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A B S T R A C T

We propose an ensemble score filter (EnSF) for solving high-dimensional nonlinear filtering
problems with superior accuracy. A major drawback of existing filtering methods, e.g., particle
filters or ensemble Kalman filters, is the low accuracy in handling high-dimensional and highly
nonlinear problems. EnSF addresses this challenge by exploiting the score-based diffusion model,
defined in a pseudo-temporal domain, to characterize the evolution of the filtering density.
EnSF stores the information of the recursively updated filtering density function in the score
function, instead of storing the information in a set of finite Monte Carlo samples (used
in particle filters and ensemble Kalman filters). Unlike existing diffusion models that train
neural networks to approximate the score function, we develop a training-free score estimation
method that uses a mini-batch-based Monte Carlo estimator to directly approximate the score
function at any pseudo-spatial–temporal location, which provides sufficient accuracy in solving
high-dimensional nonlinear problems while also saving a tremendous amount of time spent
on training neural networks. High-dimensional Lorenz-96 systems are used to demonstrate
the performance of our method. EnSF provides superior performance, compared with the
state-of-the-art Local Ensemble Transform Kalman Filter, in reliably and efficiently tracking
extremely high-dimensional Lorenz systems (up to 1,000,000 dimensions) with highly nonlinear
observation processes.

1. Introduction

Tracking high-dimensional nonlinear dynamical systems, also known as nonlinear filtering, is a significant research area in data
assimilation, with applications in weather forecasting, material science, biology, and finance [1–5]. The goal of addressing a filtering
problem is to exploit noisy observational data streams to estimate the unobservable state of a stochastic dynamical system of interest.
In linear filtering, where both the state and observation dynamics are linear, the Kalman filter provides an optimal estimate for the
unobservable state, attainable analytically under the Gaussian assumption. However, maintaining the covariance matrix of a Kalman
filter is computationally infeasible for high-dimensional systems. For this reason, ensemble Kalman filters (EnKF) were developed
in [6–8] to represent the distribution of the system state using a collection of state samples, called an ensemble, and to replace
the covariance matrix in the Kalman filter with the sample covariance computed from the ensemble. EnKF methods, especially the
Local Ensemble Transform Kalman Filter (LETKF) [9,10], are deployed operationally [11,12] widely used to integrate observations
for the purpose of understanding complex processes such as atmospheric convection [13,14]. Despite many successful applications,
EnKFs suffer from fundamental limitations as they make Gaussian assumptions in their update step, which can lead to severe model
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ias when solving highly nonlinear systems. Hyperparameters like localization and inflation have been added to EnKF to handle
high-dimensional nonlinear problems. However, the accuracy of EnKF is highly sensitive to the hyperparameters, as demonstrated
in Section 4, such that fine-tuning needs to be re-conducted whenever there is a small change, e.g., observation noise level, to
the target filtering problem. Moreover, even though EnKF (e.g., LETKF [9,10]) is known to have good scalability for CPU-based
parallel computing platforms [10], the existing EnKF algorithms are not suitable for modern GPU-based supercomputers because
the parallelization of EnKF resulting from localization, i.e., decomposing the large covariance matrix into a large number of very
small covariance matrices, cannot fully exploit the computing power of GPUs.

In addition to the EnKF, several effective methods have been developed to tackle nonlinearity in data assimilation. These methods
include the particle filter [15–24], the Zakai filter [25,26], and so on. For example, the particle filter employs a set of random
amples, referred to as particles, to construct an empirical distribution to approximate the filtering density of the target state. Upon
eceiving observational data, the particle filter uses Bayesian inference to assign likelihood weights to the particles. A resampling

process is iteratively performed, generating duplicates of particles with large weights and discarding particles with small weights.
lthough particle filters emerged around the same time as the EnKF, their implementation to large-scale models has been difficult due

to the curse of dimensionality (weight collapse). This means that particle filters require prohibitively large ensemble sizes (number
of particles) to ensure long-term stability. While there have been significant advances in this direction [27–29], the resulting particle
filters often provide marginal advantages over the state-of-the-art EnKFs used in operations.

In this work, we introduce a novel ensemble score filter (EnSF) that exploits the score-based diffusion model [30–35], defined
in a pseudo-temporal domain to characterize the evolution of the filtering density. The score-based diffusion model is a popular
generative machine learning model for generating samples from a target distribution. Diffusion models have been applied to
nonlinear filtering problems in our previous work [36]. Despite the promising performance, a major drawback of the method in [36]
is that the neural network used to learn the score function needs to be re-trained at every filtering step after assimilating new
observational data. Even though we can store the checkpoint of the neural network weights from previous filtering step, the neural
network training still takes several minutes at each filtering step for a 100-dimensional Lorenz-96 model. Moreover, training the
score function will require storing all the paths of the forward stochastic processes of the diffusion model, which leads to high
storage requirements for high-dimensional problems. To resolve these issues, the key idea of EnSF is to completely avoid training
neural networks to learn the score function. Instead, we derive the closed form of the score function and develop a training-free
score estimation that uses mini-batch-based Monte Carlo estimators to directly approximate the score function at any pseudo-spatial–
emporal location in the process of solving the reverse-time diffusion sampler. Numerical examples in Section 4 demonstrate that
he training-free score estimation approach can provide sufficient accuracy in solving high-dimensional nonlinear problems as well
s save tremendous amount of time spent on training neural networks. Another essential aspect of EnSF is its analytical update
tep, which gradually incorporates data information into the score function. This step is crucial in mitigating the degeneracy issue
aced when dealing with very high-dimensional nonlinear filtering problems. The main contributions of this work are summarized
s follows:

• We develop a training-free score function estimator that allows the diffusion model to be updated in real-time without
re-training when new observational data is collected.

• We showcase the remarkable robustness of the performance of EnSF with respect to its hyperparameters by using a set of
fine-tuned hyperparameters to dramatically different scenarios, e.g., different dimensions, different observation noise, etc.

• We showcase the superior performance of EnSF by comparing it with the state-of-the-art LETKF method in tracking
1,000,000-dimensional Lorenz-96 models with highly nonlinear observations.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the nonlinear filtering problem. In Section 3,
we provide a comprehensive discussion to develop our EnSF method. In Section 4, we demonstrate the performance of the EnSF
method in solving a Lorenz-96 tracking problem in high-dimensional space with highly nonlinear observation processes, and we
shall also conduct a series of comparison studies between EnSF and the state-of-the-art LETKF method. Concluding remarks and
uture directions are given in Section 5.

. Problem setting

Nonlinear filtering is a process used to estimate the states of a system that evolves in time, where the system dynamics and
he measurements are influenced by nonlinearities and noise. This estimation problem is complex because nonlinearity distorts the
elationship between the observed measurements and the actual states, making linear prediction and update methods ineffective.
pecifically, we are interested in tracking the state of the following discretized stochastic dynamical system:

𝑋𝑡 = 𝑓 (𝑋𝑡−1, 𝜔𝑡−1), (1)

where 𝑡 ∈ Z+ is the discrete time index, 𝑋𝑡 ∈ R𝑑 is the state of the system governed by a physical model 𝑓 ∶ R𝑑 × R𝑘 ↦ R𝑑 ,
and 𝜔𝑡−1 ∈ R𝑘 is a random variable representing the uncertainty in 𝑓 . This uncertainty may be caused by natural perturbations to
the physical model, incomplete knowledge, or unknown features of the model 𝑓 . The existence of such uncertainty makes direct
estimation and prediction of the state of the dynamical model infeasible. To filter out the uncertainty and make accurate estimations
of the state, we rely on partial noisy observations of the state 𝑋𝑡 given as follows:
𝑌𝑡 = 𝑔(𝑋𝑡) + 𝜀𝑡, (2)
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here 𝑌𝑡 ∈ R𝑟 is the observational data collected by nonlinear observation function 𝑔(𝑋𝑡), and the observation is also perturbed by
a Gaussian noise 𝜀𝑡 ∼  (0, 𝛴𝑡).

