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ABSTRACT. We report two methods for solving FBSDEs of path-dependent
types in high-dimensions. Inspired by the work from [31], [32], and [20], we
propose deep learning frameworks for solving such problems using path signa-
tures as underlying features. Our two methods (forward/backward) demon-
strate comparable/better accuracy and efficiency compared to the state of the
art [14], [13], and [18]. More importantly, leveraging the techniques developed
in [5], we are able to solve the problem of high dimension (100 and above),
which is a limitation in [14] and [13]. We also provide convergence proofs for
both methods with the proof of the the forward method following similar lines
to [14], and the backward methods inspired by [16] in the Markovian case.

1. Introduction. Ever since the seminal paper [32], solving high dimensional PDEs
attracted a lot of attention, and researchers invested a large amount of effort in
designing numerical schemes to solve such problems (c.f.[2], [17] and [18]). The
workhorse of almost all such schemes is the combination of the usage of BSDEs/FBSDEs
and deep neural networks. The BSDEs/FBSDEs framework provides a probabilis-
tic interpretation for the PDEs of interest, which makes the simulation method
possible, while deep learning techniques provide the uniform approximation power,
which most importantly is not sensitive to dimensions.
The classical decoupled forward-backward SDE takes the form

dXt = b(t, Xt)dt + G'(t, Xt)th
dYy = —f(t, X, Ye, Zy)dt + ZdW, (1)
Xo=ux,Yr =g(Xr)

where (b,0) : [0,T] x RE — R4 x R4Xd f i the driver of the BSDE f : [0,7] x
R% x R% x R%*d 5 R4 and g : R" — R%. We have a Markovian system
when the drift and diffusion of the SDE, the driver of the BSDE, and the terminal
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function are only dependent on the current state X;. By the non-linear Feynman-
Kac formula, the corresponding PDEs are of the semi-parabolic type.

On the other hand, of particular interest is the PDE of path dependent types
(PPDE). The notion of nonlinear path-dependent PDEs was first proposed by Peng
[24], and the classical solution of the semi-linear PDEs are given in [25]. The notion
of viscosity solutions to the PPDEs were studied in [9], and the viscosity solutions
of fully nonlinear parabolic path dependent PDEs are studied in [11] and [12]. This
notion of viscosity solutions generalize that of viscosity solutions to PDEs developed
in the 80’s, and it can be used to characterize the value function of non-Markovian
stochastic control problems. For an overview of the theory of viscosity solutions for
PPDEs and some applications, see [28] for a survey.

In a general context, PPDEs can be formulated in terms of non-Markovian FBS-
DEs, where the coefficients (f, g etc.) in the system can depend on the entire path
of the stochastic process. However, allowing the variables to be path-dependent can
lead to challenges both theoretically and numerically.

On the other hand, solving the PPDE/FBSDE is of great interest since they arise
naturally in various financial context, see [33],[23],[15],[26]. Recently, some attention
has been given to finding the numerical solutions of the PPDEs [29], where LSTM
together with path signatures are used, and in [30], the LSTM method is used with
the deep Galerkin method. On the other hand, we note that the algorithm in [30]
takes a long time to converge. In the meantime, some option pricing problems
arising from the Volterra SDEs also lead to path-dependent PDEs. Numerical
algorithms are also designed to solve such problems [19], [27].

In this work, inspired by the work in [20] [21] and the theoretical findings in
[22], we propose to introduce the path signature as the underlying features in the
replacement of the original paths of the SDE. The benefit, as pointed out in both
[20] and [14], is that financial timeseries data is usually of high frequencies, and
path signature does not lose information when truncated at high enough order.

We noted that, in [20], it is reported that the RNN structure together with the
path signatures can very well learn the solution of an SDE given only the simulated
Brownian paths. We observe in [14] that the exact same idea was adopted to
solve non-markovian FBSDEs. More specifically, SDE paths are first simulated
on a fine meshgrid. Then, truncated path signatures/log-signatures are generated
on segments of the fine meshgrid which are defined through a coarse meshgrid.
Then, signatures on each segment will be used as features. Together with the RNN
structure, the function Z;  in the BSDE will be approximated recursively at discrete
time locations.

In this work, we report two new methods (forward and backward methods) which
are also based on using the path signature similar to [14] and [13] as features. The
contributions of this paper can be summarized as follows:

e Two neural network structures are proposed with proof of universal approxi-
mation/convergence given, and numerical examples provided. We use a frame-
work the same as [32]. That is, instead of using RNNs for the function approx-
imation purpose, we use individual neural networks to learn the function Z;,
at each discrete time, where the argument of the function will be the signature
of the entire path X; up to time ¢;. Since individual neural networks are used,
the input will be the truncated signatures of paths starting from time 0.
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e The method in [14] can only be used to solve FBSDEs related to semi-linear
parabolic PDEs of path dependent type. We also propose a backward algo-
rithm that can solve the reflected FSBDE (optimal stopping types), which are
directly related to the pricing of American options. The algorithm is inspired
by the work in [31].

e We solve the open computational problem stated in [14]. Both works [14] and
[13] have the limitation of not being able to solve problems of high dimensions:
the highest dimension problem they can solve is 20. We propose a method
that uses the technique from [5]. More specifically, we pass the simulated
paths through an embedding layer prior to the construction of the signature
of the paths. The embedding layer plays the role of dimension reduction and
information extraction. We remark that the data-stream structure is still
preserved after the original data stream is processed.

The result of the paper is structured as follows. In Section 2, we give a brief intro-
duction of the signature method and state our main algorithms for both the forward
and backward methodologies. We comment that a different backward algorithm was
also considered by [13]. Assumptions made in the paper are given in Section 3. Con-
vergence analysis for both the Markovian and non-Markovian FBSDEs are provided
in Section 4. The proof for the forward algorithm was inspired by the proof in [14],
which is now much simplified because the recurrent neural network structure is
no longer adopted. Instead, a collection of individual neural networks are used at
discrete times for function approximation purpose. The proof for the backward
algorithm is similar to that in [16] with minor changes, and we also provide it here
for completeness. Lastly, in Section 5 we provide numerical examples and compare
our results to those in the literature. The code for all the tests can be found on
Github: https://github.com/Huisun317/path-dependent-FBSDE-/tree/main

2. Algorithm and notations.

2.1. A quick introduction to Signature methods. In this section, we give a
brief introduction to the path signature. We first provide definition of the signa-
ture of a path and then present a few examples, which is then followed by the
log-signature. We comment that the dimension of the signature of a path increases
exponentially with the dimension of the underlying state process. The log-signature
on the other hand will effectively reduce the dimension without losing the informa-
tion content of the path signature. We then introduce Chen’s identity, which is
needed for the efficiency of numerical computation of signatures. Lastly, we in-
troduce the universal nonlinearity of proposition, which shows the approximation
power of functions using the signature as features to the path dependent functions.

