Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

Contents lists available at ScienceDirect

Computer
Methods
in Applied

Mechanics and

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

L))

An ensemble score filter for tracking high-dimensional nonlinear e
dynamical systems

Feng Bao?, Zezhong Zhang ", Guannan Zhang "

a Department of Mathematics, Florida State University, 1017 Academic Way, Tallahassee, 32306, FL, USA
b Computer Science and Mathematics Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, 37831, TN, USA

ARTICLE INFO ABSTRACT
Keywords: We propose an ensemble score filter (EnSF) for solving high-dimensional nonlinear filtering
Stochastic differential equations problems with superior accuracy. A major drawback of existing filtering methods, e.g., particle

Score-based diffusion models
Data assimilation

Curse of dimensionality
Nonlinear filtering

filters or ensemble Kalman filters, is the low accuracy in handling high-dimensional and highly
nonlinear problems. EnSF addresses this challenge by exploiting the score-based diffusion model,
defined in a pseudo-temporal domain, to characterize the evolution of the filtering density.
EnSF stores the information of the recursively updated filtering density function in the score
function, instead of storing the information in a set of finite Monte Carlo samples (used
in particle filters and ensemble Kalman filters). Unlike existing diffusion models that train
neural networks to approximate the score function, we develop a training-free score estimation
method that uses a mini-batch-based Monte Carlo estimator to directly approximate the score
function at any pseudo-spatial-temporal location, which provides sufficient accuracy in solving
high-dimensional nonlinear problems while also saving a tremendous amount of time spent
on training neural networks. High-dimensional Lorenz-96 systems are used to demonstrate
the performance of our method. EnSF provides superior performance, compared with the
state-of-the-art Local Ensemble Transform Kalman Filter, in reliably and efficiently tracking
extremely high-dimensional Lorenz systems (up to 1,000,000 dimensions) with highly nonlinear
observation processes.

1. Introduction

Tracking high-dimensional nonlinear dynamical systems, also known as nonlinear filtering, is a significant research area in data
assimilation, with applications in weather forecasting, material science, biology, and finance [1-5]. The goal of addressing a filtering
problem is to exploit noisy observational data streams to estimate the unobservable state of a stochastic dynamical system of interest.
In linear filtering, where both the state and observation dynamics are linear, the Kalman filter provides an optimal estimate for the
unobservable state, attainable analytically under the Gaussian assumption. However, maintaining the covariance matrix of a Kalman
filter is computationally infeasible for high-dimensional systems. For this reason, ensemble Kalman filters (EnKF) were developed
in [6-8] to represent the distribution of the system state using a collection of state samples, called an ensemble, and to replace
the covariance matrix in the Kalman filter with the sample covariance computed from the ensemble. EnKF methods, especially the
Local Ensemble Transform Kalman Filter (LETKF) [9,10], are deployed operationally [11,12] widely used to integrate observations
for the purpose of understanding complex processes such as atmospheric convection [13,14]. Despite many successful applications,
EnKFs suffer from fundamental limitations as they make Gaussian assumptions in their update step, which can lead to severe model

* Corresponding author.
E-mail addresses: bao@math.fsu.edu (F. Bao), zhangz2@ornl.gov (Z. Zhang), zhangg@ornl.gov (G. Zhang).

https://doi.org/10.1016/j.cma.2024.117447

Available online 22 October 2024
0045-7825/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

https://www.elsevier.com/locate/cma
https://www.elsevier.com/locate/cma
mailto:bao@math.fsu.edu
mailto:zhangz2@ornl.gov
mailto:zhangg@ornl.gov
https://doi.org/10.1016/j.cma.2024.117447
https://doi.org/10.1016/j.cma.2024.117447
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2024.117447&domain=pdf

F. Bao et al. Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

bias when solving highly nonlinear systems. Hyperparameters like localization and inflation have been added to EnKF to handle
high-dimensional nonlinear problems. However, the accuracy of EnKF is highly sensitive to the hyperparameters, as demonstrated
in Section 4, such that fine-tuning needs to be re-conducted whenever there is a small change, e.g., observation noise level, to
the target filtering problem. Moreover, even though EnKF (e.g., LETKF [9,10]) is known to have good scalability for CPU-based
parallel computing platforms [10], the existing EnKF algorithms are not suitable for modern GPU-based supercomputers because
the parallelization of EnKF resulting from localization, i.e., decomposing the large covariance matrix into a large number of very
small covariance matrices, cannot fully exploit the computing power of GPUs.

In addition to the EnKF, several effective methods have been developed to tackle nonlinearity in data assimilation. These methods
include the particle filter [15-24], the Zakai filter [25,26], and so on. For example, the particle filter employs a set of random
samples, referred to as particles, to construct an empirical distribution to approximate the filtering density of the target state. Upon
receiving observational data, the particle filter uses Bayesian inference to assign likelihood weights to the particles. A resampling
process is iteratively performed, generating duplicates of particles with large weights and discarding particles with small weights.
Although particle filters emerged around the same time as the EnKF, their implementation to large-scale models has been difficult due
to the curse of dimensionality (weight collapse). This means that particle filters require prohibitively large ensemble sizes (number
of particles) to ensure long-term stability. While there have been significant advances in this direction [27-29], the resulting particle
filters often provide marginal advantages over the state-of-the-art EnKFs used in operations.

In this work, we introduce a novel ensemble score filter (EnSF) that exploits the score-based diffusion model [30-35], defined
in a pseudo-temporal domain to characterize the evolution of the filtering density. The score-based diffusion model is a popular
generative machine learning model for generating samples from a target distribution. Diffusion models have been applied to
nonlinear filtering problems in our previous work [36]. Despite the promising performance, a major drawback of the method in [36]
is that the neural network used to learn the score function needs to be re-trained at every filtering step after assimilating new
observational data. Even though we can store the checkpoint of the neural network weights from previous filtering step, the neural
network training still takes several minutes at each filtering step for a 100-dimensional Lorenz-96 model. Moreover, training the
score function will require storing all the paths of the forward stochastic processes of the diffusion model, which leads to high
storage requirements for high-dimensional problems. To resolve these issues, the key idea of EnSF is to completely avoid training
neural networks to learn the score function. Instead, we derive the closed form of the score function and develop a training-free
score estimation that uses mini-batch-based Monte Carlo estimators to directly approximate the score function at any pseudo-spatial—
temporal location in the process of solving the reverse-time diffusion sampler. Numerical examples in Section 4 demonstrate that
the training-free score estimation approach can provide sufficient accuracy in solving high-dimensional nonlinear problems as well
as save tremendous amount of time spent on training neural networks. Another essential aspect of EnSF is its analytical update
step, which gradually incorporates data information into the score function. This step is crucial in mitigating the degeneracy issue
faced when dealing with very high-dimensional nonlinear filtering problems. The main contributions of this work are summarized
as follows:

» We develop a training-free score function estimator that allows the diffusion model to be updated in real-time without
re-training when new observational data is collected.

» We showcase the remarkable robustness of the performance of EnSF with respect to its hyperparameters by using a set of
fine-tuned hyperparameters to dramatically different scenarios, e.g., different dimensions, different observation noise, etc.

» We showcase the superior performance of EnSF by comparing it with the state-of-the-art LETKF method in tracking
1,000,000-dimensional Lorenz-96 models with highly nonlinear observations.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the nonlinear filtering problem. In Section 3,
we provide a comprehensive discussion to develop our EnSF method. In Section 4, we demonstrate the performance of the EnSF
method in solving a Lorenz-96 tracking problem in high-dimensional space with highly nonlinear observation processes, and we
shall also conduct a series of comparison studies between EnSF and the state-of-the-art LETKF method. Concluding remarks and
future directions are given in Section 5.

2. Problem setting

Nonlinear filtering is a process used to estimate the states of a system that evolves in time, where the system dynamics and
the measurements are influenced by nonlinearities and noise. This estimation problem is complex because nonlinearity distorts the
relationship between the observed measurements and the actual states, making linear prediction and update methods ineffective.
Specifically, we are interested in tracking the state of the following discretized stochastic dynamical system:

X, = f(X_1,0,_1), (€D)]

where ¢ € Z* is the discrete time index, X, € R? is the state of the system governed by a physical model f : R? x R¥ i R,
and w,_; € R* is a random variable representing the uncertainty in f. This uncertainty may be caused by natural perturbations to
the physical model, incomplete knowledge, or unknown features of the model f. The existence of such uncertainty makes direct
estimation and prediction of the state of the dynamical model infeasible. To filter out the uncertainty and make accurate estimations
of the state, we rely on partial noisy observations of the state X, given as follows:

Y, =g(X)+¢, (2)

F. Bao et al. Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

where Y, € R" is the observational data collected by nonlinear observation function g(X,), and the observation is also perturbed by
a Gaussian noise £, ~ N'(0, X)).