The goal of the filtering problem is to find the best estimate, denoted by 𝑋̂𝑡, of the hidden state 𝑋𝑡, given the observation
nformation 𝑡 ∶= 𝜎(𝑌1∶𝑡), which is the 𝜎-algebra generated by the observational data up to the time instant 𝑡. In mathematics,
uch optimal estimate for 𝑋𝑡 is usually defined by the optimal filter, i.e., the conditional expectation for 𝑋𝑡 conditioning on the

observational information: 𝑋̂𝑡 ∶= E[𝑋𝑡|𝑡]. The standard approach for solving the optimal filtering problem is the Bayesian filter, in
hich we aim to approximate the conditional probability density function (PDF) of the state, denoted by 𝑝𝑋𝑡|𝑌1∶𝑡 (𝑥𝑡|𝑦1∶𝑡), which is

eferred to as the filtering density. The general idea of the Bayesian filter is to recursively incorporate observational data to describe
the evolution of the filtering density from time 𝑡 − 1 to 𝑡 in two steps, i.e., the prediction step and the update step.

In the prediction step, we utilize the Chapman–Kolmogorov formula to propagate the state variable from 𝑡− 1 to 𝑡 and obtain the
rior filtering density

𝑝𝑋𝑡|𝑌1∶𝑡−1 (𝑥𝑡|𝑦1∶𝑡−1) = ∫R𝑑
𝑝𝑋𝑡|𝑋𝑡−1

(𝑥𝑡|𝑥𝑡−1)𝑝𝑋𝑡−1|𝑌1∶𝑡−1 (𝑥𝑡−1|𝑦1∶𝑡−1)𝑑 𝑥𝑡−1, (3)

here 𝑝𝑋𝑡−1|𝑌1∶𝑡−1 (𝑥𝑡−1|𝑦1∶𝑡−1) is the posterior filtering density obtained at the time instant 𝑡 − 1, 𝑝𝑋𝑡|𝑋𝑡−1
(𝑥𝑡|𝑥𝑡−1) is the transition

probability density derived from the state dynamics in Eq. (1), and 𝑝𝑋𝑡|𝑌1∶𝑡−1 (𝑥𝑡|𝑦1∶𝑡−1) is the prior filtering density for the time
nstant 𝑡.

In the update step, we combine the likelihood function with the prior filtering density to obtain the posterior filtering density, i.e.,

𝑝𝑋𝑡|𝑌1∶𝑡 (𝑥𝑡|𝑦1∶𝑡) ∝ 𝑝𝑋𝑡|𝑌1∶𝑡−1 (𝑥𝑡|𝑦1∶𝑡−1) 𝑝𝑌𝑡|𝑋𝑡
(𝑦𝑡|𝑥𝑡), (4)

here 𝑝𝑋𝑡|𝑌1∶𝑡−1 (𝑥𝑡|𝑦1∶𝑡−1) is the prior filtering density in Eq. (3), and the likelihood function 𝑝𝑌𝑡|𝑋𝑡
(𝑦𝑡|𝑥𝑡) is defined by

𝑝𝑌𝑡|𝑋𝑡
(𝑦𝑡|𝑥𝑡) ∝ exp

[

−1
2
(

𝑔(𝑥𝑡) − 𝑦𝑡
)⊤𝛴−1

𝑡
(

𝑔(𝑥𝑡) − 𝑦𝑡
)

]

, (5)

with 𝛴𝑡 being the covariance matrix of the random noise 𝜀𝑡 in Eq. (2). In this way, the filtering density is predicted and updated
through formulas Eq. (3) to Eq. (4) recursively in time. Note that both the prior and the posterior filtering densities in Eq. (3) and
(4) are defined as the continuum level, which is not practical. Thus, one important research direction in nonlinear filtering is to
tudy how to accurately approximate the prior and the posterior filtering densities.

In the next section, we introduce how to utilize score-based diffusion models to solve the nonlinear filtering problem. The
iffusion model was introduced into nonlinear filtering in our previous work [36] in which the score function is approximated by

training a deep neural network. Although the use of score functions provides accurate results, there are several drawbacks resulting
from training neural networks. First, the neural network needs to be re-trained/updated at each filtering time step, which makes it
computationally expensive. For example, it takes several minutes to train and update the neural-network-based score function at each
filtering time step for solving a 100-D Lorenz-96 model [36]. Second, since neural network models are usually over-parameterized,
a large number of samples are needed to form the training set to avoid over-fitting. Third, hyperparameter tuning and validation of
the trained neural network introduces extra computational overhead. These challenges motivated us to develop the EnSF method
that completely avoids neural network training in score estimation, in order to greatly expand the powerfulness of the score-based
diffusion model in nonlinear filtering.

3. The ensemble score filter (EnSF) method

We now describe the details of the proposed EnSF method. Section 3.1 introduces how to use the score-based diffusion model to
store the information in the prior filtering density in the prediction step of nonlinear filtering. Section 3.2 recalls how to analytically
incorporate the likelihood information to transform the prior score to the posterior score at the update step of nonlinear filtering.
Section 3.3 introduces the implementation details of EnSF and the discussion on its computational complexity.

3.1. The prediction step of EnSF

The goal of the prediction step in EnSF is to develop a score-based diffusion model as a stochastic transport map between the prior
filtering density 𝑝𝑋𝑡|𝑌1∶𝑡−1 (𝑥𝑡|𝑦1∶𝑡−1) in Eq. (3) and the standard normal distribution. To proceed, we first define a pseudo-temporal
variable

𝜏 ∈  = [0, 1), (6)

which is different from the temporal domain for defining the state and observation processes in Eqs. (1) and (2). At the 𝑡th filtering
step, we can define the following forward SDE [37] in the pseudo-temporal domain  :

𝑑 𝑍𝑡,𝜏 = 𝑏(𝜏)𝑍𝑡,𝜏𝑑 𝜏 + 𝜎(𝜏)𝑑 𝑊𝜏 , (7)

where 𝑊𝜏 is a standard 𝑑-dimensional Brownian motion, 𝑏(𝜏) is the drift coefficient, 𝜎(𝜏) is the diffusion coefficient, and the subscript
(⋅)𝑡 indicates that the SDE is defined for the 𝑡th filtering step. Note that Eq. (7) is a linear SDE. Thus its solution can be derived as

𝑍𝑡,𝜏 = exp
[

∫

𝜏

0
𝑏(𝑠)𝑑 𝑠

] (
𝑍𝑡,0 + ∫

𝜏

0
exp

[

−∫

𝑠

0
𝑏(𝑟)𝑑 𝑟

]

𝜎(𝑠)𝑑 𝑊𝑠

)

. (8)
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The goal is to construct a forward SDE to transport any given initial random variable 𝑍𝑡,0 ∼ 𝑞𝑍𝑡,0
(𝑧𝑡,0) at 𝜏 = 0 to the

tandard normal distribution 𝑍𝑡,1 ∼ 𝜙(0,𝐈𝑑 )(𝑧𝑡,1) at 𝜏 = 1, where 𝜙(0,𝐈𝑑 )(⋅) denotes the PDF of the standard normal distribution and
𝑍𝑡,1 ≡ lim𝜏→1 𝑍𝑡,𝜏 . There are many choices of 𝑏(𝜏) and 𝜎(𝜏) given in the literature [31,33,38] to achieve the task. In this work, we
use the following contruction of the parameters for the forward SDE:

𝑏(𝜏) = d log 𝛼𝜏
d𝜏

and 𝜎2(𝜏) = d𝛽2𝜏
d𝜏

− 2 d log 𝛼𝜏
d𝜏

𝛽2𝜏 , (9)

where the two processes 𝛼𝜏 and 𝛽𝜏 are defined by

𝛼𝜏 = 1 − 𝜏 , 𝛽2𝜏 = 𝜏 for 𝜏 ∈  = [0, 1). (10)

Substituting the definitions of 𝑏(𝜏) and 𝜎(𝜏) into Eq. (8), we can obtain that the conditional probability density function
𝑞𝑍𝑡,𝜏 |𝑍𝑡,0

(𝑧𝑡,𝜏 |𝑧𝑡,0) for any fixed value 𝑧𝑡,0 is the following Gaussian distribution:

𝑞𝑍𝑡,𝜏 |𝑍𝑡,0
(𝑧𝑡,𝜏 |𝑧𝑡,0) = 𝜙(𝛼𝜏𝑧𝑡,0 ,𝛽2𝜏 𝐈𝑑 )

