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ARTICLE INFO ABSTRACT
Keywords: We propose a score-based generative sampling method for solving the nonlinear filtering problem
Nonlinear filtering with superior accuracy. A major drawback of existing nonlinear filtering methods, e.g., particle

Diffusion model

filters, is the low accuracy in handling high-dimensional nonlinear problems. To overcome this
Score-based models

N " issue, we incorporate the score-based diffusion model into the recursive Bayesian filter framework
Stochastic dynamical systems ) N A . .
Kalman filter to develop a novel score-based filter (SF). The key idea of SF is to store the information of
Particle filter the recursively updated filtering density function in the score function, instead of storing the

information in a set of finite Monte Carlo samples (used in particle filters and ensemble Kalman
filters). By leveraging the reverse-time diffusion process, SF can generate unlimited samples to
characterize the filtering density. An essential aspect of SF is its analytical update step, gradually
incorporating data information into the score function. This step is crucial in mitigating the
degeneracy issue faced when dealing with very high-dimensional nonlinear filtering problems.
Three benchmark problems are used to demonstrate the performance of our method. In
particular, SF provides surprisingly impressive performance in reliably capturing/tracking the
100-dimensional stochastic Lorenz system that is a well-known challenging problem for existing
filtering methods.

1. Introduction

Nonlinear filtering represents a significant avenue of research in data assimilation, encompassing a wide range of applications
in weather forecasting, military operations, material sciences, biology, and finance [1,3,6,8,12,15,18,32,35]. The primary objective
of addressing a filtering problem lies in leveraging partially noisy observational data streams to estimate the unobservable state of
a stochastic dynamical system of interest. In linear filtering, where both the state and observation dynamics are linear, the Kalman
filter provides an optimal estimate for the unobservable state, attainable analytically under the Gaussian assumption.

When dealing with nonlinear dynamical systems, the standard Kalman filter becomes impractical. An extension of the Kalman
filter known as the ensemble Kalman filter can be employed to tackle the nonlinearity to a certain extent. The fundamental concept
behind the ensemble Kalman filter is to utilize an ensemble of Kalman filter samples to describe the probability distribution of the
target state in the form of a Gaussian distribution. As a Kalman type filter, the ensemble Kalman filter stores the information of the
state variable as the mean and the covariance of Kalman filter samples. Consequently, the probability density function (PDF) of the
target state, which is often referred to as the filtering density, is approximated by a Gaussian distribution. However, in nonlinear

* Corresponding author.
E-mail address: zhangg@ornl.gov (G. Zhang).

https://doi.org/10.1016/j.jcp.2024.113207
Received 1 August 2023; Received in revised form 25 March 2024; Accepted 14 June 2024

Available online 19 June 2024
0021-9991/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:zhangg@ornl.gov
https://doi.org/10.1016/j.jcp.2024.113207
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2024.113207&domain=pdf
https://doi.org/10.1016/j.jcp.2024.113207

F. Bao, Z. Zhang and G. Zhang Journal of Computational Physics 514 (2024) 113207

filtering problems, the filtering density is usually non-Gaussian. Therefore, the ensemble Kalman filter, which still relies on the
Gaussian assumption, is not the ideal approach to solve the nonlinear filtering problem [1,38].

In addition to the ensemble Kalman filter, several effective nonlinear filtering methods have been developed to tackle nonlin-
earity in various applications. These methods include the particle filter [4,19], the Zakai filter [7,45] and so on. Among these
approaches, the particle filter stands out as the most widely applied solution for addressing the nonlinear filtering problem. Also
known as sequential Monte Carlo, the particle filter employs a collection of Monte Carlo samples, referred to as particles, to construct
an empirical distribution that characterizes the conditional probability distribution for the target state. In this work, we slightly
misuse the terminology and continue to use “filtering density” to denote the conditional distribution for the state variable. Upon
receiving observational data, the particle filter employs a Bayesian inference procedure to assign likelihood weights to the particles.
Subsequently, a resampling process is iteratively performed, generating duplicates of particles with large weights while discarding
particles with small weights. This resampling technique ensures that the particle filter adapts well to the nonlinearity present in the
optimal filtering problem. By utilizing particle simulations, the filter incorporates the nonlinear state dynamics into the filtering den-
sity. Simultaneously, the Bayesian inference serves as a standard approach to handle nonlinear observations. In contrast to Kalman
type filters, which capture information about the filtering density through mean and covariance, the particle filter stores data about
the filtering density in the positions of its numerous particles. As a result, the particle filter excels at characterizing more complex
non-Gaussian filtering densities through the empirical distributions constructed from the particles. This unique feature of the particle
filter allows it to handle a broader range of challenging filtering scenarios compared to traditional Kalman filters.

The main drawback of the particle filter is the low accuracy in handling high-dimensional nonlinear problems. In the particle filter,
once the total number of particles is fixed, the capability to characterize the filtering density is fixed, and one may only use those
finite particles to approximate the filtering density. However, the nonlinear state dynamics and nonlinear observations could result
in unpredictable features of the filtering densities. Therefore, it’s hard to use finite particles to characterize unlimited possibilities of
filtering densities. This often causes the so-called degeneracy issue, i.e., the amount of particles in high probability regions are not
sufficient to characterize highly probable features in filtering densities. Such a degeneracy issue is even more prohibitive when the
dimension of the problem is high due to the curse of dimensionality. Although advanced resampling methods are proposed to address
the degeneracy issue by relocating particles to high probability regions [4,16,24,34,38], the nature of finite particle representation
for the filtering density cannot be changed under the sequential Monte Carlo framework, and the information that any re-sampling
method may use cannot exceed the information carried by those finite particles.

