],

for any Bregman divergence Dφ which serves as our loss function. Therefore,
under properties (i) and (ii) we can estimate error as measured by an arbitrary
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Fig 8. Density estimates at the CB-optimized values of the tuning parameters for anisotropic
and isotropic penalties, and squared and deviance loss.

Bregman divergence, unbiasedly—granted, the error here is defined when the
training and test distributions are given by that of Y ∗, which is different from
our original data distribution. This means that there is actually an implicit third
property that we need in order for us to want to use the estimator in the above
display:

(iii) the law of Y ∗ is “close enough” to that of Y that E[Dφ(Ỹ ∗, g(Y ∗))] is an
“interesting” proxy target.

This is less explicit than either (i) or (ii) but it is just as important. To be
clear, the properties (i), (ii), and (iii) are already met by the existing Gaussian
and Poisson constructions. Moreover, for any given distribution of Y , if we can
fulfill (i), (ii), and (iii), then we can build a corresponding CB estimator for the
(proxy) test error by averaging the above construction over multiple bootstrap
draws, as in (18).

Towards satisfying properties (i) and (ii), the recent paper of Neufeld et al.
(2023) provides a number of constructions which serve a related but distinct pur-
pose, in a selective inference context. From some initial random vector Y , they
seek to create a pair (Y (1), Y (2)) which are independent, and satisfy Y (1) + Y (2)

= Y . Fortunately, by simple rescaling, one can check that their constructions
(from their Table 2) can be adapted to satisfy (i) and (iii) for the gamma, expo-
nential, binomial, multinomial, and negative binomial families of distributions.
Meanwhile, property (iii) can be argued on a case-by-case basis. As an example,
consider n = 1 (only for simplicity, the same idea can be applied coordinatewise
in the multivariate case), and assume Y ∼ Exp(λ), exponentially distributed
with rate λ > 0. Then for arbitrary ε ∈ (0, 1), we can define

Z ∼ Beta(ε, 1 − ε),
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Y ∗ =
Z

ε
· Y,

Y † =
1 − Z

1 − ε
· Y,

where Beta(α, β) denotes the beta distribution with shapes α, β > 0. From
Neufeld et al. (2023), we know that Y ∗, Y † are independent, with Y ∗ ∼ Gam(ε, ελ)
and Y † ∼ Gam(1−ε, (1−ε)λ), where Gam(α, β) is the gamma distribution with
shape α > 0 and rate β > 0. Thus, we can see that E[Y ∗] = E[Y †], and so (i)
and (ii) are clearly satisfied. Furthermore, the distribution Gam(ε, ελ) of Y ∗ is
indeed similar to that Exp(λ) of Y , with the latter approaching the former as
ε → 1, which confirms our property (iii).

Given the success we have seen for the CB method in the Gaussian and
Poisson settings, we feel these and other extensions are worth exploring, along
of course with theory and experiments to support their use as potentially core
tools for error and risk estimation in denoising and fixed-X regression problems.

Appendix A: Proofs and additional details for Section 2

A.1. Proof of Lemma 2.1

The joint probability mass function of (Y, ω) is given by

P(Y = y, ω = w) = P(ω = k | Y = y)P(Y = y)

=

(
y

k

)
pk(1 − p)y−k μye−µ

y!
,

for all y ≥ 0 and k ∈ {0, . . . , y}. The probability mass function of (U, V ) =
(Y − ω, ω) is thus

P(U = u, V = v) = P(Y = u + v, ω = v)

=

(
u + v

v

)
pv(1 − p)u μu+ve−µ

(u + v)!

=
1

u!v!
pv(1 − p)uμuμve−(p+1−p)µ

=
((1 − p)μ)ue−(1−p)µ

u!

(pμ)ve−pµ

v!
.

This shows that U and V are independent Pois((1 − p)μ) and Pois(pμ) random
variables, respectively, which proves the desired result.