(𝑧𝑡,𝜏 |𝑧𝑡,0), (11)

where 𝜙(𝛼𝜏𝑧𝑡,0 ,𝛽2𝜏 𝐈𝑑 )
(⋅) is the standard normal PDF with mean 𝛼𝜏𝑧𝑡,0 and covariance matrix 𝛽2𝜏 𝐈𝑑 . The above equation immediately leads

to

𝑞𝑍𝑡,1|𝑍𝑡,0
(𝑧𝑡,1|𝑧𝑡,0) = lim

𝜏→1
𝜙(𝛼𝜏𝑧𝑡,0 ,𝛽2𝜏 𝐈𝑑 )

(𝑧𝑡,𝜏 |𝑧𝑡,0) = 𝜙(0,𝐈𝑑 )(𝑧𝑡,1), (12)

meaning that the forward SDE in Eq. (7) can transport any initial distribution to the standard normal distribution at 𝜏 = 1.
Let the initial state 𝑍𝑡,0 of the forward SDE in Eq. (7) follow the prior filtering density 𝑝𝑋𝑡|𝑌1∶𝑡−1 (𝑥𝑡|𝑦1∶𝑡−1) in Eq. (3), we have

𝑍𝑡,0 ∶= 𝑋𝑡|𝑌1∶𝑡−1 ⟹ 𝑞𝑍𝑡,0
(𝑧𝑡,0) = 𝑝𝑋𝑡|𝑌1∶𝑡−1 (𝑥𝑡|𝑦1∶𝑡−1), (13)

such that the forward SDE can transport the prior filtering density to the standard normal distribution. However, what we need is
the transport model in the opposite direction, i.e., from 𝜏 = 1 to 𝜏 = 0. To do this, we construct the corresponding reverse SDE [33]

𝑑 𝑍𝑡,𝜏 =
[

𝑏(𝜏)𝑍𝑡,𝜏 − 𝜎2(𝜏)𝑆𝑡|𝑡−1(𝑍𝑡,𝜏 , 𝜏)
]

𝑑 𝜏 + 𝜎(𝜏)𝑑⃖⃖⃖⃖⃖𝑊 𝜏 , (14)

where ⃖⃖⃖⃖⃖𝑊 𝜏 is a standard 𝑑-dimensional Brownian motion running backward in time [39], 𝑏(𝜏) and 𝜎(𝜏) are the same as in the forward
DE. The notation 𝑆𝑡|𝑡−1(𝑍𝑡,𝜏 , 𝜏) defines the score function associated with the diffusion model for the prior filtering density 𝑝𝑋𝑡|𝑌1∶𝑡−1
n Eq. (3), i.e.,

𝑆𝑡|𝑡−1(𝑧𝑡,𝜏 , 𝜏) ∶= ∇𝑧𝑡,𝜏 log 𝑞𝑍𝑡,𝜏
(𝑧𝑡,𝜏 ), (15)

here the subscript (⋅)𝑡|𝑡−1 indicates that it is the prior score function without assimilating the observational data at the 𝑡th filtering
step.

The methodology of EnSF is established based on the following derivation. First, we observe that the probability density function
𝑍𝑡,𝜏

can be expressed as follows:

𝑞𝑍𝑡,𝜏
(𝑧𝑡,𝜏 ) = ∫R𝑑

𝑞𝑍𝑡,𝜏 ,𝑍𝑡,0
(𝑧𝑡,𝜏 , 𝑧𝑡,0)𝑑 𝑧𝑡,0 = ∫R𝑑

𝑞𝑍𝑡,𝜏 |𝑍𝑡,0
(𝑧𝑡,𝜏 |𝑧𝑡,0)𝑞𝑍𝑡,0

(𝑧𝑡,0)𝑑 𝑧𝑡,0
hen, by substituting this equation into Eq. (15) and exploiting the fact in Eq. (11), we can rewrite the score function in the form
f the following integral:

𝑆𝑡|𝑡−1(𝑧𝑡,𝜏 , 𝜏)

= ∇𝑧𝑡,𝜏 log
(

∫R𝑑
𝑞𝑍𝑡,𝜏 |𝑍𝑡,0

(𝑧𝑡,𝜏 |𝑧𝑡,0)𝑞𝑍𝑡,0
(𝑧𝑡,0)𝑑 𝑧𝑡,0

)

= 1
∫R𝑑 𝑞𝑍𝑡,𝜏 |𝑍𝑡,0

(𝑧𝑡,𝜏 |𝑧′𝑡,0)𝑞𝑍𝑡,0
(𝑧′𝑡,0)𝑑 𝑧′𝑡,0 ∫R𝑑

−
𝑧𝑡,𝜏 − 𝛼𝜏𝑧𝑡,0

𝛽2𝜏
𝑞𝑍𝑡,𝜏 |𝑍𝑡,0

(𝑧𝑡,𝜏 |𝑧𝑡,0)𝑞𝑍𝑡,0
(𝑧𝑡,0)𝑑 𝑧𝑡,0

= ∫R𝑑
−
𝑧𝑡,𝜏 − 𝛼𝜏𝑧𝑡,0

𝛽2𝜏
𝑤(𝑧𝑡,𝜏 , 𝑧𝑡,0)𝑞𝑍𝑡,0

(𝑧𝑡,0)𝑑 𝑧𝑡,0,

(16)

where the weight function 𝑤(𝑧𝑡,𝜏 , 𝑧𝑡,0) is defined by

𝑤(𝑧𝑡,𝜏 , 𝑧𝑡,0) ∶=
𝑞𝑍𝑡,𝜏 |𝑍𝑡,0

(𝑧𝑡,𝜏 |𝑧𝑡,0)

∫R𝑑 𝑞𝑍𝑡,𝜏 |𝑍𝑡,0
(𝑧𝑡,𝜏 |𝑧′𝑡,0)𝑞𝑍𝑡,0

(𝑧′𝑡,0)𝑑 𝑧′𝑡,0
, (17)

satisfying that ∫R𝑑 𝑤(𝑧𝑡,𝜏 , 𝑧𝑡,0)𝑞𝑍𝑡,0
(𝑧𝑡,0)𝑑 𝑧𝑡,0 = 1.

Thus, the reserse SDE and the score function fully characterize the prior filtering density in Eq. (3). When applying proper
umerical schemes to approximate the score function 𝑆𝑡|𝑡−1(𝑧𝑡,𝜏 , 𝜏) in Eq. (16) and the reserse SDE in Eq. (14), we can generate an
nlimited number of samples from the prior filtering density. The implementation detail of the prediction step is given in Section 3.3.

.2. The update step of EnSF

The goal of the update step in EnSF is to incorporate the new observational data 𝑌𝑡, or more specifically the likelihood function in
q. (5), obtained at the 𝑡th filtering step to update the prior filtering density in a Bayesian fashion. In the context of diffusion models,
his task becomes how to update the prior score function 𝑆 to the posterior score function, denoted by 𝑆 , by incorporating
𝑡|𝑡−1 𝑡|𝑡

4 



F. Bao et al.

t

Computer Methods in Applied Mechanics and Engineering 432 (2024) 117447 
he likelihood function. In this work, we use a similar strategy as our previous work in [36] to analytically add the likelihood
information to the prior score function 𝑆𝑡|𝑡−1 to obtain a posterior score function 𝑆𝑡|𝑡.

