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Abstract: This paper presents convergence analysis of a novel data-driven feedback control algorithm
designed for generating online controls based on partial noisy observational data. The algorithm
comprises a particle filter-enabled state estimation component, estimating the controlled system’s
state via indirect observations, alongside an efficient stochastic maximum principle-type optimal
control solver. By integrating weak convergence techniques for the particle filter with convergence
analysis for the stochastic maximum principle control solver, we derive a weak convergence result for
the optimization procedure in search of optimal data-driven feedback control. Numerical experiments
are performed to validate the theoretical findings.
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1. Introduction

In this paper, we carry out numerical analysis demonstrating the convergence of a
data-driven feedback control algorithm designed for generating online control based on
partial noisy observational data.

Our focus lies on the stochastic feedback control problem, which aims to determine
optimal controls. These control actions are used to guide a controlled state dynamical sys-
tem towards meeting certain optimality conditions, leveraging feedback from the system’s
current state. There are two practical challenges in solving the feedback control problem.
First, when the control problem’s dimension is high, the computational cost for searching
the optimal control escalates exponentially. This is known as the “curse of dimensionality”.
Second, in numerous scenarios, the state of the controlled system is not directly observable
and must be inferred through detectors or observation facilities. These sensors are typically
subject to noise that originates from the device itself or the surrounding environment. For
instance, radar receives noisy data and processes them through the arctangent function.
Therefore, state estimation techniques become necessary to estimate the current state for
designing optimal control, with observations gathered to aid in estimating the hidden state.

To address the aforementioned challenges, a novel online data-driven feedback control
algorithm has been developed [1]. This algorithm introduces a stochastic gradient descent
optimal control solver within the stochastic maximum principle framework to combat the
high dimensionality issue in optimal control problems. Traditionally, stochastic optimal
control problems are solved using dynamical programming or the stochastic maximum
principle, both requiring numerical simulations for large differential systems [2—4]. How-
ever, the stochastic maximum principle stands out for its capability to handle random
coefficients in the state model and finite-dimensional terminal state constraints [5]. In the
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stochastic maximum principle approach, a system of backward stochastic differential equa-
tions (BSDEs) is derived as the adjoint equation of the controlled state process. Then, the
solution of the adjoint BSDE is utilized to formulate the gradient of the cost function with
respect to the control process [6,7]. However, solving BSDEs numerically entails significant
computational costs, especially in high-dimensional problems, demanding a large number
of random samples [8,9]. To bolster efficiency, a sample-wise optimal control solver method
has been devised [10], where the solution of the adjoint BSDE is represented using only one
realization or a small batch of samples. This approach justifies the application of stochas-
tic approximation in the optimization procedure [11,12], and it shifts the computational
cost from solving BSDEs to searching for the optimal control, thereby enhancing overall
efficiency [13].

In data-driven feedback control, optimal filtering methods also play a pivotal role
in dynamically estimating the state of the controlled system. Two prominent approaches
for nonlinear optimal filtering are the Zakai filter and the particle filter. While the Zakai
filter aims to compute the conditional probability density function (pdf) for the target
dynamical system using a parabolic-type stochastic partial differential equation known
as the Zakai equation [14], the particle filter, also known as a sequential Monte Carlo
method, approximates the desired conditional pdf using the empirical distribution of
a set of random samples (particles) [15]. Although the Zakai filter theoretically offers
more accurate approximations for conditional distributions, the particle filter is favored
in more practical applications due to the high efficiency of the Monte Carlo method in
approximating high-dimensional distributions [16].

The aim of this study is to examine the convergence of the data-driven feedback
control algorithm proposed in [1], providing mathematical validation for its performance.
While convergence in particle filter methods has been well studied [17-19], this work
adopts the analysis technique outlined in [18] to establish weak convergence results for the
particle filter regarding the number of particles. Analysis techniques for BSDEs alongside
classical convergence results for stochastic gradient descent [13,20] are crucial for achieving
convergence in the stochastic gradient descent optimal control solver. The theoretical
framework of this analysis merges the examination of particle filters with the analysis of
optimal control, and the overarching objective of this paper is to derive a comprehensive
weak convergence result for the optimal data-driven feedback control.