Definition 2.1. (Definition A.1.[5]) Let a,b € R and X = (X!, ..., X9) : [a,b] —
R? be a continuous piecewise smooth path. The signature of X is then defined as
the collection of iterated integrals.

Sig(X),Lb:( // dX;, ®...®dth)k>O

a<t1<...<tp<b

_ (( // X ®...®de,’j)1<i i <d> . 2)
U1yl > k;ZO

a<t;<..<tp<b
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We note that the truncated signature is defined as

Sigm(x)w:( // dXt1®...®dth)O<k<m. (3)

a<ty<...<tp<b
The signature can be expressed in the formal power series; by using still the same
notation (see [6], Definition 5)

S0 =Y X S0 e, (4)

k=01iq,.. ,’Lke{l .,}

where k stands for the level of the truncation, and i1,is,...,7x € {1,...,d} is the
multi-index. We provide simple examples for the illustration of path signatures.
For more examples and theoretical results, see [20] [21] [22] [6] and [5].

Example 2.1. We take d = 1. Then, we have
Sig"(X)ap = Xp — Xa,

. Xy — Xa 2
SZQQ(X)a,b — %’
(Xb — Xa)3

Sigg(X)a,b = 3! 5

Then, the signature of the path X : [a,b] — R is given by
(1, 8ig"(X)ap, Sig*(X)ap, Sig>(X)ap,---)-
Example 2.2. We take d = 2, and for X; = (X}, X?),

b b
Sigh(X)ap =( / dx;, / dx2),

Sig*(X / / dX} dX;,, / / dX; dX},
/ / dX}dX}, / / dX}dX}),

Then, the signature of path X : [a,b] — R? is given by
(1,89 (X)aps Sig*(X)ap,-.)-

We comment that there is a transformation of the the path signature called the
log signature, which corresponds to taking the formal logarithm of the signature in
the algebra of formal power series. For a power series x where

T = Z Z Aisyoiy €iy --Ciy, (6)

k=01i1,...ixe{1,...,d}
for A9 > 0, the logarithm is defined as

log(x) = log(h) + 3 (1 - Lyen, ()

n A
n>1 0

Definition 2.2. (Log signature Definition 6 [6]). For a path X : [a,b] — R, the
log signature of X is defined as the formal power series log S(X)q.p-
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Definition 2.3. (Concatenation Definition 4 [6]) For two paths X : [a,b] — R?
and Y : [b, ] — R?, we define the concatenation as the path X Y : [a,c] — R? for
which
X, t b
(X xY), = 4 X0 T€lal]
Xp + (}/t - YE))) te [bvc]
Chen’s identity can provide a simpler computational method for two paths that

are concatenated. This theorem will be helpful if one needs to consider the signature
of different paths that have the same origin and large amount of overlaps.

Theorem 2.4. (Chen’s Identity Theorem 2 [6]). Let X : [a,b] — R? and Y :
[b,c] = R? be two paths. Then,

S(X * Y)a,c = S(X)a,b & S(Y)b,c- (9)

We also give the definition of the time augmented path. This is needed because,
in the numerical implementation, we will always use this augmented process.

(8)

Definition 2.5. Given a path X : [a,b] — R?, we define the corresponding time-
augmented path by X = (¢, X;), which is a path in RI*!.

We provide the following proposition on universal non-linearity as it gives the
theoretical grounding/motivation for us to use deep neural networks to approximate
the functional F'. Basically, the proposition says that the function of the path is
approximately linear on the signature. In some sense, the signature can be treated
as a ‘universal nonlinearity’ on paths.

Proposition 2.6. (Universal nonlinearity Proposition A.6 [5]) Let F be a real-
valued continuous function on continuous piecewise smooth paths in R, and let K
be a compact set of such paths. Furthermore, assume that Xo = 0 for all X € K.
Let € > 0. Then there exists a linear functional L such that, for all X € IC,

|F(X) — L(Sig(X)| < e. (10)
2.2. Algorithms. We use the following numerical scheme to approximate the so-
lution of the forward SDE for (1):

XY= XY ot XDh+ o, X)) AW (11)
where we use tilde to denote that we have a fine mesh, and h = T'/ N. Based on the
fine meshgrid, we also have a coarse mesh grid that has N total segments, where we
define At := % = hM, and where M is the number of fine grids in each segment. In
this case, it is then clear that N = T'/hM. Note that AW;N = ngl - W{N Notice

that one can define {X}"},<,<xn by naturally taking snapshots of {Xg}ogigl\”f at
i=0,M,2M,... MN. {WN}o<,<n—_1 can be defined similarly. The motivation for
defining these two solutions with total steps of size N and N is that the financial
data are usually of high frequency, hence more information can be obtained when
using more granular data (larger time discretization number in our case).

To approximate Z;, we use a sequence of neural networks defined on this courser
meshgrid {0, %,,...2F, .., T}, where we denote the approximator as ZN-419 Bach
neural network will take the truncated signature of the path X; of level m as input.
We denote the truncated signature of the process X up until time ¢ as m,,, (Sig(Xo.¢)),
and that of the approximated path according to (11) as

T (Sig(X0% ), T =to,ta, ooyt ooyt 1 (12)
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In our first approach, the sample-wise solution of the BSDE is then approximated
by the following discretization:

Y = Y (O Y 2N A+ ZN AW, (13)

where we use the short hand notation f,(-,-,-) := f(¢ m -, ), and use n in place of
tn. We remark that here X2 := X}V is essentially X2}, . In later analysis, we will
also use (X}, }Q{Y’Sig, Zﬁ’sw) in place of (XN, Y N:sig 7N.519) to make it clear that
those are the approximations at time ¢,. This should not cause any confusion since
the upper index N denotes that those are quantities obtained through numerical
scheme.