Specifically, we assume the posterior score function has the following structure:

𝑆𝑡|𝑡(𝑧𝑡,𝜏 , 𝜏) ∶= 𝑆𝑡|𝑡−1(𝑧𝑡,𝜏 , 𝜏) + ℎ(𝜏)∇𝑧𝑡,𝜏 log 𝑝𝑌𝑡|𝑋𝑡
(𝑦𝑡|𝑧𝑡,𝜏 ), (18)

where 𝑆𝑡|𝑡−1(𝑧𝑡,𝜏 , 𝜏) is the prior score function in Eq. (16), and ∇𝑧𝑡,𝜏 log 𝑝𝑌𝑡|𝑋𝑡
(𝑦𝑡|𝑧𝑡,𝜏 ) is the gradient of the log likelihood function

evaluated at 𝑧𝑡,𝜏 . According to practical usage of nonlinear filtering in numerical weather forecasting (e.g., [40]), the analytical
formula of the observation operator, i.e., the function 𝑔 in Eq. (2) is usually known, such that it is reasonable to assume the gradient
of the log-likelihood is accessible in EnSF. The key component in the update step is the damping function ℎ(𝜏) satisfying

ℎ(𝜏) is monotonically decreasing in [0, 1] with ℎ(1) = 0 and ℎ(0) = 1, (19)

which determines how the likelihood information is gradually introduced into the score function while solving the reserse SDE. In
this work, we use ℎ(𝜏) = 1 − 𝜏 in the numerical experiments. The likelihood has almost no influence on the prior score when the
pseudo time 𝜏 is close to 1. As 𝜏 decreases, the diffusion term becomes less dominating and the likelihood information is gradually
injected into the reserse SDE via the drift term.

We emphasize that even though the proposed structure of the posterior score works very well for the numerical examples in
Section 4, there may be a model structure error in the proposed posterior score function in Eq. (18) depending on the choice of ℎ(𝜏).
In other words, the proposed 𝑆𝑡|𝑡 in Eq. (18) may not be the score associated with the exact posterior filtering density in Eq. (4).
Correcting the model error will ensure the theoretical rigor but may significantly increase the computational cost, especially for
nonlinear filtering in which the score function needs to be updated dynamically in real time. Thus, how to develop a computationally
efficient model error correction scheme is still an open question and will be considered in our future work.

Remark (Avoiding the Curse of Dimensionality). Incorporating the analytical form of the likelihood information, i.e., ∇𝑧𝑡,𝜏 log 𝑝𝑌𝑡|𝑋𝑡
(𝑦𝑡|𝑧𝑡,𝜏 ), into the score function plays a critical role in avoiding performing high-dimensional approximation, i.e., the curse of
dimensionality, in the update step. In other words, when ∇𝑧𝑡,𝜏 log 𝑝𝑌𝑡|𝑋𝑡

(𝑦𝑡|𝑧𝑡,𝜏 ) is given, either in the analytical form or via automatic
differentiation, we do not need to perform any approximation in R𝑑 . In comparison, EnKF requires approximating the covariance
matrix and the particle filter requires construction of empirical distributions, both of which involve approximation of the posterior
distribution in R𝑑 .

3.3. Implementation of EnSF

We focus on how to discretize EnSF and approximate the score functions 𝑆𝑡|𝑡 and 𝑆𝑡+1|𝑡 in order to establish a practical
implementation for EnSF. The classic diffusion model methods [31,33,38] train neural networks to learn the score functions. This
approach works well for static problems that does not require fast evolution of the score function. However, this strategy becomes
inefficient in solving the nonlinear filtering problem [36], especially for extremely high-dimensional problems. To address this
challenge, we propose a training-free score estimation approach that uses the Monte Carlo method to directly approximate the
expression of the score function in Eq. (16), which enables extremely efficient implementation of EnSF.

3.3.1. Introducing two hyperparameters into EnSF
The advantage of the choice of the drift and diffusion coefficients in Eqs. (9) and (10) is that the resulting forward SDE can map

any distribution to the standard normal distribution within a bounded pseudo time interval  = [0, 1). However, this approach also
introduces several computational issues into the diffusion model. The first one is that the denominator in Eq. (16) goes to zero as
𝜏 → 0, which will cause the explosion of the score function when 𝛽2𝜏 = 𝜏 at 𝜏 = 0; the second one is that when 𝛼𝜏 = 1 − 𝜏 and the
reserse SDE is solved exactly, the conditional distribution in Eq. (11) indicates that the reserse SDE will drive each path of the state
𝑍𝑡,𝜏 of the diffusion model to the infinitesimal neighborhood of one of the samples of 𝑍𝑡,0 as 𝜏 → 0, which will limit the exploration
power of the diffusion model. To regularize the reserse SDE and extend the pseudo-temporal domain to [0, 1], we introduce two
hyperparameters, denoted by 𝜖𝛼 and 𝜖𝛽 , to the definitions of 𝛼𝜏 and 𝛽𝜏 in Eq. (10), respectively. After re-parameterization, the actual
𝛼𝜏 and 𝛽𝜏 used in our EnSF implementation are

𝛼̄𝜏 = 1 − 𝜏(1 − 𝜖𝛼); 𝛽2𝜏 = 𝜖𝛽 + 𝜏(1 − 𝜖𝛽 ). (20)

Based on the above equation, 𝛼̄𝜏 is a linear interpolation between (0, 1) and (1, 𝜖𝛼), and 𝛽2𝜏 is a linear interpolation between (0, 𝜖𝛽 )
and (1, 1). The fine-tuning procedure shown in Section 4.2 indicates that even though the performance of EnSF is not sensitive to
the two hyperparameters compared to LETKF, the fine-tuning can still provide significant performance improvement.

3.3.2. Training-free score estimation
Unlike existing methods that use neural network models to learn the score function, in this work we propose to directly discretize

the score representation in Eq. (16). Specifically, we assume that we are given a set of samples {𝑥𝑡−1,𝑗}𝐽𝑗=1 drawn from the posterior
filtering density function 𝑝𝑋𝑡−1,𝜏 |𝑌1∶𝑡−1 (𝑥𝑡−1,𝜏 |𝑦1∶𝑡−1) from previous filtering time step 𝑡 − 1. For any fixed pseudo-time instant 𝜏 ∈ 
and 𝑧𝑡,𝜏 ∈ R𝑑 , the integral in Eq. (16) can be estimated by

𝑆𝑡|𝑡−1(𝑧𝑡,𝜏 , 𝜏) ≈ 𝑆̄𝑡|𝑡−1(𝑧𝑡,𝜏 , 𝜏) ∶=
𝑁
∑

−
𝑧𝑡,𝜏 − 𝛼̄𝜏𝑓 (𝑥𝑡−1,𝑗𝑛 , 𝜔𝑡−1,𝑗𝑛 ) 𝑤̄(𝑧𝑡,𝜏 , 𝑓 (𝑥𝑡−1,𝑗𝑛 , 𝜔𝑡−1,𝑗𝑛 )), (21)
𝑛=1 𝛽2𝜏
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sing a mini-batch {𝑥𝑡−1,𝑗𝑛}
𝑁
𝑛=1 with batch size 𝑁 ≤ 𝐽 , where 𝑓 (⋅, ⋅) is the state equation in Eq. (1). The weight 𝑤(𝑧𝑡,𝜏 , 𝑓 (𝑥𝑡−1,𝑗𝑛 , 𝜔𝑡−1,𝑗𝑛 ))

in Eq. (17) is approximated by

𝑤̄(𝑧𝑡,𝜏 , 𝑓 (𝑥𝑡−1,𝑗𝑛 , 𝜔𝑡−1,𝑗𝑛 )) ∶=
𝑞𝑍𝑡,𝜏 |𝑍𝑡,0

(𝑧𝑡,𝜏 |𝑓 (𝑥𝑡−1,𝑗𝑛 , 𝜔𝑡−1,𝑗𝑛 ))
∑𝑁

𝑚=1 𝑞𝑍𝑡,𝜏 |𝑍𝑡,0
(𝑧𝑡,𝜏 |𝑓 (𝑥𝑡−1,𝑗𝑚 , 𝜔𝑡−1,𝑗𝑚 ))

, (22)

which means 𝑤(𝑧𝑡,𝜏 , 𝑓 (𝑥𝑡−1,𝑗𝑛 , 𝜔𝑡−1,𝑗𝑛 )) can be estimated by the normalized probability density values
𝑞𝑍𝑡,𝜏 |𝑍𝑡,0

(𝑧𝑡,𝜏 |𝑓 (𝑥𝑡−1,𝑗𝑛 , 𝜔𝑡−1,𝑗𝑛 ))}
𝑁
𝑛=1. In practice, the mini-batch {𝑥𝑡−1,𝑗𝑛}

𝑁
𝑛=1 could be a very small subset of {𝑥𝑡−1,𝑗}𝐽𝑗=1 to ensure

ufficient accuracy in solving the filtering problems. In fact, we observe that the weighting function 𝑤̄(⋅) in Eq. (22) tends to assign
early all the weight to a single term in the summation of Eq. (21). In such cases, the approximated score function is primarily
etermined by that one sample, making additional score computations redundant. As a result, we use batch size one for our mini-
atch in the numerical experiments in Section 4, which provides satisfactory performance in terms of accuracy and efficiency.
he training-free score estimation is significantly more efficient than training neural networks to learn the score function [36] in
onlinear filtering where the posterior filtering density needs to be updated frequently.