In this work, we introduce a novel score-based filter (SF) that allows to use a score function to generate samples from the filtering
density through a diffusion process. The score function is a key component in diffusion model, which is a well-known generative
machine learning model for generating samples from a target PDF. Diffusion models are generative models that utilize noise injection
to progressively distort data and then learn to reverse this process for sample generation. As a category of deep generative models,
diffusion models are widely used in image processing applications, such as image synthesis [17,21,40,41,13,22,33], image denoising
[25,30,21,39], image enhancement [26,27,36,43], image segmentation [2,10,11,20], and natural language processing [5,23,29,37,
44]. Diffusion models are also capable of density estimation (i.e., learning how to draw samples from the probability distribution).
Specifically, a diffusion model can transport a prior distribution, which is often chosen as the standard Gaussian distribution, to
a complex target data distribution through a reverse-time diffusion process in the form of a stochastic differential equation, and
the score function is the forcing term that guides the reverse-time diffusion process towards the data distribution. Since the prior
distribution is independent of the target data distribution, the information of the data distribution is stored in the score function.

The key idea of SF is to store the information of the recursively updated filtering density function in the score model, instead of
storing the information in a set of finite Monte Carlo samples used in particle filters and ensemble Kalman filters. Specifically, we
propagate Monte Carlo samples through the state dynamics to generate data samples that follow the filtering density, and use the
data samples to train a score function defined by a deep neural network. Although samples that characterize the filtering density
are still needed in our method, SF is essentially different from existing Monte Carlo based filtering methods. Using the reverse-time
diffusion sampler, we can generate unlimited samples to characterize the filtering density. Moreover, when the score function is
approximated by a deep neural network [41], SF has the potential to handle very high-dimensional nonlinear filtering problems.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the nonlinear filtering problem and its state-
of-the-art solver, i.e., the particle filter method. In Section 3, we provide a comprehensive discussion to develop our score-based
filter method. In Section 4, we carry out numerical experiments for three benchmark nonlinear filtering problems, which include a
100-dimensional stochastic Lorenz system, to demonstrate the superior performance of the score-based filter.

2. Problem setting

Nonlinear filters are important tools for dynamical data assimilation with a variety of scientific and engineering applications. The
definition of a nonlinear filtering problem can be viewed as an extension of Bayesian inference to the estimation and prediction of a
nonlinear stochastic dynamical system. In this effort, we consider the following state-space nonlinear filtering model:

State: X, = f(X;, @), (@)

Observation: Y, = g(X,,))+&.,,

where ¢ € Z* represents the discrete time, X, € RY is a d-dimensional unobservable dynamical state governed by the nonlinear
function f : RY x R* » R?, @, € R¥ is a random variable that follows a given probability law representing the uncertainty in f,
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and the random variable Y,,; € R" provides nonlinear partial observation on X,,,, i.e., g(X;, ), perturbed by a Gaussian noise
€41 ~ N(0,3). X

The overarching goal is to find the best estimate, denoted by X,,,, of the unobservable state X,,, given the observation data
Y41 :=0(Y].,;) that is the c-algebra generated by all the observations up to the time instant 7 + 1. Mathematically, such optimal
estimate for X, ; is usually defined by a conditional expectation, i.e.,

X1 1 =EX 1 V1), @

where the expectation is taken with respect to the random variables ®,.; and &,.,,; in Eq. (1). When solving nonlinear filtering
problems, where the conditional distribution for the state variable is often non-Gaussian, our objective is to approximate the con-
ditional probability density function (PDF) of the state, denoted as P(X,,|Y,, ). In this context, we refer to this distribution as
the “filtering density.” The Bayesian filter framework is to recursively incorporate observation data to describe the evolution of the
filtering density. There are two steps from time ¢ to ¢ + 1, i.e., the prediction step and the update step:

The prediction step is to use the Chapman-Kolmogorov formula to propagate the state equation in Eq. (1) from 7 to ¢ + 1 and
obtain the prior filtering density, i.e.,

Prior filtering density: P(X,+1|y,)=/P(XH_llX,)P(Xrly,)dX,, 3

where P(X,|Y),) is the posterior filtering density obtained at the time instant #, P(X,,;|X,) is the transition probability derived
from the state dynamics in Eq. (1), and P(X,,|))}) is the prior filtering density for the time instant ¢ + 1.

The update step is to combine the likelihood function, defined by the new observation data Y;,, with the prior filtering density
to obtain the posterior filtering density, i.e.,

Posterior filtering density: P(X,1|Y,.1) < P(X,;11Y) P(Y; 11X, 41), @
where the likelihood function P(Y,,|X,,) is defined by

1 _
P(Y,11X,41) xexp [_5 (g(Xr+1) - Yr+1)TZ 1(g(Xt+1) - Yt+l)] > (5)

with X being the covariance matrix of the random noise ¢ in Eq. (1).

In this way, the filtering density is predicted and updated through formulas Eq. (3) to Eq. (4) recursively in time. Note that both
the prior and the posterior filtering densities in Eq. (3) and Eq. (4) are defined as the continuum level, which is not practical. Thus,
one important research direction in nonlinear filtering is to study how to accurately approximate the prior and the posterior filtering
densities.

2.1. The state of the art: particle filters

Particle filters (PF), which is the state of the art in nonlinear filtering, approximate the filtering densities in Eq. (3) and Eq. (4)
using empirical distributions defined by a set of random samples, referred to as “particles”. To compare with the proposed score-
based filter in Section 3, we briefly recall how particle filters use random samples to approximate the filtering densities. At the time
instant 7, we assume that we have a set of M particles, denoted by {x, ,,} ’}:’: |» that follows the posterior filtering density P(X,|Y,).
The empirical distribution for approximating P(X,|Y,) is given by

P(X,|Y)~ PF(X) =

t|t

||ME

1
M Xt.m (X t)a (6)
where &, is the Dirac delta function at the m-th particle x, ,,. In practice, PF is implemented through the following 3-step procedure
to propagate from time 7 to # + 1:

« The prediction step. It is to propagate the particle cloud through the state dynamics and generate a set of predicted particles. For
each particle x, ,, that represents state X,, we run the state equation in Eq. (1) to obtain a predicted particle X, ,, = f(x; ,;» ®; ),
where w, ,, is a sample of the random variable w,. As a result, we obtain a set of particles {%, +1,m}mM: , and the corresponding
empirical distribution

