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Abstract: We develop a new approach for estimating the risk of an arbi-
trary estimator of the mean vector in the classical normal means problem.
The key idea is to generate two auxiliary data vectors, by adding carefully
constructed normal noise vectors to the original data. We then train the es-
timator of interest on the first auxiliary vector and test it on the second. In
order to stabilize the risk estimate, we average this procedure over multiple
draws of the synthetic noise vector. A key aspect of this coupled bootstrap
(CB) approach is that it delivers an unbiased estimate of risk under no
assumptions on the estimator of the mean vector, albeit for a modified and
slightly “harder” version of the original problem, where the noise variance
is elevated. We prove that, under the assumptions required for the validity
of Stein’s unbiased risk estimator (SURE), a limiting version of the CB
estimator recovers SURE exactly. We then analyze a bias-variance decom-
position of the error of the CB estimator, which elucidates the effects of
the variance of the auxiliary noise and the number of bootstrap samples
on the estimator’s accuracy. Lastly, we demonstrate that the CB estimator
performs favorably in various simulated experiments.
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1. Introduction

Given a model that has been fitted on a particular data set, assessing its risk—
typically defined in terms of the accuracy in estimating some population param-
eter, or its prediction error—typically defined in terms of the accuracy in pre-
dicting new (unseen) observations, are fundamental questions in both classical
statistical decision theory and modern statistical machine learning. Estimates
of risk or prediction error can be used for a multitude of purposes, e.g., serving
as a key input for a decision point (is the given model good enough to be de-
ployed?), or a tool for model selection (is model A preferred over model B?), or
model tuning (which level of regularization strength should be used?). Naturally,
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methodology for risk and prediction error estimation has received considerable
attention over the years in the literature, with foundational work contributed
by Akaike, Mallows, Stein, Efron, Breiman, and others (precise references and
discussion to be given shortly). The current paper revisits this classical topic
and proposes a method to estimate the risk—or equivalently the prediction er-
ror in a fixed-X regression model—based on an auxiliary randomization scheme
that avoids data splitting or resampling techniques.

To fix notation, consider a standard normal means setting, where we observe
data Y = (Y1, . . . , Yn) ∈ R

n distributed according to:

Y ∼ N(θ, σ2In), (1)

where θ ∈ R
n is an unknown parameter to be estimated. The marginal error

variance σ2 > 0 is assumed to be known, and In denotes the n × n identity
matrix. An estimator in the context of this problem is simply a measurable
function g : Rn → R

n that, from Y , produces an estimate θ̂ = g(Y ) of the mean
vector θ ∈ R

n. Given a loss function L : Rn × R
n → R, the risk of g is defined

by its expected loss to θ,

Risk(g) = E[L(θ, g(Y ))]. (2)

In what follows, without further specification, we work under quadratic loss, so
that the above becomes:

Risk(g) = E‖θ − g(Y )‖2
2 = E

[ n∑

i=1

(θi − gi(Y ))2

]
, (3)

with gi denoting the ith component function of g. In the discussion, we return
to a more general setting and consider (2) in the case of loss functions defined
by a Bregman divergence. In this work, we propose and study a method that
we call the coupled bootstrap to estimate the risk of an arbitrary function g as
in (3). Before introducing this method, we discuss the connection to prediction
error, and introduce and descibe related methods from the literature, to better
contextualize our contributions.

1.1. Prediction error, fixed-X regression

Under quadratic loss (with known σ2), estimating risk in (3) is equivalent to
estimating prediction error, the expected loss between g(Y ) and an independent
copy of Y , as these two quantities are related via

E‖Ỹ − g(Y )‖2
2 = E‖θ − g(Y )‖2

2 + nσ2, (4)

where Ỹ ∼ N(θ, σ2In), independent of Y . In other words, prediction error and
risk differ only by a known constant nσ2. In the literature, the choice of whether
to focus on prediction error or risk is generally based on which is the more
natural metric in the applications they use to motivate the study at hand.
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An important special case of the normal means problem in which prediction
error is a common focus is fixed-X regression: here Y ∈ R

n is viewed as a
response vector that is paired with a feature matrix X ∈ R

n×p i.e., the ith
row of X is a feature vector associated with Yi, and g usually performs a kind
of regression of Y on X. For example, when g(Y ) = Xβ̂ for some estimated
coefficient vector β̂ ∈ R

p, and the mean in (1) is itself linear in X, i.e., θ = Xβ
for some coefficient vector β ∈ R

p, then the decomposition in (4) becomes

E‖Ỹ − Xβ̂‖2
2 = E‖Xβ − Xβ̂‖2

2 + nσ2, (5)

where Ỹ ∼ N(Xβ, σ2In), independent of Y . We emphasize that we are treating
X here as fixed (nonrandom); further, by measuring prediction error as in (5),
we are treating X as the common set of features that are used across both
training and testing (i.e., Ỹ is a new vector of response values, but observed at
the same features as Y ).

Much of the classical literature on prediction error estimation in statistics
falls in the fixed-X regression setting, with, e.g., Mallow’s Cp (Mallows, 1973)
marking a seminal early contribution in this area. In some applications of re-
gression (such as experimental design), the fixed-X perspective is natural; yet
in others, a random-X perspective is more natural, where prediction error is
measured with respect to a new feature vector (drawn i.i.d. from the same dis-
tribution as the training features). It is worth being clear that prediction error
in the fixed-X and random-X sense are generally not equivalent and admit crit-
ical differences (see, e.g., Rosset and Tibshirani (2020) for a discussion); thus,
methods for estimating prediction error in the fixed-X setting do not necessarily
translate to the random-X setting, and vice versa. For example, sample split-
ting and cross-validation are arguably the most widely-used tools for estimating
random-X prediction error, but are not generally applicable for fixed-X (when
X is fixed, there is no reason to believe that a random subset of its rows will be
representative of the full set). On the other hand, the CB estimator that we will
develop is aligned with fixed-X prediction error, but not random-X prediction
error in general.

To summarize, in this paper, we choose to focus on risk as in (3) for sim-
plicity of exposition, but as we explained above, our results translate over to
prediction error in (4), which encompasses fixed-X regression error as in (5). In
what follows, we will move back and forth between the two concepts (risk and
prediction error) fluidly, as needed.

1.2. Stein’s unbiased risk estimator

One of the most well-known and widely-used risk estimators in the normal means
problem is due to Stein (1981). For concreteness, we translate this result into
the notation of our paper.

Theorem 1.1 (Stein 1981). Let Y ∼ N(θ, σ2In). Let g : Rn → R
n be weakly
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differentiable1, and write ∇igj for the weak partial derivative of component func-
tion gj with respect to variable yi. Assume that E‖g(Y )‖2

2 < ∞, and E|∇igi(Y )| <
∞, for i = 1, . . . , n. Denote the divergence of g by ∇ · g =

∑n
i=1 ∇igi, and define

SURE(g) = ‖Y − g(Y )‖2
2 + 2σ2(∇ · g)(Y ) − nσ2. (6)

Then the above provides an unbiased estimator of risk: E[SURE(g)] = Risk(g).

The estimator defined in (6) is known as Stein’s unbiased risk estimator
(SURE). Ignoring the last term: −nσ2, a constant not depending on g, the first
two terms here are the observed training error: ‖Y − g(Y )‖2

2, and a measure of
complexity: 2σ2(∇ · g)(Y ). At the heart of Theorem 1.1 is a result known as
Stein’s formula, which says for weakly differentiable g (Stein, 1981),

1

σ2
Cov(Yi, gi(Y )) = E[∇igi(Y )], i = 1, . . . , n. (7)

Recall that the (effective) degrees of freedom of g is defined by (Hastie and
Tibshirani, 1990; Ye, 1998):

df(g) =
1

σ2

n∑

i=1

Cov(Yi, gi(Y )). (8)

This measures complexity based on the association (summed over the training
set) between each Yi and the corresponding estimate gi(Y ) of θi (generally
speaking, the more complex g is, the greater this association will be). Note that,
according to (7), (8), the second term in (6) leverages an unbiased estimator for
degrees of freedom: E[(∇ · g)(Y )] = df(g).

1.3. Efron, Breiman, and Ye

For arbitrary g, we can always decompose its risk by:

Risk(g) = E‖Y − g(Y )‖2
2 + 2

n∑

i=1

Cov(Yi, gi(Y )) − nσ2, (9)

which follows from simple algebra (add and subtract Y inside the expectation in
E‖θ−g(Y )‖2

2, and expand the quadratic). This is often referred to as Efron’s co-
variance decomposition (or Efron’s optimism theorem), after Efron (1975, 1986,
2004). We reiterate that the covariance decomposition in (9) holds for any func-
tion g. The same is true of the definition of degrees of freedom in (8): it applies
to any g. In fact, these do not even require normality of the data vector: (8), (9)
only require the distribution of Y to be isotropic (i.e., to have a covariance
matrix σ2In). Meanwhile, Stein’s formula (7), and hence the unbiasedness of
SURE (6), only holds for a weakly differentiable g, and Gaussian Y .

1Weak differentiability of g is actually a slightly stronger assumption than needed, but is
stated for simplicity; see Remark 3.
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Efron’s covariance decomposition reveals that, to get an unbiased estimator of
Risk(g), we only need an unbiased estimator of the second term: 2

∑n
i=1 Cov(Yi,

gi(Y )), called the optimism of g. This is because the first term, the (expected)
training error, clearly yields the observed training error as its unbiased esti-
mator. A natural way to estimate optimism is to use the bootstrap, or more
precisely, the parametric bootstrap. This has been pursued by several authors,
notably Breiman (1992); Ye (1998); Efron (2004). In the parametric bootstrap,
we generate samples

Y ∗b | Y ∼ N(Y, ασ2In), independently, for b = 1, . . . , B, (10)

for some constant α > 0 (typically α ≤ 1). We then form the estimates:

Ĉov
∗

i =
1

B − 1

B∑

b=1

(Y ∗b
i − Ȳ ∗

i )gi(Y
∗b), i = 1, . . . , n, (11)

where Ȳ ∗
i = 1

B

∑B
b=1 Y ∗b

i , i = 1, . . . , n are the bootstrap means of the coordi-
nates. Efron (2004) also presents a more general framework in which, instead
of (10), we draw bootstrap samples from N(θ̌, ασ2In), for some seed estimate
θ̌. As an effort to reduce bias, Efron recommends using a more flexible model
for estimating θ̌ compared to that for θ̂ = g(Y ), where the “ultimate” flexible
model (as Efron calls it) reduces to θ̌ = Y , in (10). This is also the choice made
in both Breiman (1992) and Ye (1998).

While there are strong commonalities among the parametric bootstrap pro-
posals of Efron, Breiman, and Ye, all three being centered around (11), there are
also noteworthy differences in how these authors use (11) in order to estimate
risk. Efron proposes the risk estimator:

Efrα(g) = ‖Y − g(Y )‖2
2 + 2

n∑

i=1

Ĉov
∗

i − nσ2, (12)

whereas Breiman and Ye effectively propose the risk estimator:

BYα(g) = ‖Y − g(Y )‖2
2 +

2

α

n∑

i=1

Ĉov
∗

i − nσ2. (13)

We say “effectively” here because Breiman and Ye consider a slightly different
estimator than that in (13). See Appendix A for details. But for a large number
of bootstrap draws B, the proposals of Breiman and Ye will behave very similarly
to (13), and thus we refer to (13) as the Breiman-Ye (BY) risk estimator.

The difference between (12) and (13) is that in the latter the sum of estimated
covariances is scaled by 1/α. Efron, Breiman, and Ye each generally advocate
for choices of α in between 0.6 and 1. For such a large value of α, the scaling
factor 1/α in (13) will not play a huge role. But for small values of α—a regime
that is of interest in the current paper—this scaling factor will make all the
difference.
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1.4. What are these bootstrap methods estimating?