.3.3. Summary of EnSF workflow
Now we combine the aforementioned approximation schemes to develop a detailed algorithm to evolve the filtering density from

𝑋𝑡−1|𝑌1∶𝑡−1 (𝑥𝑡−1|𝑦1∶𝑡−1) to 𝑝𝑋𝑡|𝑌1∶𝑡 (𝑥𝑡|𝑦1∶𝑡). At the 𝑡th filtering step, we assume we are given a set of samples {𝑥𝑡−1,𝑗}𝐽𝑗=1 drawn from the
osterior filtering density function 𝑝𝑋𝑡−1|𝑌1∶𝑡−1 (𝑥𝑡−1|𝑦1∶𝑡−1) and the goal is to generate a set of samples {𝑥𝑡,𝑗}𝐽𝑗=1 from 𝑝𝑋𝑡|𝑌1∶𝑡 (𝑥𝑡|𝑦1∶𝑡).
his evolution involves the simulation of the reserse SDE of the diffusion model driven by the approximate score 𝑆𝑡|𝑡. Even though
he forward SDE is included in the diffusion model, the training-free score estimation approach allows us to skip the simulation of
he forward SDE..

We use the Euler–Maruyama scheme to discretize the reserse SDE. Specifically, we introduce a partition of the pseudo-temporal
omain  = [0, 1], i.e.,

𝐾 ∶= {𝜏𝑘 ∣ 0 = 𝜏0 < 𝜏1 < ⋯ < 𝜏𝑘 < 𝜏𝑘+1 < ⋯ < 𝜏𝐾 = 1}
ith uniform step-size 𝛥𝜏 = 1∕𝐾. We first draw a set of samples {𝑧𝑗𝑡,1}

𝐽
𝑗=1 from the standard normal distribution. For each sample

𝑗
𝑡,1, we obtain the approximate solution 𝑧𝑗𝑡,0 by recursively evaluating the following scheme

𝑧𝑗𝑡,𝜏𝑘 = 𝑧𝑗𝑡,𝜏𝑘+1 −
[

𝑏(𝜏𝑘+1)𝑧
𝑗
𝑡,𝜏𝑘+1

− 𝜎2(𝜏𝑘+1)𝑆̄𝑡|𝑡(𝑧
𝑗
𝑡,𝜏𝑘+1

, 𝜏𝑘+1)
]

𝛥𝜏 + 𝜎(𝜏𝑘+1)𝛥𝑊 𝑗
𝜏𝑘+1

, (23)

or 𝑘 = 𝐾− 1, 𝐾− 2,… , 1, 0, where 𝛥𝑊 𝑗
𝜏𝑘+1 is a realization of the Brownian increment, and the approximate score function is calculated

y

𝑆̄𝑡|𝑡(𝑧
𝑗
𝑡,𝜏𝑘+1

, 𝜏𝑘+1) = 𝑆̄𝑡|𝑡−1(𝑧
𝑗
𝑡,𝜏𝑘+1

, 𝜏𝑘+1) + ℎ(𝜏𝑘+1)∇𝑧𝑗𝑡,𝜏𝑘+1
log 𝑝𝑌𝑡|𝑋𝑡

(𝑦𝑡|𝑧
𝑗
𝑡,𝜏𝑘+1

). (24)

ince the reserse SDE is driven by 𝑆̄𝑡|𝑡, we treat {𝑧𝑗𝑡,0}
𝐽
𝑗=1 as the desired sample set {𝑥𝑡,𝑗}𝐽𝑗=1 from the posterior filtering density

𝑋𝑡|𝑌1∶𝑡 (𝑥𝑡|𝑦1∶𝑡). The EnSF workflow is summarized as a pseudo-algorithm in Algorithm 1.

Algorithm 1: the pseudo-algorithm for EnSF

1: Input: the state equation 𝑓 (𝑋𝑡, 𝜔𝑡), the initial distribution 𝑝𝑋0
(𝑥0);

2: Generate 𝐽 samples {𝑥0,𝑗}𝐽𝑗=1 from the initial distribution 𝑝𝑋0
(𝑥0);

3: for 𝑡 = 1,…,
4: Run the state equation in Eq. (1) to get predictions {𝑓 (𝑥𝑡−1,𝑗 , 𝜔𝑡−1,𝑗 )}𝐽𝑗=1;
5: for 𝑘 = 𝐾 − 1,… , 0
6: Compute the weight {{𝑤̄(𝑧𝑗𝑡,𝜏 , 𝑓 (𝑥𝑡−1,𝑗𝑛 , 𝜔𝑡−1,𝑗𝑛 ))}

𝑁
𝑛=1}

𝐽
𝑗=1 using Eq. (22);

7: Compute {𝑆̄𝑡|𝑡−1(𝑧
𝑗
𝑡,𝜏𝑘+1

, 𝜏𝑘+1)}𝐽𝑗=1 using Eq. (21);
8: Compute {𝑆̄𝑡|𝑡(𝑧

𝑗
𝑡,𝜏𝑘+1

, 𝜏𝑘+1)}𝐽𝑗=1 using Eq. (24);
9: Compute {𝑧𝑗𝑡,𝜏𝑘}

𝐽
𝑗=1 using Eq. (23);

11: end
10: Let {𝑥𝑡,𝑗}𝐽𝑗=1 = {𝑧𝑗𝑡,0}𝐽𝑗=1;
11: end

3.3.4. Discussion on the computational complexity of EnSF
Since the cost of running the state equation 𝑓 (𝑋𝑡, 𝜔𝑡) in Eq. (1) is problem-dependent, we only discuss the cost of the matrix

operations for Line 6 – 9 in Algorithm 1. In terms of the storage cost, the major storage of EnSF is used to store the two sample
sets, i.e., {𝑥𝑡,𝑗}𝐽𝑗=1 from the posterior filtering density of the previous time step and {𝑧𝜏 ,𝑗}𝐽𝑗=1 for the states of the diffusion model.
Each set is stored as a matrix of size 𝐽 × 𝑑 where 𝐽 is the number of samples and 𝑑 is the dimension of the filtering problem.

he storage requirement is suitable for conducting all the computations on modern GPUs. In terms of the number of floating point
perations, Line 6 – 9 in Algorithm 1 for fixed 𝑡 and 𝜏 involves (𝐽 ×𝑁 × 𝑑) operations including element-wise operations and
atrix summations, where 𝑁 < 𝐽 is the size of the mini-batch used to estimate the weights in Eq. (22). So the total number of
6 
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loating point operations is on the order of (𝐽 ×𝑁 × 𝑑 ×𝐾) to update the filtering density from 𝑡 to 𝑡 + 1, where 𝐾 is the number
f time steps for discretizing the reserse SDE. The numerical experiments in Section 4 show that the number of samples 𝐽 can grow
ery slowly with the dimension 𝑑 while maintaining a satisfactory performance for tracking the Lorenz-96 model, which indicates
he superior efficiency of EnSF in handling extremely high-dimensional filtering problems.