A.2. Divergence deviance terms in UE versus CB

For deviance loss, a summand in the unbiased estimator (13) is undefined if
Yi �= 0 and gi(Y −ei) = 0, and a summand in the CB estimator (20) is undefined
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Fig 9. Comparison of the probabilities of an individual summand from the unbiased and CB
estimators being ill-defined, as functions of the mean µ. The four panels show different values
of p.

if Y †
i �= 0 and gi(Y

∗) = 0, where Y ∗, Y † are a sample from (17) (we have hidden
the dependence on b). Suppose for simplicity that n = 1 and g(0) = 0. We can
then compute, under Y ∼ Pois(μ), the probability with which this happens for
the unbiased and CB estimators. For the unbiased estimator, this is:

P(Y = 1) = e−µμ.

For the CB estimator, this is:

∞∑

y=1

P(Y ∗ = 0 | Y = y)P(Y = y) =

∞∑

y=1

P(ω = Y | Y = y)P(Y = y)

=
∞∑

y=1

pye−µμy/y!

= e−(1−p)µ

∞∑

y=1

e−pµ(pμ)y/y!

= e−(1−p)µ(1 − e−pµ)

= e−µ(epµ − 1).

Figure 9 plots these two probabilities, a functions of μ, for p ranging over 0.01,
0.1, 0.3, 0.5. For small p, it is clear that the CB estimator has much lower
probability of being ill-defined than the unbiased estimator.

A.3. Proof of Proposition 3

In this proof we use f(Yp, Ỹp) to denote Dφ(Ỹp, g(Yp)). First, we show that the
map is continuous. For any p ∈ [0, 1),

lim
t→p

E[f(Yt, Ỹt)]

= lim
t→p

∞∑

y1,...,yn=0

∞∑

ỹ1,...,ỹn=0

f(y, ỹ)
e−2(1−t)

∑
n
i=1

µi(
∏n

i=1 μyi+ỹi

i )(1 − t)
∑

n
i=1

yi+ỹi

∏n
i=1 yi!ỹi!
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=

∞∑

y1,...,yn=0

∞∑

ỹ1,...,ỹn=0

f(y, ỹ)
e−2(1−p)

∑
n
i=1

µi(
∏n

i=1 μyi+ỹi

i )(1 − p)
∑

n
i=1

yi+ỹi

∏n
i=1 yi!ỹi!

=E[f(Yp, Ỹp)].

To switch the infinite sum and the limit, we used the dominated convergence
theorem (DCT). The dominating function is given by

h(ỹ, y) = f(y, ỹ)

∏n
i=1 μyi+ỹi

i∏n
i=1 yi!ỹi!

,

which is integrable by assumption:

∞∑

y1,...,yn=0

∞∑

ỹ1,...,ỹn=0

h(ỹ, y)

=

∞∑

y1,...,yn=0

∞∑

ỹ1,...,ỹn=0

f(y, ỹ)

∏n

i=1 μyi+ỹi

i∏n

i=1 yi!ỹi!
e−2

∑
n
i=1

µie2
∑

n
i=1

µi

= e2
∑

n
i=1

µiE[f(Y0, Ỹ0)] < ∞.

Next, for the first derivative, note that

∂

∂p
E[f(Yp, Ỹp)]

=
∂

∂p

∞∑

y1,...,yn=0

∞∑

ỹ1,...,ỹn=0

f(y, ỹ)
e−2(1−p)

∑
n
i=1

µi
∏n

i=1 μyi+ỹi

i (1 − p)
∑

n
i=1

yi+ỹi

∏n
i=1 yi!ỹi!

=

∞∑

y1,...,yn=0

∞∑

ỹ1,...,ỹn=0

f(y, ỹ)
∏n

i=1 μyi+ỹi

i∏n
i=1 yi!ỹi!

∂

∂p
e−2(1−p)

∑
n
i=1

µi(1 − p)
∑

n
i=1

yi+ỹi

=

∞∑

y1,...,yn=0

∞∑

ỹ1,...,ỹn=0

f(y, ỹ)
∏n

i=1 μyi+ỹi

i∏n
i=1 yi!ỹi!