The bootstrap methods in (12) and (13) are well-known and widely-used for
estimating risk in normal means problems. Both are fairly natural. Efron’s
estimator (12) directly uses the parametric bootstrap to estimate optimism:
2

∑n
i=1 Cov(Yi, gi(Y )). For the BY estimator (13), writing

2

α

n∑

i=1

Ĉov
∗

i = 2σ2 1

ασ2

n∑

i=1

Ĉov
∗

i

︸ ︷︷ ︸
d̂f(g)

,

we see that it can be motivated from the perspective of estimating degrees of
freedom (rather than optimism) via the parametric bootstrap, since the condi-
tional variance of the bootstrap draws (given Y ) is ασ2.

Now we come to a key point: the motivation given for the above estimators
is based on the conditional distribution of bootstrap samples (conditional on
the data Y ). However, their performance as risk estimators hinges on how they
behave marginally over Y , and unfortunately, from the marginal point of view,
it is not as clear what these methods are actually targeting. We discuss this for
each method separately.

1.4.1. Efron’s estimator

First, consider Efron’s estimator in (12). Write Y ∗ for a single bootstrap draw,
i.e., Y ∗ | Y ∼ N(Y, ασ2In). As this estimator treats Y ∗ as the data vector (in
place of Y ), one might suppose that marginally it targets the optimism of g, but
at an elevated noise level (1+α)σ2 (instead of σ2), because Y ∗ ∼ N(θ, (1+α)σ2).
However, its expectation does not really support this claim. To see this, first
observe that

E
[
Ĉov

∗

i

∣∣ Y
]

= Cov
(
Y ∗

i , gi(Y
∗)

∣∣ Y
)
.

Here we simply used the fact that an empirical covariance computed from i.i.d.
samples of a pair of random variables is unbiased for their covariance (everything
here being conditional on Y ). Next observe that

n∑

i=1

Cov(Y ∗
i , gi(Y

∗)) =

n∑

i=1

E
[
Cov

(
Y ∗

i , gi(Y
∗)

∣∣ Y
)]

︸ ︷︷ ︸
Aα

+

n∑

i=1

Cov(Yi, gi(Y
∗))

︸ ︷︷ ︸
Bα

, (14)

by the law of total covariance, and where we used Cov(E[Y ∗
i | Y ],E[gi(Y

∗) | Y ]) =
Cov(Yi, gi(Y

∗)), for each summand in the second term, which follows from a
short calculation. Therefore Efron’s method delivers a covariance term with
marginal expectation:

E

[ n∑

i=1

Ĉov
∗

i

]
= E

[ n∑

i=1

Cov
(
Y ∗

i , gi(Y
∗)

∣∣ Y
)]

. (15)
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This only captures a part of the optimism of g at the elevated noise level (1 +
α)σ2, labeled Aα in (14), and not a second part, labeled Bα in (14).

Based on this, we can reason that for small α, the bootstrap estimator∑n
i=1 Ĉov

∗

i will typically be badly biased for the noise-elevated covariance∑n
i=1 Cov(Y ∗

i , gi(Y
∗)), and hence also badly biased for the original covariance∑n

i=1 Cov(Yi, gi(Y )) (as this will be close to the noise-elevated version). This is
because it will be concentrated around Aα in (14), which will typically be small
in comparison to the second component Bα in (14). For example, for a linear
smoother g(Y ) = SY (for a fixed matrix S ∈ R

n×n), note that

Aα = ασ2tr(S) and Bα = σ2tr(S), (16)

and the latter term will dominate for small α. Similar arguments hold for locally
linear g (well-approximated by its first-order Taylor expansion).

Meanwhile, for moderate α, the estimator
∑n

i=1 Ĉov
∗

i can have low bias for∑n
i=1 Cov(Yi, gi(Y )) (this is the original covariance and not the noise-elevated

version, which will be generally larger for moderate α), if we are able to choose
α such that Aα ≈ ∑n

i=1 Cov(Yi, gi(Y )). For linear smoothers, as we can see
from (16), we simply need to take α = 1. In general, however, it will not be at
all clear how to choose α appropriately, as it will be unclear how Aα behaves
with α. More broadly, for any given value of α in hand, it is not clear precisely
what is being targeted in (15), and thus, not clear precisely what risk is being
estimated by (12).

1.4.2. Breiman-Ye estimator

Next, consider the BY estimator in (13). By the same calculations as in the
last case, we see that the BY method uses a covariance term with marginal
expectation:

1

α
E

[ n∑

i=1

Ĉov
∗

i

]
=

1

α
E

[ n∑

i=1

Cov
(
Y ∗

i , gi(Y
∗)

∣∣ Y
)]

. (17)

The sum above only captures one part of the optimism at the elevated noise
level (1 + α)σ2, labeled Aα in (14), but the sum is also inflated by division by α
(recall, usually α ≤ 1). This makes the behavior of the BY method more subtle
than that of Efron’s method; we seek α so that Aα/α ≈ ∑n

i=1 Cov(Yi, gi(Y )),
yet it is unclear whether this means that we should choose α to be small or
large.

The case of a linear smoother g(Y ) = SY is encouraging: recalling (16), we
have Aα/α = σ2tr(S), which is equal to

∑n
i=1 Cov(Yi, gi(Y )) for any value of

α. Of course, in general we will not be so lucky, and varying α will vary Aα/α,
hence vary what we are targeting in (17). This brings us to the same general
difficulty with the BY estimator as in the last case: for any given choice of α, it
is unclear what quantity is actually being estimated by 1

α

∑n
i=1 Ĉov

∗

i , and thus,
unclear precisely what risk is being estimated by (13).
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1.5. Proposed estimator

The main proposal in this paper is a new estimator for the risk of an arbitrary
function g, based on bootstrap draws as in (10). The key motivation for our
estimator is that, for any α, it will be unbiased for an intuitive, explicit target:
the risk of g at the noise level of (1 + α)σ2, which we denote by

Riskα(g) = E‖θ − g(Yα)‖2
2, where Yα ∼ N(θ, (1 + α)σ2In). (18)

One can think of Riskα(g) as the risk for a “harder” version of the original
problem, where the mean θ is the same, but the noise variance σ2 is multiplied
by a factor of 1 + α. Later (in Proposition 2), we will show that Riskα(g)
converges to Risk(g) as α → 0, and in fact, does so smoothly: it is continuously
differentiable in α, under only mild moment conditions on g(Y ).

In order to estimate Riskα(g), we take an approach that departs in two ways
from prior work. First, we do not rely on the covariance decomposition (9),
and do not frame the problem in terms of directly estimating optimism (or
degrees of freedom); this circumvents the need to estimate a covariance with the
bootstrap (and as such, avoids challenges due to the law of total covariance (14)).
Second, coupled with each bootstrap draw in (10), we carefully generate another
bootstrap draw that is marginally independent from it (which gives us a total
of 2B draws). In particular, we generate samples according to:

ωb ∼ N(0, σ2In), independently, for b = 1, . . . , B,

Y ∗b = Y +
√

αωb, Y †b = Y − ωb/
√

α, for b = 1, . . . , B,
(19)

for some constant α > 0, and based on these samples, we define the risk esti-
mator:

CBα(g) =
1

B

B∑

b=1

(
‖Y †b − g(Y ∗b)‖2

2 − ‖ωb‖2
2/α

)
− nσ2. (20)

The intuition here is that each pair (Y ∗b, Y †b) comprises two independent sam-
ples from a normal distribution with mean θ, and hence each squared error term
‖Y †b − g(Y ∗b)‖2

2 imitates the prediction error incurred by g(Y ) at a new copy
of Y . Together, the remaining terms −‖ωb‖2

2/α (in each summand) and −nσ2

adjust for the fact that Y ∗b and Y †b have different variances, and bring us from
the prediction scale to the risk scale (recall (4)). In this paper, we refer to (20)
as the coupled bootstrap (CB) risk estimator.

In (20), as g is applied to a noise-elevated draw Y ∗b that has mean θ and
variance (1+α)σ2, one might conjecture that we are targeting risk (or prediction
error) at the noise-elevated level (1+α)σ2. Later, when we provide more details
behind the construction of the CB estimator (20), we will show (in Corollary 1)
that this is indeed true: E[CBα(g)] = Riskα(g). This is a strong property, and
it holds without any assumptions on g whatsoever.



Unbiased risk estimation in the normal means problem via CB 5413

1.6. Summary of contributions

The following is a summary of our main contributions and an outline for this
paper.

• In Section 2, we examine basic properties of the CB risk estimator, which
includes proving that for any g and any α, the CB estimator is unbiased
for Riskα(g).

• In Section 3, we study the behavior of the CB estimator as B → ∞
and α → 0, and prove that under the same smoothness assumptions on
g as those in Stein (1981) (to guarantee unbiasedness of SURE; recall
Theorem 1.1), the limiting CB estimator recovers SURE exactly.

• In Section 4, we analyze the bias and variance (quantifying their depen-
dence on α and other problem parameters) of the CB estimator when it
is viewed as an estimator of Risk(g), the original risk. Insights from this
include a recommendation to choose the number of bootstrap draws B to
scale with 1/α, for small α, in order to control the variance of the CB
estimator.

• In Section 5, we compare the CB estimator to the existing bootstrap meth-
ods (Efron and BY) for risk estimation in simulations. We find that the CB
estimator generally performs favorably, particularly so when g is unstable.

• In Section 6, we conclude with a discussion, and give an extension of our
coupled bootstrap framework to the setting of structured errors (i.e., a
non-isotropic covariance in (1)), as well as extensions to other loss func-
tions and distributions.

1.7. Related work

Risk (or prediction error) estimation is a well-studied topic and has a rich history
in statistics. What follows is by no means comprehensive, but is a selective
review of papers that are most related to our paper, apart from Breiman (1992);
Ye (1998); Efron (2004), which have already been discussed in some detail.

In a sense, covariance penalties originated in the work of Akaike (1973) and
Mallows (1973), who focused on classical likelihood-based models and fixed-
X linear regression, respectively. Stein (1981) greatly extended the scope of
models under consideration (or in our notation, functions g whose risk is to be
estimated) with SURE, which applies broadly to models whose predictions vary
smoothly with respect to the input data Y ; recall Theorem 1.1. Stein’s work
has had a huge impact in both statistics and signal processing, and SURE is
now a central tool in wavelet modeling, image denoising, penalized regression,
low-rank matrix factorization, and other areas; see, e.g., Donoho and Johnstone
(1995); Cai (1999); Johnstone (1999); Blu and Luisier (2007); Zou, Hastie and
Tibshirani (2007); Zou and Yuan (2008); Tibshirani and Taylor (2011, 2012);
Candès, Sing-Long and Trzasko (2013); Ulfarsson and Solo (2013a,b); Wang and
Morel (2013); Krishnan and Seelamantula (2014).
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A downside of SURE is that it cannot be applied to various models of interest
(e.g., tree-based methods, certain variable selection methods, and so on), as it
requires g to be weakly differentiable, which is generally violated when g is
discontinuous. Meanwhile, even when SURE is applicable, it is often highly
nontrivial to (analytically) calculate the Stein divergence ∇ · g; in fact, the key
contribution in many of the papers given in the last set of references is that the
authors were able to calculate this divergence for an interesting class of models
(e.g., wavelet thresholding, total variation denoising, lasso regression, and so
on).

These shortcomings of SURE are well-known. Extensions of SURE to ac-
commodate discontinuities in g were derived in Tibshirani (2015); Mikkelsen
and Hansen (2018); see also Tibshirani and Rosset (2019). While useful in some
contexts, these extensions are generally far more complicated (and harder to
compute) than SURE. On the computational side, Ramani, Blu and Unser
(2008) proposed a Monte Carlo method for approximating SURE that only re-
quires evaluating g (and not its partial derivatives). This has since become quite
popular in the signal processing community, see, e.g., Chatterjee and Milanfar
(2009); Lingala et al. (2011); Metzler, Maleki and Baraniuk (2016); Soltanayev
and Chun (2018) for applications of this idea and follow-up work.