The goal of the filtering problem is to find the best estimate, denoted by X,, of the hidden state X,, given the observation
information Y, := o(Y;.,), which is the c-algebra generated by the observational data up to the time instant ¢. In mathematics,
such optimal estimate for X, is usually defined by the optimal filter, i.e., the conditional expectation for X, conditioning on the
observational information: X, := E[X,|),]. The standard approach for solving the optimal filtering problem is the Bayesian filter, in
which we aim to approximate the conditional probability density function (PDF) of the state, denoted by py,y,., (x;|y;.,), which is
referred to as the filtering density. The general idea of the Bayesian filter is to recursively incorporate observational data to describe
the evolution of the filtering density from time 7 — 1 to 7 in two steps, i.e., the prediction step and the update step.

In the prediction step, we utilize the Chapman—Kolmogorov formula to propagate the state variable from 7 — 1 to ¢ and obtain the
prior filtering density

Px, vy, %elyrm) = /Rd Px,ix,_, X DPx,_ vy, Cem V1D, (3)

where pyx 1y, (_1lyi.-1) is the posterior filtering density obtained at the time instant # — 1, py |x,_ (x,|x,_;) is the transition
probability density derived from the state dynamics in Eq. (1), and pyy, (x,|y1.,-) is the prior filtering density for the time
instant 7.

In the update step, we combine the likelihood function with the prior filtering density to obtain the posterior filtering density, i.e.,

Px, vy, %elvi) & bxpyy, KedVi-1) Py x, Ol %) 4
where py |y, (%,1y1:,-1) is the prior filtering density in Eq. (3), and the likelihood function py,x, (;|x,) is defined by
1 T ¢
Py, il o exp [=2 (g0e) =) T2 (80x) = 31)| ®)

with %, being the covariance matrix of the random noise ¢, in Eq. (2). In this way, the filtering density is predicted and updated
through formulas Eq. (3) to Eq. (4) recursively in time. Note that both the prior and the posterior filtering densities in Eq. (3) and
(4) are defined as the continuum level, which is not practical. Thus, one important research direction in nonlinear filtering is to
study how to accurately approximate the prior and the posterior filtering densities.

In the next section, we introduce how to utilize score-based diffusion models to solve the nonlinear filtering problem. The
diffusion model was introduced into nonlinear filtering in our previous work [36] in which the score function is approximated by
training a deep neural network. Although the use of score functions provides accurate results, there are several drawbacks resulting
from training neural networks. First, the neural network needs to be re-trained/updated at each filtering time step, which makes it
computationally expensive. For example, it takes several minutes to train and update the neural-network-based score function at each
filtering time step for solving a 100-D Lorenz-96 model [36]. Second, since neural network models are usually over-parameterized,
a large number of samples are needed to form the training set to avoid over-fitting. Third, hyperparameter tuning and validation of
the trained neural network introduces extra computational overhead. These challenges motivated us to develop the EnSF method
that completely avoids neural network training in score estimation, in order to greatly expand the powerfulness of the score-based
diffusion model in nonlinear filtering.

3. The ensemble score filter (EnSF) method

We now describe the details of the proposed EnSF method. Section 3.1 introduces how to use the score-based diffusion model to
store the information in the prior filtering density in the prediction step of nonlinear filtering. Section 3.2 recalls how to analytically
incorporate the likelihood information to transform the prior score to the posterior score at the update step of nonlinear filtering.
Section 3.3 introduces the implementation details of EnSF and the discussion on its computational complexity.

3.1. The prediction step of EnSF

The goal of the prediction step in EnSF is to develop a score-based diffusion model as a stochastic transport map between the prior
filtering density py,y,., ,(x;|y:;-1) in EQ. (3) and the standard normal distribution. To proceed, we first define a pseudo-temporal
variable

teT =[0,1), (6)

which is different from the temporal domain for defining the state and observation processes in Egs. (1) and (2). At the rth filtering
step, we can define the following forward SDE [37] in the pseudo-temporal domain 7

dZ,,T = b(‘r)Z,,Tdr +o(n)dW,, @

where W, is a standard d-dimensional Brownian motion, b(z) is the drift coefficient, (z) is the diffusion coefficient, and the subscript
(-); indicates that the SDE is defined for the rth filtering step. Note that Eq. (7) is a linear SDE. Thus its solution can be derived as

Z,, =exp [/T b(s)ds] (Z,’O + /T exp [— /S b(r)dr] o(s)dWS> . (8)
0 0 0

F. Bao et al. Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

The goal is to construct a forward SDE to transport any given initial random variable Z,, ~ gz (z,0) at = = 0 to the
standard normal distribution Z;; ~ ¢y,(z,) at = = 1, where ¢y (-) denotes the PDF of the standard normal distribution and
Z,, =lim,_,, Z, .. There are many choices of b(z) and o(z) given in the literature [31,33,38] to achieve the task. In this work, we
use the following contruction of the parameters for the forward SDE:

dl g _dl
b(r) = dlogar and o2(r) = & _ zﬂﬂz’ 9
dr dr dr 7
where the two processes «, and g, are defined by
a,=1-1, pZ=1 for 1€7 =[0,1). (10)

Substituting the definitions of b(zr) and o(zr) into Eq. (8), we can obtain that the conditional probability density function
4z, 12,01 12:0) for any fixed value z,, is the following Gaussian distribution:

qZ,leZ,‘o (Zm—lzt’o) = ¢(a1z,10,ﬂfld)(zr,r |Z,,0), (11)

where ¢(a11r,o, 21,0 is the standard normal PDF with mean a,z, o and covariance matrix °I,. The above equation immediately leads
to

qu,l |Z,v0(zt,1 |zt,0) = }_I_I}]I d’(“rzt.()vﬁ%zld)(zt‘r |Z1,0) = ¢(0,1L,)(Zr4,1)> (12)

meaning that the forward SDE in Eq. (7) can transport any initial distribution to the standard normal distribution at = = 1.
Let the initial state Z,, of the forward SDE in Eq. (7) follow the prior filtering density py,y,., , (x;|y;:,-1) in Eq. (3), we have

Zip =XVuo = d4z,,(20) = x,yy,, e V1- D (13)

such that the forward SDE can transport the prior filtering density to the standard normal distribution. However, what we need is
the transport model in the opposite direction, i.e., from r = 1 to = = 0. To do this, we construct the corresponding reverse SDE [33]

4z, = (DD Z,, = @Sy (Z, . 0)| dT + 0 (0)d W, (14)
where W—T is a standard d-dimensional Brownian motion running backward in time [39], b(r) and o(r) are the same as in the forward

SDE. The notation S},_;(Z, ;, 7) defines the score function associated with the diffusion model for the prior filtering density py |y, |
in Eq. (3), i.e.,

Sii=1(2457) 1= Vz,', log qzm(z,yr), (15)

where the subscript (-),,_; indicates that it is the prior score function without assimilating the observational data at the th filtering
step.

The methodology of EnSF is established based on the following derivation. First, we observe that the probability density function
dz,. can be expressed as follows:

4z, (2.) = /Rd 4z,,.7,0(Z10 20)dZ10 = /Rd 4z, 12,0 Z11210)427,(Z10)d 2, o

Then, by substituting this equation into Eq. (15) and exploiting the fact in Eq. (11), we can rewrite the score function in the form
of the following integral:

Si11=1(247,7)
=V, log </Rd quv,|z,'0(zx,r|Zr,o)qz,'0(zx,o)dzz,0>

1 Ziz — 0240 (16)
- ST e Gl G
/Rd qzm\Zx.o(z’vflzr,O)qzx,o(zr.O)dzr,O R b |
2. — X2
=/ —%w(z,,,,z,yo)qzm(z,yo)dz,,o,
R4 B; ’
where the weight function w(z, ,, z,) is defined by
‘Iz,,,\z,yo(zx,AZr,o)
(2470 240) i= a7)

’ ’ ’r
-/IR‘] qzr.r|Zr,0 (ZY’T |Zt,0)qzr,0 (Zt,O)dZt.O

satisfying that [po w(z, ;. 2,0)47,,(2,0)d2,0 = 1.

Thus, the reserse SDE and the score function fully characterize the prior filtering density in Eq. (3). When applying proper
numerical schemes to approximate the score function S,,_(z,,.7) in Eq. (16) and the reserse SDE in Eq. (14), we can generate an
unlimited number of samples from the prior filtering density. The implementation detail of the prediction step is given in Section 3.3.

