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Abstract. We report two methods for solving FBSDEs of path-dependent

types in high-dimensions. Inspired by the work from [31], [32], and [20], we

propose deep learning frameworks for solving such problems using path signa-
tures as underlying features. Our two methods (forward/backward) demon-

strate comparable/better accuracy and efficiency compared to the state of the

art [14], [13], and [18]. More importantly, leveraging the techniques developed
in [5], we are able to solve the problem of high dimension (100 and above),

which is a limitation in [14] and [13]. We also provide convergence proofs for

both methods with the proof of the the forward method following similar lines
to [14], and the backward methods inspired by [16] in the Markovian case.

1. Introduction. Ever since the seminal paper [32], solving high dimensional PDEs
attracted a lot of attention, and researchers invested a large amount of effort in
designing numerical schemes to solve such problems (c.f.[2], [17] and [18]). The
workhorse of almost all such schemes is the combination of the usage of BSDEs/FBSDEs

and deep neural networks. The BSDEs/FBSDEs framework provides a probabilis-
tic interpretation for the PDEs of interest, which makes the simulation method
possible, while deep learning techniques provide the uniform approximation power,
which most importantly is not sensitive to dimensions.

The classical decoupled forward-backward SDE takes the form
dXt = b(t,Xt)dt+ σ(t,Xt)dWt

dYt = −f(t,Xt, Yt, Zt)dt+ ZtdWt

X0 = x, YT = g(XT )

(1)

where (b, σ) : [0, T ] × Rd1 → Rd1 × Rd1×d, f is the driver of the BSDE f : [0, T ] ×
Rd1 × Rd2 × Rd2×d → Rd2 , and g : Rd1 → Rd2 . We have a Markovian system
when the drift and diffusion of the SDE, the driver of the BSDE, and the terminal
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function are only dependent on the current state Xt. By the non-linear Feynman-
Kac formula, the corresponding PDEs are of the semi-parabolic type.

On the other hand, of particular interest is the PDE of path dependent types
(PPDE). The notion of nonlinear path-dependent PDEs was first proposed by Peng
[24], and the classical solution of the semi-linear PDEs are given in [25]. The notion
of viscosity solutions to the PPDEs were studied in [9], and the viscosity solutions
of fully nonlinear parabolic path dependent PDEs are studied in [11] and [12]. This
notion of viscosity solutions generalize that of viscosity solutions to PDEs developed
in the 80’s, and it can be used to characterize the value function of non-Markovian
stochastic control problems. For an overview of the theory of viscosity solutions for
PPDEs and some applications, see [28] for a survey.

In a general context, PPDEs can be formulated in terms of non-Markovian FBS-
DEs, where the coefficients (f, g etc.) in the system can depend on the entire path
of the stochastic process. However, allowing the variables to be path-dependent can
lead to challenges both theoretically and numerically.

On the other hand, solving the PPDE/FBSDE is of great interest since they arise
naturally in various financial context, see [33],[23],[15],[26]. Recently, some attention
has been given to finding the numerical solutions of the PPDEs [29], where LSTM
together with path signatures are used, and in [30], the LSTM method is used with
the deep Galerkin method. On the other hand, we note that the algorithm in [30]
takes a long time to converge. In the meantime, some option pricing problems
arising from the Volterra SDEs also lead to path-dependent PDEs. Numerical
algorithms are also designed to solve such problems [19], [27].

In this work, inspired by the work in [20] [21] and the theoretical findings in
[22], we propose to introduce the path signature as the underlying features in the
replacement of the original paths of the SDE. The benefit, as pointed out in both
[20] and [14], is that financial timeseries data is usually of high frequencies, and
path signature does not lose information when truncated at high enough order.

We noted that, in [20], it is reported that the RNN structure together with the
path signatures can very well learn the solution of an SDE given only the simulated
Brownian paths. We observe in [14] that the exact same idea was adopted to
solve non-markovian FBSDEs. More specifically, SDE paths are first simulated
on a fine meshgrid. Then, truncated path signatures/log-signatures are generated
on segments of the fine meshgrid which are defined through a coarse meshgrid.
Then, signatures on each segment will be used as features. Together with the RNN
structure, the function Ztn in the BSDE will be approximated recursively at discrete
time locations.

In this work, we report two new methods (forward and backward methods) which
are also based on using the path signature similar to [14] and [13] as features. The
contributions of this paper can be summarized as follows:

• Two neural network structures are proposed with proof of universal approxi-
mation/convergence given, and numerical examples provided. We use a frame-
work the same as [32]. That is, instead of using RNNs for the function approx-
imation purpose, we use individual neural networks to learn the function Zti
at each discrete time, where the argument of the function will be the signature
of the entire path Xt up to time ti. Since individual neural networks are used,
the input will be the truncated signatures of paths starting from time 0.
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• The method in [14] can only be used to solve FBSDEs related to semi-linear
parabolic PDEs of path dependent type. We also propose a backward algo-
rithm that can solve the reflected FSBDE (optimal stopping types), which are
directly related to the pricing of American options. The algorithm is inspired
by the work in [31].
• We solve the open computational problem stated in [14]. Both works [14] and

[13] have the limitation of not being able to solve problems of high dimensions:
the highest dimension problem they can solve is 20. We propose a method
that uses the technique from [5]. More specifically, we pass the simulated
paths through an embedding layer prior to the construction of the signature
of the paths. The embedding layer plays the role of dimension reduction and
information extraction. We remark that the data-stream structure is still
preserved after the original data stream is processed.

The result of the paper is structured as follows. In Section 2, we give a brief intro-
duction of the signature method and state our main algorithms for both the forward
and backward methodologies. We comment that a different backward algorithm was
also considered by [13]. Assumptions made in the paper are given in Section 3. Con-
vergence analysis for both the Markovian and non-Markovian FBSDEs are provided
in Section 4. The proof for the forward algorithm was inspired by the proof in [14],
which is now much simplified because the recurrent neural network structure is
no longer adopted. Instead, a collection of individual neural networks are used at
discrete times for function approximation purpose. The proof for the backward
algorithm is similar to that in [16] with minor changes, and we also provide it here
for completeness. Lastly, in Section 5 we provide numerical examples and compare
our results to those in the literature. The code for all the tests can be found on
Github: https://github.com/Huisun317/path-dependent-FBSDE-/tree/main

2. Algorithm and notations.

2.1. A quick introduction to Signature methods. In this section, we give a
brief introduction to the path signature. We first provide definition of the signa-
ture of a path and then present a few examples, which is then followed by the
log-signature. We comment that the dimension of the signature of a path increases
exponentially with the dimension of the underlying state process. The log-signature
on the other hand will effectively reduce the dimension without losing the informa-
tion content of the path signature. We then introduce Chen’s identity, which is
needed for the efficiency of numerical computation of signatures. Lastly, we in-
troduce the universal nonlinearity of proposition, which shows the approximation
power of functions using the signature as features to the path dependent functions.

Definition 2.1. (Definition A.1.[5]) Let a, b ∈ R and X = (X1, ..., Xd) : [a, b]→
Rd be a continuous piecewise smooth path. The signature of X is then defined as
the collection of iterated integrals.

Sig(X)a,b =
( ∫

...

∫
a<t1<...<tk<b

dXt1 ⊗ ...⊗ dXtk

)
k≥0

=

(( ∫
...