As it turns out, the Monte Carlo SURE approach of Ramani, Blu and Unser
(2008) is precisely the same as the bootstrap method of Breiman (1992). It is
thus also highly related to the work of Ye (1998), and essentially equivalent to
what we call the BY risk estimator in (13); recall the discussion in Section 1.3.
It seems that Ramani et al. were unaware of the past work of Breiman and Ye.
That being the case, their work provided an important new perspective on this
methodology: they show that for infinite bootstrap samples (B = ∞) and with
appropriate smoothness conditions on g, Monte Carlo SURE (and thus the BY
estimator in (13)) converges to SURE in (6) as α → 0. Breiman and Ye, on
their part, seemed unaware of this connection, as they both cautioned against
choosing small values of α, advocating for choices of α upwards of 0.5.

Finally, we note that the work of Tian (2020) inspired us to pursue the
current paper. Tian proposed the coupled bootstrap approach in (19) (albeit
with B = 1) to estimate the fixed-X regression error of prediction rules that
perform feature selection in a working linear model (such as the lasso). Their
focus was different than ours: they study the estimation of prediction error
conditional on a model selection event (such as the event that the lasso selects
a particular active set). They conduct a bias-variance analysis as a function of
the noise inflation parameter α, under the assumption that the true model is
itself linear. They also recommend a diminishing choice of α as the sample size
grows. This is all done in service of an asymptotic analysis which shows that
the estimated prediction error converges to the true one as n → ∞. The idea of
using auxiliary randomization in the literature on inference after model selection
was initiated by Tian and Taylor (2018), and has since been further developed
by several others, e.g., Rasines and Young (2023); Leiner et al. (2024); Neufeld
et al. (2024), some of this literature developed concurrently with our paper, and
some after.
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2. Basic properties

In this section, we investigate basic properties of the CB estimator in (20),
beginning with its unbiasedness for the noise-elevated risk in (18).

2.1. Unbiasedness for noise-elevated target

The unbiasedness of CB estimator for the appropriate noise-elevated risk stems
from a simple “three-point” formula under squared error loss. Here and subse-
quently, we use 〈a, b〉 = aTb for vectors a, b.

Proposition 1. Let U, V, W ∈ R
n be independent random vectors. Then for

any g,

E‖V − g(U)‖2
2 − E‖W − g(U)‖2

2 =E‖V ‖2
2 − E‖W ‖2

2

+ 2〈E[g(U)],E[W ] − E[V ]〉,
(21)

assuming all expectations exist and are finite. In particular, if U, V are i.i.d.
and E[U ] = E[W ], then

E‖V − g(U)‖2
2 = E‖W − g(U)‖2

2 + E‖U‖2
2 − E‖W ‖2

2. (22)

Proof. The first statement (21) just follows from expanding the quadratic terms
and using the independence of U, V, W . The second statement (22) follows from
the first by noting that if U, V are i.i.d. and E[U ] = E[W ] then E[V ] = E[W ],
thus the first term on the right-hand side in (21) is E‖U‖2

2, and the last term is
zero.

The statements in Proposition 1 are the result of somewhat trivial algebraic
manipulations. Nonetheless, they are useful observations: to recap, the second
display (22) says that given a random vector U , if we can generate another ran-
dom vector W that is independent of U and shares the same mean (importantly,
we do not require it to be i.i.d.), then we can unbiasedly estimate the predicion
error (or risk) of g applied to U .

This is the basis for the CB risk estimator. By carefully adding and sub-
stracting noise to Y , we generate a pair of random vectors (U, W ) = (Y ∗b, Y †b)
that are independent of each other and have a common mean θ. Then we pivot
slightly from the original problem and now seek to estimate the risk of g when it
is applied to U , which has marginal distribution N(θ, (1 + α)σ2). For this task,
we have a simple unbiased estimator, following (22).

Corollary 1. Let Y ∼ N(θ, σ2In). Then for any g, any α > 0, and any B ≥ 1,
the CB estimator defined by (19), (20) is unbiased for the noise-elevated risk
in (18): E[CBα(g)] = Riskα(g).

Proof. For each b, note that Y ∗b, Y †b are independent since they are jointly
normal and uncorrelated:

Cov(Y +
√

αωb, Y − ωb/
√

α) =Cov(Y, Y ) + (
√

α − 1/
√

α)Cov(Y, ωb)
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− Cov(ωb, ωb)

=nσ2 + 0 − nσ2

=0.

They also clearly have the same mean, thus we can apply (22) with U = Y ∗b,
V = Ỹ ∗b, W = Y †b, where Ỹ ∗b is an independent copy of Y ∗b. This shows that

‖Y †b − g(Y ∗b)‖2
2 + ‖Y ∗b‖2

2 − ‖Y †b‖2
2 (23)

is unbiased for E‖Ỹ ∗b − g(Y ∗b)‖2
2. Now observe that we can replace

‖Y ∗b‖2
2 − ‖Y †b‖2

2 in the above display by anything with the same expectation,
nσ2(α − 1/α), and the result will still be unbiased for E‖Ỹ ∗b − g(Y ∗b)‖2

2. One
such option is

‖Y †b − g(Y ∗b)‖2
2 + nσ2α − ‖ωb‖2

2/α, (24)

and thus, after subtracting off nσ2(1 + α), we learn that

‖Y †b − g(Y ∗b)‖2
2 − ‖ωb‖2

2/α − nσ2

is unbiased for Riskα(g) in (18). The CB estimator in (20), being an average of
such terms over b = 1, . . . , B, is therefore also unbiased for Riskα(g).

Remark 1. In Proposition 1, we require that U, W are independent so that
we can factorize E〈g(U), W 〉 = 〈E[g(U)],E[W ]〉 in (21) and hence cancel out
this term with 〈E[g(U)],E[V ]〉, when E[V ] = E[W ], to achieve (22). This is
the only reason that we require a normal data model Y ∼ N(θ, σ2In) for the
unbiasedness result in Corollary 1; we can construct U = Y ∗b, W = Y †b to be
uncorrelated, but it is only under normality that this will imply independence.

When g(Y ) = SY is linear, if U, W are merely uncorrelated then we still get
the desired factorization:

E〈SU, W 〉 = Etr(SUW T) = tr(SE[UW T]) = tr(SE[U ]E[W ]T) = 〈SE[U ],E[W ]〉,

so the unbiasedness result in Corollary 1 still holds under the weaker conditions:
E[Y ] = θ, Cov(Y ) = σ2In. As an example consequence, this means that the CB
estimator for ridge regression is still unbiased for the noise-elevated risk even
when the data is not Gaussian, but has isotropic error covariance.

Remark 2. As alluded to in the proof of the proposition, various options are
available in the construction of the CB estimator; starting from (23), we can
replace two rightmost terms by anything that has the same mean. One might
wonder why we therefore do not just use the exact mean itself, nσ2(α−1/α), to
define the risk estimator; as we discuss later (see Remark 8 after Proposition 5),
this not a good choice, as it would lead to a much larger variance for the risk
estimator when α is small.
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2.2. Smoothness of noise-elevated target

Now that we have shown that CBα(g) is unbiased for Riskα(g), it is natural to
ask whether Riskα(g) will generally be close to the original target of interest
Risk(g). Our next result provides a basic answer to this question: we show that if
g satisfies a certain moment condition, then the map α �→ Riskα(g) is continuous
on an interval containing α = 0. In fact, if g satisfies a certain kth order moment
condition, then this map is k times continuously differentiable around α = 0.

Proposition 2. For α ≥ 0, let Riskα(g) be as defined in (18). If, for some
β > 0 and integer k ≥ 0,

E
[
‖g(Yβ)‖2

2‖Yβ − θ‖2m
2

]
< ∞, m = 0, . . . , k,

where recall Yα ∼ N(θ, (1 + α)σ2In), then the map α �→ Riskα(g) has k contin-
uous derivatives on [0, β).

The proof is not conceptually difficult but a bit technical and deferred to
Appendix B. It is worth noting that Proposition 2 shows Riskα(g) is continuous
in α under only a moment condition, and not a continuity condition, on g.
Intuitively, it is reasonable to expect that continuity of g would not be needed,
as evaluating the risk of g at the elevated noise level (1+α)σ2 is akin to mollifying
g, i.e., convolving it with a Gaussian kernel of bandwidth ασ2, which renders
the result smooth even if g was nonsmooth to begin with.

3. Noiseless limit

Here we study the infinite-bootstrap version of the CB estimator,
CB∞

α (g) = limB→∞ CBα(g). Equivalently (by the law of large numbers), we can
define this via an expectation over ω, CB∞

α (g) = E[CBα(g) | Y ], i.e.,

CB∞
α (g) = E

[
‖Y † − g(Y ∗)‖2

2 − ‖ω‖2
2/α

∣∣ Y
]

− nσ2, (25)

where ω, Y ∗, Y † denote a triplet sampled as in (19). Adding and subtract Y in
the first quadratic term, and expanding, we get

CB∞
α (g) = E

[
‖Y −g(Y +

√
αω)‖2

2

∣∣ Y
]
+

2√
α
E

[
〈ω, g(Y +

√
αω)〉

∣∣ Y
]
−nσ2, (26)

where we used the fact that the inner product of ω and Y has zero conditional
expectation.

Our particular interest in this section is the behavior of CB∞
α (g) as α → 0,

which we call the noiseless limit (referring here to the amount of auxiliary noise).
The key is the middle term in (26). Under a moment condition on g, the first
term will converge the observed training error ‖Y − g(Y )‖2

2, by an argument
similar to that used for Proposition 2. As for the middle term in (26), Ramani,
Blu and Unser (2008) show that if g admits a well-defined second-order Taylor
expansion, then this same term converges to a (scaled) divergence evaluated at
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Y : 2σ2(∇ · g)(Y ). Note that, in this case, the limit of CB∞
α (g) as α → 0 is

precisely SURE in (6).
In fact, as Ramani et al. also note, the middle term in (26) converges to

2σ2(∇ · g)(Y ) even if g is only weakly differentiable. (They do not consider
this extended case in their main paper, and refer to an online supplement for
details.) For completeness, we give a self-contained proof of our next result in
Appendix C.

Theorem 3.1. Assume the conditions of Theorem 1.1 (Stein’s result), but with
the moment conditions holding at an elevated noise level: E‖g(Yβ)‖2

2 < ∞ and
E|∇igi(Yβ)| < ∞, for i = 1, . . . , n, and some β > 0. Then the infinite-bootstrap
version (25) of the CB estimator (equivalently, the formulation in (26)) satisfies

lim
α→0

CB∞
α (g) = ‖Y −g(Y )‖2

2 +2σ2(∇·g)(Y ) = SURE(g), almost surely. (27)

Therefore, by Stein’s result, the noiseless limit of CB∞
α (g) is unbiased for

Risk(g).

Remark 3. Recall that a real-valued function f : R
n → R is called weakly

differentiable, with weak partial derivatives ∇if , i = 1, . . . , n, provided that
for each compactly supported and continuously differentiable test function φ :
R

n → R, it holds that
∫

f(x)∇iφ(x) dx = −
∫

∇if(x)φ(x) dx, i = 1, . . . , n. (28)

Equivalently (e.g., Theorem 4.21 of Evans and Gariepy (2015)), a real-valued
function is weakly differentiable if it is absolutely continuous on almost every
line segment parallel to the coordinate axes.

Meanwhile, a vector-valued function g : Rn → R
n is called weakly differen-

tiable if each of its component functions gi, i = 1, . . . , n are. Equivalently, by
the aforementioned “absolute continuity on lines” formulation of weak differen-
tiability, this means that for each i = 1, . . . , n and j = 1, . . . , n,

yi �→ gj(y) is absolutely continuous on compact subsets of R, for

almost every y−i ∈ R
n−1,

where y−i denotes the vector y with the ith component removed. This is a
stronger condition than what is really required in Theorems 1.1 or 3.1. Each
result in fact only requires that for each i = 1, . . . , n,

yi �→ gi(y) is absolutely continuous on compact subsets of R, for

almost every y−i ∈ R
n−1.