In this paper, we present two numerical examples to demonstrate the baseline per-
formance and convergence trend of our algorithm. The first example involves a classic
linear quadratic optimal control problem, comparing the analytical control with the esti-
mated control. The second example addresses a nonlinear scenario, specifically a Dubins
vehicle maneuvering problem, where both the system and observations exhibit significant
nonlinearity.

The rest of this paper is organized as follows. In Section 2, we introduce the data-
driven feedback control algorithm. Convergence analysis will be presented in Section 3, and
in Section 4, we conduct two numerical experiments to validate our theoretical findings.

2. An Efficient Algorithm for Data-Driven Feedback Control

We first briefly introduce the data-driven feedback control problem that we consider
in this work. Then, we describe our efficient algorithm for solving the data-driven feedback
control problem by using a stochastic gradient descent-type optimization procedure for the
optimal control.

2.1. Problem Setting for the Data-Driven Optimal Control Problem
In probability space (Q), F,P), we consider the following augmented system on time

interval [0, T]
Xe\  (b(t, X, ur) o(t, Xy, ur) 0 W; Xo=¢
(i) = (e Jars (5 Das) (G o
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where X := {X;}I, is the R?-dimensional controlled state process with dynamics b :
[0,T] x R x R™ — R4, ¢ : [0,T] x R x R" — R is the diffusion coefficient for a
d-dimensional Brownian motion W that perturbs the the state X, and u is an m-dimensional
control process valued in some set U that controls the state process X. In the case that the
state X is not directly observable, we have an observation process M that collects partial
noisy observations on X with observation function g : R? — R”, and B is a p-dimensional
Brownian motion that is independent from W.

Let FB = {F}};>0 be the filtration of B augmented by all the P-null sets in F, and
FWB = {FtW'B }1>0 be the filtration generated by W and B (augmented by P-null sets in
F). Under mild conditions, for any square integrable random variable ¢ independent of
W and B, and any F"-B-progressively measurable process u (valued in U), Equation (1)
admits a unique solution (X, M) which is FV-B-adapted. Next, we let FM = {FM},
be the filtration generated by M (augmented by all the P-null sets in F). Clearly, FM C
FW:B, and FM # FW, FM £ FB, in general. The FM progressively measurable control
processes, denoted by uM, are control actions driven by the information contained in
observational data.

We introduce the set of data-driven admissible controls as

U[0, T) = {uM 1[0, T} xQ — U CR"™ |uM is FM — progressively measurable},

and the cost functional that measures the performance of data-driven control uM is
defined as

J) =] [ 50 Xty +x) ®

where f is the running cost, and / is the terminal cost.
The goal of the data-driven feedback control problem is to find the optimal data-driven
control u* € Uy4[0, T] such that

Jw )= inf J(u™). 3)
MMEUM[O,T]

2.2. The Algorithm for Solving the Data-Driven Optimal Control Problem

To solve the data-driven feedback control problem, we will use the algorithm from [1],
which is derived from the stochastic maximum principle.

2.2.1. The Optimization Procedure for Optimal Control

When the optimal control u* is in the interior of U,;, the gradient process of the
cost functional J* with respect to the control process on time interval t € [0, T] can be
derived using the Gateaux derivative of u* and the stochastic maximum principle in the
following form:

!/

(P Vuus) = E|bult X, ur) e+ 0t X)) Ze+ fult, Xiu) TIFY], @)

where stochastic processes Y and Z are solutions of the following forward-backward
stochastic differential equations (FBSDEs) system:

dX; = b(t, X5, ul)dt +o(t, X}, uf)dWs, Xo=¢
dMf = ¢(X;)dt + dBy, Mo =0 (5)
dYy = (=by(t, X3, uf) 1Yy — oo (8, X5, uf) T Ze — folt, X5, up) T)dt