∫
a<t1<...<tk<b

dXi1
t1 ⊗ ...⊗ dX

ik
tk

)
1≤i1,...,ik≤d

)
k≥0

. (2)

https://github.com/Huisun317/path-dependent-FBSDE-/tree/main
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We note that the truncated signature is defined as

Sigm(X)a,b =
( ∫

...

∫
a<t1<...<tk<b

dXt1 ⊗ ...⊗ dXtk

)
0≤k≤m

. (3)

The signature can be expressed in the formal power series; by using still the same
notation (see [6], Definition 5),

Sig(X)a,b =
∞∑
k=0

∑
i1,...,ik∈{1,...,d}

Sig(X)i1,...,ika,b ei1 ...eik (4)

where k stands for the level of the truncation, and i1, i2, ..., ik ∈ {1, ..., d} is the
multi-index. We provide simple examples for the illustration of path signatures.
For more examples and theoretical results, see [20] [21] [22] [6] and [5].

Example 2.1. We take d = 1. Then, we have

Sig1(X)a,b = Xb −Xa,

Sig2(X)a,b =
(Xb −Xa)2

2!
,

Sig3(X)a,b =
(Xb −Xa)3

3!
,

...

Then, the signature of the path X : [a, b]→ R is given by

(1, Sig1(X)a,b, Sig
2(X)a,b, Sig

3(X)a,b, ...).

Example 2.2. We take d = 2, and for Xt = (X1
t , X

2
t ),

Sig1(X)a,b =(

∫ b

a

dX1
t1 ,

∫ b

a

dX2
t2),

Sig2(X)a,b =(

∫ b

a

∫ t2

a

dX1
t1dX

1
t2 ,

∫ b

a

∫ t2

a

dX1
t1dX

2
t2 ,∫ b

a

∫ t2

a

dX2
t1dX

2
t2 ,

∫ b

a

∫ t2

a

dX2
t1dX

1
t2),

... (5)

Then, the signature of path X : [a, b]→ Rd is given by

(1, Sig1(X)a,b, Sig
2(X)a,b, ...).

We comment that there is a transformation of the the path signature called the
log signature, which corresponds to taking the formal logarithm of the signature in
the algebra of formal power series. For a power series x where

x =

∞∑
k=0

∑
i1,...,ik∈{1,...,d}

λi1,...,ikei1 ...eik (6)

for λ0 > 0, the logarithm is defined as

log(x) = log(λ0) +
∑
n≥1

(−1)n

n
(1− x

λ0
)⊗n. (7)

Definition 2.2. (Log signature Definition 6 [6]). For a path X : [a, b]→ Rd, the
log signature of X is defined as the formal power series log S(X)a,b.



DEEP SIGNATURE FORWARD/BACKWARD FBSDE METHOD 1087

Definition 2.3. (Concatenation Definition 4 [6]) For two paths X : [a, b] → Rd
and Y : [b, c]→ Rd, we define the concatenation as the path X ∗ Y : [a, c]→ Rd for
which

(X ∗ Y )t =

{
Xt, t ∈ [a, b]

Xb + (Yt − Yb), t ∈ [b, c]
(8)

Chen’s identity can provide a simpler computational method for two paths that
are concatenated. This theorem will be helpful if one needs to consider the signature
of different paths that have the same origin and large amount of overlaps.

Theorem 2.4. (Chen’s Identity Theorem 2 [6]). Let X : [a, b] → Rd and Y :
[b, c]→ Rd be two paths. Then,

S(X ∗ Y )a,c = S(X)a,b ⊗ S(Y )b,c. (9)

We also give the definition of the time augmented path. This is needed because,
in the numerical implementation, we will always use this augmented process.

Definition 2.5. Given a path X : [a, b] → Rd, we define the corresponding time-

augmented path by X̂ = (t,Xt), which is a path in Rd+1.

We provide the following proposition on universal non-linearity as it gives the
theoretical grounding/motivation for us to use deep neural networks to approximate
the functional F . Basically, the proposition says that the function of the path is
approximately linear on the signature. In some sense, the signature can be treated
as a ‘universal nonlinearity’ on paths.

Proposition 2.6. (Universal nonlinearity Proposition A.6 [5]) Let F be a real-
valued continuous function on continuous piecewise smooth paths in Rd, and let K
be a compact set of such paths. Furthermore, assume that X0 = 0 for all X ∈ K.
Let ε > 0. Then there exists a linear functional L such that, for all X ∈ K,

|F (X)− L(Sig(X̂)| < ε. (10)

2.2. Algorithms. We use the following numerical scheme to approximate the so-
lution of the forward SDE for (1):

XÑ
t̃i+1

= XÑ
t̃i

+ b(t̃i, X
Ñ
t̃i

)h+ σ(t̃i, X
Ñ
t̃i

)∆W Ñ
t̃i

(11)

where we use tilde to denote that we have a fine mesh, and h = T/Ñ . Based on the
fine meshgrid, we also have a coarse mesh grid that has N total segments, where we
define ∆t := T

N = hM , and where M is the number of fine grids in each segment. In

this case, it is then clear that N = T/hM . Note that ∆W Ñ
t̃i

= W Ñ
t̃i+1
−W Ñ

t̃i
. Notice

that one can define {XN
tn}1≤n≤N by naturally taking snapshots of {XÑ

t̃i
}0≤i≤Ñ at

i = 0,M, 2M, ...,MN . {WN
n }0≤n≤N−1 can be defined similarly. The motivation for

defining these two solutions with total steps of size Ñ and N is that the financial
data are usually of high frequency, hence more information can be obtained when
using more granular data (larger time discretization number in our case).

To approximate Zt, we use a sequence of neural networks defined on this courser

meshgrid {0, TN , , ...
nT
N , ..., T}, where we denote the approximator as ZN,sign−1 . Each

neural network will take the truncated signature of the path Xt of level m as input.
We denote the truncated signature of the process X up until time t as πm(Sig(X0:t)),
and that of the approximated path according to (11) as

πm(Sig(XÑ
0:t̃i

)), t̃i = t0, t1, .., tn, ..., tN−1. (12)
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In our first approach, the sample-wise solution of the BSDE is then approximated
by the following discretization:

Y N,sign = Y N,sign−1 − fn−1(XN
n−1, Y

N,sig
n−1 , ZN,sign−1 )∆t+ ZN,sign−1 ∆WN

n , (13)

where we use the short hand notation fn(·, ·, ·) := f(tn, ·, ·, ·), and use n in place of

tn. We remark that here XN
n := XN

tn is essentially XÑ
Mhn. In later analysis, we will

also use (XN
tn , Y

N,sig
tn , ZN,sigtn ) in place of (XN

n , Y
N,sig
n , ZN,sign ) to make it clear that

those are the approximations at time tn. This should not cause any confusion since
the upper index N denotes that those are quantities obtained through numerical
scheme.

We did not specify the terminal condition/discretization because, in our first
approach, the sample Y propagates forward: we initialize a batch of the Y0 and
propagate through (13) to match the terminal condition.

On the other hand, we note that such forward method cannot deal with the
optimal stopping problems, which typically requires a backward scheme. As such,
inspired by the algorithm in [31], we also propose a backward algorithm. But, in
this case, the process Zt takes the path of the process Xt.