1
M “

||M§

PF .
P(Xt+l|yt)zP,+1|,(X;+1) .= +]m(Xx+1) (7)
which approximates the prior filtering density P(X,;1|Y,) in Eq. (3).
 The update step It is to incorporates the new observational data Y;,; through Bayesian inference to update the prior filtering
density P, I "y I(X (+1) to the posterior filtering density P + lI 1 Xep)s Ley

3
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L
P(Xt+l |yx+1) ~ ,+1|,+1(Xt+1) = 2 wr+l,m5>'<,+1’m(Xt+1)v ®)
I=1

where 6; | - is the Dirac delta function at the m-th predicted particle X, ,,, and the weight w, ,, o P(M, 1%, ,,) is defined

by the likelihood function P(M,,|X,,) at the m-th predicted particle X, .
« The resampling step. It is to alleviate the degeneracy issue, in which only a few particles have significant weights while the
weights on other particles maybe neglectable. The resampling is often implemented to re-generate a set of equally weighted
particles that follows the weighted empirical distribution P+1 41 (X,41)- We denote the resampled equally weighted particles by

{Xrs1.m }m:l, which formulate the empirical distribution

HME

PX 1| Vi) » P,[_),.F”,H(Xrﬂ) = 5 (X410, 9

Xt+1,m

1
M
which is the final approximation of the posterior filtering density at the time instant 7 + 1.

The challenge of particle filters is the so-called degeneracy issue, especially for high-dimensional nonlinear filtering problems or
long-term tracking problems. In these scenarios, the likelihood weights w,,, ,, in Eq. (8) tend to concentrate on a very small number
of particles. As a result, only a few number of particles are taken into account to construct the approximate posterior filtering density
in Eq. (9), and the information of the prior filtering density stored in the particles with small weights is gradually ignored. The main
reason causing the degeneracy issue is the use of a discrete approximation (i.e., the empirical distributions) based on a finite number
of pre-chosen samples to characterize the continuous filtering densities in Eq. (3) and Eq. (4). Due to the “curse of dimensionality”,
a distribution in a high-dimensional space contains enormous information, and it’s very difficult for finite amount of particles to
capture the continuous characterization of the filtering densities in high-dimensional spaces. This challenge motivated us to exploit
recent advances in diffusion models to develop a score-based nonlinear filter that uses a continuous score function to indirectly store
the information of the filtering densities.

3. Our method: the score-based filter (SF)

This section contains the key components of the proposed method. The score-based diffusion model is briefly introduced in
Section 3.1. We introduce the details of the score-based filter in Section 3.2 with the implementation details provided in Appendix A.

3.1. The score-based diffusion model

The diffusion model is a type of generative machine learning models for generating samples from a target probability density
function, denoted by

0(Z) for ZeR?, 10)

where Z is a d-dimensional random variable. The key idea is to transform the unknown density Q(Z) to a standard probability
distribution, e.g., the standard Gaussian N'(0,1,;). To this end, a diffusion model first defines a forward stochastic differential equation
(SDE), i.e.,

Forward SDE: Z_ =b(r)Z dt +o(r)dW, forrteT =[0,1], 1y

where 7 = [0, 1] is a pseudo-temporal domain that is different from the real temporal domain in which the nonlinear filtering problem
is defined, W, is a standard d-dimensional Brownian motion, b : 7 — R is the drift coefficient, ¢ : 7 — R the diffusion coefficient,
and the solution {Z }..; is a diffusion process that takes values in R4,

The probability density function of the forward process Z, is denoted by

0.(Z,) for z€]0,1]. 12)

With a proper definition of b(z) and o(7) (e.g., see Appendix A), the forward SDE in Eq. (11) can transform any initial distribution of
0Qy(Z,) to a standard Gaussian variable Q,(Z;) = N (0,1,). Therefore, when we set the initial state to be the target random variable,
i.e., Zy = Z in Eq. (11), the forward SDE can transform the target distribution Q(Z) to the standard Gaussian distribution N'(0,1,).

It is easy to see that the forward SDE cannot be used to generate samples of the target distribution Q(Z). To do this, the score-
based diffusion model shows that there is an equivalent reverse-time SDE to transform the terminal distribution Q(Z,) = N'(0,1;)
to the initial distribution Qy(Z), i.e.,

Reverse-time SDE:  d Z, = [b(2)Z, — 6*(1)S(Z,,7)| dt + o(x)dW ., 13)
where W, is the backward Brownian motion and S(Z,, 7) is referred to as the score function

Score function: S(Z,,7) :=V_logQ.(Z,), a4
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t The real time propagation for filtering t+1
o »
'l.l, Posterior filtering Prior filtering density Posterior filtering
density P(X;| ¥¢) P(Xt41| Ye) density P(X¢41| Yet1)
8 )

Our method: the score-based filter

’ Forward SDE for Gaussianization |
Posterior Score Prior Score Posterior Score
Prediction Update s,
Sele Se+1)e t+1]t+1

| Reverse-time SDE for generating unlimited samples |

- 1 1 1

ll-lr The standard Gaussian distribution

Fig. 1. The schematic overview of the proposed SF method. The key idea is to store the information of the recursively updated filtering density, i.e., Sy,,.S,,,, and
Si41j+1> in the score function, instead of storing the information in a set of finite Monte Carlo samples (used in particle filters and ensemble Kalman filters). The
reverse-time SDE uses the score function to generate unlimited number of samples of the current filtering density by simulating Eq. (13) in the pseudo-temporal space.
Another key ingredient of SF the analytical update step S, to S,y (see Eq. (20)) to mitigate the degeneracy issue.

Pseudo-temporal space for
the diffusion model

that is uniquely determined by the initial distribution Q((Z,) and the coefficients b(z), (). Note that the SDE in Eq. (13) is solved
from 7 =1 to = = 0. In this way, if the score function is given, we can easily generate samples from the target distribution Q(Z) by
generating samples from Q,(Z;) = N'(0,1;) and then solving the reverse-time SDE.