×
(

2

n∑

i=1

μie
−2(1−p)

∑
n
i=1

µi(1 − p)
∑

n
i=1

yi+ỹi

−
n∑

i=1

(yi + ỹi)e
−2(1−p)

∑
n
i=1

µi(1 − p)
∑

n
i=1

yi+ỹi−1

)

= 2

n∑

i=1

μiE[f(Yp, Ỹp)] − 1

1 − p
E
[
f(Yp, Ỹp)〈Ỹp + Yp, 1n〉

]
,

where we used DCT to switch the sums and derivative, using a similar domi-
nating function as above and recognizing that the summand is Lipschitz in p
with Lipschitz constant depending on μ, y, ỹ. Now to prove continuity of the
first derivative, we apply the above continuity result with f(Yp, Ỹp)〈Ỹp + Yp, 1n〉
in place of f(Yp, Ỹp). For kth derivatives, the argument follows from sequential
applications of the same continuity result and similar derivative calculations.
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Appendix B: Proof of Theorem 3.1

We start with a lemma that contains two key results to be used in the proof of
Theorem 3.1.

Lemma B.1. Let h : Zn
+ → R

n
+, and set h(z) = 0 for z /∈ Z

n
+. Fix any y ∈ Z

n
+,

and draw ωi ∼ Binom(yi, p), independently, for i = 1, . . . , n, where p ∈ [0, 1).
Then, for each i = 1, . . . , n,

(a) limp→0 E[hi(y − ω)] = hi(y);
(b) limp→0

1−p
p

· E[ωihi(y − ω)] = yihi(y − ei).

Recall, we use ei ∈ R
n to denote the vector whose ith entry is 1, with all others

0.

Proof. Define the following sets:

Ω = {(ω1, . . . , ωn) : ωj ∈ {0, . . . , yj}, j = 1, . . . , n},

Ω\0 = Ω \ {0},

Ωi0 = {(ω1, . . . , ωn) : ωi = 0, ωj ∈ {0, . . . , yj}, j �= i},

Ωi10 = {(ω1, . . . , ωn) : ωi = 1, ωj = 0, j �= i},

Ωi10̄ = {(ω1, . . . , ωn) : ωi ≥ 1, ωj ∈ {0, . . . , yj}, j �= i} \ Ωi10.

For the first result (a), we have

lim
p→0

E[hi(y − ω)] = lim
p→0

∑

ω∈Ω

hi(y − ω)p
∑

n
k=1

ωk (1 − p)
∑

n
k=1

yk−ωk

n∏

j=1

(
yj

ωj

)

= lim
p→0

hi(y)(1 − p)
∑

n
k=1

yk

+
∑

ω∈Ω\0

lim
p→0

hi(y − ω)p
∑

n
k=1

ωk (1 − p)
∑

n
k=1

yk−ωk

n∏

j=1

(
yj

ωj

)

= hi(y),

since for ω ∈ Ω\0, we have that
∑n

k=1 ωk > 0. For the second result (b),

lim
p→0

1 − p

p
E[ωihi(y − ω)]

= lim
p→0

1 − p

p

∑

ω∈Ω

ωihi(y − ω)p
∑

n
k=1

ωk (1 − p)
∑

n
k=1

yk−ωk

n∏

j=1

(
yj

ωj

)

= lim
p→0

∑

ω∈Ω

ωihi(y − ω)p
∑

n
k=1

ωk−1(1 − p)1+
∑

n
k=1

yk−ωk

n∏

j=1

(
yj

ωj

)

= lim
p→0

∑

ω∈Ωi10

ωihi(y − ω)p
∑

n
k=1

ωk−1(1 − p)1+
∑

n
k=1

Yk−ωk

n∏

j=1

(
yj

ωj

)
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= lim
p→0

hi(y − ei)p
0(1 − p)1+

∑
n
k=1

yk−ωk

(
yi

1

) n∏

j 	=i,j=1

(
yj

0

)