Y N,sign−1 = Y N,sign + fn−1(XN
n−1, Y

N,sig
n , ZN,sign−1 )∆t− ZN,sign−1 ∆WN

n (14)

where ZN,Sign := Zθnn (πm(Sig(X̃j,Ñ
0:n∆t))), and {Zθnn }i=1,...N−1 is the feed-forward

neural network estimator.
We point out that the optimal stopping problem in the financial setting has a

PDE counterpart{
min{−∂tu− Lu− f(t, x, u, σTDxu), u− g}, t ∈ [0, T ), x ∈ Rd,
u(T, x) = g(x), x ∈ Rd.

(15)

where L is the Itô generator of a diffusion process Xt.
This variational inequality can be linked to the RBSDE (Reflected BSDE).

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs,

Yt = g(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs +KT −Kt,

Yt ≥ g(Xt), 0 ≤ t ≤ T. (16)

where K is an adapted non-decreasing process satisfying∫ T

0

[Yt − g(Xt)]dKt = 0.

Accordingly, the numerical scheme in general takes the form
Y N,SigT = g(XÑ

0:T )

Y N,sign−1 = Y N,sign + fn−1(XN
n−1, Y

N,sig
n , ZN,sign−1 )∆t− ZN,sign−1 ∆WN

n

Y N,sign−1 = max(g(XN
n−1), Y N,sign−1 ).

(17)

We state the algorithms for both the forward and backward Deep Signature algo-
rithm in Algorithms 1 and 2.

Finally, we note that, due to the fact that the dimension of the truncated sig-
natures increase exponentially with the dimension of the underlying paths, solving
path-dependent FBSDEs of very high dimensions become impractical when the
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state process is of very high dimension. The generated signature is of dimension
dm+1/(d − 1), where d is the dimension of the state process, and m is the level of
the truncated depth of the signature. When the underlying process {Xt}0≤t≤T is of
dimension 20 or more, even the alternative log-signatures will take high dimensions.

The approach that we take to overcome this difficulty is to pass the underlying
paths say {Xn}0≤n≤N−1 (Xn ∈ Rd) through an embedding layer while still keeping
the datastream structure. The trainable embedding layer will project the underlying
process {Xn}0≤n≤N−1 to a dimension d̃ < d. The underlying squence after the
transformation will then be used to generate signatures which will be passed through
a sequence of individual neural networks or RNNs [14] to approximate Ztn . In the
training process, error back-propagation of the signatures also needs to be done
since the parameters of the embedding layers need to be trained. As such, we will
use the Signatory library available in PyTorch since it facilitates such calculation
[5]. This way, the dimension of the original data sequence is effectively reduced,
which facilitates the training process.

Algorithm 1 Algorithm for forward deep FBSDE Signature method

Require: Initializing the following terms

• Y0, margin ε, and epoch = 0, the total number of epoch iterations. A
binary indicator Embedding=0,1.
• Feedforward neural network {Zθnn }i=0,...N−1. Embedding layer if Embed-

ding=1.
• Time discretization h which determines the total number of temporal dis-

cretizations Ñ and the total number of segments N which determines
coarser grid size ∆t.

1: while LOSS(Y0) ≥ ε or Iter > Epoch do
2: • Randomly sample batch B of Brownian paths

(W̃0, W̃h, ..., W̃nMh, ...W̃Nh̃) and accordingly the state process

(X̃j,Ñ
0 , ..., X̃j,Ñ

h , X̃j,Ñ
nMh, ...X̃

j,Ñ

Ñh̃
)

• Pass (X̃j,Ñ
0 , ..., X̃j,Ñ

h , X̃j,Ñ
nMh, ...X̃

j,Ñ

Ñh̃
) through the embedding layer if

Embedding=1. Still name the output (X̃j,Ñ
0 , ..., X̃j,Ñ

h , X̃j,Ñ
nMh, ...X̃

j,Ñ

Ñh̃
).

• Create truncated signature (log-signature)(
πm(Sig(X̃j,Ñ

0 )), πm(Sig(X̃j,Ñ
0:∆t)), ..., πm(Sig(X̃j,Ñ

0:n∆t)), ..., πm(Sig(X̃j,Ñ
0:N∆t))

)
0≤j≤B

• Compute Zj,N,Sign = Zθnn (πm(Sig(X̃j,Ñ
0:n∆t)))

• For each path {X̃j,Ñ

0:Ñ
}1≤j≤B , find Y j,N,Sign iteratively using the Euler

scheme (13).
3: Compute the loss by matching the terminal conditions

Loss(Y0) =
1

B

B∑
j=1

(Y j,N,SigT − g(Xj,Ñ,Sig
T ))2

4: Update the parameters through gradient descent. Iter = Iter + 1
5: end while
6: return Y0
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Algorithm 2 Algorithm for Backward deep FBSDE Signature method

Require: Initializing the following terms

• A margin ε and epoch = 0, the total number of epoch iterations. A binary
indicator Embedding=0,1.
• Feedforward neural network {Zθnn .}i=0,...N−1. Embedding layer if Embed-

ding=1
• Time discretization h which determines the total number of temporal dis-

cretizations Ñ and the total number of segments N which determines
coarser grid size ∆t.

1: while LOSS(Y0, Z0) ≥ ε or Iter > Epoch do
2: • Randomly sample batch B of Brownian paths

(W̃0, W̃h, ..., W̃nMh, ...W̃Ñh̃) and accordingly the state process

(X̃j,Ñ
0 , X̃j,Ñ

h , ..., X̃j,Ñ
nMh, ...X̃

j,Ñ

Ñh̃
)

• Pass (X̃j,Ñ
0 , ..., X̃j,Ñ

h , X̃j,Ñ
nMh, ...X̃

j,Ñ

Ñh̃
) through the embedding layer if

Embedding=1. Still name the output (X̃j,Ñ
0 , ..., X̃j,Ñ

h , X̃j,Ñ
nMh, ...X̃

j,Ñ

Ñh̃
).

• Create truncated signature (log-signature)(
πm(Sig(X̃j,Ñ

0 )), πm(Sig(X̃j,Ñ
0:∆t)), ..., πm(Sig(X̃j,Ñ

0:n∆t)), ..., πm(Sig(X̃j,Ñ
0:N∆t))

)
0≤j≤B

• Compute Zj,N,Sign = Zθnn (πm(Sig(X̃j,Ñ
0:n∆t)))

• For each path {X̃j,Ñ

0:Ñ
}1≤j≤B , find Y j,N,Sign iteratively using the Euler

scheme (14).

3: Compute the loss by finding the variance the batch {Y j,N,Sig0 }1≤j≤B
Loss(Y N,Sig0 ) = Var(Y N,Sig0 )

4: Update the parameters through gradient descent.
5: end while
6: return Y0

3. Proof of convergence.

3.1. Assumptions.

Assumption 3.1. Let b, σ, f, g be deterministic functions such that:

1. b(·, 0), σ(·, 0), f(·, 0, 0, 0), and g(0) are uniformly bounded.
2. b, σ, f, g are uniformly Lipschitz continuous in (x, y, z) with Lipschitz constant

L.
3. b, σ, f are uniformly Hölder- 1

2 continuous in t with Hölder constant L.
4. f has slow and at most linear growth in y and z:

|f(t, x, y1, z1)− f(t, x, y2, z2)|2 ≤ Ky|y1 − y2|2 +Kz|z1 − z2|2

with Ky and Kz sufficiently small.