3.2. The update step of EnSF
The goal of the update step in EnSF is to incorporate the new observational data Y;, or more specifically the likelihood function in

Eq. (5), obtained at the rth filtering step to update the prior filtering density in a Bayesian fashion. In the context of diffusion models,
this task becomes how to update the prior score function .S,,_; to the posterior score function, denoted by S,,, by incorporating

F. Bao et al. Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

the likelihood function. In this work, we use a similar strategy as our previous work in [36] to analytically add the likelihood
information to the prior score function S;,_; to obtain a posterior score function S, ,.
Specifically, we assume the posterior score function has the following structure:

S22, 7) 1= 81121 > T) + MOV, log py 1 x, (¥ 2.2, (18)

where S,,_(z,,7) is the prior score function in Eq. (16), and V_ logpyx,(y|2,.) is the gradient of the log likelihood function
evaluated at z,,. According to practical usage of nonlinear filtering in numerical weather forecasting (e.g., [40]), the analytical
formula of the observation operator, i.e., the function g in Eq. (2) is usually known, such that it is reasonable to assume the gradient
of the log-likelihood is accessible in EnSF. The key component in the update step is the damping function A(z) satisfying

h(r) is monotonically decreasing in [0, 1] with A(1) = 0 and A(0) = 1, 19

which determines how the likelihood information is gradually introduced into the score function while solving the reserse SDE. In
this work, we use h(r) = 1 — = in the numerical experiments. The likelihood has almost no influence on the prior score when the
pseudo time 7 is close to 1. As = decreases, the diffusion term becomes less dominating and the likelihood information is gradually
injected into the reserse SDE via the drift term.

We emphasize that even though the proposed structure of the posterior score works very well for the numerical examples in
Section 4, there may be a model structure error in the proposed posterior score function in Eq. (18) depending on the choice of h(z).
In other words, the proposed S, in Eq. (18) may not be the score associated with the exact posterior filtering density in Eq. (4).
Correcting the model error will ensure the theoretical rigor but may significantly increase the computational cost, especially for
nonlinear filtering in which the score function needs to be updated dynamically in real time. Thus, how to develop a computationally
efficient model error correction scheme is still an open question and will be considered in our future work.

Remark (Avoiding the Curse of Dimensionality). Incorporating the analytical form of the likelihood information, i.e., V., logpyx,
(32,,), into the score function plays a critical role in avoiding performing high-dimensional approximation, i.e., the curse of
dimensionality, in the update step. In other words, when Ve, 10gpy,x, (312, ,) is given, either in the analytical form or via automatic
differentiation, we do not need to perform any approximation in R?. In comparison, EnKF requires approximating the covariance
matrix and the particle filter requires construction of empirical distributions, both of which involve approximation of the posterior
distribution in R¢.

3.3. Implementation of EnSF

We focus on how to discretize EnSF and approximate the score functions S,, and S, in order to establish a practical
implementation for EnSF. The classic diffusion model methods [31,33,38] train neural networks to learn the score functions. This
approach works well for static problems that does not require fast evolution of the score function. However, this strategy becomes
inefficient in solving the nonlinear filtering problem [36], especially for extremely high-dimensional problems. To address this
challenge, we propose a training-free score estimation approach that uses the Monte Carlo method to directly approximate the
expression of the score function in Eq. (16), which enables extremely efficient implementation of EnSF.

3.3.1. Introducing two hyperparameters into EnSF

The advantage of the choice of the drift and diffusion coefficients in Egs. (9) and (10) is that the resulting forward SDE can map
any distribution to the standard normal distribution within a bounded pseudo time interval 7 = [0, 1). However, this approach also
introduces several computational issues into the diffusion model. The first one is that the denominator in Eq. (16) goes to zero as
7 — 0, which will cause the explosion of the score function when ﬁf = 7 at = = 0; the second one is that when a, = 1 — 7 and the
reserse SDE is solved exactly, the conditional distribution in Eq. (11) indicates that the reserse SDE will drive each path of the state
Z, . of the diffusion model to the infinitesimal neighborhood of one of the samples of Z,, as = — 0, which will limit the exploration
power of the diffusion model. To regularize the reserse SDE and extend the pseudo-temporal domain to [0, 1], we introduce two
hyperparameters, denoted by ¢, and ey, to the definitions of @, and f, in Eq. (10), respectively. After re-parameterization, the actual
a, and B, used in our EnSF implementation are

a,=1-1(1-¢,); ﬂ? = ¢z +7(1 = ¢p). (20)

Based on the above equation, &, is a linear interpolation between (0, 1) and (1,¢,), and /?f is a linear interpolation between (0, ¢4)
and (1,1). The fine-tuning procedure shown in Section 4.2 indicates that even though the performance of EnSF is not sensitive to
the two hyperparameters compared to LETKF, the fine-tuning can still provide significant performance improvement.

3.3.2. Training-free score estimation

Unlike existing methods that use neural network models to learn the score function, in this work we propose to directly discretize
the score representation in Eq. (16). Specifically, we assume that we are given a set of samples {x,_, ;} f: , drawn from the posterior
filtering density function py |y, (x;_i.|y1;) from previous filtering time step ¢ — 1. For any fixed pseudo-time instant 7 € 7
and z,, € R, the integral in Eq. (16) can be estimated by

- &rf(xt—l,jn’wt—l,jn)

p:

- . N Zt,r -
St1-1Z10> D) #8124, 7) 1= Z - Wz or [(X2, 01,5, 21
n=1

F. Bao et al. Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

using a mini-batch {x,_, ; } nN= , with batch size N < J, where f(-,) is the state equation in Eq. (1). The weight w(z, ., f (x,_1 ; , @,y ;,))
in Eq. (17) is approximated by
_ th,r|Zr.0(zth|f(xf_lvfn’w’_lvfn)
w(zx,p f(xt—l,jn 5 wt—l,j,,)) = N 5 (22)
D=1 92,12, G f iy, 001,))

which means w(z,;, f(x,_y; »._;)) can be estimated by the normalized probability density values
{92,,12,0 @il f (61, 025, D}, In practice, the mini-batch {x,_;; }Y, could be a very small subset of {x,_ 11}1 , to ensure
sufficient accuracy in solving the filtering problems. In fact, we observe that the weighting function () in Eq. (22) tends to assign
nearly all the weight to a single term in the summation of Eq. (21). In such cases, the approximated score function is primarily
determined by that one sample, making additional score computations redundant. As a result, we use batch size one for our mini-
batch in the numerical experiments in Section 4, which provides satisfactory performance in terms of accuracy and efficiency.
The training-free score estimation is significantly more efficient than training neural networks to learn the score function [36] in
nonlinear filtering where the posterior filtering density needs to be updated frequently.

3.3.3. Summary of EnSF workflow

Now we combine the aforementioned approximation schemes to develop a detailed algorithm to evolve the filtering density from
PX, 1Yoy i1 V12021 10 Px 1y, (X 1y1). At the tth filtering step, we assume we are given a set of samples {x,_ 1]} , drawn from the
posterior filtering density function py,_y, , ,(x;—;y;,—;) and the goal is to generate a set of samples {x,; }j=1 from Px, v, Kelyio)-
This evolution involves the simulation of the reserse SDE of the diffusion model driven by the approximate score .S;,. Even though
the forward SDE is included in the diffusion model, the training-free score estimation approach allows us to skip the simulation of
the forward SDE..

We use the Euler-Maruyama scheme to discretize the reserse SDE. Specifically, we introduce a partition of the pseudo-temporal
domain 7 = [0, 1], i.e.,

D ={r; |0=19<7y < <7 < gy < <7 =1}

with uniform step-size Az = 1/K. We first draw a set of samples {z{ . }j{=1 from the standard normal distribution. For each sample
z/ |, we obtain the approximate solution zj by recursively evaluating the following scheme

Z, = z;ﬁkﬂ - [b(r,H_l)z{Jk 4 (THI)S,l,(z, _ LTy)] AT + 01y AW

(23)

k1’

fork=K-1,K-2,...,1,0, where AWT’k+ . is a realization of the Brownian increment, and the approximate score function is calculated
by

)- (24)

S J _ < J
SirZi o Te) = S-1F g > Tor) + h(TkH)VZ{T log py, x, 2] o
Tkl

Since the reserse SDE is driven by S,,, we treat {z ro}}',—l as the desired sample set {x, j} from the posterior filtering density

Px,1v,.,(%;|y1.). The EnSF workflow is summarized as a pseudo-algorithm in Algorithm 1.