As such, the problem of generating samples becomes a problem of how to approximate the score function. In practice, the score
function can be estimated by training a score-based model on samples with score matching (Hyvarinen, 2005; Song et al., 2019a).
To this end, we train a time-dependent parameterized score-based model, denoted by S(Z,,7;0), to approximate the exact score
function by solving the following optimization problem:

6 =argminE[|15(Z,. 1) - S(Z,. m:0)I3]. as)

where 0 denotes the set of the tuning parameters (e.g., neural network weights) for the approximate score function. The implemen-
tation details about the loss function are given in Appendix A.3. Once the approximate score function S(Z,,;0) is well trained, it
can be substituted into the Reverse-time SDE to generate any number of samples from the target distribution.

3.2. The methodology of the score-based filter

The key idea of the proposed score-based filter is to treat the prior and posterior filtering densities in Eq. (3) and Eq. (4) as the
target distribution Q(Z) in Eq. (10) (or the initial distribution Qy(Z,) in Eq. (12)) in the diffusion model and utilize the score-driven
reverse-time SDE to approximate the filtering densities. In other words, we store the information of the filtering densities in the
continuous score function. A systemic overview of the score-based filter is given in Fig. 1.

3.2.1. The relation between the diffusion model and the filtering densities
Here we discuss how to store the information of the filtering densities in the corresponding score function and how to use the
score function to generate unlimited samples of the filtering densities. To proceed, we define the notation

Sy(Z,.7:6) with €0, 1], (16)

to represent the exact score function of the posterior filtering density P(X,|));) at the time instant ¢. The diffusion model is related
to the filtering density by having the filtering state X, equal to the initial state Z, in the forward and reverse-time SDEs in Eq. (11)
and Eq. (13),

Zy=X, == 0y(Zy) = P(X,|V)), a7z
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where Q,(Z,) is the initial distribution of the diffusion model. As shown in Appendix A, the choice of b(z) and o(z) in Eq. (11) can
ensure that the diffusion model can transform any initial distribution Q to the standard Gaussian distribution, we can see that the
score function implicitly defines an invertible mapping between the filtering density and the standard Gaussian density, i.e.,

Ms,, (N(0.1p) = P(X,13,) and TIg) (P(X,|3)) = N'(0.1), 18)

which indicates that the complete information of the filtering densities can be stored in the score function. This is the key property
we will exploit to develop the score-based filter. In Section 3.2.2 and 3.2.3, we will discuss the procedure of dynamically updating
the approximate score function S(Z_,7;0).

3.2.2. The prediction step of the score-based filter
We intend to evolve the score function S, associated with P(X,|)) to the score function S, |, associated with the prior filtering
density P(X,,;|Y,). To achieve this, the prediction step consists of three stages:

+ Drawing J samples from P(X,|Y,) by solving the reverse-time SDE in Eq. (13) using the score function 5,|,. The samples are

denoted by {x, ;} jJ |- Unlike the particle filter, we can draw unlimited amount of samples using the diffusion model.

* Run the state equaEion in Eq. (1) to obtain predicted samples %, ; = f(x; ;. ®, ;), where o, ; is a sample of the random variable
;.

« Update the score function Stlt to S,y ¢ for the prior filtering density P(X,,,|Y,) using the sample set {X,, ;} 1{:1 by solving the
optimization problem in Eq. (15).

One may notice that scheme %, ; = f(x, ;, @, ;) is similar to the prediction scheme in Eq. (7) in the particle filter, and {%,,, ;} le
form a set of samples for the prior filtering density. However, it’s important to recall that the score-based filtering stores the infor-
mation of the target filtering density in the score function instead of the finite (or discrete) locations of the particles as in the particle
filter, and we can generate unlimited number of data samples through the reverse-time SDE as needed to characterize the target
distribution. Therefore, the number J in our score-based filter is an arbitrarily chosen number. In this way, as long as the exact score
function is well approximated, which is typically obtained through deep learning, we can generate as many samples as needed to
pass into the state dynamical model and create a distribution for the predicted filtering density as smooth as we want. On the other
hand, once the number of total particles is chosen at the beginning of a particle filter algorithm, the filtering density can be only
characterized by the finite locations of those particles.

3.2.3. The update step of the score-based filter

We intend to update the score function S, |, corresponding to the prior filtering density to the score function S, corre-
sponding to the posterior filtering density. Unlike the prediction step in which we can generate unlimited samples {%,, ; } }'I=I to help
us train the score function S, ,, we do not have access to samples from the posterior filtering density. Therefore, we propose to
analytically add the likelihood information to the current score S, to define the score S, for the posterior filtering density

P(XH—I |yt+l)'
Specifically, we take the gradient of the log likelihood of the posterior filtering density defined in Eq. (4) and obtain,

Vilog P(Xi411Y141) = Vi log P(X,11 1)) + V log P(Yyy | Xi40), (19)

where the gradient is taken with respect to the state variable at X, ;. According to the discussion in Section 3.2.1, the exact score
functions S, ;4 and S, ), satisfy the following constraints:

(C1): S,+,|,(ZO,0):VxlogP(X,+]|J7,) and St+1|t+1(ZO’O):VxIOgP(XI+]|yt+I)’
(C2): H;LW(P(XH,W,))=N(0,Id) and TIg'  (P(X,411Y41)) = N (O, 1),

11141

when setting Z; = X, ;. We combine the Eq. (19) and the constraints (C1), (C2) to propose an approximation of .S, |, of the form

St+1|t+1(ZT’T; ) := SI+]|I(ZT’T; 0)+ h(t)V_ log P(Y, 1 Z,), (20)

where S‘,+l|,(ZT,r;0) is from the prediction step, V_ log P(Y,,1Zy) = V, log P(Y,,|X,,,) Gf Zy, = X,,,) is analytically defined in
Eq. (5), and A(7) is a damping function satisfying

h(r) is monotonically decreasing in [0, 1] with 2(0) =1 and A(1) =0. 2n

We use h(7) =1 — 7 for 7 € [0, 1] in the numerical examples in Section 4. We remark that there are multiple choices of the damping
function A(z) that satisfying Eq. (21). How to define the optimal A(7) is still an open question that will be considered in our future
work.