We comment that those assumptions are standard for the existence of the BSDE
except for 4, which is needed for the proof for the backward method.

We want to identify the solution of the BSDE with the solution of a semi-linear
PDE according to the non-linear Feynman-Kac formula. Hence, we make the fol-
lowing assumption.
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Assumption 3.2. Assume that the following PDE has a classical solution u ∈
C1,2([0, T )× Rd;R):{

∂tu(t, x) + Lu(t, x) + f(t, x, u, σT∂xu) = 0, (t, x) ∈ [0, T )× Rd

u(T, x) = g(x), x ∈ Rd.
(18)

Then, under Assumption 3.1 and Assumption 3.2 , one can write (Theorem 5.1.4
[34])

Yt = u(t,Xt), Zt = σT (Xt)Dxu(t,Xt).

In all the analysis that follows, we will take d = 1 for simplicity. We introduce
the standing assumptions below.

3.2. Markovian case. Some simple estimates are given below, For simplicity, we
use the following short hand notations, and C denotes a generic constant which
may differ from line to line.

i. ∆fNn = f(t,Xt, Yt, Zt)− fn(tn, X
N
n , Y

N,Sig
n , ZN,Sign ); ∆ftn = f(t,Xt, Yt, Zt)−

fn(tn, Xtn , Ytn , Ztn).
ii. ∆XN

n = Xt −XN
n ; ∆Xtn = Xt −Xtn .

iii. ∆Y Nn = Yt − Y N,Sign ; ∆Ytn = Yt − Ytn .
iv. ∆ZNn = Zt − ZN,Sign ; ∆Ztn = Zt − Ztn .
v. ∆gNn = g(Xt)− g(XN

n ); ∆gtn = g(Xt)− g(Xtn).

The following standard result from [34] is needed for the proof later.

Theorem 3.3. Let Assumption 3.1 hold and assume ∆t is small. Then,

max
0≤n≤N

E[ sup
tn≤t≤tn+1

|Yt − Ytn |2] +

N−1∑
n=0

E[

∫ tn+1

tn

|Zt − Ztn |2dt] ≤ C(1 + |x|2)∆. (19)

Lemma 3.4. By Assumption 3.1 and Assumption 3.2, the following inequality holds
true:

i. E[|∆Xn|2] ≤ C∆t; E[|∆XN
n |2] ≤ C∆t.

ii. E[
∫ tn+1

tn
|∆fNn |2dt] ≤ C∆t2 + CE[|Ytn − Y N,Sign |2∆t] + CE[

∫ tn+1

tn
|∆ZNn |2dt].

Proof. The result for i) is standard, which is from Theorem 5.3.1 in [34]. ii) follows
from the following sequence of inequalities and Theorem 3.3: for tn ≤ t ≤ tn+1 for
any t,

E[

∫ tn+1

tn

|∆fNn |2dt] ≤ 2E[

∫ tn+1

tn

|f(t,Xt, Yt, Zt)− f(tn, Xt, Yt, Zt) + f(tn, Xt, Yt, Zt)

− f(tn, Xtn , Ytn , Zt)|2 + |f(tn, Xtn , Ytn , Zt)

− f(tn, X
N
n , Y

N,Sig
n , ZN,Sign )|2dt]

≤ C∆t2 + CE[

∫ tn+1

tn

|∆Ytn |2 + |Ytn − Y N,Sign |2dt]

+ CE[

∫ tn+1

tn

|∆ZNn |2dt]

≤ C∆t2 + CE[|Ytn − Y N,Sign |2∆t] + CE[

∫ tn+1

tn

|∆ZNn |2dt].
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3.2.1. Forward algorithm. We note that the proof follows similar lines as in [14],
which is now simplified because the recurrent neural network structure is no longer
adopted. Instead, individual neural networks are used at discrete times for the
function approximation purpose.

Lemma 3.5. Under Assumption 3.1 and Assumption 3.2, one has

Zt = σT (Xt)Dxu(t,Xt)

Further, assume that the function F (t, x) := σT (x)Dxu(t, x) is Lipschitz in x, then
there exist ZN,Sign (·) for different 0 ≤ n ≤ N − 1 such that the following is true:

N−1∑
n=0

E[

∫ tn+1

tn

|Zt − ZN,Sign |2dt] ≤ C∆t. (20)

Proof. We have the following sequence of inequalities:

N−1∑
n=0

E[

∫ tn+1

tn

|Zt − ZN,Sigtn |2dt] ≤ 2

N−1∑
n=0

E[

∫ tn+1

tn

|Zt − Ztn |2 + |Ztn − ZN,Sign |2dt]

≤ C∆t+ 4
N−1∑
n=0

E[

∫ tn+1

tn

|F (tn, Xtn)− F (tn, X
N
tn)|2

+ |F (tn, X
N
tn)− ZN,Sign |2dt]

≤ C∆t+ 4

N−1∑
n=0

E[

∫ tn+1

tn

|F (tn, X
N
tn)− ZN,Sign |2dt]

≤ C∆t. (21)

The last term can be made arbitrarily small by the universal non-linearity of the
path signature.

Next, we state and prove the main theorem of the algorithm.

Theorem 3.6. Let the assumptions made in Lemma 3.5 hold. Then, there exist
ZN,Sign (·) for different 0 ≤ n ≤ N − 1 such that the following is true:

max
0≤n≤N

E[ sup
tn≤t≤tn+1

|Yt − Y N,Sign |2] ≤ C∆t. (22)

Proof. Taking the difference between the set of equations{
Ytn+1

= Ytn −
∫ tn+1

tn
f(t,Xt, Yt, Zt)dt+

∫ tn+1

tn
ZtdWt

Y N,Sign+1 = Y N,Sign −
∫ tn+1

tn
f(tn, X

N
n , Y

N,Sig
n , ZN,Sign )dt+

∫ tn+1

tn
ZN,Sign dWt

(23)

we obtain

∆Ȳ N,Sign+1 = ∆Ȳ N,Sign −
∫ tn+1

tn

(∆fn)dt+

∫ tn+1

tn

(Zt − ZN,Sign )dWt, (24)

where ∆Ȳ N,Sign := Ytn−Y N,Sign . By squaring both sides and using Young’s inequal-
ity with epsilon, we have

E|∆Ȳ N,Sign+1 |2 ≤ (1 +
∆t

ε
)E[E[|∆Ȳ N,Sign +

∫ tn+1

tn

(Zt − ZN,Sign )dWt|2|Ftn ]]

+ (1 +
ε

∆t
)E[
(
−
∫ tn+1

tn

∆fndt
)2

]
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≤ (1 +
∆t

ε
)E[E[|∆Ȳ N,Sign |2 + |

∫ tn+1

tn

(Zt − ZN,Sign )dWt|2|Ftn ]]

+ 2(1 +
ε

∆t
)
(
E[

∫ tn+1

tn

|∆fn|2dt]∆t
)

≤ (1 + C∆t)E[|∆Ȳ N,Sign |2] + C(∆t2 + E[

∫ tn+1

tn

|Zt − ZN,Sign |2dt]

+ E[|∆Ȳ N,Sign |2]∆t) + CE[

∫ tn+1

tn

|Zt − ZN,Sign |2]dt (25)

≤ (1 + C∆t)E[|∆Ȳ N,Sign |2] + C(∆t2 + E[

∫ tn+1

tn

|Zt − ZN,Sign |2]dt),

where we have picked 1/ε to be a constant C that does not depend on the size ∆t.
And, in the third inequality, we used Lemma 3.4. Then, by the discrete Gronwall
inequality, by Lemma 3.5 and Theorem 3.3 we have

sup
0≤n≤N−1

E[|Ytn − Y N,Sign |2] ≤ C∆t. (26)

Then, together with Theorem 3.3, the claim is proved.