. Numerical experiments: tracking the 1,000,000-dimensional Lorenz-96 model

We demonstrate EnSF’s capability in handling the high-dimensional Lorenz-96 model. Specifically, we track the state of the
orenz-96 model described as follows:

𝑑 𝑥𝑖
𝑑 𝑡 = (𝑥𝑖+1 − 𝑥𝑖−2)𝑥𝑖−1 + 𝐹 , 𝑖 = 1, 2,… , 𝑑 , 𝑑 ≥ 4, (25)

where 𝑋𝑡 = [𝑥1(𝑡), 𝑥2(𝑡),… , 𝑥𝑑 (𝑡)]⊤ is a 𝑑-dimensional target state, and it is assumed that 𝑥−1 = 𝑥𝑑−1, 𝑥0 = 𝑥𝑑 , and 𝑥𝑑+1 = 𝑥1. The
term 𝐹 is a forcing constant. When 𝐹 = 8, the Lorenz-96 dynamics (25) becomes a chaotic system, which makes tracking the state
𝑋𝑡 a challenging task for all the existing filtering techniques, especially in high dimensional spaces. In our numerical experiments,
we discretize Eq. (25) through the Runge–Kutta (RK4) scheme. To avoid NaN values in the experiments, we clip the solutions of the
forward solver at a magnitude of 50, as extreme values can lead to numerical instabilities. Specifically, we set the ensemble values
o 50 or −50 when they exceed this range. To initialize the Lorenz-96 system, we first pick a random sample from 𝑁(𝟎, 32𝐈𝑑 ) and
hen run 1000 burn-in simulation steps through the RK4 scheme to obtain our true initial state 𝑋0. Our initial guess for the initial
nsemble 𝑋0 is a standard Gaussian random variable 𝑁(𝟎, 𝐈𝑑 ), which means that we do not possess any effective information about
0 at the beginning.

Since EnSF is designed as a nonlinear filter for high-dimensional problems, we carry out experiments on one million-dimensional
orenz-96 system, i.e., 𝑑 = 1, 000, 000, where the observational process in Eq. (2) is an arctangent function of the state, i.e.,

𝑌𝑡+1 = ar ct an(𝑋𝑡+1) + 𝜀𝑡+1. (26)

he chaotic state dynamics in Eq. (25) along with the highly linear observation in Eq. (26) would make the tracking of the Lorenz-96
system extremely challenging, especially in such high-dimensional space. In what follows, we shall demonstrate the performance
of EnSF in solving the above Lorenz-96 tracking problems in one-million-dimensional space, and we shall also carry out a series of
experiments to compare our method with the state-of-the-art optimal filtering method, i.e., the Local Ensemble Transform Kalman
Filter (LETKF), which is the method adopted by the European Center for Medium-Range Weather Forecasts for hurricane forecasting.

Remark (Reproducibility). EnSF method for the high-dimensional Lorenz-96 problem is implemented in Pytorch with GPU. The
source code is publicly available at https://github.com/zezhongzhang/EnSF. The numerical results in this section can be exactly
reproduced using the code on Github.

4.1. Illustration of EnSF’s accuracy

In the first experiment, we illustrate the accuracy of EnSF in tracking the 1,000,000-dimensional Lorenz-96 model, and we track
the target state 800 time steps with temporal step size 𝛥𝑡 = 0.01 and observational noise 𝜀𝑡 ∼ (𝟎, 0.052𝐈𝑑 ).

In Fig. 1, we illustrate the nonlinearity of the observation system by comparing the true state 𝑋𝑡 and the observation 𝑌𝑡 along
four randomly selected directions. Due to the nonlinearity of 𝑎𝑟𝑐 𝑡𝑎𝑛(), the observation 𝑌𝑡 does not provide sufficient information of
the state when 𝑋𝑡 is outside the domain [−𝜋∕2, 𝜋∕2]. When it happens, the partial derivative of 𝑌𝑡 is very close to zero such that
there is very little update of the score function in Eq. (18) along the directions with states outside [−𝜋∕2, 𝜋∕2]. In other words, there
may be only a small subset of informative observations at each filtering time step.

Fig. 2 shows the comparison between the true state trajectories and the estimated trajectories, each sub-figure shows the
trajectories along randomly selected three directions in the 1,000,000-dimensional state space. EnSF is implemented with 500 pseudo
time steps when discretizing the reserse SDE, and the ensemble size that we picked is 20 samples. Since EnSF’s initial estimate is
randomly sampled from  (𝟎, 𝐈𝑑 ), it is far from the true initial state. After several filtering steps, EnSF gradually captures the true
state by assimilating the observational data. Even though there are some discrepancy between the true and the estimated states, the
accuracy of EnSF is sufficient for capturing such a high-dimensional chaotic system.

4.2. Comparison between EnSF and LETKF

In the following numerical experiments, we compare EnSF with LETKF in tracking the 1, 000, 000-dimensional Lorenz-96 model,
and we track the target state 1500 time steps with temporal step size 𝛥𝑡 = 0.01 and observational noise 𝜀𝑡 ∼ (𝟎, 0.052𝐈𝑑 ). To allow
gaps between prediction and update, we implement the Bayesian update procedure with time step size 0.1, i.e., we implement EnSF
or LETKF to update the posterior filtering density after simulating the Lorenz-96 model 10 time steps.
7 
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Fig. 1. Illustration of the nonlinearity of observation process by comparing the true state 𝑋𝑡 and the observation 𝑌𝑡 along four randomly selected directions.
Due to the nonlinearity of 𝑎𝑟𝑐 𝑡𝑎𝑛(), the observation 𝑌𝑡 does not provide sufficient information of the state when 𝑋𝑡 is outside the domain [−𝜋∕2, 𝜋∕2].

4.2.1. Hyperparameter fine tuning
An important feature of LETKF is that it utilizes an inflation factor and a localization factor to fine-tune the behavior of the filter

so that the fine-tuned LETKF can be adapted to a specific optimal filtering problem. Therefore, before we conduct the comparison
experiments, we first fine-tune LETKF. According to the computational cost shown in Fig. 7, it takes around 300 s for LETKF to
perform one filtering step in tracking the 1,000,000-dimensional Lorenz-96 model. This means finishing the fine-tuning chart for
LETKF in Figs. 3 and 4 for the one million dimensional cases will cost about 520 days using a single RTX 3070 GPU, which is not
practical. Therefore, we perform LETKF fine-tuning in the 100 dimensional space (𝑑 = 100), which costs around 2 h to generate the
fine-tuning charts. Additionally, fine-tuning in 100-dimensional space and testing in 1,000,000-dimensional space will demonstrate
the transferability of LETKF and EnSF.

Specifically, we let the inflation factor vary from 0.9 − 1.8, and the localization factor is tested from 0.0001 − 9,1 and the ensemble
size that we picked for LETKF is 20. Then, we solve the corresponding Lorenz-96 tracking problem repeatedly 10 times, and the
verall RMSEs averaged on all data assimilation times are presented in Fig. 3. We also use a colorbar to visually represent the
arious RMSEs and provide an intuitive understanding of the fine-tuned results. In Fig. 4, we present the average RMSEs (over 10

repetitions) on the last 50 data assimilation times, which indicates the converged performance of LETKF in the tuning procedure.
ased on Fig. 3, we choose the best three parameter combinations for LETKF:

• LETKF (No. 1): Inflation=1.1, localization=4;
• LETKF (No. 2): Inflation=1.0, localization=2;
• LETKF (No. 3): Inflation=1.1; localization=3.

The selected LETKF parameters are highlighted in both Figs. 3 and 4, and will be used for further comparisons with EnSF.
To compare with LETKF, we also fine-tune EnSF’s hyperparameters, which are introduced in Eq. (20). In Figs. 5 and 6, we present

he fine-tune charts for EnSF under the same setup as LETKF, with the RMSEs presented in each block marked by the same colorbar

1 The corresponding testing ranges for inflation and localization are already optimized based on our experience. In practice, one may need to test the inflation
factor and the localization factor in much larger ranges.
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Fig. 2. Comparison between the true state trajectories and the estimated trajectories obtained by EnSF, each sub-figure shows the trajectories along randomly
elected three directions in the 1, 000, 000-dimensional state space. We observe that even though the initial guess for EnSF is far from the true initial state,

EnSF gradually captures the true state by assimilating the observational data after several filtering steps, providing sufficient accuracy in capturing such a
high-dimensional chaotic system.

as used for LETKF fine-tune charts. The best three parameter combinations for EnSF are highlighted in both figures and will be used
for comparison. They are as follows:

• EnSF (No. 1): 𝜖𝛼 = 0.5, 𝜖𝛽 = 0.025;
• EnSF (No. 2): 𝜖𝛼 = 0.6, 𝜖𝛽 = 0.025;
• EnSF (No. 3): 𝜖𝛼 = 0.5, 𝜖𝛽 = 0.05.