We observe that the definition of S,,;,41(Z,,7;0) is compatible with the constraints (C1), (C2). Intuitively, the information of
new observation data in the likelihood function is gradually injected into the diffusion model (or the score function) at the early
dynamics (i.e., = is small) of the forward SDE during which the deterministic drift (determined by 5(z)) dominates the dynamics.
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When the pseudo-time 7 approaches 1, the diffusion term (determined by o (7)) becomes dominating, the information in the likelihood
is already absorbed into the diffusion model so that A(1) = 0 can ensure the final state Z, still follows the standard Gaussian
distribution. The updated score function S, i1+1(Z;, 7;0) can be used as the starting point of the prediction step for the time instant
t+ 1.

3.2.4. Summary of the score-based filter method
In Algorithm 1, we use a brief pseudo-algorithm to summarize the score-based filter.

Algorithm 1 The score-based filter.
1: Input: the state equation f(X,,®,), the prior density P(X);

2:fort=0,...,

3: ifr=0

4: Generate J samples {x; }/!:1 from P(X,);

5: Train the score function .Sy, using the sample set {x }jJ:];

6: else

7: Generate J samples {x, ; }/{=] of P(X,|),) using the score function S‘,‘,;
8: Run the state equation in Eq. (1) to obtain a predicted samples {X,,, ; }/’:1;

9: Train the score function S‘H”, using the sample set {X,,, ; }f:l;
10:  Update the score function S, to S, using Eq. (20);

11: end

As a novel methodology for solving the nonlinear filtering problem, the score-based filter has the following advantages to provide
superior accuracy:

+ At any recursive stage of the data assimilation procedure, we can substitute the current score function into the reverse-time SDE
in Eq. (13) to generate unlimited samples from the filtering density and compute any statistics of the current state.

« The score function modeled by deep neural network (DNN) can take advantage of deep learning, and the DNN learned score is
potentially capable to store complex information contained in data and state dynamics.

« The score-based filter is equipped with an analytical update step, i.e., Eq. (20) to gradually inject the data information into the
score model. This allows the data information to be sufficiently incorporated into the filtering density.

4. Numerical experiments

We demonstrate the performance of our score-based filter by solving three benchmark nonlinear filtering problems. In the first
example, we consider a double-well potential problem, which is a 1-dimensional problem with highly nonlinear state dynamics. In
the second example, we solve a bearing-tracking problem, in which the state dynamics is linear, but the measurements are nonlinear
observational data, i.e., bearings of the state. This is a benchmark example to examine whether a filtering method is suitable for
nonlinear problems. The third example that we shall solve in this section is the Lorenz tracking problem, and it is a well-known
challenging problem for all the existing filtering methods when the dimension of the problem becomes high.!

4.1. Example 1: the double-well potential problem

We demonstrate the accuracy of the proposed score-based filter by solving the tracking problem of dynamical systems driven by
the double-well potential. The state dynamics formulated by the double-well potential is given by the following SDE model
dX,=—-4X,(X? - 1)dt + pdw,, (22)

where X, is the target state, and w;, is a standard Brownian motion with diffusion coefficient g. The drift coefficient in Eq. (22) is
the derivative of a double-well energy landscape, i.e. U(x) = (x* = 2x%) shown in Fig. 2. The state X, that follows the dynamics (22)
describes a target particle moving on the energy landscape U (x). So there are two stable energy states, i.e. X, =1 and X, =-1, and
there’s a forcing term defined by the derivative of the energy potential, that “drags” the state towards one of the stable states.

In the numerical tests, we use the discretized double-well potential model with temporal step-size At = 0.1 defined by

X1 =X, —4-0.1- X,(X2 = )+ V0.1 ,. 23)

In order to track the target particle governed by Eq. (23), we assume that we have direct observations on X, i.e.,

Yn+1 =)(n+1 + &5, ()

! Reproducibility: the score-based filter is implemented in Python. The source code is publicly available at https://github.com/zezhongzhang/Score-based-Filter.
All the numerical results presented in this section can be exactly reproduced using the code on Github.


https://github.com/zezhongzhang/Score-based-Filter
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Potential value
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Fig. 2. The double-well potential that drives the dynamical system in Eq. (22). It’s relatively easy to track the state X, in Eq. (22) when it stays in one of the potential
wells. However, when the state .S, suddenly switches from one potential well to another, the large discrepancy between the state prediction and the measurement
data may lead to tracking lost. Thus, we use this problem to demonstrate the superior accuracy of the proposed score-based filter in capturing the state.

[=—True state —SF estimation -+~ APF estimation -e- EnKF estimation
151

Time

Fig. 3. Accuracy comparison for tracking the dynamical system in Eq. (22) with large noise, i.e., f# = 0.3, where the accuracy is measured by the discrepancy between
the true and the estimated state trajectories. All the three methods can track the true state (the black curve marked by pluses) while the state stays in the bottom
of a potential well. When the true state switches from one potential well to the other, it takes several time steps for both APF (the red curve marked by triangles)
and EnKF (the magenta curve marked by dots) to adjust and capture the unexpected state switch. In comparison, SF (the red curve marked by triangles) can quickly
capture the unexpected state switch, which demonstrates its superior accuracy.

where ¢, ~ N(0, R) is the observational noise with standard deviation R =0.1. It’s easy to track the state while it stays in the bottom
of one of the potential wells. The challenge in solving the nonlinear filtering problem (23) - (24) is that when the state (unexpectedly)
switches from one potential well to another, there’s a big discrepancy between the predicted state and the measurement data. In this
case, the stability of the optimal filtering algorithm becomes the main issue.