+Z1dW; + (1dBy, Yr = (gX(XT))T

where Z is the martingale representation of Y with respect to W and  is the martingale
representation of Y with respect to B.
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To solve the data-driven feedback optimal control problem, we also use gradient
descent-type optimization, and the gradient process (J*),, is defined in (4). Then, we can
use the following gradient descent iteration to find the optimal control u} at any time
instant t € [0, T|

I+1LM _ LM " LM —
u M =M (1), (™), 1=0,1,2,.., (6)
where 7 is the step size for the gradient. We know that the observational information FM is

gradually increased as we collect more and more data over time. Therefore, at a certain time
instant ¢, we target finding the optimal control u} with accessible information FM. Since

the evaluation for (]*)/u(uiM) requires trajectories (Ys, Zs ), as Yt and Z; are solved
backwards from T to t, we take conditional expectation E[-| FM] to the gradient process

{(]*);(”i’M)}tgng, ie,

E[(7)0 (uk™) [ FM] = E[bu(s, Xo, ™) TYe + 00 (s, X, uk™) T Z,

)
+ fuls, Xe wMTIFM], s e lbT),

where X;, Y5 and Zs correspond to the estimated control ué’M . For the gradient descent
iteration (6) on the time interval [t, T], by taking conditional expectation E[-| FM], we obtain

Efuf M| FM) = EugM|FM) = rE[(J)u (™) FM), 1=0,1,2,... se[,T. @

When s > t, the observational information {]-'SM }t<s<t is not available at time t.

uéJrl,M'Ft]\/[] .M

We use conditional expectation E| to replace uy™" since it provides the best

approximation for ulM given the current observational information FM. We denote
LM{, ._ p[,+1L.M| M
Us |f " E[uer ’}—t ]
and then the gradient descent iteration is
I+1,M LM " LM
us+ e =ug™ e = rE[(J7) (ug |f)|~/?tML 1=012,... se[tT] ©)

where E[(J*),, (ui™|{)| FM] can be obtained by solving the following FBSDEs

dX; =b(s, Xs, ué’M|t)ds +0(s, X, ué’M|t)dWs, s €[t T]
ay; = (_bx<5/ Xs, ui'Mlt)TYs — Ux(sz Xs, ué'M|t)TZs - fx(sz Xs, Mé'M|t)T)d5 (10)
+ ZdW, + sdBs, Yr = (8(X7)) "

and evaluated effectively using the numerical algorithm, which will be introduced later.

When the controlled dynamics and the observation function ¢ are nonlinear, we will
use optimal filtering techniques to obtain the conditional expectation E[¥(s)| FM]. Before
applying the particle filter method, which is one of the most important particle-based
optimal filtering methods, we define

¥ (s, X, uk™|t) := by (s, Xs, M| ) Ye + 0] (5, Xs, ulM|1) Zs + fi (5, Xs, ulMy) (11)

for s € [t, T]. With the conditional probability density function (pdf) p(X:|FM) that we
obtain through optimal filtering methods and the fact that ¥ (s, X;, u¥™|;) is a stochastic
process depending on the state of random variable X;, the conditional gradient process
E[(J*), (ui’M |t)|FM] in (7) can be obtained by the following integral

EIJ M 0IFM) = [ BN, X b M| = ) plx|FMdz, s€ [t T). (2
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2.2.2. Numerical Approach for Data-Driven Feedback Control by PF-SGD

For the numerical framework, we need the temporal partition Iy,
HNT:{tn,0:t0<f1 <"'<tNT:T},

and we use the control sequence { u;‘n nNil to represent the control process u* over the time
interval [0, T].