3.2.2. Backward algorithm. Since the convergence takes the variance of Y N,Sig0 as
the loss function, we first prove an a priori estimate for the loss.

Now we state the main thereom regarding the convergence of the backward

scheme where we provide a lower bound for Var(Y N,Sig0 ).

Theorem 3.7. For any ε > 0, we have

Var(Y N,Sig0 ) > (1− ε− 2TKz

ε
)E[

∫ T

0

|∆ZNn |2dt]− C∆t

− 4T 2Ky

ε
E[ max

0≤n≤N−1
|Ytn − Y N,Sign |2]. (27)

Proof. Noting that the true solution Y0 is deterministic, and that Var(Y N,Sig0 ) =

Var(Y0 − Y N,Sig0 ), we have the following inequalities:

Var(Y N,Sig0 ) = E
[(

∆gNn +

∫ T

0

∆fNn ds−
∫ T

0

∆ZNn dWt − E[∆gNn +

∫ T

0

∆fNn ds]
)2]

≥ E[

∫ T

0

|∆ZNn |2dt]

− 2E
[ ∫ T

t

∆ZNn dWt(∆g
N
n +

∫ T

0

∆fNn dt− E[∆gNn +

∫ T

0

∆fNn dt])
]

≥ (1− ε)E[

∫ T

0

|∆ZNn |2dt]

− 1

ε
E[(∆gNn +

∫ T

0

∆fNn dt− E[∆gNn +

∫ T

0

∆fNn dt])
2] (28)

≥ (1− ε)E[

∫ T

0

|∆ZNn |2dt]−
1

ε
E[(∆gNn +

∫ T

0

∆fNn dt)
2]

≥ (1− ε)E[

∫ T

0

|∆ZNn |2dt]−
2

ε
(E[|∆gNn |2] + TE[

∫ T

0

|∆fNn |2dt])
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≥ (1− ε)E[

∫ T

0

|∆ZNn |2dt]− C∆t

− 2

ε
(C∆t+ TE[

∫ T

0

Ky|∆Y Nn |2 +Kz|∆ZNn |2dt])

≥ (1− ε− 2TKz

ε
)E[

∫ T

0

|∆ZNn |2dt]− C∆t

− 2TKy

ε
E[

∫ T

0

|Yt − Ytn + Ytn − Y N,Sign |2dt]

≥ (1− ε− 2TKz

ε
)E[

∫ T

0

|∆ZNn |2dt]− C∆t

− 4T 2Ky

ε
E[ max

0≤n≤N−1
|Ytn − Y N,Sign |2], (29)

where in the inequalities we used the fact that V ar(X) ≤ E[X2] and the second
inequality that 2ab ≥ −εa2− 1

ε2 b
2. In the second to last inequality, we used Theorem

3.3.

We state the following main theorem about the convergence of the backward
algorithm.

Theorem 3.8. Under Assumption 3.1 and Assumption 3.2, the following inequality
holds:

sup
t∈[0,T ]

E[|Yt − Y N,Sign |2] +

∫ T

0

E[|Zt − ZN,Sign |2dt] ≤ C(∆t+ Var(Y N,Sig0 )). (30)

Proof. Taking the difference between the exact solution and the numerical solution,
we have the following inequality:

E[|Ytn − Y N,Sign |] ≤ 3
(
E[|∆gN |2] + TE[

∫ T

0

|∆fNn |2dt+

∫ T

0

|∆ZNn |2dt]
)

≤ 3C∆t+ C∆t+ 3TE[

∫ T

0

Ky|∆Y Nn |2 +Kz|∆ZNn |2dt]

+ 3E[

∫ T

0

|∆ZNn |2dt]

≤ C∆t+ 3(1 + TKy)E[

∫ T

0

|∆ZNn |2dt]

+ 3TKyE[

∫ T

0

|Yt − Ytn + Ytn − Y N,Sign |2dt]

≤ C∆t+ 3(1 + TKy)E[

∫ T

0

|∆ZNn |2dt]

+ 6T 2Ky max
0≤n≤N−1

E[|Ytn − Y N,Sign |2]. (31)

This shows that

max
0≤n≤N−1

E[|Ytn − Y N,Sign |2] ≤
C∆t+ 3(1 + TKy)E[

∫ T
0
|∆ZNn |2dt]

1− 6T 2Ky

≤ C∆t+
3(1 + TKy)

1− 6T 2Ky
E[

∫ T

0

|∆ZNn |2dt]. (32)
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Using Theorem 4.4 ((29)), we have

Var(Y N,Sig0 ) ≥ (1− ε− 2TKz

ε
)E[

∫ T

0

|∆ZNn |2dt]− C∆t

− 4T 2Ky

ε

(
C∆t+

3(1 + TKy)

1− 6T 2Ky
E[

∫ T

0

|∆ZNn |2dt]
)

≥
(

(1− ε− 2TKz

ε
) +

4T 2Ky

ε

3(1 + TKy)

1− 6T 2Ky

)
E[

∫ T

0

|∆ZNn |2dt]− C∆t.

(33)

Then, take ε =
√

2TKz + 4T 2Ky
3(1+TKy)
1−6T 2Ky

by the assumption on Kz and Ky, since

2ε < 1, This implies that

E[

∫ T

0

|∆Zn|2dt] ≤ C(∆t+ Var(Y N,Sig0 )). (34)

Together with (32) and Theorem 3.3, we have

sup
t∈[0,T ]

E[|Yt − Y N,Sigtn |2] +

∫ T

0

E[|Zt − ZN,Sigtn |2dt] ≤ C(∆t+ Var(Y N,Sig0 )). (35)

Letting F (t, x) := σT (x)Dxu(t, x), we have the following theorem.