= yihi(y − ei),

where we use the fact that Ω = Ωi0 ∪ Ωi10 ∪ Ωi10̄ and

lim
p→0

∑

ω∈Ωi0

ωihi(y − ω)p
∑

n
k=1

ωk−1(1 − p)1+
∑

n
k=1

yk−ωk

n∏

j=1

(
yj

ωj

)

= lim
p→0

∑

ω∈Ωi0

0hi(y − ω)p
∑

n
k=1

ωk−1(1 − p)1+
∑

n
k=1

yk−ωk

n∏

j=1

(
yj

ωj

)
= 0

as well as

lim
p→0

∑

ω∈Ωi10̄

ωihi(y − ω)p
∑

n
k=1

ωk−1(1 − p)1+
∑

n
k=1

yk−ωk

n∏

j=1

(
yj

ωj

)

=
∑

ω∈Ωi10̄

ωihi(y − ω)0
∑

n
k=1

ωk−1
n∏

j=1

(
yj

ωj

)
= 0,

since for ω ∈ Ωi10̄, we have that
∑n

k=1 ωk − 1 > 0.

Now we are ready to prove Theorem 3.1. We start by expanding the infinite
bootstrap estimator

E[CBp(g) | Y ] =

n∑

i=1

E

[
Dφ(Y †

i , gi(Y
∗)) + φ(Y ∗

i ) − φ(Y †
i )
∣∣Y
]

=

n∑

i=1

E

[
φ(Y ∗

i ) − φ(gi(Y
∗)) − ∇iφ(g(Y ∗))(Y †

i − Y ∗
i )
∣∣Y
]

=

n∑

i=1

E

[
φ(Yi − ωi) − φ(gi(Y − ω))

− ∇iφ(g(Y − ω))

(
1 − p

p
ωi − (Yi − ωi)

) ∣∣∣Y
]

=

n∑

i=1

E

[
φ(Yi − ωi) − φ(gi(Y − ω)) − 1 − p

p
∇iφ(g(Y − ω))ωi

+ ∇iφ(g(Y − ω))(Yi − ωi)
∣∣∣Y
]
.

Then, taking the limit in the last line,

n∑

i=1

lim
p→0

E

[
φ(Yi − ωi) − φ(gi(Y − ω)) − 1 − p

p
∇iφ(g(Y − ω))ωi
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+ ∇iφ(g(Y − ω))(Yi − ωi)
∣∣∣Y
]

=
n∑

i=1

lim
p→0

E

[
φ(Yi − ωi) − φ(gi(Y − ω)) + ∇iφ(g(Y − ω))(Yi − ωi)

∣∣Y
]

− Yi∇iφ(g(Y − ei))

=

n∑

i=1

φ(Yi) − φ(gi(Y )) + ∇iφ(g(Y ))(Yi) − Yi∇iφ(g(Y − ei))

= UE(Y ),

where in the second-to-last and last lines we used Lemma B.1 parts (b) and (a),
respectively. This completes the proof.

Appendix C: Proofs for Section 4

C.1. Proof of Proposition 4

From Proposition 3, the mapping p �→ Errp(g) has a continuous derivative for
p ∈ [0, 1). By an application of the fundamental theorem of calculus, we can
write the bias as

Errp(g) − Err(g) =

∫ p

0

∂

∂t
Errt(g) dt

=

∫ p

0

{
2

n∑

i=1

μiE[Dφ(Ỹt, g(Yt))]

− 1

(1 − t)
E
[
Dφ(Ỹt, g(Yt))〈Ỹt + Yt, 1n〉

]}
dt

=

∫ p

0

{
2

n∑

i=1

μiErrt(g)

− 1

(1 − t)
Cov

(
Dφ(Ỹt, g(Yt)), 〈Ỹt + Yt, 1n〉

)

− 1

(1 − t)
2Errt(g)(1 − t)

n∑

i=1

μi

}
dt

= −
∫ p

0

1

(1 − t)
Cov

(
Dφ(Ỹt, g(Yt)), 〈Ỹt + Yt, 1n〉

)
dt

= −
∫ p

0

1

(1 − t)
Cor

(
Dφ(Ỹt, g(Yt)), 〈Ỹt + Yt, 1n〉

)