Algorithm 1: the pseudo-algorithm for EnSF

1: Input: the state equation f(X,,®,), the initial distribution p xo (%0);
2: Generate J samples {x; },{=1 from the initial distribution p %o (*0);
3: forr=1,...,

4: Run the state equation in Eq. (1) to get predictions {f(x,_; ;. @,y j)}]{=l;
5: fork=K-1,...,0 _

6: Compute the weight {{i(z], f(x,_1 . @1 ; DI, } _, using Eq. (22);
7: Compute {S,),_ l(zj,rk+,’fk+l)},{=1 using Eq. (21);

8: Compute { ,|,(zt . Tk+1)},J-:| using Eq. (24);

9: Compute {Zw }j= using Eq. (23);

11: end

10: Let {x,]} —{ztO}jJ "

11: end

3.3.4. Discussion on the computational complexity of EnSF

Since the cost of running the state equation f(X,,w,) in Eq. (1) is problem-dependent, we only discuss the cost of the matrix
operations for Line 6 — 9 in Algorithm 1. In terms of the storage cost, the major storage of EnSF is used to store the two sample
sets, i.e., {x,; }f=1 from the posterior filtering density of the previous time step and {z, ;} J{=1 for the states of the diffusion model.
Each set is stored as a matrix of size J x d where J is the number of samples and d is the dimension of the filtering problem.
The storage requirement is suitable for conducting all the computations on modern GPUs. In terms of the number of floating point
operations, Line 6 — 9 in Algorithm 1 for fixed ¢ and 7 involves O(J X N X d) operations including element-wise operations and
matrix summations, where N < J is the size of the mini-batch used to estimate the weights in Eq. (22). So the total number of

F. Bao et al. Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

floating point operations is on the order of O(J X N x d x K) to update the filtering density from ¢ to t + 1, where K is the number
of time steps for discretizing the reserse SDE. The numerical experiments in Section 4 show that the number of samples J can grow
very slowly with the dimension d while maintaining a satisfactory performance for tracking the Lorenz-96 model, which indicates
the superior efficiency of EnSF in handling extremely high-dimensional filtering problems.

4. Numerical experiments: tracking the 1,000,000-dimensional Lorenz-96 model

We demonstrate EnSF’s capability in handling the high-dimensional Lorenz-96 model. Specifically, we track the state of the
Lorenz-96 model described as follows:

dx;
d—t':(x,-+|—x,-_2)x,-_1+F, i=1,2,....,d, d>4, (25)
where X, = [x,(t), x,(t), ..., x,()]" is a d-dimensional target state, and it is assumed that x_; = x,_;, xq = x4, and x4,; = x;. The

term F is a forcing constant. When F = 8, the Lorenz-96 dynamics (25) becomes a chaotic system, which makes tracking the state
X, a challenging task for all the existing filtering techniques, especially in high dimensional spaces. In our numerical experiments,
we discretize Eq. (25) through the Runge-Kutta (RK4) scheme. To avoid NaN values in the experiments, we clip the solutions of the
forward solver at a magnitude of 50, as extreme values can lead to numerical instabilities. Specifically, we set the ensemble values
to 50 or —50 when they exceed this range. To initialize the Lorenz-96 system, we first pick a random sample from N(0,3%1,) and
then run 1000 burn-in simulation steps through the RK4 scheme to obtain our true initial state X,,. Our initial guess for the initial
ensemble X is a standard Gaussian random variable N(0,1,), which means that we do not possess any effective information about
X, at the beginning.

Since EnSF is designed as a nonlinear filter for high-dimensional problems, we carry out experiments on one million-dimensional
Lorenz-96 system, i.e., d = 1,000,000, where the observational process in Eq. (2) is an arctangent function of the state, i.e.,

Y, | =arctan(X,,)+ £, (26)

The chaotic state dynamics in Eq. (25) along with the highly linear observation in Eq. (26) would make the tracking of the Lorenz-96
system extremely challenging, especially in such high-dimensional space. In what follows, we shall demonstrate the performance
of EnSF in solving the above Lorenz-96 tracking problems in one-million-dimensional space, and we shall also carry out a series of
experiments to compare our method with the state-of-the-art optimal filtering method, i.e., the Local Ensemble Transform Kalman
Filter (LETKF), which is the method adopted by the European Center for Medium-Range Weather Forecasts for hurricane forecasting.

Remark (Reproducibility). EnSF method for the high-dimensional Lorenz-96 problem is implemented in Pytorch with GPU. The
source code is publicly available at https://github.com/zezhongzhang/EnSF. The numerical results in this section can be exactly
reproduced using the code on Github.

4.1. Illustration of EnSF’s accuracy

In the first experiment, we illustrate the accuracy of EnSF in tracking the 1,000,000-dimensional Lorenz-96 model, and we track
the target state 800 time steps with temporal step size 4t = 0.01 and observational noise ¢, ~ (0,0.05%1,).

In Fig. 1, we illustrate the nonlinearity of the observation system by comparing the true state X, and the observation Y, along
four randomly selected directions. Due to the nonlinearity of arctan(), the observation Y, does not provide sufficient information of
the state when X, is outside the domain [-7/2,7/2]. When it happens, the partial derivative of Y, is very close to zero such that
there is very little update of the score function in Eq. (18) along the directions with states outside [—x /2, z/2]. In other words, there
may be only a small subset of informative observations at each filtering time step.

Fig. 2 shows the comparison between the true state trajectories and the estimated trajectories, each sub-figure shows the
trajectories along randomly selected three directions in the 1,000,000-dimensional state space. EnSF is implemented with 500 pseudo
time steps when discretizing the reserse SDE, and the ensemble size that we picked is 20 samples. Since EnSF’s initial estimate is
randomly sampled from N'(0,1,), it is far from the true initial state. After several filtering steps, EnSF gradually captures the true
state by assimilating the observational data. Even though there are some discrepancy between the true and the estimated states, the
accuracy of EnSF is sufficient for capturing such a high-dimensional chaotic system.

4.2. Comparison between EnSF and LETKF

In the following numerical experiments, we compare EnSF with LETKF in tracking the 1,000, 000-dimensional Lorenz-96 model,
and we track the target state 1500 time steps with temporal step size 4t = 0.01 and observational noise &, ~ (0,0.05°1,). To allow
gaps between prediction and update, we implement the Bayesian update procedure with time step size 0.1, i.e., we implement EnSF
or LETKF to update the posterior filtering density after simulating the Lorenz-96 model 10 time steps.

https://github.com/zezhongzhang/EnSF

Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

F. Bao et al.
81 — Observation [a —— Observation
—— True state [—— True state y/ R
| | \
| 61 | \
f : 1
| I \ \
c | < | \ AN
° | o | \ [\
g [g / | [\
> | c / | |
] [}) | |
| y ~
= | 2 \ |
e r g |\ J
5 [5 -
& n |\ |
| |
| |
\ |
\ |
\ /
—6 V
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Filtering steps Filtering steps
—— Observation N
81 — True state /\
c c j" “
S S [\
= © | \
e c | \
[[| \
n (7] | \
3 S ~ | \
2) ‘ ~ m J
© s \ [\J \
g e v
7 o L«-‘/
—— Observation
—— True state
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Filtering steps Filtering steps

Fig. 1. Illustration of the nonlinearity of observation process by comparing the true state X, and the observation Y, along four randomly selected directions.
Due to the nonlinearity of arctan(), the observation Y, does not provide sufficient information of the state when X, is outside the domain [-z/2,7/2].

4.2.1. Hyperparameter fine tuning
An important feature of LETKF is that it utilizes an inflation factor and a localization factor to fine-tune the behavior of the filter

so that the fine-tuned LETKF can be adapted to a specific optimal filtering problem. Therefore, before we conduct the comparison
experiments, we first fine-tune LETKF. According to the computational cost shown in Fig. 7, it takes around 300 s for LETKF to
perform one filtering step in tracking the 1,000,000-dimensional Lorenz-96 model. This means finishing the fine-tuning chart for
LETKF in Figs. 3 and 4 for the one million dimensional cases will cost about 520 days using a single RTX 3070 GPU, which is not
practical. Therefore, we perform LETKF fine-tuning in the 100 dimensional space (d = 100), which costs around 2 h to generate the
fine-tuning charts. Additionally, fine-tuning in 100-dimensional space and testing in 1,000,000-dimensional space will demonstrate
the transferability of LETKF and EnSF.

Specifically, we let the inflation factor vary from 0.9 — 1.8, and the localization factor is tested from 0.0001 —9,' and the ensemble
size that we picked for LETKF is 20. Then, we solve the corresponding Lorenz-96 tracking problem repeatedly 10 times, and the
overall RMSEs averaged on all data assimilation times are presented in Fig. 3. We also use a colorbar to visually represent the
various RMSEs and provide an intuitive understanding of the fine-tuned results. In Fig. 4, we present the average RMSEs (over 10
repetitions) on the last 50 data assimilation times, which indicates the converged performance of LETKF in the tuning procedure.