Theorem 3.9. Let the assumptions in Lemma 3.5 hold. Then, the following in-
equality holds:

Var(Y N,Sig0 ) ≤ C
(

∆t+
∑

0≤n≤N−1

E[|F (tn, X
N
n )− ZN,Sigtn |2]∆t

)
. (36)

Proof. Again, note that the true solution Y0 is deterministic and that Var(Y N,Sig0 ) =

Var(Y0 − Y N,Sig0 ). We then have the following result:

Var(Y N,Sig0 ) = E
[(

∆gNn −
∫ T

0

∆fNn ds+

∫ T

0

∆ZNn dWt − E[∆gNn −
∫ T

0

∆fNn ds]
)2]

≤ 2E
[
(∆gNn −

∫ T

0

∆fNn ds− E[∆gNn −
∫ T

0

∆fNn ds])
2 +

∫ T

0

|∆Zn|2dt
]

≤ 2E
[
(∆gNn −

∫ T

0

∆fNn ds)
2 +

∫ T

0

|∆Zn|2dt
]

≤ 4E
[
|∆gNn |2 + T

∫ T

0

|∆fNn |2ds] + 2E[

∫ T

0

|∆ZNn |2dt
]

≤ C∆t+ CE[

∫ T

0

|∆Y Nn |2 + |∆ZNn |2dt] + 2E[

∫ T

0

|∆ZNn |2dt
]

≤ C∆t+ C max
0≤n≤N−1

E[|Ytn − Y N,Sign |2] + CE[

∫ T

0

|∆ZNn |2dt]

≤ C∆t+ CE[

∫ T

0

|∆ZNn |2dt],



1096 HUI SUN AND FENG BAO

where we used (32) to bound max0≤n≤N−1 E[|Ytn − Y N,Sign |2]. Using Theorem 3.3,
one has that

E[

∫ T

0

|∆ZNn |2dt
]
≤ 2E[

∫ T

0

|Zt − Ztn |2 + |Ztn − ZN,Sign |2dt
]

≤ 4E[

∫ T

0

|Zt − Ztn |2 + |F (tn, X
N
n )− Ztn(Xtn)|2

+ |F (tn, X
N
n )− ZN,Sign |2dt

]
≤ C∆t+

∑
0≤n≤N−1

E[|F (tn, X
N
n )− ZN,Sign |2]∆t. (37)

Note that F (tn, X
N
n ) can be approximated by ZN,Sign arbitrarily close given the same

underlying path {XN
n }1≤n≤N−1 due to the universal non-linearity of the signature

path. As such, inequality (36) holds.

By putting together Theorem 3.9 and Theorem 3.8, we have the following result,
which then shows convergence by the universality property of the path signature.

Theorem 3.10. Let the assumptions in Lemma 3.5 hold, denoting F (t, x) :=
σT (x)Dxu(t, x). Then, the following inequality holds:

sup
t∈[0,T ]

E[|Yt − Y N,Sign |2] +

∫ T

0

E[|Zt − ZN,Sign |2dt] ≤ C(∆t+∑
0≤n≤N−1

E[|F (tn, X
N
n )− ZN,Sign |2]∆t). (38)

3.3. Non-Markovian generalization. We have provided the proof for the Mar-
kovian case. We now consider the case for non-Markovian FBSDE, i.e., both the
driver and the terminal function g depend on the entire path of the process X[0,t].
For simplicity, we still consider dimension d = 1. We introduce the following nota-
tion for the path analysis, which are mainly from Dupire [7].

For each ω ∈ Ω, X : Γ→ R is the canonical process Xt(ω) := ωt. Let | · | denote
the norm. For each 0 ≤ t ≤ t′ ≤ T , define Λ :=

⋃
0≤t≤T

Λt where Λt : [0, t]→ R is the

path. We write

||ωt|| := sup
r∈[0,t]

|ω(r)|,

d∞(ωt, ω
′
t′) := max( sup

r∈[0,t)

{|ω(r)− ω′(r)|}, sup
r∈[t,t′]

{|ω(t)− ω′(r)|}) + |t− t′|.

In Dupire’s formulation of derivatives, one often regards u(ωt) as a function of t, ω, x

u(ωxt ) := u(t, ω(s)0≤s<t, ω(t) + x). (39)

The definition of spatial derivative is given below,

Definition 3.11. Let u : Λ→ R and ωt ∈ Λ. If there exists p ∈ Rd such that

u(ωxt ) = u(ωt) + p · x+ o(|x|), x ∈ R, (40)

then we say that u is vertically differentiable at ωt, and we denote the gradient of
Dxu(ωt) = p. u is said to be vertically differentiable in Λ if Dxu(ωt) exists for each
ωt ∈ Λ. We also define the Hessian Dxxu(ωt). In a similar fashion, the Hessian is
an S(d)-valued function defined on Λ, where S(d) is the space of d × d symmetric
matrices.
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For the horizontal derivative, and we first define ωt ∈ Λ, we denote

ωt,s(r) = ω(r)1[0,t)(r) + ω(t)1[t,s](r), r ∈ [0, s]. (41)

Definition 3.12. For a given ωt ∈ Λ, if we have

u(ωt,s) = u(ωt) + a(s− t) + o(|s− t|), s ≥ t, (42)

then we say that u(ωt) is horizontally differentiable in t at ωt, and denote Dtu(ωt) =
a. u is said to be horizontally differentiable in Λ if Dtu(ωt) = a exists for all ωt ∈ Λ.

Under the assumption to be made in Assumption 3.13, define u(t,Xt) := Yt, then
we have the nonlinear Feynman-Kac formula from Proposition 3.8 in [25] that

Zt = Dxu(t,Xt)σ(t, xt) := F (t,Xt). (43)

where we denoted Xt as the path X.∧t and xt as the spatial value of the path
evaluated at time t,

We make the following strong assumption to obtain a convergence result similar
to the Markovian case.

Assumption 3.13. In addition to Assumption 3.1, assume the driver of the BSDE
is also Hölder- 1

2 continuous in t and it is uniformly Lipschitz continuous in (X,Y, Z)
with Lipschitz constant L in the sense above. Also, assume that b, σ, f, g are smooth
functions with bounded derivatives. Also assume F is Lipschitz continuous in X
with Lipschitz constant L. Namely,

|F (t,Xt)− F (t′, X ′t′)| ≤ Ld∞(Xt, X
′
t′). (44)

One immediate consequence of this assumption is that Theorem 3.3 holds also
in the non-Markovian setting.

Theorem 3.14. Let Assumptions 3.1, 3.13 hold and assume ∆t is small. Then,

max
0≤n≤N

E[ sup
tn≤t≤tn+1

|Yt − Ytn |2] +
N−1∑
n=0

E[

∫ tn+1

tn

|Zt − Ztn |2dt] ≤ C(1 + |x|2)∆t.

(45)

Proof.∫ tn+1

tn

E[|Zt − Ztn |2]dt =

∫ tn+1

tn

E[|F (t,Xt)− F (tn, Xtn)|2]dt

≤
∫ tn+1

tn

C((∆t)2 + E[ sup
tn≤t≤tn+1

|xt − xtn |2])dt (46)

≤
∫ tn+1

tn

C∆tdt. (47)

This will imply that

N−1∑
n=0

E[

∫ tn+1

tn

|Zt − Ztn |2dt] ≤ C∆t.

To see that

max
0≤n≤N

E[ sup
tn≤t≤tn+1

|Yt − Ytn |2] ≤ C∆t, (48)
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we have

Yt − Ytn = −
∫ t

tn

f(s,Xs, Ys, Zs)ds+

∫ t

tn

ZsdWs. (49)

By squaring both sides, taking the sup and then taking the expectation, one obtains

E[ sup
tn≤t≤tn+1

|Yt − Ytn |2] ≤ C∆tE[

∫ tn+1

tn

|f(s,Xs, Ys, Zs)− f(s, 0, 0, 0)|2ds]

+ C(∆t)2 + CE[

∫ tn+1

tn

|Zs|2ds]

≤ C(∆t)2E[ sup
0≤t≤T

|Xt|2 + sup
0≤t≤T

|Yt|2]

+ C(∆t)2 + CE[

∫ tn+1

tn

|Zs|2ds]

≤ C∆t+ C∆t(E[ sup
0≤t≤T

|Yt|2] + E[ sup
0≤t≤T

|Zt|2]). (50)

We used that E[||Xt||2] ≤ E[sup0≤t≤T |Xt|2] ≤ C for some constant C. Also, by
using Lemma 3.3 and Corollary 3.9 both from [25], we have the boundness result
of (Yt, Zt):

E[ sup
0≤t≤T

|Yt|2] ≤ C,

E[ sup
0≤t≤T

|Zt|2] ≤ C. (51)

Then, one has the desired result. By combining (48) and (47), we obtained the
desired result.