×
√

Var
[
Dφ(Ỹt, g(Yt))

]√
Var

[
〈Ỹt + Yt, 1n〉

]
dt

= −
∫ p

0

1

(1 − t)
Cor

(
Dφ(Ỹt, g(Yt)), 〈Ỹt + Yt, 1n〉

)
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×
√

Var
[
Dφ(Ỹt, g(Yt))

]
√√√√(2(1 − t)

n∑

i=1

μi dt

= −
∫ p

0

1√
1 − t

Cor
[
Dφ(Ỹt, g(Yt)), 〈Ỹt + Yt, 1n〉

)

×
√

Var
[
Dφ(Ỹt, g(Yt))

]
dt ·

√√√√2

n∑

i=1

μi.

which proves (25). Upper bounding the correlation by 1, and using the monotone
variance assumption for p ∈ [0, 1/2], we have

|Errp(g) − Err(g)| ≤
∫ p

0

1√
1 − t

√
Var

[
Dφ(Ỹt, g(Yt))

)
dt ·

√√√√2
n∑

i=1

μi

≤
∫ p

0

1√
1 − t

√
Var

[
Dφ(Ỹ , g(Y ))

)
dt ·

√√√√2

n∑

i=1

μi

=

√
Var

[
Dφ(Ỹ , g(Y ))

)
√√√√2

n∑

i=1

μi

∫ p

0

1√
1 − t

dt

=

√
Var

[
Dφ(Ỹ , g(Y ))

)
√√√√2

n∑

i=1

μi

2p

1 +
√

1 − p

=

√
Var

[
Dφ(Ỹ , g(Y ))

)
√√√√2

n∑

i=1

μi

5p

3
,

which proves (26).

C.2. Proof of Proposition 5

We start from the fact that

Var[CBp | Y ] =
1

B
Var

[
Dφ(Y †, g(Y ∗)) + φ(Y ∗) − φ(Y †)

∣∣Y
]
.

Then

E
[
Var[CBp | Y ]

]
=

1

B
E

[
Var

[
Dφ(Y †, g(Y ∗)) + φ(Y ∗) − φ(Y †)

∣∣Y
]]

=
1

B
E

[
Var

[
φ(Y ∗) − φ(g(Y ∗))

− 〈∇φ(g(Y ∗)), Y † − g(Y ∗)〉
∣∣Y
]]
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=
1

B
E

[
Var

[
φ(Y ∗) − φ(g(Y ∗))

− 〈∇φ(g(Y ∗)), Y † − Y ∗ + Y ∗ − g(Y ∗)〉
∣∣Y
]]

=
1

B
E

[
Var

[
Dφ(Y ∗, g(Y ∗)) − 〈∇φ(g(Y ∗)), Y † − Y ∗〉

∣∣Y
]]

=
1

B
E

[
Var

[
Dφ(Y ∗, g(Y ∗)) − 1

p
〈ω, ∇φ(g(Y ∗))〉

+ 〈∇φ(g(Y ∗)), Y 〉
∣∣Y
]]

≤ 2

B
E

[
Var

[
Dφ(Y ∗, g(Y ∗)) + 〈∇φ(g(Y ∗)), Y 〉

∣∣Y
]]

+
2

Bp2
E

[
Var

[
〈ω, ∇φ(g(Y ∗))〉

∣∣Y
]]

≤ 2

B
Var

[
Dφ(Y ∗, g(Y ∗)) + 〈Y ∗, ∇φ(g(Y ∗))〉

]

+
2

Bp2
Var

[
〈ω, ∇φ(g(Y ∗))〉

]

=
2

B
Var

[
Dφ(Y, g(Y )) + 〈Y, ∇φ(g(Y ))〉

]
+

2

B
O(p)