We carry out several experiments to compare the performance of our score-based filter with two state-of-the-art optimal filtering
methods, i.e., the particle filter and the ensemble Kalman filter. To implement the score-based filter, we use the sliced score-matching
method (see [40,41]) to train the score model defined by a fully-connected neural network with 2 hidden layers and 50 neurons per
hidden layer. The sampling procedure through the reverse-time SDE is implemented by the Euler-Maruyama scheme with K = 600
time steps. Recall that the number of samples generated through the reverse-time SDE can be arbitrarily chosen and the computational
cost for generating those samples is small. The particle filter used here is the auxiliary particle filter (APF) that is a popular particle
filter method with a moderate-cost resampling procedure to improve the performance of the standard bootstrap particle filter. We use
1000 particles to produce an empirical approximation for the filtering density. The ensemble Kalman filter (EnKF) is implemented
using 100 Kalman filter samples in the ensemble. We track the target state over time interval [0, 10], i.e., 100 time steps, for two
noise levels § =0.3 or 0.2 in Eq. (22).

The results are shown in Fig. 3 for # = 0.3 and Fig. 4 for f = 0.2, respectively. We can see that all the three methods can track
the true state while the state stays in the bottom of a potential well. However, when there’s a state switch SF can quickly adjust the
changes, and it takes a few time steps for APF and EnKF to capture the switch. The lagged tracking of APF and EnKF results from
the fact that the state model produces strong force that drags the target towards one of the stable energy points, i.e., the bottoms.
In this way, the particles/samples of APF (or EnKF) will be moved towards the bottom of a potential well. This not only makes the
particles/samples concentrate at one of the bottoms but also significantly reduces the variance of the predicted filtering density,
i.e., the prior density. Since APF and EnKF utilize finite particles/samples to characterize empirical approximations for the predicted
filtering density, narrower distribution bands would lead to inaccurate tail approximations. When the likelihood corresponding to
the measurement data lies on the tail of the prior distribution, the data cannot effectively influence the posterior distribution — due to
the poor tail approximation by limited particles/samples (or no samples at all) at the distribution’s tail. Several advanced techniques
have been developed to address tail approximation issues in particle filters or Kalman filters [3,9,16,28,31,32]. However, these
techniques often come with increased computational demands, which makes them less suitable for higher dimensional problems that
closely related to real-world scenarios.
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Fig. 4. Accuracy comparison for tracking the dynamical system in Eq. (22) with smaller noise, i.e., § = 0.2, where the accuracy is measured by the discrepancy
between the true and the estimated state trajectories. The proposed SF shows more advantageous performance over APF and EnKF in this setting. The small variance
of the noise makes the variance of the predicted filtering density obtained by APF and EnKF much narrower, such that APF and EnKF produces stronger confidence
of the predicted state and therefore takes more times steps to capture the unexpected state switch. In comparison, SF uses the analytical form of the likelihood via
Eq. (20) to update the filtering density, such that the measurement data information is guaranteed to be incorporated.

To further demonstrate the accuracy of SF, we reduce the noise variance in the state dynamics to f = 0.2. We can see that SF
has even more advantageous performance compared with APF and EnKF. This is because a smaller noise level makes the variance
of the predicted filtering density obtained by APF and EnKF narrower. This results in stronger confidence in the predicted state and
therefore make the update even less effective. In comparison, SF can produce as many samples as needed for the target distribution,
which leads to more accurate tail approximations. Moreover, in the SF method, the likelihood is continuously added to the posterior
score corresponding to the updated filtering density. Therefore, the measurement data information is guaranteed to be incorporated
into the updated filtering density through the reverse-time SDE sampler.

4.2. Example 2: bearing-only tracking

We demonstrate the performance of SF in handling highly nonlinear observational functions using the benchmark bearing-
only tracking problem. Specifically, we consider the following linear dynamical system that models a moving target on the two-
dimensional plane:

X,p1=X,+AAt+ BVAt - o, (25)

where X, = [u,,v,]" is the position of the target, , is a standard Brownian motion, A = [v;,0;0,v,] is the velocity matrix that
tells how fast the target moves, B is the diffusion coefficient, and At is the time step. In this example, we let v; =4, v, =6,
B =[0.2,0;0,0.2], and we choose Af =0.05. In the bearing-only tracking problem, we can only receive bearings (i.e., the angles) for
the target state, and the observational process is defined by

v v, —D

n

41 =arctan + €41

u, —i

where €, ; ~ N(0, R) is the observational noise, and [z, 0]T is an observation platform to locate the detector. Similar to Example 1,
we compare SF with APF and EnKF, where all the three methods use the same setup as in Example 1.

Fig. 5 shows the tracking performance of SF, APF, and EnKF, where the APF is implemented with 1000 particles and the EnKF
is implemented using 100 Kalman filter samples in the ensemble. The green diamond is the location of the detector platform. The
initial position of the target state is chosen as X, =[1,1]T. We observe that both SF and APF provide accurate estimates for the target
state, but EnKF does not work well due to the nonlinear observations [19]. Additionally, Fig. 6 shows the tracking errors of SF, APF,
and EnKF. In this example, we let R =[0.01,0;0,0.01], and the observation platform is chosen at [, 5]" =[-5,10]7, and we track
the target for 20 steps. We see that although the state model is simply a linear dynamical system, the highly nonlinear observational
function arctan makes the Kalman-type filters unreliable. This verifies that both the particle filter approach and the score-based filter
are suitable for solving the nonlinear filtering problem.