We did not specify the terminal condition/discretization because, in our first
approach, the sample Y propagates forward: we initialize a batch of the Y; and
propagate through (13) to match the terminal condition.

On the other hand, we note that such forward method cannot deal with the
optimal stopping problems, which typically requires a backward scheme. As such,
inspired by the algorithm in [31], we also propose a backward algorithm. But, in
this case, the process Z; takes the path of the process X;.

yNosio _yNesio 4 g (XN | yNsig gNsin g gNSIAwN  (14)

where ZN:59 .= Z9 (1, (Sig( 0nm))), and {Zf},—;  n_1 is the feed-forward
neural network estimator.

We point out that the optimal stopping problem in the financial setting has a
PDE counterpart

{min{—@tu — Lu— f(t,x,u,0T Dyu),u— g}, t€0,T),r R4,

u(T,z) = g(z),z € R%. (15)

where L is the Itd generator of a diffusion process X;.
This variational inequality can be linked to the RBSDE (Reflected BSDE).

t t
Xi=x+ / b(s, Xs)ds + / o(s, Xs)dWs,
0 0

T T
Y= g(Xe)+ [ fls X Ve, Zo)ds — / 2,dW, + Kz — K,
t t

Y, > g(Xy), 0<t<T. (16)

where K is an adapted non-decreasing process satisfying

T
| - gtxojar —o.
0
Accordingly, the numerical scheme in general takes the form

YTN’Si‘q = Q(X(])\?T)
yNVosig _ YnN,sig + fn—l( N 1,YN \sig Z’;’LV slzg)At . stgAWN (17)

n—lv n 1
Y50 = max(g(XY ), Y,V5).

n—1

We state the algorithms for both the forward and backward Deep Signature algo-
rithm in Algorithms 1 and 2.

Finally, we note that, due to the fact that the dimension of the truncated sig-

natures increase exponentially with the dimension of the underlying paths, solving

path-dependent FBSDEs of very high dimensions become impractical when the



DEEP SIGNATURE FORWARD/BACKWARD FBSDE METHOD 1089

state process is of very high dimension. The generated signature is of dimension
d™*1/(d — 1), where d is the dimension of the state process, and m is the level of
the truncated depth of the signature. When the underlying process { X, }o<t<r is of
dimension 20 or more, even the alternative log-signatures will take high dimensions.

The approach that we take to overcome this difficulty is to pass the underlying
paths say {X, }o<n<n-1 (X, € R?) through an embedding layer while still keeping
the datastream structure. The trainable embedding layer will project the underlying
process {X,}o<n<n—1 to a dimension d < d. The underlying squence after the
transformation will then be used to generate signatures which will be passed through
a sequence of individual neural networks or RNNs [14] to approximate Z;_ . In the
training process, error back-propagation of the signatures also needs to be done
since the parameters of the embedding layers need to be trained. As such, we will
use the Signatory library available in PyTorch since it facilitates such calculation
[5]. This way, the dimension of the original data sequence is effectively reduced,
which facilitates the training process.

Algorithm 1 Algorithm for forward deep FBSDE Signature method

Require: Initializing the following terms

e Yy, margin €, and epoch = 0, the total number of epoch iterations. A
binary indicator Embedding=0,1.

e Feedforward neural network {Zﬁn}izo)“_ ~N—1.- Embedding layer if Embed-
ding=1.

e Time discretization A which determines the total number of temporal dis-
cretizations N and the total number of segments N which determines
coarser grid size At.

1: while LOSS(Yy) > € or Iter > Epoch do
2: e Randomly sample  batch B of Brownian paths

(WO,Wh,...,Wth,...WNﬁ) and accordingly the state process

(XN, XN XX
e DPass (Xg’N,...,Xi’N7XZ’A]}Th,...X%’]g) thr-ot}gh the ?mbedfiing layezr if
Embedding=1. Still name the output (X(J)’N, s X,JL’N, Xfl’ﬁh, X]jvg)
e  Create truncated signature (log-signature)
i N i N i N e h N
(ﬂ'm(SZg(Xé ), T (S1g(XG Ap))s s T (ST9(X0ar)) '"7Wm(SZg(X(]):NAt)))O<j<B
e Compute Z2:N:519 = 70n (wm(Sig(ngfyAt)))
e For each path {ngg}lSjSB, find Y,*V:9%9 iteratively using the Euler
scheme (13).
3:  Compute the loss by matching the terminal conditions

B

Loss(Yy) = 5 Z(y%ﬁN’S 9 _ g(X%NSi9))2

Jj=1

L

Update the parameters through gradient descent. Iter = Iter + 1
5: end while
6: return Yj
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Algorithm 2 Algorithm for Backward deep FBSDE Signature method

Require: Initializing the following terms

e A margin € and epoch = 0, the total number of epoch iterations. A binary
indicator Embedding=0,1.

e Feedforward neural network {Z%.};—o  n_1. Embedding layer if Embed-
ding=1

e Time discretization A which determines the total number of temporal dis-
cretizations N and the total number of segments N which determines
coarser grid size At.

1: while LOSS(Yy, Zy) > € or Iter > Epoch do
2: e Randomly sample  batch B of Brownian paths

(WO,W;L, o Wth,.;.WNﬁ ~and accordingly the state process
(XPN XN XD X

e DPass (XéN,,X,iN7Xiﬁh,ijvg) throElgh the ?mbedfiing 1aye~r if
Embedding=1. Still name the output ()N(g’N, ceey XZ’N, Xi’ﬁh, X]jvg)

e Create truncated signature (log-signature)

(7o (Sig(XE™)), 7o (Sig (KGR ) o T (Sig(KEima))s o Wm(Sig(Xg:’%At)))O<j<B

e Compute ZJN-519 = 70 (r,,(Sig(XIN,,)))
e For each path {f(g;g}lgjgg, find Y;7:N-5% iteratively using the Euler
scheme (14).
3:  Compute the loss by finding the variance the batch {Yoj N Sig hi<j<B

Loss (Y] "519) = Var(v{¥5%)

>

Update the parameters through gradient descent.
5: end while
6: return Y

3. Proof of convergence.
3.1. Assumptions.

Assumption 3.1. Let b, 0, f, g be deterministic functions such that:
1. b(-,0),0(-,0), f(-,0,0,0), and g(0) are uniformly bounded.
2. b,o, f,g are uniformly Lipschitz continuous in (z,y, z) with Lipschitz constant
L.
3. b,o, f are uniformly Hélder-L continuous in t with Hélder constant L.