Based on Fig. 3, we choose the best three parameter combinations for LETKF:

* LETKF (No. 1): Inflation=1.1, localization=4;

« LETKF (No. 2): Inflation=1.0, localization=2;

* LETKF (No. 3): Inflation=1.1; localization=3.
The selected LETKF parameters are highlighted in both Figs. 3 and 4, and will be used for further comparisons with EnSF.

To compare with LETKF, we also fine-tune EnSF’s hyperparameters, which are introduced in Eq. (20). In Figs. 5 and 6, we present
the fine-tune charts for EnSF under the same setup as LETKF, with the RMSEs presented in each block marked by the same colorbar

1 The corresponding testing ranges for inflation and localization are already optimized based on our experience. In practice, one may need to test the inflation

factor and the localization factor in much larger ranges.

F. Bao et al. Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

EPX

Py
Py

—— True state A True initial state * True final state
—— ENSF estimation A EnSF initial state * EnSF final state

Fig. 2. Comparison between the true state trajectories and the estimated trajectories obtained by EnSF, each sub-figure shows the trajectories along randomly
selected three directions in the 1,000,000-dimensional state space. We observe that even though the initial guess for EnSF is far from the true initial state,
EnSF gradually captures the true state by assimilating the observational data after several filtering steps, providing sufficient accuracy in capturing such a
high-dimensional chaotic system.

as used for LETKF fine-tune charts. The best three parameter combinations for EnSF are highlighted in both figures and will be used
for comparison. They are as follows:

* EnSF (No. 1): ¢, = 0.5, €5 = 0.025;
* EnSF (No. 2): ¢, = 0.6, ¢; = 0.025;
* EnSF (No. 3): ¢, =0.5, €5 = 0.05.

We can see from the fine-tune charts for LETKF and EnSF that both methods achieve comparable accuracy with their optimal
hyperparameters. However, EnSF is less sensitive to these hyperparameters with a wide range of configurations yielding good
performance. On the other hand, the performance of LETKF varies dramatically, which indicates that it is very sensitive to the choice
of inflation factor and localization factor. Such sensitivity may cause additional difficulty when attempting to fine-tune LETKF in
more complex problems.

4.2.2. Efficiency comparison between EnSF and LETKF

To proceed, we first carry out an efficiency comparison between EnSF and then show the performance comparison in solving
the one million dimensional problem. In Fig. 7, we showcase the computational cost for implementing one data assimilation step of
EnSF and LETKF in solving problems ranging from 100 dimensions up to 1,000,000 dimensions. The ensemble size chosen for both
methods is 20. The CPU used is a 6-core AMD Ryzen™ 5 5600X, and the GPU used is an NVIDIA RTX 3070. Both EnSF and LETKF
are implemented on CPU and GPU. The LETKF is tested with one-sided neighbor sizes of 3 (LETKF_n3) and 17 (LETKF_n17). The

F. Bao et al.

Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

-5
g 2.515 | 2.826 8 6 3.883 AL 4.4 4.529 4.6 4.70
2 | 5.532 | 0.238 0.34 0 091 [PALE] 4.259 4.046
4
= | 9.986 463 | 0.361 0.244 0 60 0.401 0.579 09 0
N [11.416| 7.831 [MOZETANEEINNG 0.28 0 007 08 I
3
8 “‘_) 12.337110.385(« - 0.6 059 0.319 0 0 2.800 4
=
Wy
E : 12.927]|11.695(2.842 | ©/ = 1.858 [kl 0.369 0.369 0.374 44 l
2
2- 13.470|12.589(6.822 | 1.610 | 1.857 | 3.861 | 1.816 46 2.723 | 2.576
S 13.859]13.268(9.590 9 21 1.663 404 BRELN 0.99 5.335
1
: 14.243113.783(11.628 0 At Il 5.516 | 6.547 | 6.560 | 7.479
f 14.546|14.304(12.962| 7.363 | 5.026 | 8.927 | 8.359 (10.012| 6.768 |10.445
0
0.0001 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
Localization
Fig. 3. LETKF’s fine-tuning chart where the RMSE is averaged on all data assimilation times with 10 repetitions. The highlighted cells are the best three

parameter combinations selected for LETKF.

Fig. 4. LETKF’s fine-tuning chart where the RMSE is averaged on the last 50 data assimilation times with 10 repetitions. The highlighted cells are the best three

Inflation
1.4

2
=}

1.2 1.1 1.0

1.3

1.7 1.6 1.5

1.8

-5
4.813 |1 4.992 | 5.090 | 5.084 | 5.034 | 5.157 | 5.082 | 5.082 | 5.219 | 5.136
10.566 ONFAINONVZINOR:ZN 1.847 <N 4.000 | 5.247 | =k I

4
12.817| 1.956 [0 0.16 N 1.621 0 LR 2.670 | 3.929
13.417(12.619 [NORZSORN0 0.203 0.191 EWNLEN 0.196 [4.529 070 I

3
13.81713.402 [S Mol [oRIN0 %Y 60 O 0 0 3.947 0
14.237|13.995 PRI 0N 0 0.26 0 0.24 4 l

2
14.65814.535(10.926| 1.684 5.581 6 ALl 4.942 W
14.89814.886(14.353| - <k 484 64 0 3.884 | 1.828 | 8.602

1
15.232115.205(15.148| 5.437 | 6.990 | 7.687 | 9.442 |10.521]11.52012.982
15.449115.597(15.540(11.594 | 8.976 [14.458(15.244|17.176]|12.616|15.734

0
0.0001 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Localization

parameter combinations selected for LETKF.

10

F. Bao et al. Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

-5
_
o
S
o
Te]
N
o
© 4
w0
o
o
Yo}
~
S
° 3
.
o
Q.
W 5
N
-
° 2
[Te]
-
o
Yo}
~
-
° 1
N
o
[Te]
N
N
° 0

0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 5. EnSF’s fine-tuning chart where the RMSE is averaged on all data assimilation times with 10 repetitions. The highlighted cells are the best three parameter
combinations selected for EnSF. Compared to LETKF, EnSF’s performance is much more stable with respect to small changes of the hyperparameters.

neighbor size refers to the number of state variables retained for calculating the localized covariance, which depends on the value
of the localization parameter. The one-step data assimilation computing time is calculated as the average of 20 repetitions.

From this efficiency figure, we can see that EnSF is much more efficient than LETKF. From the 100 dimension to the 10,000
dimension, the main computational cost for EnSF is essentially the background computation, and it is only 0.17 s per step on
average. For the 1,000,000 dimensional problem, the average computational cost for EnSF is only approximately 5 seconds per step.
In addition, Fig. 7 demonstrates that EnSF is particularly well-suited for GPU computing on a large scale. Due to the sequential
nature of CPU computing, the computing time grows almost linearly with the problem size. In contrast, GPU computing is much
faster for large-scale matrix operations because of its inherent parallelization. Since all computations in EnSF can be structured as
large matrix operations, it can efficiently utilize GPU computing power. In fact, GPU computation time remains constant as long as
the matrix size fits within the GPU’s tensor core capacity, which explains why the computing time for EnSF (GPU) remains constant
for problems with dimensions up to 10,000. The computing time starts to grow linearly only after the matrix size surpasses the
GPU'’s tensor core capacity, which occurs at approximately 100,000 dimensions. It is also worth noting that all GPU benchmarks
were conducted using an RTX 3070, an older mid-tier gaming GPU. The scalability of EnSF would be significantly enhanced with
modern, professional-grade GPUs, further improving its performance in large-scale applications.

On the other hand, the computational cost of LETKF is approximately 300 seconds per step when implemented with 20 Kalman
filter samples. Although a 6-core CPU could potentially run LETKF faster, the total computational cost of LETKEF is still much higher
than that of EnSF, and LETKF is not suitable for modern GPU machines, which makes it difficult to further scale LETKF algorithms in
practical implementations. Due to the extremely high computational cost of LETKF in solving the 1,000,000-dimensional problem,
it is not feasible to fine-tune LETKF in the one-million-dimensional space. Therefore, we utilize the optimal hyperparameters for
both methods that we obtained in the 100-dimensional space to run the 1,000,000-dimensional problem.