Effectively, each component function gi only needs to be weakly differentiable
with respect to the ith variable (not all of the other variables), for almost every
choice of y−i ∈ R

n−1. While this is technically weaker than weak differentiability,
it is also harder to explain, and not clear whether this distinction is all that
meaningful. For simplicity, we thus state the assumption as weak differentiability
of g in both Theorems 1.1 and 3.1.



Unbiased risk estimation in the normal means problem via CB 5419

Remark 4. The limiting result in (27) also holds for the infinite-bootstrap
version of the BY estimator in (13), which is the estimator studied in Ramani,
Blu and Unser (2008) (as we mentioned in Section 1.7, these authors seemed to
be unaware of the prior work of Breiman and Ye, and independently proposed
the same estimator). The infinite-bootstrap formulation of the BY estimator,
BY∞

α (g) = E[BYα(g) | Y ], can be expressed as

BY∞
α (g) = ‖Y − g(Y )‖2

2 +
2√
α
E

[
〈ω, g(Y +

√
αω)〉

∣∣ Y
]

− nσ2, (29)

which is very similar to the analogous representation (26) for the infinite-
bootstrap CB estimator. From this B = ∞ perspective, the only difference be-
tween the estimators (26) and (29) is the first term; and as α → 0, the first term
in (26) will converge to that in (29) if E‖g(Y )‖2

2 < ∞ (even for nonsmooth g).

Remark 5. The fact that SURE can be recreated as a certain limiting case
of the CB estimator is of course reassuring, as the former is one of the most
celebrated and well-studied ideas in risk estimation in the normal means model.
When g is weakly differentiable but its divergence is not analytically tractable,
using the CB estimator for small but nonzero α > 0 (which can be seen as
employing a particular numerical approximation scheme for the divergence) is
appealing, because we know that it should behave similarly to SURE for small
enough α > 0; and yet for any α > 0, we know that it targets the noise-elevated
risk Riskα(g).

Remark 6. What happens in the limit when g is not weakly differentiability?
While it still may be the case that the noiseless limit of the infinite-bootstrap
CB estimator is SURE, it will no longer be generally true that this noiseless
limit is unbiased for Risk(g), because the unbiasedness of SURE itself requires
weak differentiability of g. (Of course, the same can be said about the infinite-
bootstrap BY estimator, since, as the above remark explains, it has the same
limit as α → 0.)

As a simple example, consider the hard-thresholding estimator g, which
is discontinuous (and not weakly differentiable), with component functions
gi(Y ) = Yi · 1{|Yi| ≥ t}, i = 1, . . . , n, for some fixed t > 0. In this case, we
can check by direct computation (see Appendix D) that

lim
α→0

2√
α
E

[
〈ω, g(y +

√
αω)〉

]
= 2σ2

n∑

i=1

1{|yi| ≥ t}, (30)

for almost every y ∈ R
n. The right-hand side is again the (scaled) divergence

of g evaluated at y, which is well-defined for almost every y; however, it is
known that the divergence does not lead to an unbiased estimate of risk for
hard-thresholding, due to the discontinuous nature of this estimator; see, e.g.,
Tibshirani (2015).
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4. Bias and variance

In this section, we analyze a bias-variance decomposition of the mean squared
error of CBα(g) in (20), when we measure its error to the original risk Risk(g).
For any estimator R̂(g) of Risk(g), recall:

E[R̂(g) − Risk(g)]2 =
[
E[R̂(g)] − Risk(g)

]2

︸ ︷︷ ︸
Bias2(R̂(g))

+ E
[
R̂(g) − E[R̂(g)]

]2

︸ ︷︷ ︸
Var(R̂(g))

.

Applying this decomposition to the CB estimator CBα(g), we get:

E[CBα(g) − Risk(g)]2 =
[
Riskα(g) − Risk(g)

]2

︸ ︷︷ ︸
Bias2(CBα(g))

+ E
[
Var(CBα(g) | Y )

]
︸ ︷︷ ︸

RVar(CBα(g))

+ Var
(
E[CBα(g) | Y ]

)
︸ ︷︷ ︸

IVar(CBα(g))

.
(31)

Here, for the bias term, we used the fact that CBα(g) is unbiased for the noise-
elevated risk Riskα(g) from Corollary 1; and for the variance term, we used the
law of total variance, and denote the two terms that fall out by RVar(CBα(g))
(expectation of the conditional variance) and IVar(CBα(g)) (variance of the
conditional expectation), which we will call the reducible and irreducible vari-
ance of CBα(g), respectively. This is meant to reflect the effect of the number
of bootstrap draws B: the reducible variance will shrink as B grows, but the
irreducible variance does not depend depend on B at all, and in fact, it can be
viewed as the variance of the infinite-bootstrap version of the risk estimator,
CB∞

α (g) = E[CBα(g) | Y ].
The goal of this section is to develop a precise understanding of how the

individual terms in (31) behave as a function of α and B, with a particular focus
on small α and large B. As usual, we assume throughout that Y ∼ N(θ, σ2In),
and recall we denote Yα ∼ N(θ, (1 + α)σ2In) for α ≥ 0.

4.1. Bias

The next result provides an exact expression for Bias(CBα(g)) = Riskα(g) −
Risk(g), and some bounds for its magnitude.

Proposition 3. Assume E[‖g(Yβ)‖2
2‖Yβ − θ‖2m

2 ] < ∞ for m = 0, 1 and some
β > 0. Then for all α ∈ [0, β),

Riskα(g) − Risk(g) =

∫ α

0

( √
n√

2(1 + t)

√
Var(‖θ − g(Yt)‖2

2)

× Cor
(
‖θ − g(Yt)‖2

2, ‖Yt − θ‖2
2

))
dt.

(32)

If Var(‖θ − g(Yt)‖2
2) is increasing with t on [0, α], then a simple upper bound is

|Riskα(g) − Risk(g)| ≤
√

nα√
2

√
Var(‖θ − g(Yα)‖2

2). (33)
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If in addition E[‖g(Yβ)‖4
2‖Yβ − θ‖2m

2 ] < ∞ for m = 0, 1, then for all α ∈ [0, β),

|Riskα(g) − Risk(g)| ≤
√

nα√
2

√
Var(‖θ − g(Y )‖2

2) + O(α3/2), (34)

where here and throughout, we use the asymptotic notation f(α) = O(h(α)) to
mean that there is a constant C > 0 such that f(α) ≤ Ch(α) for small enough
α.

The proof of Proposition 3 is deferred to Appendix E. The upper bound
in (33) shows that the absolute bias has a near-linear decay with α, where “near”
reflects that Var(‖θ − g(Yα)‖2

2) also depends on α. Under additional moment
conditions on g, we see from (34) that the bias indeed decays linearly with α.
Empirical examples that assess the bias bounds from Proposition 3 are given in
Appendix F.

Remark 7. With regard to the bound in (34), observe that

√
Var(‖θ − g(Y )‖2

2) ≤
√

E‖θ − g(Y )‖4
2 ≤ Risk(g), (35)

with the last step holding by Jensen’s inequality, and thus to leading order, we
can interpret (34) as providing for us an upper bound on the relative bias:

|Riskα(g) − Risk(g)|
Risk(g)

�

√
nα√
2

, (36)

where � means that we omit all terms with a lower-order dependence on α. This
suggests that to achieve a relative bias of x, we should choose α =

√
2x/

√
n (e.g.,

for x = 10%, we set α ≈ 14/
√

n).
We remark that (36) will be often conservative in practice. This is due to of

looseness in the inequality
√

Var(‖θ − g(Y )‖2
2) ≤ Risk(g) derived in (35), and

looseness in the bound Cor(‖θ−g(Yt)‖2
2, ‖Yt −θ‖2

2) ≤ 1 used to derive (33), (34).
For example, when g(Y ) = SY and S projects onto a p-dimensional linear
suspace (as in linear regression), one can check that

√
Var(‖θ − g(Y )‖2

2) =
√

2pσ2 � ‖θ − Sθ‖2
2 + pσ2 = Risk(g),

when p � n (or θ is far from Sθ), and

Cor
(
‖θ − g(Yt)‖2

2, ‖Yt − θ‖2
2

)
=

√
p/n � 1

when p � n.

4.2. Reducible variance

The next result gives a simple bound on the reducible variance RVar(CBα(g)).
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Proposition 4. Assume E‖g(Yβ)‖4
2 < ∞ for some β > 0. Then for all α ∈

(0, β),

RVar(CBα(g)) =
4σ2

Bα
E‖Y − g(Y )‖2

2 + O

(
1

B
√

α

)
. (37)

The proof of Proposition 4 is in Appendix E. Empirical examples that
investigate the reducible variance and the dominance of the leading term
4σ2

E‖Y − g(Y )‖2
2/(Bα) in (37) are given in Appendix F.

Remark 8. The dependence of the leading term in (37) on α, which scales
as 1/α, is a consequence of a careful construction in the CB estimator. Re-
call that in Remark 2, we explained that various options can be used in
place of the last two terms in (23). One can check that choosing the ex-
act mean nσ2(α − 1/α) would lead to an estimator with irreducible variance
2nσ4/(Bα2) + O(1/(Bα)), whose leading term scales as 1/α2. This is due to
the conditional variance of ‖Y †‖2

2 given Y , where Y † = Y − ω/
√

α is as in (19).
Both of the options in (23) and (24)—the second one here being the basis
for the CB estimator—substantially improve upon this, bringing the order of
dependence down to 1/α, as they each subtract off a term that effectively
cancels out the variation of ‖Y †‖2

2. The differences between (23) and (24) are
much less pronounced; the former yields a reducible variance with leading term
4σ2

E‖g(Y )‖2
2/(Bα), whereas the latter yields a reducible variance (37) with

leading term 4σ2
E‖Y − g(Y )‖2

2/(Bα), which can often be smaller. For this rea-
son, we choose to define the CB estimator as we did, based on (24).

Remark 9. For the BY estimator in (13), the same arguments as in the proof of
Proposition 4 show that, under the same conditions on g, the reducible variance
satisfies

RVar(BYα(g)) =
4σ2

Bα
E‖g(Y )‖2

2 + O

(
1

B
√

α

)
. (38)

Note that the order of dependence here is 1/α, as in the CB estimator. However,
the factor E‖g(Y )‖2

2 that multiplies the leading order in (38) can often be larger
than the factor E‖Y − g(Y )‖2

2 in (37) (as just noted at the end of the last
remark).

Remark 10. If we are using risk estimation to choose between models (func-
tions) g and g̃, where each of these satisfy the conditions of Proposition 4, and
importantly, we use the same bootstrap draws in (19) for constructing CBα(g)
and CBα(g̃), then the same arguments as in the proof of Proposition 4 show
that

RVar
(
CBα(g) − CBα(g̃)

)
=

4σ2

Bα
E‖g(Y ) − g̃(Y )‖2

2 + O

(
1

B
√

α

)
. (39)

Note that the factor in E‖g(Y ) − g̃(Y )‖2
2 multiplying the leading order in (39)

can be even smaller than the factor E‖Y − g(Y )‖2
2 in (37), when g and g̃ are

similar.
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4.3. Irreducible variance

Recalling the expression for the infinite-bootstrap version of the CB estimator
in (26), observe that we can always write the irreducible variance, for any g and
any α > 0, as

IVar(CBα(g)) =Var

(
E

[
‖Y − g(Y +

√
αω)‖2

2

∣∣ Y
]

+
2√
α
E

[
〈ω, g(Y +

√
αω)〉

∣∣ Y
])

.

(40)

The following result studies the behavior of IVar(CBα(g)) for small α, under a
suitable condition on g.

Proposition 5. Assume that

h(y) = lim
α→0

2√
α
E[〈ω, g(y +

√
αω)〉] exists for almost every y ∈ R

n, (41)

and this convergence comes with a dominating function H with E[H(Y )] < ∞
such that

4

α
E

[
〈ω, g(y +

√
αω)〉

]2 ≤ H(y) for almost every y ∈ R
n and α ≤ β, (42)

for some β > 0. Assume also that g satisfies E‖g(Yβ)‖4
2 < ∞. Then

IVar(CBα(g)) = Var
(
‖Y − g(Y )‖2

2 + h(Y )
)

+ o(1), (43)

where o(1) denotes a term that converges to zero as α → 0.