Numerical Schemes for FBSDEs
For the FBSDEs system, we adopt the following schemes:

Xip1 = X; + b(t;, Xi, up™],) Aty + o (t, X, ™M [1,) AW,
Y; = Ei[Yipa] + Ei[bx(t z+1er+l/ut +1|tn) Yit1

1 13
+ (b, X, wi |6) T Ziva + fe(tin, Xewa, uf ™ ) T, (13)
1

7= —
AL

Ei[Yir1 AWy,

where X;1,Y;, and Z; are numerical approximations for X}, ,,Yt, and Zy,, respectively.
Then, the standard Monte Carlo method can approximate expectations with K random

samples:

XFyq = Xi+ bt Xi,up™ [, ) At + o (8, X3, upM |, ) VAR k= 1,2, K,
Y, Ay K
1 k k
Yi = kZ:l ZE Kl kz‘i[b (tl+11X1+1'ut +1|tn) Y
B - (14)
I,M
+ ox(tiv1, Xf{+1/ Uy |tn)TZl+1 +fx(ti+1erk+1/ Ug )]s
g 1 i YH\/iw
AR K

where {wf‘ },Ile is a set of random samples following the standard Gaussian distribution
that we use to describe the randomness of AW;,.
The above schemes solve the FBSDE system (5) as a recursive algorithm, and the
convergence of the schemes is well studied—cf. ([20,21]).
Particle Filter Method for Conditional Distribution
To apply the particle filter method, we consider the controlled process on time interval
[ti’lflr tn]
X, =Xt + / (s, X5, us)ds + t o(s, Xs, us)dWs (15)
n—1
Assume that at time instant t,_;, we have S partlcles denoted by {x l} oy, that
follow an empirical distribution 77(X;, , “Ftnq) =15 S (s ( 1) as an approxima-

tion for p(X;, | |]-'t1:£ .)- The prior pdf that we want to fmd in the prediction stage is
approximated as

1 S
(th\]-'tn BE 52 ) (Xt,) (16)

where x,(f) is sampled from 77(X;, 1|.7-"M )p(Xt,1Xt, ;) and p(Xy,|Xt, ,) is the transition

probability derived from the state dynamics (15). As a result, the sample cloud {xn 5
prox}/lldes an approximate distribution for the prior p(X;, | F; YH) Then, in the update stage,
we have
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L5160 (Xe)p(My, |2 s
(X | F) = = = L e () 17)
Z:S 1p Mtn‘ii’l ) s=1

In this way, we obtain a weighted empirical distribution 77Xy, | F{) that approximates

the posterior pdf p(X;, | FM) with the importance density weight 0 p(My, |5f,(15) ). Then,

to avoid the degeneracy problem, we need the resampling step. Thus, we have

18
(X, ‘ftn g Z 9 (Xt,) (18)

Then, we combine the numerical schemes for the adjoint FBSDEs system (10) and the
particle filter algorithm to formulate an efficient stochastic optimization algorithm to solve
the optimal control process u*.

Stochastic Optimization for Control Process

In this subsection, we combine the numerical schemes for the adjoint FBSDEs sys-
tem (10) and the particle filter algorithm to formulate an efficient stochastic optimization
algorithm to solve the optimal control process u*.

On a time instant ¢, € Iy, we have

EI0" M) FT = [ Bt Xo g™ )X, = 2 pel i), (1)

where t; > t, is a time instant after ¢,,.

Then, we use the approximate solutions (Y;, Z;) of FBSDEs from schemes (14) to replace
(Y4, Z4;) and the conditional distribution p(Xj, |.7-'t1:1/I ) is approximated by the empirical
distribution 77(X;, |.7-"t1}\:I ) obtained from the particle filter algorithm (16)-(18). Then, we can
solve the optimal control u; through the following gradient descent optimization iteration

l+lM‘tn —r—ZE[bT tert/ut MY+ o) (4, X, u M|tn>zl 20)
20

AT 0 X )1, = )

Then, the standard Monte Carlo method can approximate expectation E { X, = xg,s)}

by A samples:
11 S A A
g M M, =g 3 Y b (kX M) Y 6l (kX M) Z,
s=1A=1 (21)
A
+ f (X M) |X, = xf)}

We can see from the above Monte Carlo approximation that in order to approximate the
expectation in one gradient descent iteration step, we need to generate S X A samples. This
is even more computationally expensive when the controlled system is a high-dimensional
process.