4.2.3. Experimental setting 1: baseline test

We first conduct a baseline comparison using the same problem setting that was used to fine-tune LETKF and EnSF, except
that the dimension of the Lorenz-96 model is now d = 1,000,000. The comparison of root mean square errors (RMSEs) at data
assimilation times is presented in Fig. 8, where we have selected the top three sets of hyperparameters for each method, and the
RMSE:s are plotted with respect to time. In our numerical experiments, RMSEs are calculated by repeating the same test 10 times
with different random initial conditions, and we average the estimation errors over all 1,000,000 directions and 10 repetitions. We

11

F. Bao et al. Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

-5
=W 0.950 0.943 0.922 0.920
o
[Te)
W 0286 0.271 0.263 0.325
° 4
§ 0.408 0.381 0.359 0.462
o)
Sl 0511 0.475 0.447 0.580
° 3
el 0.600 0.558 0.525 0.679
xQ
W 5
Sl 0,680 0.630 0.594 0.765 l
° 2
g 0.751| 0.696 0.657 [0.840
w0
Sl 0.816 0.756 0.713 |0.906
o
1
2l 0.876 0.812 0.765 0.967
[Ye)
Nl 0.932 0.863 0.812 1.022
o
0

0.001 0.1 02 03 04 05 06 07 08 09

Fig. 6. EnSF’s fine-tuning chart where the RMSE is averaged on the last 50 data assimilation times with 10 repetitions. The highlighted cells are the best three
parameter combinations selected for EnSF. Compared to LETKF, EnSF’s performance is much more stable with respect to small changes of the hyperparameters.

can see that both EnSF and LETKF provide good accuracy for tracking the target Lorenz-96 state. EnSF performs consistently well
with three different sets of hyperparameters, while the accuracy of LETKF varies.

Fig. 9 shows the comparison of RMSEs at every time step — including prediction-only steps and data assimilation steps where
prediction and Bayesian updates are performed. From this figure, we can see fluctuations in estimation errors for both methods.
When providing good accuracy, the difference between prediction-only errors and data assimilation errors is small. However, for one
LETKEF test, which provided the least accurate result, there is a larger variance between prediction-only steps and data assimilation
steps. This partially explains why the hyperparameter choice “No. 1” of LETKF did not work as well as the other two.

4.2.4. Experimental setting 2: reduced observation noise test

Next, we modify the problem setting by reducing the observational noise from ¢, ~ (0,0.05%L,) to € ~ (0,0.03%L,;) and conduct the
same comparison experiment. The corresponding RMSEs at data assimilation time steps are presented in Fig. 10, and the RMSEs at
all time steps are presented in Fig. 11.

Although the observational data are more accurate in this experiment, two of the top choices of hyperparameters for LETKF
diverge, and the hyperparameter that provides the best result in this experiment is actually the third-best choice from the fine-
tune chart. This result shows that while the fine-tuned LETKF provides higher accuracy, it is very sensitive to the problem setting.
Even slight modifications to the problem may cause severe divergence in LETKF, with no indication beforehand which set of
hyperparameters will fail. In addition, the all-time RMSEs presented in Fig. 11 verify that LETKF failed with hyperparameters No.
1 and No. 2. In comparison, EnSF continues to provide very accurate estimates for the target state for the top-three choices of its
hyperparameters.

To better illustrate the performance of EnSF and LETKF, we plot the average ensemble spread in Fig. 12. The ensemble spread
is the square root of the average ensemble variance, i.e., \/|[Var(Xousemsio)ll; /d, Where the variance is calculated for each dimension
of the ensemble. While a larger ensemble spread allows a filtering method to better cover the true signal, overly wide spread state
samples provide less useful information about the true target state, which makes the predicted state less reliable. This issue is also
reflected in the all-time RMSEs shown in Fig. 11, where the hyperparameters causing widely spread LETKF samples correspond to
large fluctuations in the RMSEs. On the other hand, EnSF maintains very stable ensemble spread sizes, and the best-performing
LETKF shows a converging ensemble spread.

12

F. Bao et al. Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

103 4

102 4

101 4

Time(s)

100 4

1071 4

102 108 104 10° 108
Dimension
—~— ENSF (CPU) LETKF_n3 (CPU) —+— LETKF_n17 (CPU)
-=+- EnSF (GPU) LETKF_n3 (GPU) -<- LETKF_n17 (GPU)

Fig. 7. One step data assimilation computational cost with ensemble size = 20. EnSF with GPU implementation is much more efficient than LETKF, and EnSF
is more suitable for modern GPU machines.

3.0

g N
=) n
! |

Average RMSE

o
[
!

o
=)
!

Z(I)O 4(|)0 660 860 10|00 12|00 1400
Filtering steps

o

—— EnSF (No.1) - EnSF (No.3) --- LETKF (No.2)
---=ENSF (No.2) —— LETKF (No.1) - LETKF (No.3)

Fig. 8. RMSEs comparison between EnSF and LETKF at data assimilation times. RMSEs are calculated by repeating the same test 10 times with different random
initial conditions, and we average the estimation errors over all 1,000,000 directions and 10 repetitions. No. 1, No. 2, and No. 3 in the legend correspond to the
first, second, and third-best hyperparameters, respectively. We observe that EnSF performs consistently well with the top three sets of hyperparameters, while
the accuracy of LETKF varies.

4.2.5. Experimental setting 3: incomplete knowledge of the model error

In the last experimental setting, we address a more challenging but realistic scenario involving an imperfect model due to incomplete
knowledge. In this scenario, we assume that the state model may not fully reflect the true state propagation, and we model this
unknown portion as a mixture of three levels of independent Gaussian-type random shocks. On the evolution of the true state
trajectory, we introduce independent shocks with probabilities of 2%, 1%, and 0.5%, with corresponding shock sizes of 5%, 20%,

13

F. Bao et al. Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

w
=)

N
[
!

N
=)
!

Average RMSE

o
s
)

|||||||||||||||||||J|||||\lll“‘l\ll\“J““““‘

AALLLLLLLLLALLLLLALLA LALLM UL LL L L L)

mﬂﬁ&ﬁa“pm " e P ... L., .
e U o o
0'0 1 T T T T T T T
0 200 400 600 800 1000 1200 1400

Filtering steps
—— ENSF (No.1) - EnSF (No.3) --- LETKF (No.2)
--- EnSF(No.2) —— LETKF (No.1) LETKF (No.3)

Fig. 9. RMSEs comparison between EnSF and LETKF at every time step — including prediction-only steps and data assimilation steps. Compared to Fig. 8, we
observe fluctuations in estimation errors for both methods.

L T B
i S T o

ToNsven=Sl oS,

Average RMSE

Filtering steps

—— EnSF (No.1) - EnSF (No.3) -=- LETKF (No.2)
--- ENSF (No.2) —— LETKF (No.1) -+ LETKF (No.3)

Fig. 10. RMSEs comparison between EnSF and LETKF at data assimilation time steps with smaller observational noise ¢, ~ (0,0.032I,). We observe that although

the observational data are more accurate, two of the top choices of hyperparameters for LETKF diverge. In comparison, EnSF continues to provide very accurate
estimates for the target state.

and 50% relative to the current state magnitude of the Lorenz-96 model, respectively. For example, when a size 50% shock happens,
every component of the true state x! is perturbed by an additive term 0.5Z;|x!|, where x! is the ith dimension of the true state and
Z; are i.i.d. standard Gaussian noise.

This problem setting mimics a situation where there is a small chance (2%) that the model is inaccurate with a 5% error. There
is an even smaller chance (1%) that the model error is larger, at 20% level, and a very small chance (0.5%) that a large-scale
unexpected error occurs in the model. In practical applications, this scenario is quite common due to the limited knowledge we
have about the real world. For example, in weather forecasting, this variety of unknown model errors is used to simulate the effects
of flow-dependent model uncertainties (see discussions in [41]).

In Fig. 13, we compare the RMSEs, which are calculated by averaging the estimation errors over all 1,000,000 directions, of
EnSF with LETKF in the imperfect model scenario at data assimilation time steps. The observational noise is kept at &, ~ (0,0.05%1,),
which is the setting used for fine-tuning. The figure also shows the time instants when the unexpected shocks occur during the
data assimilation period. We can see from Fig. 13 that all three settings of EnSF can quickly recover from unexpected shocks.
However, LETKF either diverges or struggles to recover from the shocks. Unlike the previous test, where fine-tuning is possible for
a smaller observational noise value, the unexpected shocks in this experiment are caused by the ‘“unknown” portion of the state
model. Since we lack information about these unknown shocks, we cannot fine-tune either EnSF or LETKF. To further validate the

14

F. Bao et al. Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

IS
L

w
|
o

i
11
\l' 'llu

i ii".é‘?:!hﬁi“lﬂ i

e
e L T

P e e

B
= b
o

N
1

e e e
==
=
=
=
o

|

Average RMSE

260 460 660 B(I)O 10|00 12|OO 14IOO
Filtering steps

—— EnSF (No.1) - EnSF (No.3) —-== LETKF (No.2)
--- ENSF (No.2) —— LETKF (No.1) -+ LETKF (No.3)

Fig. 11. RMSEs comparison between EnSF and LETKF at every time step with smaller observation noise ¢, ~ (0,0.032I,).