2
4. f has slow and at most linear growth in y and z:

|f(t7may17zl) - f(taxay2722)‘2 S Ky'yl - y2‘2 + Kzlzl - Z2|2
with Ky and K, sufficiently small.

We comment that those assumptions are standard for the existence of the BSDE
except for 4, which is needed for the proof for the backward method.

We want to identify the solution of the BSDE with the solution of a semi-linear
PDE according to the non-linear Feynman-Kac formula. Hence, we make the fol-
lowing assumption.
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Assumption 3.2. Assume that the following PDE has a classical solution u €
CH2([0,T) x R%:R):

(18)

Owu(t, ) + Lu(t,x) + f(t,z,u,0T0,u) =0, (t,z) €[0,T) x R4
u(T,z) = g(x), r € R

Then, under Assumption 3.1 and Assumption 3.2 | one can write (Theorem 5.1.4
[34])

Y, = u(t, Xy), Zy =0 (X,)Dyul(t, Xy).

In all the analysis that follows, we will take d = 1 for simplicity. We introduce
the standing assumptions below.

3.2. Markovian case. Some simple estimates are given below, For simplicity, we
use the following short hand notations, and C' denotes a generic constant which
may differ from line to line.

i. Afr‘,lv = f(t, Xta ern Zt) — fn(tna X,'{LV, YnN,Sig’ Zﬁ’Sig); Aftn = f(t, Xt, Yrt, Zt) —

fn(tna th ) Y;fn 5 Ztn,)-

iii. AYN =Y, —YNS9. AY, =Y, -V, .

iv. AZ;LV = Zt — Z”]LV,Sig; AZtn = Zt — Ztn'

v. Agl = g(Xy) —g(X); Agr, = 9(Xs) — g(Xe,)-

The following standard result from [34] is needed for the proof later.

Theorem 3.3. Let Assumption 3.1 hold and assume At is small. Then,

N-1 tn41
max E[ sup |Y; Y |*]+ Z E[/ |Zy — Zy, |2dt] < C(1+ |=z[*)A. (19)
n=0 tn

0<ns<N ¢, <t<tni1

Lemma 3.4. By Assumption 3.1 and Assumption 3.2, the following inequality holds
true:

i. E[|AX,|%] < CAt; E[JAXY|?] < CAt.
ii. B[ |AfN[2dt] < CA2 + CE[|Y;, — Y N-592A8) + CE[ [/ |AZN|2dt).

tn tn

Proof. The result for i) is standard, which is from Theorem 5.3.1 in [34]. ii) follows
from the following sequence of inequalities and Theorem 3.3: for ¢, <t < ¢, for
any t,

tn41 tn41
JE[/ AFNPdf] < 2E[/ F(t Xes Yi Z2) — Flbs X0, Vs Z0) + (b, X1, Yo, Z0)
t t

n n

- f(tvuth;)/tna Zt)|2 + |f(tn7th7 }/tnvzt)
— f(tn, XN, YN8 ZV519) 2]

2 |Ye, = Yt

trnt1
< CA#* + CE| / |AY;,
t

n

tni1
+ C’E[/ |AZY 2dt]
t

n

. tn+1
< CAt? + CE[)Y;, — Y,NV59 12 At + C]E[/ |AZN 2 dt].
t

n



1092 HUI SUN AND FENG BAO

3.2.1. Forward algorithm. We note that the proof follows similar lines as in [14],
which is now simplified because the recurrent neural network structure is no longer
adopted. Instead, individual neural networks are used at discrete times for the
function approximation purpose.

Lemma 3.5. Under Assumption 3.1 and Assumption 3.2, one has
Zy = o (X;)Dyult, Xy)

Further, assume that the function F(t,z) := o’ (x)Dyu(t,x) is Lipschitz in x, then
there exist ZY-99(.) for different 0 < n < N — 1 such that the following is true:

N-1 tn+1 )
S B / 12, — ZVSi9 24 < CAL (20)
n=0 tn
Proof. We have the following sequence of inequalities:
N-1 tn+1 . N-1 tn+1 )
> ]E[/ 12— 2059 Pdt) <2 IE[/ | Zy — Zi, |2 + | 24, — ZN519)2at]
n=0 tn n=0 tn
N-—1 tnt1
<SCAt+4) IE[/ |F(tn, X1,) — F(tn, X))
n=0 tn
| F(t, X[V) = 23059 2at]
N-1 tn+1 )
<OAt+4) ]E[/ |F(tn, X{Y) — Z)59dt]
n=0 tn
< CAt. (21)
The last term can be made arbitrarily small by the universal non-linearity of the
path signature. O

Next, we state and prove the main theorem of the algorithm.

Theorem 3.6. Let the assumptions made in Lemma 3.5 hold. Then, there exist
ZN-549(.) for different 0 < n < N — 1 such that the following is true:

max E|] su Y, — YNS912) < OAL. 22
i B s Y =S < @)

Proof. Taking the difference between the set of equations

{YW =Y, — [ f (X0 Yo Z)dt 4 [)T Z,dW

YN = YNSIE [Ine g, XN VNS g0 4 [ Y Seaw,
(23)

tn,
we obtain

_ . _ . tnt1 tnt1 ]
AVN 519 Ay NoSia / (Afa)dt + / (Ze— ZNS0)aw,,  (24)
t t

where AY, N9 .= Y, —YN:519 By squaring both sides and using Young’s inequal-
ity with epsilon, we have

At
_A'_i

_ ) _ . tnt1 ]
E[AY,S791 < (1 JE[E[|AY,Y-5% +/ (Ze = 23 519)dW,[?| F, )]
€ t

20

+ (Bl - /tt+ Afdt) ]
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At NS frt :
< (14 —)E[E[AY] + | (Z = 21 )dW3 | 7, ]

tn

+20+ ) (IE[/:WH AfPdr)Ar)