Thus, we want to apply the idea of stochastic gradient descent (SGD) to improve the
efficiency of classic gradient descent optimization and combine it with the particle filter
method. Instead of using the fully calculated Monte Carlo simulation to approximate the
conditional expectation, we use only one realization of X;, to represent the expectation. For
the conditional distribution of the controlled process, we can use the particles to describe.
Thus, we have
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EL ) (M6, ) | FM) by (8, X5, M )Y 4 0] (1, X0l ) 2(0)

(22)
+fu (ter ) i;M|tn)

where [ is the iteration index, and the index [ indicates that the random generation of the

controlled process varies among the gradient descent iteration steps. Xg’g) indicates a
randomly generated realization of the controlled process with a randomly selected initial

state Xt(rll’é) = x%, from the particle cloud {x,(ls) 5:1.

Then, we have the following SGD schemes:
M, =M, = r (0] (6, X0 M )Y 4 0] (6, X0, M) 7

(23)
+ £ (X, ZM|tn>)

where Yi(l'§) is the approximate solution Y; corresponding to the random sample Xt(il’§), and

the path of Xt(]_l’g) is generated as follows

X5 = X9 e, x5, M) ) A+ o (4, X5, ulM ) B! (24)

i+1

where wi(l’g) ~ N(0,1). Then, an estimate for our desired data-driven optimal control at
time instant £, is

ﬁt = uf M

n |ﬂ

The scheme for FBSDEs is

Is I I I, is
=y + [bx(fiﬂrxt(-fl) M) Y + ot i X i) T2

+fx<ti+1rXt(lsl) uiM| n)T} At; (25)

Then, we have the following Algorithm 1:

Algorithm 1 PE-SGD algorithm for data-driven feedback control problem.

Initialize the particle cloud {xés) le ~ ¢ and the number of iteration L € N

whilen =0,1,2,--- ,Nr, do
Initialize an estimated control process {ut |tn} and a step-size p
for SGD iteration steps [ = 0,1,2,--- , L, do

Simulate one realization of controlled process {Xt(fl) It }NT ! through scheme (24)
with

{(x19) = 29 € (xS

n s=1/

Calculate solution {Yt(il’é) lt, Np of the FBSDEs system (14) corresponding to
{ X l S

Nr—-1
titq }

1=n

through schemes (25);

Update the control process to obtain {u tl+1 M) |t }f\fn through scheme (23);
end for

The estimated optimal control is given by i1} = u(L M) |
tn

tn
Propagate particles through the particle filter algorithm (16)—(18) to obtain {xr(i)rl } 55:1
by using the estimated optimal control #; .

end while




Mathematics 2024, 12, 2584

8 of 28

3. Convergence Analysis

Our convergence analysis aims to show the convergence of the distribution of the state
to the "true state" under the temporal model discretization N. We also show the convergence
of the estimated control to the "true control" under the expectation restricting it to a compact
set. To proceed, we first introduce our notations and the assumptions required in the proof
in Section 3.1. Then, in Section 3.2, we shall provide the main convergence theorems.

3.1. Notations and Assumptions

Notations

1. WeuseU, : {ty,.., T} — R? to denote the control process starts from time ¢, and
ends at time T. We use

Uy, = {un|un : {tn/ e T} - Rd’ Uy is ft]’\f—adapted}

to denote the collection of the admissible controls starting at time £,,.

2. We define the control at time ¢ to be u;, := U, |, , the conditional distribution coming
from a particle filter algorithm.

3. We define u}) := ng Ity where the superscript means that the measure is obtained
through the particle filter method, and so it is random.

4. We use SV to denote the sampling operator: n{\[ I £ % YN, 5x(i> and L, to denote
nitn t

I

the updating step in the particle filter. We use P} to denote the transition operator
(the prediction step) under the SGD—particle filter framework. P, is the deterministic
transition operator for the exact case (the control is exact in SDG). We mention “deter-
ministic” here to distinguish the case where the control 1, may be random due to the
SGD optimization algorithm.