One immediate result is a non-Markovian version of Lemma 3.5.

Lemma 3.15. Under Assumptions 3.1, 3.13, there exist ZN,Sign (·) for different
0 ≤ n ≤ N − 1 such that the following is true:

N−1∑
n=0

E[

∫ tn+1

tn

|Zt − ZN,Sign |2dt] ≤ C∆t. (52)

Proof. Note that we have the following sequence of inequalities:

N−1∑
n=0

E[

∫ tn+1

tn

|Zt − ZN,Sign |2dt] ≤ 2
N−1∑
n=0

E[

∫ tn+1

tn

|Zt − Ztn |2 + |Ztn − ZN,Sign |2dt]

≤ C∆t+ 4
N−1∑
n=0

E[

∫ tn+1

tn

|F (tn, Xtn)− F (tn, X
N
tn)|2

+ |F (tn, X
N
tn)− ZN,Sign |2dt]

≤ C∆t+ 4

N−1∑
n=0

E[

∫ tn+1

tn

|F (tn, X
N
tn)− ZN,Sign |2dt]

≤ C∆t. (53)

In the second inequality, we used Theorem 3.14, and in the third inequality, we used
the Lipschitz assumption on Zt and the fact that max0≤n<N E[supt |Xt −XN

tn |
2] ≤

∆t.
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The last term can be made arbitrarily small by the universal non-linearity of the
path signature.

Theorem 3.16. Let Assumptions 3.1, 3.13 hold. Then, there exist ZN,Sign (·) for
different 0 ≤ n ≤ N − 1 such that the following is true:

max
0≤n≤N

E[ sup
tn≤t≤tn+1

|Yt − Y N,Sign |2] ≤ C∆t. (54)

Proof. The proof follows the same line as Theorem 3.6, except that in the line of
inequality (25), one has the following estimates for ∆fn:

E[

∫ tn+1

tn

|∆fn|2] ≤ 2E[

∫ tn+1

tn

|f(t,Xt, Yt, Zt)− f(tn, Xt, Yt, Zt)|2+

|f(tn, Xt, Yt, Zt)− f(tn, X
N
n , Y

N,Sig
n , ZN,Sign )|2dt]

≤ C(∆t)2 + CE[

∫ tn+1

tn

d2
∞(Xt, X

N
n ) + |Yt − Y N,Sign |2

+ |Zt − ZN,Sign |2dt]

≤ C(∆t)2 + E[

∫ tn+1

tn

sup
tn≤t≤tn+1

|Yt − Ytn |2 + |Ytn − Y N,Sign |2

+ |Zt − ZN,Sign |2dt]

≤ C(∆t)2 + E[|∆Ȳ N,Sign |2]∆t+ E[

∫ tn+1

tn

|Zt − ZN,Sign |2dt]. (55)

Remark 3.17. We note that Assumption 3.13 is a strong assumption on Zt, and the
version of Theorem 3.3 we obtained is also subject to this assumption. A stronger
version removing the Lipschtiz requirement is not necessary since it is still needed
for proving the non-Markovian version of Theorem 3.6 and Theorem 3.10.

As such, by using a similar argument, one can show that the non-Markovian
version of Theorem 3.10 also holds.

4. Numerical examples. In this section, we provide numerical examples and
compare the results obtained using our algorithms to those from [14], [13], and
[18]. For all the numerical examples, we generate new batch samples (data) for
each iteration. This is different from examples from [14], where a fixed amount of
data was pre-generated, say 105 trajectories. The main motivation for us to use
new samples for each iteration is 1) we want to avoid over fitting, and 2) the data
generation process is independent from the training process and it is easy to imple-
ment. We comment that we will generate the path signature for {Xt̃j

}B
0≤t̃j≤tn

for

each n = 0, 1, ...N−1, and l ∈ B where B is the batch. One can use Chen’s identity
for the path generation to avoid regeneration of the signatures for the overlapping
parts in the paths.

4.1. Lookback options. Consider the one-dimensional Blackscholes setting where
the stock price follows the following dynamics:

dXt = rXtdt+ σXtdWt. (56)
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The terminal payoff is defined to be

g(X·∧T ) = XT − inf
0≤t≤T

Xt. (57)

The option price is defined to be

Yt = exp(−r(T − t))E[g(X·∧T )|Ft] (58)

Then, e−rtYt = E[e−rT g(X·∧T )|Ft] is a martingale, meaning that

d(e−rtYt) = Z ′tdWt (59)

for some square integrable process Z ′t, and then one immediately has

dYt = rYtdt+ ZtdWt, (60)

where Zt := ertZ ′t. The solution Yt has the analytic formula

Yt = XtΦ(p1)−mte
−r(T−t)Φ(p2)−Xt

σ2

2r

(
Φ(−p1)− e−r(T−t)(mt

yt
)2r/σ2

Φ(−p3)
)
,

(61)

where

mt := inf
0≤u≤t

Xt, p1 =
log(Xt/mt) + (r + σ2/2)(T − t)

σ
√
T − t

, p2 = p1 − σ
√
T − t

and p3 = p1 − 2r
σ (
√
T − t).

For the model specification, similar to [14], we use Ñ = 2000 and N = 20. We use
the truncated signature method with level m = 3. We take x0 = 1, σ = 1, r = 0.01,
and T = 1. Since in [14] it is demonstrated that the method therein is state of the
art, we present comparison between results obtained using methods in [14] and our
forward/backward methods in Table 1.

For the forward algorithm (method 1), we take the batch size to be 100. And,
we use the Adam optimizer with learning rate 10−3. Since N = 20, we use 20
individual neural network, to approximate Ztn for each 0 ≤ n ≤ N − 1. We use
fully connected feedforward neural networks with 2 hidden layers each of 64 neurons.
It can be observed from Figure 1 that our forward algorithm produces good results
compared to the exact solution: the blue curve is very close to the red dashline.

For the backward algorithm (method), we note that, due to the designed model
methodology, it is desirable to use a larger batch size: we are minimizing the variance
of the mini-batches and use the mean of the batch samples as the sample estimate
for Y0. We observe that, for this method, convergence happens fast but with values
typically fluctuating about a fixed level. This is due to the fact that:

• We are not training the model on a fixed amount of trajectories of {Xt̃j
}M

0≤j≤Ñ
where M is a fixed amount (say 10000). Instead, to overcome over-fitting, we
generate different batch samples for each iteration. Hence, one trajectory of
sample path may lead to high variance.
• We minimize the variance of the sample and use the mean of the sample as

estimation for Y0, so the estimated mean may fluctuate according to sample
size.