2.00

1.75 A

Average spread
o o o = = =
N w ~ o N w
w o w o w o

0 2(|)0 4(|)0 6(|)0 860 10|00 12'00 14|00
Filtering steps

—— EnSF (No.1) - EnSF (No.3) --- LETKF (No.2)
---EnSF (No.2) —— LETKF (No.1) - LETKF (No.3)

Fig. 12. Average ensemble spread in the smaller observation noise test. While a larger ensemble spread allows a filtering method to better cover the true signal,
overly wide spread state samples provide less useful information about the true target state.

reliable performance of EnSF, we repeat the above experiments four times with different occurrences of random shocks and show
the corresponding tracking RMSEs of EnSF in Fig. 16. From this figure, we can see that EnSF consistently generates low errors and
quickly recovers from unexpected shocks.

In Fig. 14, we present the RMSE comparison at every time step, and in Fig. 15 we show the comparison of average ensemble
spreads in this incomplete knowledge experiment. From these figures, we can see that LETKF has highly fluctuating estimation errors,
and its average ensemble spreads are generally wide or even divergent. These two pieces of evidence indicate that LETKF is not stable
enough to handle unknown model errors due to incomplete knowledge or information. To further validate the reliable performance
of EnSF, we repeat the above experiments four times with different realizations of random shocks and show the corresponding
tracking RMSEs of EnSF in Fig. 16. From this figure, we can see that EnSF constantly generates low errors, and it always recovers
from unexpected shocks quickly.

In this experimental setting, we introduce an extra metric to evaluate the performance of EnSF and LETKF, namely the continuous
ranked probability score (CRPS). Specifically, at a given time step, for a marginal dimension i, let meeble(z) and F] (z) be the
empirical cumulative distribution functions of the ensemble and the true state, respectively, where Ft’me(z) =1, 3 (z) Then, we
let CRPS! := f (ensmeble(z) F,, e(z))2dz, and we average the CRPS over all 1,000,000 dimensions. The CRPS measures how well
the ensemble distribution matches with the true state. Lower CRPS values indicate that the ensemble distribution is well-aligned
with the true state with a small uncertainty, while higher CRPS values indicate otherwise. In this experiment, we plot the CRPS

15

F. Bao et al. Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

Average RMSE

0 260 4(I)0 6(')0 B(I)O IOIOO 12|OO 14IOO
Filtering steps
—— EnSF (No.1) - EnSF (No.3) --- LETKF (No.2)
--- EnSF(No.2) ~—— LETKF (No.1) - LETKF (No.3)

Fig. 13. RMSEs comparison between EnSF and LETKF in the incomplete knowledge experiment, where the unknown model error is injected into the state

equation as random shocks. We observe that EnSF can quickly recover from unexpected shocks, but LETKF either diverges or struggles to recover from the
shock.

” L L

Average RMSE

0 260 400 6(')0 B(I)O IOIOO 12|OO 14IOO
Filtering steps
—— EnSF (No.1) - EnSF (No.3) --- LETKF (No.2)
--- EnSF(No.2) —— LETKF (No.1) - LETKF (No.3)

Fig. 14. Comparison between EnSF and LETKF at every time step in the incomplete knowledge experiment, where the unknown model error is injected into

the state equation as random shocks. We observe that LETKF has highly fluctuating estimation errors, but EnSF’s error fluctuation between two filtering steps
is much smaller.

comparison between EnSF and LETKF at data assimilation steps in Fig. 17. From this figure, we can see that EnSF outperforms
LETKEF in this CRPS comparison.

5. Conclusion

We propose the EnSF method to solve very high-dimensional nonlinear filtering problems. The avoidance of training neural
networks to approximate the score function makes it computationally feasible for EnSF to efficiently solve the 1,000,000-dimensional
Lorenz-96 problem. We observe in the numerical experiments that one million dimensions is definitely not the upper limit of EnSF’s
capability, especially with the help of modern high-performance computing. In addition to exploring higher-dimensional cases,
several key aspects of EnSF can be improved in future work. First, we will investigate how fast the number of samples, i.e., J in
Algorithm 1, needs to grow with the dimensionality to ensure robust performance. Second, we will expand the capability of the
current EnSF to handle partial observations, i.e., only a subset of the state variables are involved in the observation process, which
is critical to real-world data assimilation problems. In fact, Fig. 1 shows that the arctan() observation function can be reviewed as a

16

F. Bao et al.

Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

3.0
2.51
©
® 2.0
—
o
n
o 151
(@)}
©
—
(‘l>) 1.0
I
0.5 1
0'0_ T T T T T T T
0 200 400 600 800 1000 1200 1400
Filtering steps
—— EnSF (No.1) - EnSF (No.3) --- LETKF (No.2)
--- ENSF(No.2) —— LETKF (No.1) - LETKF (No.3)

Fig. 15. Average ensemble spread in the incomplete knowledge experiment, where the unknown model error is injected into the state equation as random

shocks. We observe that the ensemble spreads of LETKF are generally wide or

Random shock 1

even divergent.

Random shock 2

3.5 3.5
w w
%) %)
= =
o o
0.0 T T T T T T T 0.0 T T T T T T T
0 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400
Filtering steps Filtering steps
is Random shock 3 is Random shock 4
w w
%) 0
= =
o o
0.0 : T : T . T . 0.0 : T : T . T .
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Filtering steps Filtering steps
—— ENSF (No.1) === EnSF (No.2) - EnSF (No.3)

Fig. 16. Repeated experiments of EnSF in the incomplete knowledge scenarios, each subfigure shows the RMSE of EnSF for a different occurrence of random
shocks. We observe that EnSF performs stably with different random shock patterns.

17

F. Bao et al. Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

3.0

Average CRPS

o
)
)

o
o
L

2(')0 4(|)0 6(|)0 8(')0 10|00 12|00 14'00
Filtering steps

o

—— EnSF (No.1) -+ EnSF (No.3) LETKF (No.2)
---EnSF (No.2) LETKF (No.1) LETKF (No.3)

Fig. 17. CRPS comparison for posterior filtering densities. Lower CRPS values indicate that the distribution is well-aligned with the true state. We observe that
EnSF stably outperforms LETKF in this experiment.

partial observation in the sensing that there is no observational information when the state is outside [—z /2, z/2]. Third, the current
definition of the weight function A(z) in Eq. (18) for incorporating the likelihood into the score function is empirical. The current
choice of h(r) may introduce a bias into the posterior state estimation. We will investigate whether there is an optimal weight
function to gradually incorporate the likelihood information into the reserse SDEs. Fourth, the efficiency of reserse sampling can
also be improved by incorporating advanced stable time-stepping schemes, e.g., the exponential integrator, to significantly reduce
the number of time steps in the discretization of the reserse process in the diffusion model. Fifth, we will test the performance of
EnSF for real-world models, e.g., the IFS model developed by ECMWEF, and the existing Al-based weather models, e.g., FourCastNet,
GraphCast.

CRediT authorship contribution statement

Feng Bao: Writing — review & editing, Writing — original draft, Visualization, Validation, Methodology, Formal analysis,
Conceptualization. Zezhong Zhang: Writing — review & editing, Writing — original draft, Visualization, Validation, Software,
Methodology, Investigation, Formal analysis, Conceptualization. Guannan Zhang: Writing — review & editing, Writing — original
draft, Visualization, Validation, Supervision, Software, Resources, Project administration, Methodology, Investigation, Funding
acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific
Computing Research, Applied Mathematics program under the contract ERKJ443 at the Oak Ridge National Laboratory, which is
operated by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-000R22725. The first author (FB) would
also like to acknowledge the support from U.S. National Science Foundation through project DMS-2142672 and the support from
the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program
under Grant DE-SC0022297.

Data availability

No data was used for the research described in the article.

18

F. Bao et al. Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447

References

[1]

[2]

[3]
[4]

[5]
[6]

[71
[8]
[91

[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]
[27]

[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]

[39]

[40]
[41]

F. Bao, Y. Cao, P. Maksymovych, Backward sde filter for jump diffusion processes and its applications in material sciences, Commun. Comput. Phys. 27
(2020) 589-618.

F. Bao, N. Cogan, A. Dobreva, R. Paus, Data assimilation of synthetic data as a novel strategy for predicting disease progression in alopecia areata, Math.
Med. Biol. J. IMA 06 (2021).

M.F. Bugallo, T. Lu, P.M. Djuric, Target tracking by multiple particle filtering, in: 2007 IEEE Aerospace Conference, 2007, pp. 1-7.

G. Evensen, The ensemble Kalman filter for combined state and parameter estimation: Monte Carlo techniques for data assimilation in large systems, IEEE
Control Syst. Mag. 29 (3) (2009) 83-104.

B. Ramaprasad, Stochastic filtering with applications in finance, 2010.

G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte carlo methods to forecast error statistics, J. Geophys. Res.:
Oceans 99 (1994) 10143-10162.