5. Weuse (-,-) to denote the deterministic L inner product, i.e., if f,¢ € L*([0, T]; R%), then

(f.g) = /OTf-gdt (26)

6.  We define J (Uy,) := E[J}, (Uy)| Xy = x]. We then have ]E[];\),("(Un)] = [E[Jy(Uy)|
Xy = s] dul (s). We remark that U, is a process that starts from time t,, and so X, is
essentially the initial condition of the diffusion process.

7. We define the distance between two random measures to be the following:

d(p,v) = sup \JEC[uwf —vef] (27)
1l <1

where the expectation is taken over by the randomness of the measure.
8. We use the total variation distance between two deterministic probability measures p, v:

drv(p,v) = sup |uf —vf| (28)
1l <1

9. We use K, to denote the total number of iterations taken in the SGD algorithm at time
ty; we use N to denote the total number of particles in the system. We use C to denote
a generic constant which may vary from line to line.

10.  Abusing the notation, we will denote Jij (Uy,) in the following way where the argument
U, can be a vector of any length1 <#n < N:

TR (Un) ], o= EX0r=[by (Xt Un, ) T Ye, + 0u(Xe, Un) " 2t + fu(Xe, Unl, )] (29)
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Assumptions

1.  We assume that J}; satisfy the following strong condition: for any x € X, there exist a
constant A > 0 such that for all U, V € Uy:

MU= VI < JFU) - J§(V), U~ V) (30)

Notice that (30) implies that such inequality is true for any Uy, V,; € Uy, and it can be
seen from simply fixing all the Uy, |, Vy|r, 0 < i < n—1tobeO.
This is a very strong assumption, and one should consider relaxing it to

AU = VI[P <ECER [ W), JF(V), U~ V)] (31)

That is, this relation holds in expectation instead of point-wise.
2. Both b and ¢ are deterministic and in Ci'z(Rd x R™;R%) in space variable x and
control u.
b, by, by, 0,0y, fx, fu are all uniformly Lipschitz in x, u and uniformly bounded.
o satisfies the uniform elliptic condition.
The initial condition Xp := ¢ € L2(Fp).
The terminal (Loss) function @ is C! and positive, and ®, has the most linear growth
at infinity.
7. We assume that the function g, (related to the Bayesian step) has the following bound:
there exists 0 < x < 1 such that

S

K< gn <Kt

3.2. The Convergence Theorem for the Data-Driven Feedback Control Algorithm

Our algorithm combines the particle filter method and the stochastic gradient descent
method. Lemma 1 (combine Lemma 4.7-4.9 from the book [22]) provides the convergence
result for the particle filter method alone. It shows that each prediction and updating step
is guaranteed to be convergent.

Recall that SV is the sampling operator where we sample A particles. P denotes
the transition operator (the prediction step) under the SGD—particle filter framework. P,
denotes the deterministic transition operator assuming that SGD gives the exact control. L,
denotes the updating step in the particle filter method.

Lemma 1. We assume that there exists x € (0,1]. The following is true:

sup d(S ) < ——

neP (u) VN
d(Py'u, PYv) < d(p,v) (32)
d(Puyp, Pyv) < d(u,v)
d(Lyv, Lyp) < 26 2d(v, 1) (33)

Given Lemma 1, Theorem 4.5 in [22] tells us the particle filter framework is convergent.
Then, following Lemma 1, we can have the distance between the true distribution of the
state and the estimated distribution through the SGD—-particle filter framework.
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(LnSNP;?I.”L\]"/ Ly Pupin)
(LpSN PN N Ly SN Pupin) + d(LnSY Ppt, L Patin)

A pns) = d
d

IN

IN

2
zK—Z(\/—N +d(PV 7, Papll ) + d(SNPny,I;]",Pnyn))

_ 3 ) . .
2K Z(W +d(PrIl\]l1nN’/PanN')"‘d(l‘nN'/Vn)) (34)

where in the above inequalities, we have used triangle inequalities and Lemma 1.
Hence, if we can show that the inequality of the following form holds

IN

d(PY uh, Papy) < Cod (uh7, pin) + €n (35)

for some constant C,, and €, that we can tune, then by recursion, we can show that by using
(34), the convergence holds true.