_ . t"+1 :
< (14 CADE[|AYNS42] 4+ O(AL + E| / |Zy — Z]59 2t

n

_ v oo bnt .
E[|AY,V592]At) + CE| / |\ Zy — Z)-5%9?at (25)
t’”/
N tnt1 .
< (1+ CAHE[AYNS9)2] 4 C(At? + E[/ |Z, — ZY-519)2)at),

where we have picked 1/e to be a constant C' that does not depend on the size At.
And, in the third inequality, we used Lemma 3.4. Then, by the discrete Gronwall
inequality, by Lemma 3.5 and Theorem 3.3 we have

sup  E[|Y;, — V5912 < CAL. (26)

0<n<N—1
Then, together with Theorem 3.3, the claim is proved. O
3.2.2. Backward algorithm. Since the convergence takes the variance of YN 519 as

the loss function, we first prove an a priori estimate for the loss.
Now we state the main thereom regarding the convergence of the backward

scheme where we provide a lower bound for Var(YON’Sw ).

Theorem 3.7. For any ¢ > 0, we have

, 2TK, T
Var(YV5i9) 5 (1 — e — 2182 gy / IAZN Pdt] — C At
€ 0
4T?K A
- YE[ max |Y;, — YNS9)2 (27)
€ 0<n<N-1

N Szg) —

Proof. Noting that the true solution Yj is deterministic, and that Var(Yj
Var(Yy — Y{"5%), we have the following inequalities:

T T
Var(Yy 5% = {(Agflv+/ Af,{vds_/ AZN AW, —E[AgY + /A fNds))®
0 0
T
> 8[| a2
0
T T
—QE[/ AZ,]LVth(Ag,Jy+/ AfNdt —E[AgY + /Adet
t 0
T
> (1- 08| [ |AZYPar
0
T T
B(AGY + [ Ar¥ar-Biag) + [ AfYar)? (28)
0 0
T 1 T
> (1- 0l [ |AZNPar) - (E(AgY + [ AfYdr?
0 € 0

T T
> (1= B[ |AZY P - (€0 )+ TE] [ |ALYPdy)
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T
> (1- e)E[/ IAZN [21] — CAt
0
2 T
- z(cAt + TE[/O K, AV N2 + K, |AZY?adt)

2TK,
>(1l—e—

T
)]E[/ IAZN 21 — Ot
0

2TK,

€

T
E[ / Y: = Vi, +Y;, — Y, V59) 2]
0

2TK,
€

T
S (1—e- )]E[/ IAZN Pdt] — C At
0

AT?K. .
- YE[ max [V, — Y,V (29)
€ 0<n<N-1 "

where in the inequalities we used the fact that Var(X) < E[X?] and the second

inequality that 2ab > —ea?— 6%1)2. In the second to last inequality, we used Theorem
3.3. O

We state the following main theorem about the convergence of the backward
algorithm.

Theorem 3.8. Under Assumption 3.1 and Assumption 3.2, the following inequality
holds:

T
sup E[|Y; — Y,V 2] + / E[|Z, — Z)99|%dt] < C(At + Var(Yy"5'9)).  (30)
t€[0,T) 0

Proof. Taking the difference between the exact solution and the numerical solution,
we have the following inequality:

T T
B, - YN S0) < 3(Blag™ )+ 7B 1afNPar+ [ |AZYPar)
0 0
T
< 3CAl+ CAL+ STE[/ K,|AYN]? 4 K| AZN ]
0
T
+ 3]E[/ AZN 2]
0

T
< CAt+3(1 + TKy)E[/ |AZY 2dt)
0

T
+ 3TKy]E[/ Vi =Yy, + Y, = Y,75)dt]
0

T
< CAt+3(1+ TKy)IE[/ |AZN|2dt]
0
2 v N,Sig|2
+OT2K,  max E[|Y, — Y,V (31)
This shows that

, CAL+3(1 + TK)E[[] |AZN|2dt
e B[V, -y SO SULTIGRL, Az

0<n<N— 1-6T2K,
< _ .
< CAt+ 16Tk, E[ ; |AZY|2dt] (32)
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Using Theorem 4.4 ((29)), we have

oTK T
Var(Y5%9) > ( Z)]E[/ IAZY 2] — C At
0
IT’K, 30+ TK,) N
— (OAt T [/ |AZ, dr])
OTK,  4T?°K,3(1+TK,) T
> o z y y N2 .
_((1 (- )+ — 1_6T2Ky)15[/0 |AZN|2dt] — CAt

(33)

Then, take € = \/2TK + 4T2Ky% by the assumption on K, and K, since
2e < 1, This implies that

E[ / AZ, Pt] < C(AE + Var(YV59)), (34)
0

Together with (32) and Theorem 3.3, we have

T
sup E[JY; — Y,V:5i92] 4 / E[Z: — 25924t < O(At + Var(YY59)). (35)
t€[0,7) 0

O
Letting F(t,z) := ol (x)D,u(t,x), we have the following theorem.

Theorem 3.9. Let the assumptions in Lemma 3.5 hold. Then, the following in-
equality holds:

Var(V)W ) < c(At+ Y EIF(t, XY) - Z0TPA). (36)
0<n<N—1

Proof. Again, note that the true solution Yj is deterministic and that Var(YON’Sig )=
Var(Yy — Y{"5%). We then have the following result:

Var(Y519) = [Agn / AfNds + / AZN AW, — E[AgY — / AfNds]) }
< 2E[(AgN — / AfNds — E[AgN — / AN ds))? / \AZ,,,\th}
- 0 0

- T
< 2E|(AgY —/ Af,]lvds)2+/ |AZn|2dt}
- 0 0

T T
<4E \AgN|2+T/ |Af;y|2ds}+2E[/ Az i)
0
T T
gCAtJrCE[/ |AYnN|2+|AZm2dt]+2E[/ Az i)
0 0

T
<CAt+C max E[Y,, — YN + C’E[/ |AZN 2dt]
0<n<N-1 0

T
< CAt+ CE[/ |AZN 2dt],
0
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where we used (32) to bound maxo<,<n—1E[|Y;, — Y,V*599|2]. Using Theorem 3.3,
one has that

T T
B[ |azypa] <2pl[ |z - 2,
0 0

T
OB [ 120 2, P (00, X) - 22, (X,
0

2 4|2, — 259 2t

1P (tn, XY) = 2352t

SCAt+ > E[F(te, X)) = ZV59PAt. (37)
0<n<N-1

Note that F(t,, X.¥) can be approximated by ZY-9% arbitrarily close given the same
underlying path { X~ H<n<n—1 due to the universal non-linearity of the signature
path. As such, inequality (36) holds. O

By putting together Theorem 3.9 and Theorem 3.8, we have the following result,
which then shows convergence by the universality property of the path signature.