For this numerical example, we use B = 1000 as the batch sample size. We perform
50 runs of the algorithm and obtain mean of a 0.578. The confidence interval is
[0.572, 0.584]. As such, even though the estimated Y0 for each iteration shows some
fluctuation in the sample run, the mean is stable. We show the result of one of the
sample runs in Figure 2.
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As such, we observe that both methods are comparable to that in [14].

Figure 1. Predicted Y0 value versus the number of interations trained.

Figure 2. Predicted Y0 value versus the number of interations trained.

4.2. A higher dimension example. The last example has dimension d = 1,
and for this particular example, we take d = 20. We consider the high dimension
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Table 1. Example 1 results comparison

Exact Method in [14] Forward method 1 Backward method 2
Result Y0 0.5828 0.579 0.581 0.578

Error – 0.6 % 0.3 % 0.8%

Table 2. Example 2 result comparison, d = 20

d = 20 Exact Method in [14] Forward method 1 Backward method 2
Result Y0 6.66 6.6 6.58 6.71

Error – 1 % 1.2 % 0.75%
d = 100

Result Y0 33.33 – 33.15 33.50
Error – NA 0.538 % 0.534%

problem {∫ T
t
dXs =

∫ T
t
dWs

Yt = g(X·∧T ) +
∫ T
t
f(s,X·∧s, Ys, Zs)ds−

∫ T
t
ZsdWs.

(62)

For simplicity, we take f = 0 and g(X·∧T ) = (
∫ T

0

∑d
i X

i
sds)

2. We comment that,
because the dimension of the signature grows exponentially as a function of the
dimension of the underlying state process, we will use the log-signature of paths
instead of signatures since it essentially contains the same amount of information
but requires less dimensions. We take d = 20, T = 1, N = 5, Ñ = 100. Again, it
is observed that the results of our forward method 1 and backward method 2 are
comparable to the exact solution and the method proposed in [14]. We comment
that the convergence of the forward method can be slow in this case as it could
be sensitive to the initial guess of Y0. But, determination of a rough range of Y0

is easy: Try running the algorithm with guess Y 1
0 , and if the estimated result is

monotonically increasing during the training process, then stop the algorithm and
make a larger guess Y 2

0 . Keep increasing the initial guess if it is still increasing,
otherwise make a smaller guess. Using this methodology, we start training our
algorithm with Y0 = 6.0 and it stabilizes at 6.58. Method 2 converges rapidly, but
there is some fluctuation among each iteration within one run. Again, we use the
mean estimator and we observe the result is 6.71. The test result for d = 20 is
summarized in Table 2.

We also present the result when the dimension is very high, d = 100, in which
case the method in [14] is no longer practical. In this case, we construct a (train-
able) embedding layer whose output data stream has state dimension 5. Since the

dimension is reduced, we can take larger Ñ for the purpose of accuracy, in which
case it is selected to be 10.

We present the PDE related to (62) and state its exact solution for completeness.
For (t, ω) ∈

(
[0, T ]× C([0, T ],Rd)

)
{
∂tu+ 1

2 tr(∂ωωu) + f(t, ω, u∂ωu) = 0

u(T, ω) = g(ω), g(ω) = (
∫ T

0

∑d
i ω

i
sds)

2.
(63)
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The exact solution is

u(t, ω) = (

∫ t

0

d∑
i

ωisds)
2 + (

d∑
i

ωit)
2(T − t)2 + 2(T − t)(

d∑
i

ωit)

∫ t

0

d∑
i

ωisds

+
d

3
(T − t)3.

4.3. An example of non-linear type: Amerasian Option. As the last exam-
ple, we provide an example used in [13]. We note that, in this case, our forward
Algorithm 1 is not applicable anymore. We will consider only the backward algo-
rithm according to (17).

Amerasian options are considered under the Black-Scholes model that involves d
stocks X1, ...Xd which follow the following SDEs:

dXi
t = rXi

tdt+ σitdW
i
t , X

i
0 = xi0, i = 1, ..., d (64)

where the W i are assumed to be independent. The payoff of the basket Amerasian
call option at strike price of K is defined as

g(X·∧T ) =
( d∑
i=1

wi
T

∫ T

0

Xi
tdt−K

)+

, (65)

where wi are defined to be the weights. We consider the price of the Bermudan
option, which is a type of American option where early excercise can only happen
at prescribed dates. The model variables are taken to be Xi

0 = 100, r = 0.05, σi =

0.15, ω = 1
d , T = 1, and K = 100. We take Ñ = 1000 and N = 20. We show the

benchmark results against 1) the European price, 2) the method from [13], and 3)
the method from [18]. On the analytic side, for benchmark purposes, we comment
that:

i. The American option price should be higher than the European price due to
its flexibility of being able to exercise early.

ii. By Jensen’s inequality, using the current parameters,

E[e−rT
( d∑
i=1

1

dT

∫ T

0

Xi
tdt−K

)+

] ≥ e−rT
(
E[

1

dT

d∑
i=1

∫ T

0

Xi
tdt−K]

)+

= 2.42.

iii. Again, we can show that the price of the Ameransian option price is decreasing.
By using the Jensen inequality, we have

e−rT
( 1

2dT

2d∑
i=1

∫ T

0

Xi
tdt−K

)+

≤ 1

2
e−rT

( 1

dT

d∑
i=1

∫ T

0

Xi
tdt−K

)+

+
1

2
e−rT

( 1

dT

2d∑
i=d+1

∫ T

0

Xi
tdt−K

)+

.

Then, taking the limit in d, we obtain that the price converges to 2.42 when d
goes to infinity.

We show our results in Table 3. We run the algorithm for dimensions d =
1, 5, 10, 20, and 100 for 50 runs. The mean of the 50 estimates is taken as the
estimator, and the confidence intervals are computed based on those samples.

We also note that our results agree with the theoretical findings. That is, com-
pared to the benchmarks, the calculated prices are all above the European prices.
We comment that each run takes much less time than reported in [13]; for example,
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Table 3. Example 3 result comparison d = 1

d=1 European Method in [13] Method in [18] Backward
Result Y0 4.732 4.963 5.113 5.03

Confidence Interval – [4.896,5.03] [5.009,5.217] [4.97, 5.10]
d=5

Result Y0 3.078 3.190 3.335 3.11
Confidence Interval – [3.115, 3.266] [3.207, 3.462] [3.08,3.155]

d=10
Result Y0 2.701 2.914 3.142 2.76

Confidence Interval – [2.844,2.983] [2.975,3.309] [2.734, 2.813]
d=20

Result Y0 2.51 3.093 3.095 2.61
Confidence Interval – [3.017,3.168] [2.883,3.3308] [2.587, 2.627]

when d = 5, the runtime (one run) of our algorithm takes only 369.47 s to achieve
the estimate, while in [13], 1927.55 s is reported. In the high dimension case where
d = 100, the price is found to be 2.516 with confidence interval [2.506, 2.526]. We
note that, in this case, the method in [13] fails due to the excessively large size of
both the signature and path signatures in this case.

In the meantime, observing the trend in the price predicted, we note that our
predicted prices agree with the trend better than [13]: when d = 20, their predicted
price even increased compared to when d = 10, which does not align with theoretical
result. We comment that, when using the embedding layers, one run for d = 20
reduces to 165.0 s, and for d = 100 one run takes about 320.0 s.
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