We can see from the fine-tune charts for LETKF and EnSF that both methods achieve comparable accuracy with their optimal
yperparameters. However, EnSF is less sensitive to these hyperparameters with a wide range of configurations yielding good
erformance. On the other hand, the performance of LETKF varies dramatically, which indicates that it is very sensitive to the choice
f inflation factor and localization factor. Such sensitivity may cause additional difficulty when attempting to fine-tune LETKF in
ore complex problems.

.2.2. Efficiency comparison between EnSF and LETKF
To proceed, we first carry out an efficiency comparison between EnSF and then show the performance comparison in solving

he one million dimensional problem. In Fig. 7, we showcase the computational cost for implementing one data assimilation step of
nSF and LETKF in solving problems ranging from 100 dimensions up to 1, 000, 000 dimensions. The ensemble size chosen for both
ethods is 20. The CPU used is a 6-core AMD Ryzen™ 5 5600X, and the GPU used is an NVIDIA RTX 3070. Both EnSF and LETKF

are implemented on CPU and GPU. The LETKF is tested with one-sided neighbor sizes of 3 (LETKF_n3) and 17 (LETKF_n17). The
9 
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Fig. 3. LETKF’s fine-tuning chart where the RMSE is averaged on all data assimilation times with 10 repetitions. The highlighted cells are the best three
parameter combinations selected for LETKF.

Fig. 4. LETKF’s fine-tuning chart where the RMSE is averaged on the last 50 data assimilation times with 10 repetitions. The highlighted cells are the best three
arameter combinations selected for LETKF.
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Fig. 5. EnSF’s fine-tuning chart where the RMSE is averaged on all data assimilation times with 10 repetitions. The highlighted cells are the best three parameter
combinations selected for EnSF. Compared to LETKF, EnSF’s performance is much more stable with respect to small changes of the hyperparameters.

eighbor size refers to the number of state variables retained for calculating the localized covariance, which depends on the value
f the localization parameter. The one-step data assimilation computing time is calculated as the average of 20 repetitions.

From this efficiency figure, we can see that EnSF is much more efficient than LETKF. From the 100 dimension to the 10,000
dimension, the main computational cost for EnSF is essentially the background computation, and it is only 0.17 s per step on
verage. For the 1, 000, 000 dimensional problem, the average computational cost for EnSF is only approximately 5 seconds per step.
n addition, Fig. 7 demonstrates that EnSF is particularly well-suited for GPU computing on a large scale. Due to the sequential
ature of CPU computing, the computing time grows almost linearly with the problem size. In contrast, GPU computing is much
aster for large-scale matrix operations because of its inherent parallelization. Since all computations in EnSF can be structured as
arge matrix operations, it can efficiently utilize GPU computing power. In fact, GPU computation time remains constant as long as
he matrix size fits within the GPU’s tensor core capacity, which explains why the computing time for EnSF (GPU) remains constant
or problems with dimensions up to 10,000. The computing time starts to grow linearly only after the matrix size surpasses the
PU’s tensor core capacity, which occurs at approximately 100,000 dimensions. It is also worth noting that all GPU benchmarks
ere conducted using an RTX 3070, an older mid-tier gaming GPU. The scalability of EnSF would be significantly enhanced with
odern, professional-grade GPUs, further improving its performance in large-scale applications.

On the other hand, the computational cost of LETKF is approximately 300 seconds per step when implemented with 20 Kalman
ilter samples. Although a 6-core CPU could potentially run LETKF faster, the total computational cost of LETKF is still much higher

than that of EnSF, and LETKF is not suitable for modern GPU machines, which makes it difficult to further scale LETKF algorithms in
practical implementations. Due to the extremely high computational cost of LETKF in solving the 1,000,000-dimensional problem,
t is not feasible to fine-tune LETKF in the one-million-dimensional space. Therefore, we utilize the optimal hyperparameters for

both methods that we obtained in the 100-dimensional space to run the 1,000,000-dimensional problem.

4.2.3. Experimental setting 1: baseline test
We first conduct a baseline comparison using the same problem setting that was used to fine-tune LETKF and EnSF, except

that the dimension of the Lorenz-96 model is now 𝑑 = 1, 000, 000. The comparison of root mean square errors (RMSEs) at data
assimilation times is presented in Fig. 8, where we have selected the top three sets of hyperparameters for each method, and the
RMSEs are plotted with respect to time. In our numerical experiments, RMSEs are calculated by repeating the same test 10 times

with different random initial conditions, and we average the estimation errors over all 1,000,000 directions and 10 repetitions. We

11 
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Fig. 6. EnSF’s fine-tuning chart where the RMSE is averaged on the last 50 data assimilation times with 10 repetitions. The highlighted cells are the best three
arameter combinations selected for EnSF. Compared to LETKF, EnSF’s performance is much more stable with respect to small changes of the hyperparameters.

an see that both EnSF and LETKF provide good accuracy for tracking the target Lorenz-96 state. EnSF performs consistently well
ith three different sets of hyperparameters, while the accuracy of LETKF varies.

Fig. 9 shows the comparison of RMSEs at every time step — including prediction-only steps and data assimilation steps where
rediction and Bayesian updates are performed. From this figure, we can see fluctuations in estimation errors for both methods.

When providing good accuracy, the difference between prediction-only errors and data assimilation errors is small. However, for one
LETKF test, which provided the least accurate result, there is a larger variance between prediction-only steps and data assimilation
steps. This partially explains why the hyperparameter choice ‘‘No. 1’’ of LETKF did not work as well as the other two.

4.2.4. Experimental setting 2: reduced observation noise test
Next, we modify the problem setting by reducing the observational noise from 𝜀𝑡 ∼ (𝟎, 0.052𝐈𝑑 ) to 𝜀 ∼ (𝟎, 0.032𝐈𝑑 ) and conduct the

same comparison experiment. The corresponding RMSEs at data assimilation time steps are presented in Fig. 10, and the RMSEs at
all time steps are presented in Fig. 11.

Although the observational data are more accurate in this experiment, two of the top choices of hyperparameters for LETKF
diverge, and the hyperparameter that provides the best result in this experiment is actually the third-best choice from the fine-
tune chart. This result shows that while the fine-tuned LETKF provides higher accuracy, it is very sensitive to the problem setting.
Even slight modifications to the problem may cause severe divergence in LETKF, with no indication beforehand which set of
hyperparameters will fail. In addition, the all-time RMSEs presented in Fig. 11 verify that LETKF failed with hyperparameters No.
1 and No. 2. In comparison, EnSF continues to provide very accurate estimates for the target state for the top-three choices of its
hyperparameters.

To better illustrate the performance of EnSF and LETKF, we plot the average ensemble spread in Fig. 12. The ensemble spread
s the square root of the average ensemble variance, i.e.,

√

‖𝑉 𝑎𝑟(𝒙𝑒𝑛𝑠𝑒𝑚𝑏𝑙 𝑒)‖1∕𝑑, where the variance is calculated for each dimension
f the ensemble. While a larger ensemble spread allows a filtering method to better cover the true signal, overly wide spread state
amples provide less useful information about the true target state, which makes the predicted state less reliable. This issue is also
eflected in the all-time RMSEs shown in Fig. 11, where the hyperparameters causing widely spread LETKF samples correspond to

large fluctuations in the RMSEs. On the other hand, EnSF maintains very stable ensemble spread sizes, and the best-performing
LETKF shows a converging ensemble spread.
12 
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Fig. 7. One step data assimilation computational cost with ensemble size = 20. EnSF with GPU implementation is much more efficient than LETKF, and EnSF
is more suitable for modern GPU machines.

Fig. 8. RMSEs comparison between EnSF and LETKF at data assimilation times. RMSEs are calculated by repeating the same test 10 times with different random
initial conditions, and we average the estimation errors over all 1,000,000 directions and 10 repetitions. No. 1, No. 2, and No. 3 in the legend correspond to the
irst, second, and third-best hyperparameters, respectively. We observe that EnSF performs consistently well with the top three sets of hyperparameters, while
he accuracy of LETKF varies.