Theorem 3.10. Let the assumptions in Lemma 3.5 hold, denoting F(t,z) :=
oT(x)Dyu(t,x). Then, the following inequality holds:

T
sup E[|Y; — Y, V592 +/ E[|Z, — ZN-5192at) < C(At+
t€[0,T] 0
> E[F(te, X)) = Z)59)%)At). (38)
0<n<N-1

3.3. Non-Markovian generalization. We have provided the proof for the Mar-
kovian case. We now consider the case for non-Markovian FBSDE; i.e., both the
driver and the terminal function g depend on the entire path of the process Xjg .
For simplicity, we still consider dimension d = 1. We introduce the following nota-
tion for the path analysis, which are mainly from Dupire [7].

For each w € 2, X : T" — R is the canonical process X¢(w) := w;. Let | - | denote
the norm. For each 0 <t <t < T, define A := |J A; where A;: [0,¢] — R is the

0<I<T
path. We write
[[we|| ;= sup |w(r)],
rel0,t]
doo (wi, w) := max( sup {|w(r) —w'(r)[}, sup {|lw(t) —w'(r)|}) + [t —¥'].
r€[0,t) re(t,t’]

In Dupire’s formulation of derivatives, one often regards u(w;) as a function of ¢, w, x
u(wy) == u(t,w(s)o<s<t, w(t) + ). (39)
The definition of spatial derivative is given below,
Definition 3.11. Let u: A — R and w; € A. If there exists p € R? such that
u(wy) = u(we) +p-x+o(|z]), =eR, (40)

then we say that w is vertically differentiable at w;, and we denote the gradient of
D u(w) = p. u is said to be vertically differentiable in A if D,u(w;) exists for each
wy € A. We also define the Hessian D, u(w;). In a similar fashion, the Hessian is
an S(d)-valued function defined on A, where S(d) is the space of d x d symmetric
matrices.
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For the horizontal derivative, and we first define w; € A, we denote
wi,s(r) = w(r)1on (r) + w(t)1pq(r), rel0,s]. (41)
Definition 3.12. For a given w; € A, if we have
w(we,s) = wlwy) +als —t) +o(ls —t]), s>t, (42)
then we say that u(w) is horizontally differentiable in ¢ at w¢, and denote Dyu(w;) =

a. u is said to be horizontally differentiable in A if Dyu(w;) = a exists for all w, € A.

Under the assumption to be made in Assumption 3.13, define u(t, X;) := Y3, then
we have the nonlinear Feynman-Kac formula from Proposition 3.8 in [25] that

Zy = Dyu(t, Xi)o(t,xt) := F(t, X). (43)

where we denoted X; as the path X A; and z; as the spatial value of the path
evaluated at time t,

We make the following strong assumption to obtain a convergence result similar
to the Markovian case.

Assumption 3.13. In addition to Assumption 5.1, assume the driver of the BSDE
is also Hé'lder-% continuous int and it is uniformly Lipschitz continuous in (X,Y, Z)
with Lipschitz constant L in the sense above. Also, assume that b, o, f,g are smooth
functions with bounded derivatives. Also assume F is Lipschitz continuous in X
with Lipschitz constant L. Namely,

\F(t,X,) — F(t', X},)| < Ldoo (X1, XJ). (44)

One immediate consequence of this assumption is that Theorem 3.3 holds also
in the non-Markovian setting.

Theorem 3.14. Let Assumptions 3.1, 3.13 hold and assume At is small. Then,

N-1 1
max E[ sup |V —Y;[7]+ > E[/ |Zy — Z,,|?dt] < C(1 + |z)?)At.
n=0

tn
0Sn<N %, <t<t,i1 tn

(45)
Proof.

tni1 tnt1
/ E[|Z, - Z,, [*)dt = / E[|F(t. X)) — F(tn, X, )Pldt
t t

n n

: /t”ﬁ C((AL +E[ sup |o—x, [])dt  (46)

tn <t<tp41

n

tni1
< / CAtdt. (47)
t

n

This will imply that

N-1 tn41
> IE[/ |Z, — Z,,|%dt] < CAt.
n=0 tn

To see that
max E[ sup |Y; —Y; |?] < CAt, (48)

0=n=N ¢, <t<tni1
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we have
t t
Y-, =— f(s,Xs,Ys, Zs)ds +/ ZsdW. (49)
tn tn
By squaring both sides, taking the sup and then taking the expectation, one obtains
tnt1
Bl sup |V ¥, < CAB[[ (s, Xo,Yai Z2) = £(5,0,0,0) s
tn <t<tp41 tn

tnt1
+ C(At)? + CE[/ | Z,|%ds]
t

n

< C(AE[ sup [Xi|* + sup [V]?]
0<t<T 0<t<T

tni1
+ C(AY)? + CE] / 1Z,|2ds]
t

n

< OAt+ CAtE[ sup |V;|*] +E[ sup |Z:*]).  (50)
0<t<T

0<t<T

We used that E[||X¢|[?] < E[supg<;<r |[X¢|?] < C for some constant C. Also, by
using Lemma 3.3 and Corollary 3.9 both from [25], we have the boundness result
of (Y, Zy):

E[ sup [Y’] < C,

0<t<T
E[ sup |Z/*] <C. (51)

0<t<T
Then, one has the desired result. By combining (48) and (47), we obtained the
desired result. O

One immediate result is a non-Markovian version of Lemma 3.5.