To demonstrate the capability of the score-based filter in approximating the filtering densities, we plot the posterior samples
generated by the posterior filtering score in the SF (at time instants t =4, t =8, t = 12 and ¢ = 12) as well as posterior particles in
the APF in Fig. 7. At each time instant, 300 samples/particles are presented. We can see that the posterior distributions described by
SF samples are similar to the empirical distributions of the particles in the APF. Since for this relatively low dimensional problem,
the APF is known to be asymptotically correct in approximating posterior filtering densities, Fig. 7 indicates that the SF can provide
reasonably good descriptions for filtering densities.
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Fig. 5. Comparison for tracking the dynamical system in Eq. (25), where the accuracy is measured by the discrepancy between the true and the estimated state
trajectories. We observe that SF and APF successfully capture the target state using the highly nonlinear observation, but EnKF does not work well due to limited
capabilities in handling the nonlinear observations.
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Fig. 6. The /> error between the estimated state and the true state for the results in Fig. 5. It verifies that SF and APF have comparable accuracy in handling
low-dimensional and nonlinear problems, while EnKF does not perform well.

4.3. Example 3: high-dimensional Lorenz attractor

We demonstrate the SF’s capability in handling high-dimensional (up 100 dimension) Lorenz attractor problems. Specifically, we
track the state of the Lorenz 96 model described as follows:

%:(x[+1—xi_2)x,»_1+F, i=1,2,-,d, d=>4, (26)
where X, = [x,(®), x,(?), -+, x4(1)]" is a d-dimensional target state, and it is assumed that x_; = x,_;, Xy = X, and x,,; = x;. The
term F is a forcing constant. When F = 8§, the Lorenz 96 dynamics (26) becomes a chaotic system, which makes tracking the state .S,
a challenging task for all the existing filtering techniques, especially in dimensional spaces. We discretize Eq. (26) through the Euler
scheme with temporal step size At =0.01. To test SF’s performance in a realistic scenario, we make the following two changes to the
original Lorenz attractor model, i.e.,

« Nonlinear observation: we assume that the observational process in Eq. (1) is a cubic function of the state, i.e.,

Yn+1 = (Xn+1)3 +Ent1s @7

which is commonly seen in real-world applications.
* Random state perturbation: we add a d-dimensional white noise (with the standard deviation 0.1) to perturb the Lorenz 96 model,
which intertwines with the chaotic property making the filtering problem more challenging.

4.3.1. Test on the 10-dimensional Lorenz system

We track the target state for 100 time steps in the 10-dimensional space, i.e. d = 10. We use a 2-layer fully connected neural
network with 200 neurons per layer to define the score model in Eq. (20), and the sampling procedure through the reverse-time
SDE is implemented with K = 800 time steps. For APF, we use 20,000 particles to construct the empirical distribution for the
filtering density. For EnKF, we use 1,000 Kalman filter samples, which is already a very large number of samples for the EnKF for

10
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Fig. 7. Comparison of posterior samples between the SF and the APF with 300 samples at time instants t =4, t =8, r = 12 and ¢ = 12. The blue crosses provide
posterior samples of the SF. The red triangles are the posterior samples of the APF. The true state is given by black pluses. The posterior distributions described by SF
samples are similar to the empirical distributions of the particles in the APF.

a 10-dimensional problem. To make the tracking task even more difficult, we add two random shocks to mimic the severe chaotic
behavior of the Lorenz system at time instants » =21 and n =41, and those unexpected shocks could challenge the stability of
different nonlinear filtering methods. In practical applications, those unexpected random shocks can be interpreted as incomplete
knowledge about the state dynamics. This kind of incomplete knowledge would typically cause large errors between predictions and
true states.

Fig. 8 illustrates the high discrepancy, caused by the nonlinearity, between one target state’s trajectory and the corresponding
observation’s trajectory. We plot the first two directions of the original signal X, in subplot (a), and we compare the observations
with the real signal in subplot (b), where the observation trajectory is the red curve (marked by triangles) and the true signal is the
blue curve. We can see that the cube measurements are highly nonlinear and only limited data information is contained in the cube
observations. Therefore, being able to handling nonlinear observation processes is essential to solve the nonlinear filtering problem
in Eq. (26)-(27).

Fig. 9 presents the state estimation comparison between SF, APF, and EnKF. In subplots (a), (b), and (c) of Fig. 9, we compare the
accuracy of state estimation between SF and APF in estimating x,, x5, and xg, respectively, where the black curves marked pluses
describe the true states, the red curves marked by triangles are the APF estimated states, and the blue curves marked by crosses are
the SF estimated states. We can see from those subplots that the APF works well at beginning. However, when the random shock
occurs, the large discrepancy between the state prediction and the measurement data makes the particle filter method degenerate.
This is indicated by the flat and unresponsive estimation curve. On the other hand, although the SF also suffers from the unexpected
random shocks, it still captures the true state with acceptable accuracy. Given the high difficulty of the problem, SF’s performance is
promising and significantly better than APF and EnKF.

4.3.2. Test on the 100-dimensional Lorenz system

We further challenge our SF method by solving a 100-dimensional Lorenz attractor problem. Note that as a nonlinear filtering
method, we need to characterize a non-Gaussian distribution in the 100-dimensional space, which would certainly encounter the
difficulty of “curse of dimensionality”. To implement the SF, we increase the size of the neural network for the score model to
400 neurons per hidden layer, and the sampling procedure through the reverse-time SDE is implemented with 1000 time steps.
Since the SF outperformed the APF and the EnKF in the 10-dimensional Lorenz problem, we compare SF with an Online Variational
Filtering method (Online-Var) [14], which is an advanced variational approach for optimal filtering problems known for its efficacy
in addressing high-dimensional nonlinear problems. To challenge both SF and the Online-Var method, we add an unpredictable
random shock at time instant n = 26. The addition of random shocks mimics the scenario of having unexpected extreme events in
real-world data assimilation problems, e.g., weather forecasting. In Fig. 10, we compare the performance of SF with Online-Var in
six selected dimensions. We can see from this figure that both SF and Online-Var can capture the main features of the state dynamics,
and SF outperformed Online-Var in accuracy.