The proof of Proposition 5 is in Appendix E. Empirical examples that exam-
ine the irreducible variance for small α can be found in Appendix F.

Remark 11. For the BY estimator, recall, its infinite-bootstrap version takes
the form (29), which means that its irreducible variance is

IVar(BYα(g)) = Var

(
E[‖Y − g(Y )‖2

2] +
2√
α
E

[
〈ω, g(Y +

√
αω)〉

∣∣ Y
])

. (44)

This is just as in (40), but in the first term (inside of the variance), we are
measuring the error between Y and g(Y ), rather than Y and g applied to the
noise-elevated data. The result of Proposition 5 carries over to the BY estimator:
under (41), (42), and the moment condition on g, the same small-α representa-
tion in (43) holds for IVar(BYα(g)). The subtle difference between (40) and (44)
can indeed materialize in practice, especially when the estimate g is nonsmooth
and unstable. See Figure 2 and the discussion in Section 5.1.
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Table 1
Summary of bias and variance results described across Propositions 3–5 and ensuing

remarks. Above, � means that we omit all terms with a lower-order dependence on α.

Bias to Risk(g) Reducible variance Irreducible variance

CB � α
√

n

2
Var(‖θ − g(Y )‖2

2
) � 4σ

2

Bα
E‖Y − g(Y )‖2

2
stable when g is smooth

BY ? � 4σ
2

Bα
E‖g(Y )‖2

2
stable when g is smooth

Remark 12. As we showed in Theorem 3.1 (a similar result appears in Ramani,
Blu and Unser (2008)), when g is weakly differentiable and its weak partial
derivatives are integrable, the limit in (41) exists, and equals

h(y) = σ2(∇ · g)(y) = 2σ2
n∑

i=1

∇igi(y),

which is the divergence of g (scaled by 2σ2). Furthermore, one can check that
condition (42) is implied by squared integrability of the divergence at an elevated
noise level: E[(∇ · g)(Yα)2] < ∞ for some α > 0. The result in (43) then reads

IVar(CBα(g)) = Var
(
‖Y − g(Y )‖2

2 + 2σ2(∇ · g)(Y )
)

+ o(1),

i.e., the irreducible variance of the CB estimator converges to the variance of
SURE, as α → 0.

Remark 13. It is worth emphasizing that the dominating condition in (42)
is key: without it, the result in the proposition is not true in general. As an
example, consider the hard-thresholding function, which, recall, has components
gi(Y ) = Yi · 1{|Yi| ≥ t}, i = 1, . . . , n. This satisfies the limit condition in (41),
where the limiting function h is 2σ2∇ · g, as in (6). However, in a sense we
already know that the limiting irreducible variance of hard-thresholding should
not simply be the variance of SURE, due to the bias of SURE for the risk in
this case (Tibshirani, 2015). Indeed, a direct calculation (building off that in
Appendix D) confirms that (42) fails for the hard-thresholding function.

The importance of the dominating condition (42) raises a natural question:
what are the most general conditions under which (42) holds? Can it be met
outside of weak differentiability of g? As of now, we do not have a good answer
to this, and it remains an open question for future work.

4.4. Summary of bias and variance results

Table 1 summarizes the bias and variance results from this section. We use
“stable when g is smooth” for the irreducible variance to reflect the fact that
it is not clear in what general settings this will be stable as α → 0, for the
CB and BY methods; recall, for either method, the conditions in (41), (42) are
sufficient to ensure that the limiting irreducible variance satisfies (40). While
these conditions are met (and the limiting irreducible variance is the variance
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of SURE) in the case of weakly differentiable g (Remark 12), the extent to
which these conditions apply beyond weak differentiability remains unclear, and
for hard-thresholding as a key non-weakly differentiable example, the second
condition fails (Remark 13).

The lack of clarity on the irreducible variance prevents us from reasoning
holistically about the behavior of the CB or BY methods in the infinitesimal α
regime (beyond the case of smooth g). However, practically speaking, for a given
data set at hand, we would of course choose α to be small but non-infinitesimal,
such as α = 0.01, or α = 0.05. This brings us to a primary advantage of
the CB estimator in particular, reflected in the first column of the table: it
is always unbiased for Riskα(g), the risk of g at the noise-elevated level of
(1 + α)σ2. Therefore, provided that we have a sense—practically, conceptually,
or theoretically (first column, see also Remark 7)—that Riskα(g) is a reasonable
target of estimation, we do not have to concern ourselves with the infinitesimal
α regime.

5. Experiments

In this section, we study the performance of the CB method empirically. The
first two subsections compare the CB and BY estimators in simulations (the
performance for Efron’s method was generally much worse and its results were
omitted accordingly). The third studies the use of the CB estimator for parame-
ter tuning in an image denoising application. Code to reproduce all experimental
results in this section is available online at https://github.com/nloliveira/

coupled-bootstrap-risk-estimation.

5.1. Comparison of CB and BY

We compare the CB estimator (20) to the BY estimator (13) in simulations. At
a high level, our goal is not to show that CB is better than BY at estimating
risk in every scenario, but instead to provide experimental support around the
following four points:

(i) for any g and any α, CBα(g) is unbiased for Riskα(g);
(ii) for linear g and any α, BYα(g) is unbiased for Risk(g);
(iii) for nonlinear g, the bias of BYα(g) is unpredictable—it can be increasing

or decreasing as α increases, and it can be larger or smaller than Riskα(g);
(iv) for unstable g, the variance of BYα(g) can be much larger than that of

CBα(g).

Throughout, we fix n = 100 and p = 200, and we generate data Y ∈ R
n

from a linear model with feature matrix X ∈ R
n×p. At the outset, we draw

the entries of X from N(0, 1), and we draw the coefficient vector in the linear
model β ∈ R

p to have s nonzero entries from Unif(−1, 1). The features X and
coefficient vector β are then fixed for all subsequent repetitions of the given
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simulation. For each repetition r = 1, . . . , 100, we generate a response vector

Y (r) = Xβ + ε(r),

where the error vector ε(r) ∈ R
n has i.i.d. entries from N(0, σ2), and

the error variance σ2 is chosen to meet a desired signal-to-noise ratio
SNR = Varn(Xβ)/σ2 (where Varn(·) denotes the empirical variance operator
on n samples). We then apply each risk estimator (CB or BY) to Y (r), with a
particular function g, number of bootstrap draws B, and auxiliary noise param-
eter α, in order to produce a risk estimate. Finally, we report aggregate results
over all repetitions r = 1, . . . , 100.

The number of bootstrap draws is fixed at B = 100 throughout. We consider
four different functions g: (a) ridge regression, with a fixed tuning parameter,
λ = 5; (b) lasso regression, with a fixed tuning parameter, λ = 0.31; (c) forward
stepwise regression, with a fixed number of steps, k = 2; and (d) lasso regression,
with the tuning parameter λ chosen by cross-validation. (The particular tuning
parameter values λ for ridge and lasso were chosen because they were close to the
middle, roughly speaking, of their effective solution paths.) Our implementation
uses the glmnet (Friedman, Hastie and Tibshirani, 2010) R package for ridge
and lasso, and bestsubset (Hastie, Tibshirani and Tibshirani, 2020) R package
for forward stepwise. We note that the functions g in (a) and (b) are weakly
differentiable, but those in (c) and (d) are not. For CB, we consider six values
for α: 0.05, 0.1, 0.2, 0.5, 0.8, and 1. All risks and risk estimates throughout are
scaled by 1/n.

Figure 1 shows the results for when the underlying linear model has sparsity
s = 5, and SNR = 0.4. The figure displays the average risk estimate from each
method, CB and BY, as well as standard errors of these risk estimates. Each
panel (a)–(d) corresponds to one of the four functions g described above. In each
panel, the black horizontal line represents Risk(g), and the black dots represent
Riskα(g) (which are themselves estimated via Monte Carlo). We can see that for
each function g, the CB method is unbiased for Riskα(g), as expected. Mean-
while, we see that the bias of the BY method varies quite a lot with g, having
zero, positive, or negative bias, depending on the situation. In panel (a), where
g is a linear smoother (ridge), the average BY estimate matches Risk(g), for any
α, as expected. In (b), where g is nonlinear but weakly differentiable (lasso), it
overestimates Riskα(g) and thus also Risk(g), more so at the larger values of α.
In panel (c), where g is both nonlinear and nonsmooth (forward stepwise), BY
underestimates Riskα(g) but also overestimates Risk(g), for larger α; and in (d),
where g is again nonlinear and nonsmooth (lasso tuned by cross-validation), it
underestimates both Riskα(g) and Risk(g) for larger α. In summary, there is no
single consistent behavior for the bias of BYα(g) across all scenarios. (Certainly,
the rule-of-thumb advocated by Ye (1998) of simply taking α = 0.6 does deliver
consistently favorable performance throughout.)

Overall, for small α, the average BY estimate appears to be empirically close
to Risk(g) in all situations (as does the average CB estimate), but we reiterate
that there is no guarantee this will be true in general for nonsmooth g (as in
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Fig 1. Comparison of CB and BY risk estimators for different functions g, when s = 5 and
SNR = 0.4.

Fig 2. Comparison of CB and BY risk estimators when g is the lasso tuned by cross-
validation, s = 200, and SNR = 2.
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panels (c) and (d)). However, the average CB estimate will always be close to
Riskα(g), which will be in turn close to Risk(g) for small α, no matter the
smoothness of g (Propositions 2 and 3).

In the previous figure, the variability of the BY and CB estimates (reflected
in the standard error bars) appears roughly similar throughout. In Figure 2, we
demonstrate that this need not be the case in general. By increasing the true
sparsity level to s = 200 (the true linear model is dense) and the signal-to-noise
ratio to SNR = 2, we see that the BY estimates appear much more volatile than
those from CB, when we take g to be the lasso tuned by cross-validation. This
holds across all values of α. In Appendix F, we show that the larger variance
of BY in this setting is due to its irreducible variance, and in particular, just
one part of its irreducible variance: comparing (40) and (44), we see that the
only difference between the two is the first term (inside the variance). In CB,
this is the conditional expectation of the noise-added training error, and in BY,
it is the training error itself. When g is unstable, as in the current setting (the
use of cross-validation for tuning induces instability into the ultimate prediction
function), the latter can be much more variable.

5.2. Degrees of freedom

Recalling Efron’s covariance decomposition (9), and the definition of degrees of
freedom (8), it is clear that estimating Risk(g) and estimating df(g) are equiv-
alent problems, in the normal means setting. Thus, parallel to the perspective
and development used in this paper, where the CB method (20) is crafted as
an unbiased estimator of Riskα(g), the risk of g at the elevated noise level of
(1 + α)σ2, we can equivalently view:

d̂fα(g) =
CBα(g) − 1

B

∑B
b=1 ‖Y ∗b − g(Y ∗b)‖2

2 + nσ2(1 + α)

2σ2(1 + α)
(45)

as an unbiased estimator of dfα(g), the degrees of freedom of g at the elevated
noise level (1+α)σ2. For the BY method, meanwhile, one can proceed similarly
in moving from (13) to an estimator of degrees of freedom (by subtracting off
training error and rescaling); however, there is an alternative and more direct
estimator that stems from this method, which was the original proposal of Ye
(1998), namely:

d̃fα(g) =
1

σ2α

B∑

i=1

Ĉov
∗

i , (46)

where Ĉov
∗

i , i = 1, . . . , n, are as in (11). While d̂fα(g) estimates dfα(g) (unbi-
asedly), it seems that d̃fα(g) is designed to directly estimate df(g) (though not
unbiasedly).