Lemma 3.15. Under Assumptions 5.1, 5.13, there exist Z1-5%9(.) for different
0 <n < N —1 such that the following is true:

N-1 tn41 )
> IE[/ |Z; — ZN519)241) < CAt. (52)
n=0 tn

Proof. Note that we have the following sequence of inequalities:

N-1 tni1 } N-1 tnt1 .
Suif iz aysara <o ul[ 14— 4 + i, - 25504
n=0 tn n=0 tn
N-—1 tnt1
<CAt+a SB[ |Pltn Xe) - (b, X0P
n=0 tn
+ | F(tn, X7V ) — Z2519|2dt]
N—-1 [ .
<CAt+4) IE[/ |F(tn, X[) — Z2519)2d4]
n=0 tn
< CAt. (53)

In the second inequality, we used Theorem 3.14, and in the third inequality, we used
the Lipschitz assumption on Z; and the fact that maxo<n<y E[sup, | X; — X[V 2] <
At.
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The last term can be made arbitrarily small by the universal non-linearity of the
path signature. O

Theorem 3.16. Let Assumptions 3.1, 3.13 hold. Then, there exist ZN-59(.) for
different 0 <n < N — 1 such that the following is true:

max E[ sup |Y; — Y,V519)2] < CAt. (54)

0<ns<N ¢, <t<tn41

Proof. The proof follows the same line as Theorem 3.6, except that in the line of
inequality (25), one has the following estimates for A f,:

tnt1 tnt1
E| / Afal?] < 2E] / (6 X0, Yo Z0) — F(bns X2 Yo, Z0) 2+
t

n n

‘f(tnaXta}/fm Zt) - f(tnaerzva YnN7Siga Zrly,\[7Sig)|2dt]

tnt1 _
< C(At)? + CE[/ P (X, XN) + Y, — Y, N5i9)2
tn

+12, — ZY519 2 at]

tnt1
<c@r+E([ " sw M-,
t

n tn StStn+1

[y, — Y

+12, — ZY519 2 a]

o a tnt1 ,
< C(A1? + E[|AT VS92 At + E[/ 12, — ZVS19241). (55)
t

n

O

Remark 3.17. We note that Assumption 3.13 is a strong assumption on Z;, and the
version of Theorem 3.3 we obtained is also subject to this assumption. A stronger
version removing the Lipschtiz requirement is not necessary since it is still needed
for proving the non-Markovian version of Theorem 3.6 and Theorem 3.10.

As such, by using a similar argument, one can show that the non-Markovian
version of Theorem 3.10 also holds.

4. Numerical examples. In this section, we provide numerical examples and
compare the results obtained using our algorithms to those from [14], [13], and
[18]. For all the numerical examples, we generate new batch samples (data) for
each iteration. This is different from examples from [14], where a fixed amount of
data was pre-generated, say 10° trajectories. The main motivation for us to use
new samples for each iteration is 1) we want to avoid over fitting, and 2) the data
generation process is independent from the training process and it is easy to imple-
ment. We comment that we will generate the path signature for {ng }(})3<£7- <t for
eachn =0,1,..N—1, and | € B where B is the batch. One can use Chen’s 'iaeﬁtity
for the path generation to avoid regeneration of the signatures for the overlapping
parts in the paths.

4.1. Lookback options. Consider the one-dimensional Blackscholes setting where
the stock price follows the following dynamics:

dX, = rXydt + o X dW,. (56)
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The terminal payoff is defined to be
9(Xar) = Xp —Ogi?éTXt. (57)
The option price is defined to be
Y; = exp(—r(T - 1))Elg(X.r7) ] (58)
Then, e~ "Y; = Ele ™" g(X.A7)|F] is a martingale, meaning that
d(e™"Yy) = Zjdw, (59)
for some square integrable process Z7, and then one immediately has
aY; = rYidt + Z;dWy, (60)
where Z; := €"Z]. The solution Y; has the analytic formula
o2
?((I)(_pl) _ e—r(T—t)(

my

Y, = X, ®(p1) — mee " T D(py) — X, ”

)zr/azq)(_pg))7
(61)

where

2
S O%I}Lftht’pl _ log(Xt/mt):\/(;;_(tf /2)(T t),pg o —oVT 1
and p3 = p; — 20_—”(\/T —1).

For the model specification, similar to [14], we use N = 2000 and N = 20. We use
the truncated signature method with level m = 3. We take zg = 1,0 = 1,7 = 0.01,
and T = 1. Since in [14] it is demonstrated that the method therein is state of the
art, we present comparison between results obtained using methods in [14] and our
forward /backward methods in Table 1.

For the forward algorithm (method 1), we take the batch size to be 100. And,
we use the Adam optimizer with learning rate 1073. Since N = 20, we use 20
individual neural network, to approximate Z; for each 0 < n < N — 1. We use
fully connected feedforward neural networks with 2 hidden layers each of 64 neurons.
It can be observed from Figure 1 that our forward algorithm produces good results
compared to the exact solution: the blue curve is very close to the red dashline.

For the backward algorithm (method), we note that, due to the designed model
methodology, it is desirable to use a larger batch size: we are minimizing the variance
of the mini-batches and use the mean of the batch samples as the sample estimate
for Yy. We observe that, for this method, convergence happens fast but with values

typically fluctuating about a fixed level. This is due to the fact that:

éMsJ‘sN
where M is a fixed amount (say 10000). Instead, to overcome over-fitting, we
generate different batch samples for each iteration. Hence, one trajectory of
sample path may lead to high variance.

e We minimize the variance of the sample and use the mean of the sample as
estimation for Yy, so the estimated mean may fluctuate according to sample
size.

e We are not training the model on a fixed amount of trajectories of {Xz,

For this numerical example, we use B = 1000 as the batch sample size. We perform
50 runs of the algorithm and obtain mean of a 0.578. The confidence interval is
[0.572,0.584]. As such, even though the estimated Yj for each iteration shows some
fluctuation in the sample run, the mean is stable. We show the result of one of the
sample runs in Figure 2.
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As such, we observe that both methods are comparable to that in [14].

Estimated value for each Interations, example 1

Yo values

—— Estimated YO value
---- Exact solution 0.5828

0,48

) 500 1000 1500 2000 2500
Iterations

FIGURE 1. Predicted Yy value versus the number of interations trained.