11
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Fig. 8. Illustration of the high discrepancy, caused by the nonlinearity, between one target state’s trajectory and the corresponding observation’s trajectory for the
10-dimensional Lorenz model in Eq. (26)-(27), which presents a significant challenge for nonlinear filtering methods.
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Fig. 9. Accuracy comparison for tracking the 10-dimensional Lorenz model, where the accuracy is measured by the discrepancy between the true and the estimated
state trajectories. We illustrate three state components in Eq. (26), i.e., x|, x5, and x,. It is easy to see that SF provides a significantly better accuracy than APF and
EnKF, where APF degenerates after the random shock occurs and EnKF cannot handle the high nonlinearity illustrated in Fig. 8.

To validate the superior performance of SF over Online-Var, we conduct the above experiment 20 times and plot the root mean
square errors (RMSEs) across all 100 dimensions over the 20 repeated trials. The comparison of RMSEs is depicted in Fig. 11, with
shaded areas representing 95% (20) error regions for both methods. We can see that both SF and Online-Var method can recover
from the random shock, which generated unexpected large errors. However, throughout the entire tracking period, SF consistently

outperformed Online-Var.
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Fig. 10. Comparison between the SF and the Online-Var method in estimating 100-dimensional Lorenz 96 model. The SF outperforms the Online-Var in accuracy in
this 100-dimensional test.
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Fig. 11. Comparison of average RMSEs over 100 dimensions between SF and Online-Var in solving the 100-dimensional Lorenz problem with 20 repeated trials.

5. Concluding remarks

We propose the SF method to solve high-dimensional nonlinear filtering problems. The outstanding performance of SF, especially
in solving the 100-dimensional Lorenz system, shows a great potential to handling much higher dimensional problems, which mo-
tivate our future research from the following perspectives. First, the efficiency of the training the neural network to approximate
the score function is not ideal, which limits the applicability of the current version of SF in nonlinear filtering problems that require
fast feedback. We will exploit data and model parallelism strategies on modern computing platforms or even super computers to
improve the training accuracy. Second, the efficiency of reverse-time sampling can also be improved by incorporating advanced
stable time stepping schemes, e.g., the exponential integrator, to significantly reduce the number of time steps in the discretization
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of the reverse-time process in the diffusion model. Third, the choice of damping function 4 in Eq. (21) in the current format is not
optimal. We will explore better ways to define the damping function 4 in future studies.
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Appendix A. Additional information on the implementation of diffusion models
A.1. The choice of the coefficients for the forward SDE

The task of the forward SDE in Eq. (11) is to transform any given initial distribution Q(Z) to the standard Gaussian distribution

N(0,1,). It is shown in [41,42,21] that such task can be done by a linear SDE with properly chosen drift and diffusion coefficients.
For example, we can define b(7) and o(z) in Eq. (11) by

dp? dloga

2 T T n2

nd o — -2 I (A.1)
dr a ® dr dr T’

where the two processes a, and g, are defined by

a,=1-1, p2=1 for 7€[0,1]. (A.2)

The definitions in Eq. (A.1) and Eq. (A.2) can ensure that the conditional density function Q,(Z,|Z,) for any fixed Z, is the following
Gaussian distribution:

0.(Z.1Zy) = N (a, Zy, B21,). (A.3)
It is easy to see that the choice of a, and f, can ensure that
Ql(Zl |Zo) = -’\/(O,Id) Ead Ql(Zl) = / Ql(Zl |Zo)Q0(Zo)dZo = -’\/(O,Id),
R4

which is the property we need for the forward SDE.
A.2. Discretization of the forward and reverse-time SDEs

Taking the reverse-time SDE in Eq. (13) as an example, we use the Euler-Maruyama scheme to discretize the reverse-time SDE
and transform any set of Gaussian samples {z, ;} JJ.=1 of the final state Z; to a set of samples, denoted by {z; };=], approximately
following the target distribution Q(Z). Specifically, we first introduce a partition of the pseudo-temporal domain 7 = [0, 1], i.e.,

D i={r |0=1 <1 < <7 <7p < <7 =1}

with uniform step-size Az = ik For each sample z, ;, we obtain the approximate solution z,, ; by recursively evaluating the following
scheme
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2
Zai = Zas — P20, = O @) S (g, s D] AT+ 0 (0 DAV, . (a.4)
fork=K-1,K-2,---,1,0, where AVV,H W is a realization of the Brownian increment. The accuracy of {z, j }J{: . is determined by

the number of pseudo-time steps K.
A.3. The loss function for training the diffusion model

We provide details of the general loss function in Eq. (15) for training the approximate score function. The full definition of the
loss function in Eq. (15) is

Loss =E,1/(0.11, 2y~04(Zo), Z.~0.(2,|2) | A DBV  10g 0 (Z,) = S(Z,., 7:0)13)] » (A.5)

where U'[0,1] is the uniform distribution, Qy(Z,) is the target distribution, Q,(Z,|Z,) is the conditional distribution given in
Eq. (A.3), f, is defined in Eq. (A.2), and A(7) is a weighting function. This formulation is not practical because we do not know the
exact score function V,log O (Z,). Thanks to the derivation in [42], the loss in Eq. (A.5) is equivalent to

Loss =F . 1/(0.11, Zy~04(Zo), Z.~0.(2.12) A @BV 102 O (Z | Zy) = S(Z, 7:0)|5] + const, (A.6)

where the exact score function is replaced by the gradient of the logarithm of the conditional distribution Q,(Z,|Z,). It makes the
task much easier because we know Q.(Z,|Z,) is the Gaussian distribution N (a, Zy, 5?1,). Thus, we have

Z‘r —a; ZO
V. 10g0.(Z,|Zy) = -
b
such that the loss function in Eq. (A.6) is computable, i.e.,
Z.—a.Zy - 2
Loss = [ETNU[O,H,ZONQ()(Z()), Z,~0,(Z.1Z0) A7) _—ﬁ -p.5(Z,,7;0) + const.
T 2

# follows the standard Gaussian distribution, the final loss used to solve the optimization problem in

T

Moreover, because
Eq. (15) is

. 2
Loss =B, 110,11, y~00(Z0), c~ N O1) [’1(7) 16~ 6:S(Zc.7: 9)”2] ’
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