.2.5. Experimental setting 3: incomplete knowledge of the model error
In the last experimental setting, we address a more challenging but realistic scenario involving an imperfect model due to incomplete

nowledge. In this scenario, we assume that the state model may not fully reflect the true state propagation, and we model this
nknown portion as a mixture of three levels of independent Gaussian-type random shocks. On the evolution of the true state
rajectory, we introduce independent shocks with probabilities of 2%, 1%, and 0.5%, with corresponding shock sizes of 5%, 20%,
13 
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Fig. 9. RMSEs comparison between EnSF and LETKF at every time step — including prediction-only steps and data assimilation steps. Compared to Fig. 8, we
observe fluctuations in estimation errors for both methods.

Fig. 10. RMSEs comparison between EnSF and LETKF at data assimilation time steps with smaller observational noise 𝜀𝑡 ∼ (𝟎, 0.032𝐈𝑑 ). We observe that although
the observational data are more accurate, two of the top choices of hyperparameters for LETKF diverge. In comparison, EnSF continues to provide very accurate
estimates for the target state.

and 50% relative to the current state magnitude of the Lorenz-96 model, respectively. For example, when a size 50% shock happens,
every component of the true state 𝒙𝑖𝑡 is perturbed by an additive term 0.5𝑍𝑖|𝒙𝑖𝑡|, where 𝒙𝑖𝑡 is the 𝑖th dimension of the true state and

𝑖 are i.i.d. standard Gaussian noise.
This problem setting mimics a situation where there is a small chance (2%) that the model is inaccurate with a 5% error. There

s an even smaller chance (1%) that the model error is larger, at 20% level, and a very small chance (0.5%) that a large-scale
nexpected error occurs in the model. In practical applications, this scenario is quite common due to the limited knowledge we
ave about the real world. For example, in weather forecasting, this variety of unknown model errors is used to simulate the effects
f flow-dependent model uncertainties (see discussions in [41]).

In Fig. 13, we compare the RMSEs, which are calculated by averaging the estimation errors over all 1,000,000 directions, of
EnSF with LETKF in the imperfect model scenario at data assimilation time steps. The observational noise is kept at 𝜀𝑡 ∼ (𝟎, 0.052𝐈𝑑 ),
which is the setting used for fine-tuning. The figure also shows the time instants when the unexpected shocks occur during the
data assimilation period. We can see from Fig. 13 that all three settings of EnSF can quickly recover from unexpected shocks.
However, LETKF either diverges or struggles to recover from the shocks. Unlike the previous test, where fine-tuning is possible for
a smaller observational noise value, the unexpected shocks in this experiment are caused by the ‘‘unknown’’ portion of the state
model. Since we lack information about these unknown shocks, we cannot fine-tune either EnSF or LETKF. To further validate the
14 
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Fig. 11. RMSEs comparison between EnSF and LETKF at every time step with smaller observation noise 𝜀𝑡 ∼ (𝟎, 0.032𝐈𝑑 ).

Fig. 12. Average ensemble spread in the smaller observation noise test. While a larger ensemble spread allows a filtering method to better cover the true signal,
overly wide spread state samples provide less useful information about the true target state.

reliable performance of EnSF, we repeat the above experiments four times with different occurrences of random shocks and show
the corresponding tracking RMSEs of EnSF in Fig. 16. From this figure, we can see that EnSF consistently generates low errors and
quickly recovers from unexpected shocks.

In Fig. 14, we present the RMSE comparison at every time step, and in Fig. 15 we show the comparison of average ensemble
spreads in this incomplete knowledge experiment. From these figures, we can see that LETKF has highly fluctuating estimation errors,
and its average ensemble spreads are generally wide or even divergent. These two pieces of evidence indicate that LETKF is not stable
enough to handle unknown model errors due to incomplete knowledge or information. To further validate the reliable performance
of EnSF, we repeat the above experiments four times with different realizations of random shocks and show the corresponding
tracking RMSEs of EnSF in Fig. 16. From this figure, we can see that EnSF constantly generates low errors, and it always recovers
from unexpected shocks quickly.

In this experimental setting, we introduce an extra metric to evaluate the performance of EnSF and LETKF, namely the continuous
ranked probability score (CRPS). Specifically, at a given time step, for a marginal dimension 𝑖, let 𝐹 𝑖

𝑒𝑛𝑠𝑚𝑒𝑏𝑙 𝑒(𝑧) and 𝐹 𝑖
𝑡𝑟𝑢𝑒(𝑧) be the

empirical cumulative distribution functions of the ensemble and the true state, respectively, where 𝐹 𝑖
𝑡𝑟𝑢𝑒(𝑧) = 1𝑧>𝒙𝑖𝑡𝑟𝑢𝑒 (𝑧). Then, we

let 𝐶 𝑅𝑃 𝑆𝑖 ∶= ∫ (𝐹 𝑖
𝑒𝑛𝑠𝑚𝑒𝑏𝑙 𝑒(𝑧) − 𝐹 𝑖

𝑡𝑟𝑢𝑒(𝑧))
2𝑑 𝑧, and we average the CRPS over all 1, 000, 000 dimensions. The CRPS measures how well

the ensemble distribution matches with the true state. Lower CRPS values indicate that the ensemble distribution is well-aligned
with the true state with a small uncertainty, while higher CRPS values indicate otherwise. In this experiment, we plot the CRPS
15 
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Fig. 13. RMSEs comparison between EnSF and LETKF in the incomplete knowledge experiment, where the unknown model error is injected into the state
equation as random shocks. We observe that EnSF can quickly recover from unexpected shocks, but LETKF either diverges or struggles to recover from the
shock.

Fig. 14. Comparison between EnSF and LETKF at every time step in the incomplete knowledge experiment, where the unknown model error is injected into
he state equation as random shocks. We observe that LETKF has highly fluctuating estimation errors, but EnSF’s error fluctuation between two filtering steps

is much smaller.

comparison between EnSF and LETKF at data assimilation steps in Fig. 17. From this figure, we can see that EnSF outperforms
LETKF in this CRPS comparison.

5. Conclusion

We propose the EnSF method to solve very high-dimensional nonlinear filtering problems. The avoidance of training neural
networks to approximate the score function makes it computationally feasible for EnSF to efficiently solve the 1,000,000-dimensional
Lorenz-96 problem. We observe in the numerical experiments that one million dimensions is definitely not the upper limit of EnSF’s
capability, especially with the help of modern high-performance computing. In addition to exploring higher-dimensional cases,
several key aspects of EnSF can be improved in future work. First, we will investigate how fast the number of samples, i.e., 𝐽 in
Algorithm 1, needs to grow with the dimensionality to ensure robust performance. Second, we will expand the capability of the
current EnSF to handle partial observations, i.e., only a subset of the state variables are involved in the observation process, which
is critical to real-world data assimilation problems. In fact, Fig. 1 shows that the 𝑎𝑟𝑐 𝑡𝑎𝑛() observation function can be reviewed as a
16 
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Fig. 15. Average ensemble spread in the incomplete knowledge experiment, where the unknown model error is injected into the state equation as random
shocks. We observe that the ensemble spreads of LETKF are generally wide or even divergent.

Fig. 16. Repeated experiments of EnSF in the incomplete knowledge scenarios, each subfigure shows the RMSE of EnSF for a different occurrence of random
hocks. We observe that EnSF performs stably with different random shock patterns.
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Fig. 17. CRPS comparison for posterior filtering densities. Lower CRPS values indicate that the distribution is well-aligned with the true state. We observe that
nSF stably outperforms LETKF in this experiment.

artial observation in the sensing that there is no observational information when the state is outside [−𝜋∕2, 𝜋∕2]. Third, the current
efinition of the weight function ℎ(𝜏) in Eq. (18) for incorporating the likelihood into the score function is empirical. The current
hoice of ℎ(𝜏) may introduce a bias into the posterior state estimation. We will investigate whether there is an optimal weight
unction to gradually incorporate the likelihood information into the reserse SDEs. Fourth, the efficiency of reserse sampling can
lso be improved by incorporating advanced stable time-stepping schemes, e.g., the exponential integrator, to significantly reduce
he number of time steps in the discretization of the reserse process in the diffusion model. Fifth, we will test the performance of
nSF for real-world models, e.g., the IFS model developed by ECMWF, and the existing AI-based weather models, e.g., FourCastNet,
raphCast.
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