0590 4
0585 -
» 10580 4
u b
=
]
LEER
b
0570 4
0565 —e— Estimated YO value for each iterations
---- Exact solution 0.5823
0560 ---- Mean of estimated Yy, 0.578
100 105 110 115 120 125 130 135 140

Iterations

FIGURE 2. Predicted Yy value versus the number of interations trained.

1101

4.2. A higher dimension example. The last example has dimension d = 1,
and for this particular example, we take d = 20. We consider the high dimension
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TABLE 1. Example 1 results comparison

Exact | Method in [14] | Forward method 1 | Backward method 2
Result Y, | 0.5828 0.579 0.581 0.578
Error - 0.6 % 0.3 % 0.8%

TABLE 2. Example 2 result comparison, d = 20

d =20 | Exact | Method in [14] | Forward method 1 | Backward method 2
Result Yy | 6.66 6.6 6.58 6.71
Error - 1% 1.2 % 0.75%
d =100
Result Yy | 33.33 - 33.15 33.50
Error - NA 0.538 % 0.534%
problem
Ji X = (62)
Y= g(Xnr) + [ F(s, X ps, Vs, Z5)ds = [, Zsd WV

For simplicity, we take f = 0 and g(X. A7) fo Z Xids)2. We comment that,
because the dimension of the signature grows exponentlally as a function of the
dimension of the underlying state process, we will use the log-signature of paths
instead of signatures since it essentially contains the same amount of information
but requires less dimensions. We take d = 20,7 = 1, N = 5, N = 100. Again, it
is observed that the results of our forward method 1 and backward method 2 are
comparable to the exact solution and the method proposed in [14]. We comment
that the convergence of the forward method can be slow in this case as it could
be sensitive to the initial guess of Y. But, determination of a rough range of Yj
is easy: Try running the algorithm with guess Y, and if the estimated result is
monotonically increasing during the training process, then stop the algorithm and
make a larger guess Y. Keep increasing the initial guess if it is still increasing,
otherwise make a smaller guess. Using this methodology, we start training our
algorithm with Yy = 6.0 and it stabilizes at 6.58. Method 2 converges rapidly, but
there is some fluctuation among each iteration within one run. Again, we use the
mean estimator and we observe the result is 6.71. The test result for d = 20 is
summarized in Table 2.

We also present the result when the dimension is very high, d = 100, in which
case the method in [14] is no longer practical. In this case, we construct a (train-
able) embedding layer whose output data stream has state dimension 5. Since the
dimension is reduced, we can take larger N for the purpose of accuracy, in which
case it is selected to be 10.

We present the PDE related to (62) and state its exact solution for completeness.
For (t,w) € ([0,T] x C([0,T],R%))

{atu + ltr(awwu) + f(t w, 0y, u) =0 (63)

w(T,w) = g(w) fo w tds)?
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The exact solution is
u(t,w):(/ Zw ds)? Zwt T—t)2+2(T -1t Zwt / Zwids

3
+ 3(T t)°.
4.3. An example of non-linear type: Amerasian Option. As the last exam-
ple, we provide an example used in [13]. We note that, in this case, our forward
Algorithm 1 is not applicable anymore. We will consider only the backward algo-
rithm according to (17).
Amerasian options are considered under the Black-Scholes model that involves d
stocks X7, ...Xy which follow the following SDEs:

dX} =rXjdt +oidW}, Xt =xb,i=1,..,d (64)

where the W are assumed to be independent. The payoff of the basket Amerasian
call option at strike price of K is defined as

_(zd:l;/OTngt—K)+, (65)
=1

where w; are defined to be the weights. We consider the price of the Bermudan
option, which is a type of American option where early excercise can only happen
at prescribed dates. The model variables are taken to be X§ = 100,r = 0.05,0; =
0.15,w = %,T =1, and K = 100. We take N = 1000 and N = 20. We show the
benchmark results against 1) the European price, 2) the method from [13], and 3)
the method from [18]. On the analytic side, for benchmark purposes, we comment
that:

i. The American option price should be higher than the European price due to

its flexibility of being able to exercise early.
ii. By Jensen’s inequality, using the current parameters

E[e—rT(zdjl TXidt—K)+]> —TT Z det Ry
~dT J, ~" - aT

iii. Again, we can show that the price of the Ameran51an option price is decreasing.
By using the Jensen inequality, we have

- 1 2d T . n l_r 1 d T . +
e T(M;/O Xtdt—K) < e T(ﬁZ/ Xtdt—K)
5—” - Z/ Xidt —

=d+1

Then, taking the limit in d, we obtain that the price converges to 2.42 when d
goes to infinity.

We show our results in Table 3. We run the algorithm for dimensions d =
1,5,10,20, and 100 for 50 runs. The mean of the 50 estimates is taken as the
estimator, and the confidence intervals are computed based on those samples.

We also note that our results agree with the theoretical findings. That is, com-
pared to the benchmarks, the calculated prices are all above the European prices.
We comment that each run takes much less time than reported in [13]; for example,
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TABLE 3. Example 3 result comparison d = 1
d=1 European | Method in [13] | Method in [18] | Backward
Result Yy 4.732 4.963 5.113 5.03
Confidence Interval [4.896,5.03] [5.009,5.217] [4.97, 5.10]
d=5
Result Yy 3.078 3.190 3.335 3.11
Confidence Interval - [3.115, 3.266] | [3.207, 3.462] | [3.08,3.155]
d=10
Result Yy 2.701 2.914 3.142 2.76
Confidence Interval - [2.844,2.983] [2.975,3.309] | [2.734, 2.813]
d=20
Result Yj 2.51 3.093 3.095 2.61
Confidence Interval = [3.017,3.168] | [2.883,3.3308] | [2.587, 2.627]

when d = 5, the runtime (one run) of our algorithm takes only 369.47 s to achieve
the estimate, while in [13], 1927.55 s is reported. In the high dimension case where
d = 100, the price is found to be 2.516 with confidence interval [2.506, 2.526]. We
note that, in this case, the method in [13] fails due to the excessively large size of
both the signature and path signatures in this case.

In the meantime, observing the trend in the price predicted, we note that our
predicted prices agree with the trend better than [13]: when d = 20, their predicted
price even increased compared to when d = 10, which does not align with theoretical
result. We comment that, when using the embedding layers, one run for d = 20
reduces to 165.0 s, and for d = 100 one run takes about 320.0 s.
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