In Figure 3, we evaluate the performance of these two degrees of freedom
estimators (45), (46) using the same simulation framework as that described in
the last subsection, with s = 5 and SNR = 2. We consider two functions g: lasso
and forward stepwise, and for each, we vary their tuning parameters over their
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Fig 3. Comparison of CB and BY degrees of freedom estimators applied to the full forward
stepwise and lasso paths, when s = 5, SNR = 2, and α = 0.1.

effective ranges. Lastly, we fix α = 0.1. The figure displays the estimated degrees
of freedom from CB (45) or BY (46), against the support size of the underlying
fitted sparse regression model (for the lasso, we take this to be the average
support size for the given value of λ over all 100 repetitions): the bands represent
the degrees of freedom estimate plus and minus one standard error, over the 100
repetitions. The true degrees of freedom (itself estimated via Monte Carlo) is
plotted as a dashed line. To be clear, this plots the degrees of freedom df(g) at
the original noise level, not the noise-elevated degrees of freedom dfα(g). We see
that both methods provide reasonably accurate estimates of df(g) throughout,
albeit slightly biased upwards at various points along the path (support sizes),
due to the use of α = 0.1. Reducing α would reduce the bias, but also increase
the variability. We also see that the estimates of degrees of freedom from the CB
method are just a bit more variable across the lasso path, and most noticeably
so at the smallest support sizes.

5.3. Image denoising

As a last example, we consider using the CB method for tuning parameter
selection in image denoising. In image denoising, and signal processing more
broadly, SURE has become a central method for risk estimation and parameter
tuning (see Section 1.7 for references). We focus on the 2-dimensional fused lasso
(Tibshirani et al., 2005; Hoefling, 2010) as an image denoising estimator, as it
is weakly differentiable and its divergence can be computed in analytic form
(Tibshirani and Taylor, 2011, 2012). This allows us to draw a comparison to
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Fig 4. Comparison of CB and SURE in image denoising.

SURE, which takes the simple form:

SURE(g) = ‖Y − g(Y )‖2
2 + 2σ2

(
# of fused groups in g(Y )

)
− nσ2.

To compare the CB estimator (20) and SURE (above) empirically, we use the
standard “parrot” image from the image processing literature (leftmost panel of
Figure 5), and we generate data Y by adding i.i.d. normal noise to each pixel
(second from the left in Figure 5). Figure 4 compares SURE and CB estimates
across several values of α, each as functions of the underlying tuning parameter
λ in the 2d fused lasso optimization problem. The main observation is that, for
all values of α (even the largest, α = 0.5), the minimizers of the CB curve over
λ are all close to that of SURE, which means that the subsequent CB-tuned
and SURE-tuned estimates are themselves all quite similar (second to right and
rightmost panels of Figure 5).

This speaks, informally, to model selection being “easier” than risk estimation
in the current context, as we can get away with larger values of α and still make
the relevant risk comparisons that are needed in order to accurately select a
model (indexed by a tuning parameter). In Appendix F, we provide a more
in-depth analysis by aggregating model selection results in the image denoising
simulation over multiple repetitions.

6. Discussion

In this work, we proposed and studied a coupled bootstrap (CB) method for
risk estimation in the standard normal means problem. Our estimator is on one
hand similar to bootstrap-based proposals for risk estimation (via a covariance
decomposition) in this setting from Breiman (1992); Ye (1998); Efron (2004).
On the other hand, it is different in a crucial way: for any value of the auxiliary
(bootstrap) noise parameter α > 0, the CB estimator is unbiased for Riskα(g),
the risk of the given function g, when the noise level in the normal means
problem is elevated from σ2 to (1 + α)σ2. We proved that when g is weakly
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Fig 5. Original “parrot” image (leftmost), and a noisy version (second from left) used for
image denoising. The CB-tuned (second from right) and SURE-tuned (righmost) estimates
look very similar. The CB tuning here uses α = 0.5, which corresponds the biggest gap in the
selected λ to that from SURE.

differentiable, the CB estimator (with infinite bootstrap iterations) reduces to
SURE as α → 0. The same is true of the Breiman-Ye estimator does in this
noiseless limit. However, for nonsmooth g and an arbitrary non-infinitesimal α,
the CB estimator still tracks an intuitively reasonable target: Riskα(g). Indeed,
it is always unbiased for Riskα(g), requiring no assumptions on g whatsoever,
which is a unique property. As such, it can be applied to arbitrarily complex
functions g, including those that use some sort of internal tuning parameter
selection mechanism.

Of course, one of the most important practical problems not addressed in the
current paper is estimation of the error variance σ2. In practice, the simplest
strategies here tend to be among the most commonly-used, and among the
most effective: we could simply estimate σ2 by using the sample variance of
training residuals Yi − gi(Y ), i = 1, . . . , n (possibly with a degrees of freedom
correction, which can be important for complex models g). A study of the impact
of estimating σ2 on risk estimation and model selection is a topic for future work.
(For model selection, we may not actually need to estimate σ2 up to the same
degree of accuracy as we would in risk estimation; recall, we have already seen
that relative large values of the auxiliary noise level α > 0 can still result in
good model selection performance, in Figure 4.)

Two more extensions of the CB framework that may be of interest for future
work are described below.

6.1. General error covariance

Consider, instead of (1), data drawn according to:

Y ∼ N(θ, Σ), (47)

for a positive definite covariance matrix Σ ∈ R
n×n. In such a structured error

setting, it may be of interest to measure loss according to a generalized quadratic
norm, thus we introduce the notation ‖x‖2

A = xTA−1x for a vector x and positive
semidefinite matrix A. For example, we may choose to measure loss according
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to ‖θ − g(Y )‖2
Σ, since the curvature in this loss takes Σ into account, just like

the negative log-likelihood in the model (47).
We extend the CB estimator so that it applies to an arbitrary positive

semidefinite matrix A defining the risk, and an arbitrary positive semidefinite
matrix Σ in (47). The next result is a straightforward extension of Proposition 1.

Proposition 6. Let U, V, W ∈ R
n be independent random vectors. Then for

any g, and positive semidefinite matrix A ∈ R
n×n,

E‖V − g(U)‖2
A − E‖W − g(U)‖2

A =E‖V ‖2
A − E‖W ‖2

A

+ 2〈A−1
E[g(U)],E[W ] − E[V ]〉.

(48)

assuming all expectations exist and are finite. In particular, if U, V are i.i.d.
and E[U ] = E[W ], then

E‖V − g(U)‖2
A = E‖W − g(U)‖2

A + E‖U‖2
A − E‖W ‖2

A. (49)

And in turn, the next result is a straightforward extension of Corollary 1.

Corollary 2. Let Y ∼ N(θ, Σ). Given any function g, a positive semidefinite
matrix A ∈ R

n×n that will be used to measure risk, and an auxiliary noise level
α > 0, consider defining a CB estimator according to:

ωb ∼ N(0, Σ), independently, for b = 1, . . . , B,

Y ∗b = Y +
√

αωb, Y †b = Y − ωb/
√

α, for b = 1, . . . , B,
(50)

and:

CBA,α(g) =
1

B

B∑

b=1

(
‖Y †b − g(Y ∗b)‖2

A − ‖ωb‖2
A/α

)
− tr(A−1Σ). (51)

Then this is unbiased for risk at the noise-elevated level (1 + α)Σ measured with
respect to A, i.e.,

E[CBA,α(g)] = RiskA,α(g) = E‖θ − g(Yα)‖2
A, where Yα ∼ N(θ, (1 + α)Σ).

Of course, the main challenge in using the extended estimator CBA,α(g) de-
fined in the above corollary is that it requires knowledge of the full error co-
variance matrix Σ. However, in some settings, e.g., time series problems, it may
be reasonable to assume that Σ or its inverse is highly structured and there-
fore estimable. It may be interesting to rigorously study how risk estimation is
affected by upstream estimation of Σ in this and related problem settings.

6.2. Bregman divergence

Finally, we present a further extension of the simple and yet key results in
Proposition 6 underpinning the construction of the CB estimator, to the case
in which a Bregman divergence is used to measure error:

Err(g) = E[Dφ(Ỹ , g(Y ))], where Ỹ is an i.i.d. copy of Y . (52)



Unbiased risk estimation in the normal means problem via CB 5433

Here Dφ is the Bregman divergence with respect to a strictly convex and differ-
entiable function φ : Rn → R, which recall is defined by:

Dφ(a, b) = φ(a) − φ(b) − 〈∇φ(b), a − b〉.

When φ(x) = ‖x‖2
2, it is easy to check that

D‖·‖2

2
(a, b) = ‖a‖2

2 − ‖b‖2
2 − 2〈b, a − b〉 = ‖a − b‖2

2,

and hence (52) reduces to prediction error as measured by squared loss in (4). In
fact, properties (48), (49) are entirely driven by this “Bregman representation”
of squared loss, leading to the following extension.

Proposition 7. Let U, V, W ∈ R
n be independent random vectors. For any g,

and Bregman divergence Dφ,

E[Dφ(V, g(U))] − E[Dφ(W, g(U))] =E[φ(V )] − E[φ(W )]+

〈E[∇φ(U)],E[W ] − E[V ]〉. (53)

assuming all expectations exist and are finite. In particular, if U, V are i.i.d.
and E[U ] = E[W ], then

E[Dφ(V, g(U))] = E[Dφ(W, g(U))] + E[φ(U)] − E[φ(W )]. (54)

Proposition 7 is, in principle, a powerful tool: it provides “one half” of a
recipe to move the CB estimator beyond the Gaussian setting, to a setting in
which data follows (say) an exponential family distribution and loss is measured
by the out-of-sample deviance. This is because for every exponential family
distribution, there is a natural function φ (defined in terms of the log-partition
function of the distribution) that makes (52) the deviance.

The “other half” of the recipe needed to arrive at a CB estimator is a mecha-
nism for generating relevant bootstrap draws, as in (50) in the previous subsec-
tion. Specifically, for a given problem setting with data Y (exponential family
distributed or otherwise) we must be able to design a pair of bootstrap draws
(Y ∗b, Y †b) that adhere to three criteria:

1. Y ∗b, Y †b are independent of each other;
2. E[Y ∗b] = E[Y †b]; and
3. E[Dφ(Ỹ ∗b, g(Y ∗b))] is an “interesting” pseudo-target to estimate, where

Ỹ ∗b is an i.i.d. copy of Y ∗b.

Criteria 1 and 2 are straightforward enough to understand, and they should be
possible to fulfill in certain exponential family models with various noise aug-
mentation tricks. However, criterion 3 deserves a bit more explanation. With
U = Y ∗b, V = Ỹ ∗b, and W = Y †b, assumed to fulfill criteria 1 and 2, note
that (54) says Dφ(Y †b, g(Y ∗b)) is unbiased for E[Dφ(Ỹ ∗b, g(Y ∗b))]. That is, we
originally wanted to estimate the quantity in (52), and have now pivoted to
estimating E[Dφ(Ỹ ∗b, g(Y ∗b))] instead.
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In the Gaussian setting studied in this paper, this meant estimating risk
based on data from a Gaussian distribution with the same mean but an elevated
noise level. In a more general setting, the noise augmentation strategy used to
generate Y ∗b may in fact bring us outside of the distributional family assumed
for the data originally, and it may even alter non-nuisance parameters of the
distribution. This would still altogether be fine, as long as E[Dφ(Ỹ ∗b, g(Y ∗b))]
it still an “interesting” target (i.e., for error assessment or model selection), as
per criterion 3.

As a concrete example of where such an extension is possible (along the lines
of the above discussion), we note that after the completion of the current paper,
we were able to extend the CB framework to the Poisson many means model,
in Oliveira, Lei and Tibshirani (2022).

Appendix A: More details on Breiman’s and Ye’s estimators

Instead of defining Ĉov
∗

i , i = 1, . . . , n as in (11), Breiman uses

Ĉov
∗

i =
1

B − 1

B∑

b=1

(Y ∗b
i − Yi)gi(Y

∗b), i = 1, . . . , n,

which are just inner products between the noise increments {Y ∗b
i − Yi}B

b=1 and
fitted values {gi(Y

∗b)}B
b=1, instead of an empirical covariances.