P.L. Houtekamer, H.L. Mitchell, Data assimilation using an ensemble kalman filter technique, Mon. Weather Rev. 126 (3) (1998) 796-811.

G. Evensen, Data Assimilation: The Ensemble Kalman Filter, Springer-Verlag, Berlin, Heidelberg, 2006.

B.R. Hunt, E.J. Kostelich, I. Szunyogh, Efficient data assimilation for spatiotemporal chaos: A local ensemble transform kalman filter, Physica D 230 (2007)
112-126.

T. Miyoshi, A. Amemiya, S. Otsuka, Y. Maejima, J. Taylor, T. Honda, H. Tomita, S. Nishizawa, K. Sueki, T. Yamaura, Y. Ishikawa, S. Satoh, T. Ushio, K.
Koike, A. Uno, Big data assimilation: Real-time 30-second-refresh heavy rain forecast using fugaku during tokyo olympics and paralympics, in: Proceedings
of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 23, New York, NY, USA, Association for Computing
Machinery, 2023.

P.L. Houtekamer, X. Deng, H.L. Michell, S.-J. Baek, N. Gagnon, Higher resolution in an operational ensemble Kalman filter, Mon. Weather Rev. 142 (2014)
1143-1162.

C. Schraff, H. Reich, A. Rhodin, A. Schomburg, K. Stephan, A. Periaiez, R. Potthast, Kilometre-scale ensemble data assimilation for the COSMO model
(KENDA), Q. J. R. Meteorol. Soc. 142 (2016) 1453-1472.

A. Aksoy, D. Dowell, C. Snyder, A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale
analyses, Mon. Weather Rev. 137 (2009) 1805-1824.

A. Aksoy, D. Dowell, C. Snyder, A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part II: Short-range
ensemble forecasts, Mon. Weather Rev. 138 (2010) 1273-1292.

N. Gordon, D. Salmond, A. Smith, Novel approach to nonlinear/non-gaussian bayesian state estimation, IEE Proc.-F 140 (2) (1993) 107-113.

A.J. Chorin, X. Tu, Implicit sampling for particle filters, Proc. Natl. Acad. Sci. 106 (41) (2009) 17249-17254.

C. Andrieu, A. Doucet, R. Holenstein, Particle markov chain Monte carlo methods, J. R. Stat. Soc. Ser. B Stat. Methodol. 72 (3) (2010) 269-342.

A.J. Chorin, X. Tu, Implicit sampling for particle filters, Proc. Nat. Acad. Sc. USA 106 (2009) 17249-17254.

K. Kang, V. Maroulas, I. Schizas, F. Bao, Improved distributed particle filters for tracking in a wireless sensor network, Comput. Statist. Data Anal. 117
(2018) 90-108.

M.K. Pitt, N. Shephard, Filtering via simulation: auxiliary particle filters, J. Amer. Statist. Assoc. 94 (446) (1999) 590-599.

C. Snyder, T. Bengtsson, P. Bickel, J. Anderson, Obstacles to high-dimensional particle filtering, Mon. Weather Rev. 136 (2008) 4629-4640.

A. Spantini, R. Baptista, Y. Marzouk, Coupling techniques for nonlinear ensemble filtering, SIAM Rev. 64 (4) (2022) 921-953.

A. Solonen, T. Cui, J. Hakkarainen, Y. Marzouk, On dimension reduction in gaussian filters, Inverse Problems 32 (4) (2016) 045003.

A. Chorin, M. Morzfeld, X. Tu, Implicit particle filters for data assimilation, Commun. Appl. Math. Comput. Sci. 5 (2) (2010) 221-240.

F. Bao, Y. Cao, C. Webster, G. Zhang, A hybrid sparse-grid approach for nonlinear filtering problems based on adaptive-domain of the Zakai equation
approximations, SIAM/ASA J. Uncertain. Quantif. 2 (1) (2014) 784-804.

M. Zakai, On the optimal filtering of diffusion processes, Z. Wahrscheinlichkeitstheor. Verwandte Geb. 11 (1969) 230-243.

J. Todter, P. Kirchgessner, L. Nerger, B. Ahrens, Assessment of a nonlinear ensemble transform filter for high-dimensional data assimilation, Mon. Weather
Rev. 144 (2016) 409-427.

J. Poterjoy, R.A. Sobash, J.L. Anderson, Convective-scale data assimilation for the weather research and forecasting model using the local particle filter,
Mon. Weather Rev. 145 (2017) 1897-1918.

A. Rojahn, N. Schenk, P.J. van Leeuwen, R. Potthast, Particle filtering and Gaussian mixtures - on a localized mixture coefficients particle filter (LMCPF)
for global NWP, J. Meteorol. Soc. Japan 101 (2023) 233-253.

P. Dhariwal, A. Nichol, Diffusion models beat gans on image synthesis, in: Advances in Neural Information Processing Systems, vol. 34, Curran Associates,
Inc., 2021, pp. 8780-8794.

J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models, in: Advances in Neural Information Processing Systems, vol. 33, Curran Associates,
Inc., 2020, pp. 6840-6851.

Y. Song, S. Ermon, Generative modeling by estimating gradients of the data distribution, in: Advances in Neural Information Processing Systems, vol. 32,
2019.

Y. Song, J. Sohl-Dickstein, D.P. Kingma, A. Kumar, S. Ermon, B. Poole, Score-based generative modeling through stochastic differential equations, in:
International Conference on Learning Representations, 2021.

D. Lu, Y. Liu, Z. Zhang, F. Bao, G. Zhang, A diffusion-based uncertainty quantification method to advance e3sm land model calibration, J. Geophys. Res.
Mach. Learn. Comput. 1 (3) (2024) e2024JH000234 e2024JH000234 2024JH000234.

Y. Liu, M. Yang, Z. Zhang, F. Bao, Y. Cao, G. Zhang, Diffusion-model-assisted supervised learning of generative models for density estimation, J. Mach.
Learn. Model. Comput. 5 (1) (2024) 25-38.

F. Bao, Z. Zhang, G. Zhang, A score-based nonlinear filter for data assimilation, J. Comput. Phys. 514 (2024) 113207.

Diederik Kingma, Tim Salimans, Ben Poole, Jonathan Ho, Variational diffusion models, Adv. Neural Inf. Process. Syst. 34 (2021) 21696-21707.

P. Vincent, A connection between score matching and denoising autoencoders, Neural Comput. 23 (7) (2011) 1661-1674.

F. Bao, Y. Cao, A. Meir, W. Zhao, A first order scheme for backward doubly stochastic differential equations, SIAM/ASA J. Uncertain. Quantif. 4 (1)
(2016) 413-445.

ECMWF, IFS documentation CY48R1 - Part I: Observations. Number 1. ECMWF, 06/2023, 2023.

I.M. Held, R.T. Pierrehumbert, S.T. Garner, K.L. Swanson, Surface quasi-geostrophic dynamics, J. Fluid Mech. 282 (1995) 1-20.

19

http://refhub.elsevier.com/S0045-7825(24)00702-3/sb1
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb1
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb1
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb2
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb2
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb2
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb3
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb4
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb4
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb4
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb5
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb6
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb6
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb6
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb7
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb8
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb9
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb9
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb9
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb10
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb10
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb10
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb10
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb10
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb10
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb10
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb11
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb11
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb11
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb12
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb12
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb12
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb13
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb13
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb13
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb14
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb14
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb14
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb15
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb16
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb17
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb18
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb19
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb19
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb19
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb20
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb21
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb22
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb23
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb24
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb25
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb25
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb25
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb26
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb27
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb27
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb27
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb28
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb28
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb28
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb29
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb29
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb29
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb30
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb30
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb30
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb31
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb31
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb31
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb32
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb32
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb32
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb33
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb33
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb33
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb34
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb34
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb34
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb35
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb35
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb35
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb36
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb37
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb38
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb39
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb39
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb39
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb40
http://refhub.elsevier.com/S0045-7825(24)00702-3/sb41

	An ensemble score filter for tracking high-dimensional nonlinear dynamical systems
	Introduction
	Problem setting
	The ensemble score filter (EnSF) method
	The prediction step of EnSF
	The update step of EnSF
	Implementation of EnSF
	Introducing two hyperparameters into EnSF
	Training-free score estimation
	Summary of EnSF workflow
	Discussion on the computational complexity of EnSF

	Numerical experiments: tracking the 1,000,000-dimensional Lorenz-96 model
	Illustration of EnSF's accuracy
	Comparison between EnSF and LETKF
	Hyperparameter fine tuning
	Efficiency comparison between EnSF and LETKF
	Experimental setting 1: baseline test
	Experimental setting 2: reduced observation noise test
	Experimental setting 3: incomplete knowledge of the model error

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