+
2

Bp2
Var

[
〈ω, ∇φ(g(Y ∗))〉

]
,

where the second-to-last line uses the law of total variance, and the last line
uses a Taylor expansion which follows from the continuity in p of expected
value of functions of Yp as assumed in the proof of Proposition 3. For the last
term in the above display, note that ω and Y ∗ are independent. Therefore,
we can use that fact that if X1 and X2 are independent, then Var[X1X2] =
Var[X1]Var[X2] + Var[X1]E2[X2] + Var[X2]E2[X1], which translates to

2

Bp2
Var

[
〈ω, ∇φ(g(Y ∗))〉

]

=
2

Bp2

n∑

i=1

Var
[
ωi∇iφ(g(Y ∗))

]

=
2

Bp2

n∑

i=1

(
Var[ωi]Var

[
∇iφ(g(Y ∗))

]
+ Var[ωi]E

2
[
∇iφ(g(Y ∗))

]

+ Var
[
∇iφ(g(Y ∗))

]
E

2[ωi]
)

=
2

Bp2

n∑

i=1

(
pμiVar

[
∇iφ(g(Y ∗))

]
+ pμiE

2
[
∇iφ(g(Y ∗))

]

+ Var
[
∇iφ(g(Y ∗))

]
p2μ2

i

)
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=
2

Bp

n∑

i=1

μiE
[
∇iφ(g(Y ∗))2

]
+

2

B

n∑

i=1

μ2
i Var

[
∇iφ(g(Y ∗))

]

=
2

Bp

n∑

i=1

μiE
[
∇iφ(g(Y ∗))2

]
.

Putting it all together gives the desired result (27).

C.3. Proof of Proposition 6

Note that the irreducible variance Var(E[CBp(g) | Y ]) does not depend on B (be-
cause the inner expectation does not), so we assume without a loss of generality
that B = 1 henceforth. Observe that

Var
(
E[CBp(g) | Y ]

)

= Var
(
E

[
Dφ(Y ∗, g(Y ∗)) + 〈∇φ(g(Y ∗)), Y ∗ − Y †〉

∣∣Y
])

= Var

(
E

[
Dφ(Y ∗, g(Y ∗)) + 〈∇φ(g(Y ∗)), Y ∗〉 − 1 − p

p
〈∇φ(g(Y ∗)), ω〉

∣∣∣Y
])

≤ 2Var
(
E

[
Dφ(Y ∗, g(Y ∗)) + 〈∇φ(g(Y ∗)), Y ∗〉

∣∣Y
])

+ 2Var

(
E

[
1 − p

p
〈∇φ(g(Y ∗)), ω〉

∣∣∣Y
])

. (30)

For the first term in (30), we apply the law of total variance and

Var
(
E

[
Dφ(Y ∗, g(Y ∗)) + 〈∇φ(g(Y ∗)), Y ∗〉

])

≤ Var
[
Dφ(Y ∗, g(Y ∗)) + 〈∇φ(g(Y ∗)), Y ∗〉

]

→ Var
[
Dφ(Y, g(Y )) + 〈∇φ(g(Y )), Y 〉

]
, as p → 0,

where the last convergence is guaranteed provided that D2
φ(Y, g(Y )) and

〈∇φ(g(Y )), Y 〉2 have finite expectation, according to the first step in the proof
of Proposition 3.

For the second term in (30) recalling that Φg as defined in the statement of
the proposition,

lim
p→0

Var

(
E

[
1 − p

p
〈∇φ(g(Y ∗)), ω〉

∣∣∣Y
])

≤ lim
p→0

E

(
E

2

[
1 − p

p
〈∇φ(g(Y ∗)), ω〉

∣∣∣Y
])

≤ lim
p→0

E

(
E

2

[
1 − p

p
〈Φg(Y ), ω

∣∣∣Y
])

= lim
p→0

(1 − p)2
E

[
〈Φg(Y ),E[ω/p | Y ]〉2

]

= lim
p→0

(1 − p)2
E
[
〈Φg(Y ), Y 〉2

]
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=E
[
〈Φg(Y ), Y 〉2

]
.

Putting it all together gives the desired result (28).
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