Furthermore, instead of dividing the whole sum by α, Ye divides each sum-
mand Ĉov

∗

i in (13) by

(s∗
i )2 =

1

B − 1

B∑

b=1

(Y ∗b
i − Ȳ ∗

i )2,

the bootstrap estimate of the variance of Yi, rather than dividing the entire
sum by α. In fact, Ye actually formulates his estimator in terms of the slopes
from linearly regressing the fitted values {gi(Y

∗b)}B
b=1 onto the noise increments

{Y ∗b
i − Yi}B

b=1, but it is equivalent to the form described here.

Appendix B: Proof of Proposition 2

The proposition follows from an application of the next lemma, as we can take
f(y) = ‖θ − g(y)‖2

2, and then the moment conditions on f will be implied by
those on ‖g‖2

2, via the simple bound f(y) ≤ 2‖θ‖2
2 + 2‖g(y)‖2

2.

Lemma B.1. For α ≥ 0, denote Yα ∼ N(θ, (1 + α)σ2In). Let f : Rn → R be a
function such that, for some β > 0 and integer k ≥ 0,

E
[
f(Yβ)‖Yβ − θ‖2m

2

]
< ∞, m = 0, . . . , k.

Then, the map α �→ E[f(Yα)] has k continuous derivatives on [0, β).
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Proof. First, we prove that this map is continuous. Fix α ∈ [0, β). Observe that

lim
t→α

E[f(Yt)] = lim
t→α

∫
f(y)

(2π(1 + t)σ2)n/2
exp

{−‖y − θ‖2

2(1 + t)σ2

}
dy

=

∫
lim
t→α

f(y)

(2π(1 + t)σ2)n/2
exp

{−‖y − θ‖2

2(1 + t)σ2

}
dy

= E[f(Yα)],

where in the second line we used Lebesgue’s dominated convergence theorem
(DCT), applicable because the integrand is bounded by

f(y)

(2πσ2)n/2
exp

{ −‖y − θ‖2

2(1 + α)σ2

}
,

which is integrable by assumption. Now for the first derivative, note that

∂

∂α
E[f(Yα)] = − n

2(1 + α)
E[f(Yα)] +

1

2σ2(1 + α)2
E[f(Yα)‖Yα − θ‖2

2],

where we used the Leibniz integral rule, applicable because the integrands (when
we write these expectations as integrals) are bounded by

f(y)

(2πσ2)n/2
‖y − θ‖2m

2 exp

{ −‖y − θ‖2

2(1 + α)σ2

}
,

for m = 0, 1, again integrable by assumption. Another application of DCT
proves the derivative in the second to last display is continuous on [0, β). For a
general number of derivatives k, the argument is similar, and the integrability
of the dominating functions in the above display, for m = 0, . . . , k, ensures that
we can apply the Leibniz rule and DCT to argue continuity of the kth derivative
on [0, β).

Appendix C: Proof of Theorem 3.1

C.1. Proof of theorem

Observe that, writing Eω for the conditional expectation operator on Y = y
(i.e., the operator that integrates over ω),

CB∞
α (g) = Eω

[
‖y − ω/

√
α − g(y +

√
αω)‖2

2 − ‖ω‖2
2/α

]
− nσ2

= Eω‖y − g(y +
√

αω)‖2
2

︸ ︷︷ ︸
a

− 2√
α
Eω〈ω, g(y +

√
αω)〉

︸ ︷︷ ︸
b

−nσ2.

It is not hard to show that for almost every y ∈ R
n, it holds that a → ‖y−g(y)‖2

2

as α → 0, by Lemma C.2. It remains to study term b.
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Denote by φµ,σ2 the density of a Gaussian with mean μ and variance σ2.
Then,

b =
2√
α

n∑

i=1

Eω
−i
Eωi

[ωigi(y +
√

αω)]

=
2√
α

n∑

i=1

Eω
−i

∫
ωigi(y +

√
αω)φ0,σ2(ωi) dωi

= −2σ2

√
α

n∑

i=1

Eω
−i

∫
gi(y +

√
αω)φ′

0,σ2(ωi) dωi

= −2σ2
n∑

i=1

Eu
−i

∫
gi(u)φ′

0,ασ2(ui − yi) dui

= 2σ2
n∑

i=1

Eu
−i

∫
∇igi(u)φ0,ασ2(ui − yi) dui

= 2σ2
n∑

i=1

∫
∇igi(u)φ0,ασ2(u − y) dui.

The second to last line holds by Lemma C.1. Now, by Lemma C.2, for almost
every y ∈ R

n,

lim
α→0

2σ2
n∑

i=1

∫
∇igi(u)φ0,ασ2(u − y) du = 2σ2

n∑

i=1

∇igi(y),

which completes the proof.

C.2. Supporting lemmas

Here we state and prove supporting lemmas for the proof of Theorem 3.1. The
first lemma shows that for a weakly differentiable function, the integration by
parts property in (28) still holds when we take the test function to be a normal
density (which is continuously differentiable by not compactly supported).

Lemma C.1. If f : R → R is weakly differentiable, with (fφµ,σ2) ∈ L1(R) and
(f ′φµ,σ2) ∈ L1(R), then

∫
f(x)φ′

µ,σ2(x) dx = −
∫

f ′(x)φµ,σ2(x) dx.

Proof. Let ψn : R → [0, 1], n = 1, 2, 3, . . . be a sequence of continuously differ-
entiable functions such that for each z ∈ R,

lim
n→∞

ψn(z) = 1,

lim
n→∞

ψ′
n(z) = 0, and



Unbiased risk estimation in the normal means problem via CB 5437

|ψ′
n(z)| ≤ C for n = 1, 2, 3, . . . and a constant C < ∞.

One example of such a sequence is

ψn(z) = 1(−n,n)(z) + exp

(
− 1

1 − (z − nsign(z))

)
1[−n−1,−n]∪[n,n+1](z),

n = 1, 2, 3,. . . . Now let ξn(z) = ψn(z)φµ,σ2(z). Note that

lim
n→∞

ξn(z) = φµ,σ2(z) lim
n→∞

ψn(z) = φµ,σ2(z),

lim
n→∞

ξ′
n(z) = lim

n→∞
ψ′

n(z)φµ,σ2(z) + φ′
µ,σ2(z) lim

n→∞
ψn(z) = φ′

µ,σ2(z).

Turning to the result we want to prove,

∫
f(z)φ′

µ,σ2(z) dz =

∫
f(z) lim

n→∞
ξ′

n(z) dz

= lim
n→∞

∫
f(z)ξ′

n(z) dz

= − lim
n→∞

∫
f ′(z)ξn(z) dz

= −
∫

f ′(z) lim
n→∞

ξn(z) dz

= −
∫

f ′(z)φµ,σ2(z) dz.

The second and fourth lines here can be verified using Lebesgue’s dominated
convergence theorem (DCT), and the third uses (28), applicable because each
ξn is compactly supported. This completes the proof.

The next lemma essentially shows that the notion of a Lebesgue point can be
extended to the Gaussian kernel (beyond the uniform kernel, as it is traditionally
defined).

Lemma C.2 (Adapted from Theorem 1.25 of Stein and Weiss 1971). Let φ :
R

n → R be the Gaussian density with mean zero and identity covariance, and
denote φα = α−nφ(x/α). Let f : R

n → R be a function such that (fφβ) ∈
L1(Rn) for some β > 0. Then, limα→0(f ∗ φα)(x) = f(x) for almost every
x ∈ R

n.

Proof. Let x ∈ R
n be a Lebesgue point of f . We will prove that the desired

result holds for x, which will imply that it holds almost everywhere (because
any function in L1

loc(Rn) has the property that almost every point is a Lebesgue
point; see, e.g., Theorem 1.32 of Evans and Gariepy (2015)).

Fix ε > 0. By the definition of a Lebesgue point, there exists ρ > 0 such that

δ−n

∫

‖t‖2fδ

|f(x − t) − f(x)| dt ≤ Cε, (55)
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for all δ ∈ (0, ρ] and a constant C > 0 to be specified later. In what follows,
we will show that there exists β > 0 such that |(f ∗ φα)(x) − f(x)| ≤ ε for all
α ∈ (0, β]. To do so, we decompose

|(f ∗ φα)(x) − f(x)| ≤
∣∣∣∣
∫

‖t‖2fδ

(f(x − t) − f(x))φα(t) dt

∣∣∣∣
︸ ︷︷ ︸

I1

+

∣∣∣∣
∫

‖t‖2>δ

(f(x − t) − f(x))φα(t) dt

∣∣∣∣
︸ ︷︷ ︸

I2

.

(56)

We study each term above separately.

Term I1 Let g(r) =
∫

‖t‖2=1
|f(x − rt) − f(x)| dt and G(r) =

∫ r

0
sn−1g(s) ds.

Note that (55) translates into the statement

G(r) ≤ Cεrn, (57)

for all r ∈ (0, ρ].

For notational convenience, we write ϕ(r) = φ(u) whenever ‖u‖2 = r, where
ϕ is the univariate standard normal density. Observe that for any δ ≤ ρ,

I1 ≤
∫

‖t‖2fδ

|f(x − t) − f(x)|α−nφ(t/α) dt

=

∫ δ

0

rn−1g(r)α−nϕ(r/α) dr

= G(r)α−nϕ(r/α)
∣∣δ

0
− α−n

∫ δ

0

G(r) d(ϕ(r/α))

≤ Cε(δ/α)nϕ(δ/α) − α−n

∫ δ

0

G(r) d(ϕ(r/α))

= Cε(δ/α)nϕ(δ/α) − α−n

∫ δ/α

0

G(αs) d(ϕ(s))

≤ Cε(δ/α)nϕ(δ/α) + Cε

∫ δ/α

0

sn |d(ϕ(s))|

≤ Cε(cn + mn+1).

In the fourth and sixth lines, we used (57). In the last line, we used the fact
the map z �→ znϕ(z) attains a maximum of cn =

√
n

n
φ(

√
n) at z =

√
n, as well

as the bound
∫ δ/α

0
sn |d(ϕ(s))| ≤

∫ ∞

0
sn+1ϕ(s) ds ≤ mn+1, where mn+1 uncen-

tered, absolute moment of order n + 1 of the standard normal distribution. By
choosing C ≤ 1/(2(cn + mn+1)), we see that I1 ≤ ε/2 for any δ ≤ ρ, and any
α > 0.



Unbiased risk estimation in the normal means problem via CB 5439

Term I2 Consider

I2 =

∫

‖t‖2gδ

|f(x − t)|φα(t) dt

︸ ︷︷ ︸
I21

+ |f(x)|
∫

‖t‖2gδ

φα(t) dt

︸ ︷︷ ︸
I22

.

Clearly

lim
α→0

I22 = |f(x)| lim
α→0

∫

‖u‖2gδ/α

φ(u) du = 0,

so there exists β1 > 0 such that for α ≤ β1, we have I22 ≤ ε/4. As for I21, we
have

lim
α→0

I21 = lim
α→0

∫

‖t‖2gδ

|f(x − t)|φα(t) dt =

∫

‖t‖2gδ

lim
α→0

|f(x − t)|φα(t) dt = 0,

where the interchange between integration and the limit as α → 0 can be shown
using DCT. Thus there is β2 > 0 such that for α ≤ β2, we have I21 < ε/4.

Completing the proof Putting the above parts together, we get that I1 +
I2 ≤ ε/2 + ε/4 + ε/4 = ε, for all δ ≤ ρ and α ≤ β = min{β1, β2}. Recalling (56),
this gives the desired result and completes the proof.

Appendix D: Noiseless limit for hard-thresholding

The limit in question is that of

2√
α

n∑

i=1

E
[
ωi(yi +

√
αωi) · 1{|yi +

√
αωi| > t}

]

as α → 0. Inspecting term i,

E
[
ωi(yi +

√
αωi) · 1{|yi +

√
αωi| > t}

]
=

y√
α

(
E

[
ωi · 1

{
ωi ≤ − t + yi√

α

}]

+ E

[
ωi · 1

{
ωi ≥ t − yi√

α

}])

+ E

[
ω2

i · 1

{
ωi ≤ − t + yi√

α

}]

+ E

[
ω2

i · 1

{
ωi ≥ t − yi√

α

}]
.

To compute the above, we recall the identities, for Z ∼ N(0, τ2),

E
[
Z · 1{Z ≤ a}

]
= −τφ(a/τ),

E
[
Z · 1{Z ≥ b}

]
= τφ(b/τ),
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E
[
Z2 · 1{Z ≤ a}

]
= −τaφ(a/τ) + τ2Φ(a/τ),

E
[
Z2 · 1{Z ≥ b}

]
= τbφ(b/τ) + τ2Φ̄(b/τ),

where φ and Φ denote the standard normal density and distribution function,
respectively, and Φ̄ = 1 − Φ the standard normal survival function. Thus we find
that the second to last display equals

E
[
ωi(yi +

√
αωi)·1{|yi +

√
αωi| > t}

]

=
σyi√

α

[
− φ

(
t + yi√

ασ

)
+ φ

(
t − yi√

ασ

)]

+
σ√
α

[
(t + yi)φ

(
t + yi√

ασ

)
+ (t − yi)φ

(
t − yi√

ασ

)]

+ σ2

[
Φ

(−t − yi√
ασ

)
+ Φ̄

(
t − yi√

ασ

)]

=
σt√

α

[
φ

(
t + yi√

ασ

)
+ φ

(
t − yi√

ασ

)]

+ σ2

[
Φ

(−yi − t√
ασ

)
+ Φ

(
yi − t√

ασ

)]

→ σ21{|yi| > t}, for yi �= ±t,

where the last line is the limit as α → 0. In other words, we have shown

lim
α→0

2√
α

n∑

i=1

E
[
ωi(yi +

√
αωi) · 1{|yi +

√
αωi| > t}

]
= 2σ2

n∑

i=1

1{|yi| > t},

for yi �= ±t, i = 1, . . . , n, which proves (30).

Appendix E: Proofs of bias and variance results

E.1. Proof of Proposition 3

Under the given assumptions on g, the map α → Riskα(g) is continuously
differentiable, and as shown in the proof of Proposition 2, we can use the Leibniz
integral rule, to compute for t ∈ [0, α),

∂

∂t
Riskt(g) =

1

2(1 + t)
E

[
‖θ − g(Yt)‖2

2

(‖Yt − θ‖2
2

σ2(1 + t)
− n

)]

=
1

2(1 + t)
Cov

(
‖θ − g(Yt)‖2

2,
‖Yt − θ‖2

2

σ2(1 + t)

)

=

√
n√

2(1 + t)

√
Var(‖θ − g(Yt)‖2

2) Cor
(
‖θ − g(Yt)‖2

2, ‖Yt − θ‖2
2

)
,



Unbiased risk estimation in the normal means problem via CB 5441

where in the second line we used the fact that ‖Yt − θ‖2
2/(σ2(1 + t)) ∼ χ2

n and
thus has mean n, and in the third line we used that its variance is 2n. Applying
the fundamental theorem of calculus

Riskα(g) − Risk(g) =

∫ α

0

∂

∂t
Riskt(g) dt

gives the result in (32). The bound in (33) is obtained by bounding the corre-
lation (between ‖θ − g(Yt)‖2

2 and ‖Yt − θ‖2
2) by 1, and then using the assumed

monotonicity of the resulting integrand.
For the second bound, in (34), observe that under the additional (higher-

order) moment conditions on g, the map α �→ Var(‖θ − g(Yα)‖2
2) is contin-

uously differentiable on [0, β) by an application of Lemma B.1. Thus we get
Var(‖θ − g(Yα)‖2

2) = Var(‖θ − g(Y )‖2
2) + O(α) (say, by the fundamental theo-

rem of calculus), which, along with the simple inequality
√

a + b ≤ √
a +

√
b for

a, b ≥ 0, gives the desired result.

E.2. Proof of Proposition 4

Let ω, Y ∗, Y † denote a triplet as in (19), hence Y ∗ = Y +
√

αω and
Y † = Y − ω/

√
α. Consider

E
[
Var(CBα(g) | Y )

]
=

1

B
E

[
Var

(
‖Y † − g(Y ∗)‖2

2 − ‖ω‖2
2/α

∣∣ Y
)]

,

where we used the independence of the bootstrap samples across b = 1, . . . , B.
We can therefore study the reducible variance for a single bootstrap draw,
and then for the final result, we simply need to divide by B. To this end, let
a = (2/

√
α)〈ω, Y − g(Y ∗)〉, b = ‖Y −g(Y ∗)‖2

2, and write Eω, Varω, Covω for the
expectation, variance, and covariance operators conditional on Y . Then

Var
(
‖Y † − g(Y ∗)‖2

2 − ‖ω‖2
2/α

∣∣ Y
)

=Var
(
‖Y † − Y + Y − g(Y ∗)‖2

2

− ‖ω‖2
2/α

∣∣ Y
)

=Var
(
‖Y − g(Y ∗)‖2

2

− (2/
√

α)〈ω, Y − g(Y ∗)〉
∣∣ Y

)

= Varω(a) + Varω(b) − 2Covω(ab).

The first term in the previous line Varω(a) will end up having the dominant
dependence on α, since by the law of total variance,

E[Varω(b)] = E
[
Varω

(
‖Y − g(Y ∗)‖2

2

∣∣ Y
)]

≤ Var(‖Y − g(Y ∗)‖2
2),

and the right-hand side above is continuous in α over [0, β), by
the condition E‖g(Yβ)‖4

2 < ∞ and Lemma B.1, which means
E[Varω(b)] ≤ Var(‖Y − g(Y )‖2

2) +O(α). Thus it remains to study
Varω(a). Introducing more notation, c = (2/

√
α)〈ω, Y − g(Y )〉 and

d = (2/
√

α) 〈ω, g(Y ) − g(Y ∗)〉, observe that

Varω(a) = Varω(c) + Varω(d) + 2Covω(cd).



5442 N. L. Oliveira et al.

Once again, the first term here will have the dominant dependence on α, as

Varω(d) ≤ Eω[d2] ≤ 4

α
nσ2

Eω‖g(Y ) − g(Y ∗)‖2
2,

and the last factor on the right-hand side, after integrating over Y , satisfies
E‖g(Y ) − g(Y ∗)‖2

2 = O(α) from another application of Lemma B.1. Finally,

Varω(c) =
4nσ2

α
‖Y − g(Y )‖2

2,

and integrating with respect to Y , then dividing by B, gives the desired result
in (37).

E.3. Proof of Proposition 5

Observe that (40) equals, for a = [E‖Y − g(Y +
√

αω)‖2
2]2 and

b = [E〈ω, g(Y +
√

αω)〉]2/α,

∫ ((
E‖y − g(y +

√
αω)‖2

2 + (2/
√

α)E
[
〈ω, g(y +

√
αω)〉

])2

− (a + b)

)

× 1

(2πσ2)n/2
exp

{−‖y − θ‖2

2σ2

}
dy.

Abbreviating φθ,σ2In
(y) = (2πσ2)−n/2 exp(−‖y − θ‖2/(2σ2)), the integrand

above is bounded by

2E‖y − g(y +
√

αω)‖4
2 φθ,σ2In

(y) +
8

α
E

[
〈ω, g(y +

√
αω)〉

]2
φθ,σ2In

(y).

Note that the second term is dominated by 2H(y)φθ,σ2In
(y), due to (42), which

is integrable by assumption (E[H(Y )] < ∞). The first term above is dominated
by

4‖y‖2
2 φθ,σ2In

(y) + 4E‖g(y +
√

αω)‖4
2 φθ,σ2In

(y),

which is also integrable by assumption (E‖g(Yβ)‖4
2 < ∞). Using Lebesgue’s

dominated convergence theorem (DCT) and (41) completes the proof.

Appendix F: Additional experiments

F.1. Bias

We study the bias empirically, and investigate the tightness of the bound in (34)
in Proposition 3. Under the simulation setup described in Section 5, with s = 5
and SNR = 2, Figure 6 displays the true bias (computed via Monte Carlo)
and (34) each as functions of α, when g is forward stepwise regression estimator
at different steps along its path: k = 3, 10, and 90. We see that, within each
panel, the bias decreases approximately linearly with α, meaning the linear rate
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Fig 6. Comparison of the true bias and the bound in (34) for forward stepwise regression with
k = 3, 10, and 90 steps. The simulation setup is as in Section 5 with s = 5 and SNR = 2.

of decay in the bound (34) is roughly accurate. However, the slope in the bound
is too large, and loosest when g is defined by the smallest number of steps along
the path. This is consistent with the fact that bound (34) is based on applying
the inequality Cor(‖θ − g(Yt)‖2

2, ‖Yt − θ‖2
2) ≤ 1 to the integrand in (32). This

inequality is generally tightest when g(Yt) = Yt, which occurs at k = 100 steps
(overfitting), and loosest at the beginning of the path.

F.2. Reducible variance

Now we examine the reducible variance empirically, and compare the bound
in (37) in Proposition 4. We again use the simulation setup from Section 5, with
s = 5 and SNR = 2, with Figure 7 displays contour plots of the true reducible
variance (computed via Monte Carlo) and the dominant term in (37) as functions
of B and α, when g is the lasso estimator with λ = 0.31. The two panels appear
qualitatively quite similar, confirming that the dominant term in (37) indeed
captures the right dependence of the reducible variance on B, α. (Note that each
panel is given its own color scale, which means that any potential looseness in
the constant multiplying 1/(Bα) in the bound (37) is not being reflected.)

F.3. Irreducible variance

We study the behavior of the irreducible variance and its components empiri-
cally. Following (40), observe that we can write

IVar(CBα(g)) = Var
(
E

[
‖Y − g(Y +

√
αω)‖2

2

∣∣ Y
])

︸ ︷︷ ︸
IVar1

+ Var

(
2√
α
E

[
〈ω, g(Y +

√
αω)〉

∣∣ Y
])

︸ ︷︷ ︸
IVar2
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Fig 7. Comparison of the true reducible variance and the bound in (37) for the lasso with
λ = 0.31. The simulation setup is as in Section 5 with s = 5 and SNR = 2.

+ 2Cov

(
E

[
‖Y − g(Y +

√
αω)‖2

2

∣∣ Y
]
,

2√
α
E

[
〈ω, g(Y +

√
αω)〉

∣∣ Y
])

︸ ︷︷ ︸
Cov1,2

.

We can similarly define analogous components for IVar1, IVar2, Cov1,2 for
IVar(BYα(g)) in (44). Note that between the CB and BY estimators, IVar2

is shared (equal), but IVar1 and Cov1,2 are different: where BY uses the original
training error ‖Y − g(Y )‖2

2, CB substitutes the conditional expectation of the
noise-added training error E[‖Y − g(Y +

√
αω)‖2

2 | Y ].
Figure 8 plots these three components of the irreducible variance for BY and

CB (computed via Monte Carlo), under the same simulation setup as that from
Figure 2. The figure also plots the reducible variance for reference. We can see
that the main contributor to the large variance exhibited by BY in comparison
to CB in Figure 2 is in fact the first component of the irreducible variance
IVar1. This is intuitive, because for an unstable function g (such as the one in
the current simulation), the observed training error can have a high degree of
variability, but taking a conditional expectation over a noise-adding process acts
as a kind of regularization, reducing this variability greatly.

F.4. Model selection

Below we report the results of repeating the experiment in Section 5.3 over
10 draws of synthetic noise, to create 10 noisy images. For each such noisy
image, we compute the CB and SURE risk curves and calculate the minimizing
values of λ. Figure 9 displays a histogram of these selected λ values, from each
method. We can see that CB often selects λ values which are tightly coupled
around those selected by SURE, suggesting some degree of stability in model
selection.
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Fig 8. Comparison of the irreducible variance, broken down into its three main components,
and also the reducible varaince, for the BY and CB estimators, under the same simulation
setup as that in Figure 2.

Fig 9. Histogram of the minimizing values of λ for the CB (at α ∈ {0.1, 0.3, 0.5}) and SURE
curves, over 10 repetitions of the simulation setup that generated Figure 4.
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