Remark. We point out that the difficulty lies in showing (35). Recall that the distance between two
random measures is defined in (27) and involves testing the overall measurable function bounded
by 1. However, we will see later that it is more desirable to test against Lipschitz functions. Hence,
since the underlying measure is a finite Borel probability measure, we want to identify the function
first with a continuous function on a compact set (Lusin). Then, we approximate this continuous
function uniformly by a Lipschitz function since now the domain is compact. This way, we can
roughly show that a form close to (35) is true.

Remark. Notice that the first measure in d(PNu}”, Pyub") has two sources of randomness: the
randomness in Py, which comes from the SGD algorithm used to find the control, and the randomness
in the measure ul. However, we do not distinguish the two when we take the expectation.

To prove the convergence, we need to create a subspace where all particles X; (obtained
from the particle filter method) at any time # are within this bounded subspace. Or we can
relax it to the statement that the probability of any particles X; escaping from a very large
region is very small. Lemma 2 shows we can restrict the particles to a compact subspace
with the radius M by starting from any particles and any admissible control Uj.

Lemma 2. There exists M and constant C, such that under any admissible control Uy

C
P(_sup  1Xil = M) < g0 Xinmy,or Xi 7, 0
ie{1,..,N}
Upel

Proof. See Appendix A.1. O

Remark. Lemma 2 tells that starting from any random selection of particles and any admissible
control Uy, at any time t, all particles are restricted by a compact set M with diameter diam (M) <
M, such that

) C
P( sup |X;| > diam(M)) < ek X; ~ ﬂglt,;l or Xi~ ng‘ti (37)
ie{1,.,N}
Upel

We will use the following result extensively later

C
E[1fx,>m] < Sk Vi<n<N (38)
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N,w %
E”[E”1 PK;Wﬁ“uMHXﬂzzﬂleCAﬁ sup B[ ph*q = g [2] + - +

The following Lemma 3 describes the difference between the estimated optimal control
u, and the true control u}. Let G := {AW}, xi}if;Ol. We can see that knowing Gy essentially
means that we know the control 1y in the SGD framework at time ¢,, since according to our
scheme, the control is G, measurable.

Lemma 3. Under a fixed temporal discretization number N, with the particle cloud uN<, a
N, .
deterministic u}; and a compact domain kC),, (such that E©EMn ¢ [Tjre] < % and diam(K)°) <

M,,), we have for any iteration number K that the following holds

cC CM?

(39)
lleo<1 My~ K
Remark. The value of sup) . 4 E“[| U q — wnq |?) depends on N, which is obtained from
the previous step, and it does not depend on the current My,. As a result, we can see that, as long as

sup E“[| uh“q — png | = 0
19/l <1

(39) can be made arbitrarily small on any compact domain K;,, and this indicates the point-wise
convergence for u at any time t,.

Proof. For simplicity in the proof, we denote control as UX! where K is the iteration in

SGD, and n is the current time ¢,,. j;f‘k (UX) denote the SGD process using estimated control
UK, and J{¥(U};) denote the process using true control U;;.

gk
UKt = Ul —mijit (Uy) (40)
u, = Uy — pBM 5 (U;)] (41)

where x* is drawn from the current distribution ;L,I;] “ and EM[J¥(Uy)] = 0 by the opti-
mality condition. Take the difference between (40) and (41), square both sides, and take
conditional expectation E[-|Gk], and this conditional expectation is taken with respect to
the following randomness:

1.  The randomness comes from the selection on the initial point x%.

2. The randomness comes from the pathwise approximated Brownian motion used for
FBSDEs.
3. The randomness comes from the accumulation of the past particle sampling.

We can write E[j* (UX)|Gx] = Em [J&¥(UX)|Gk], which can be seen from the following
E[j*(UX)|gx] = B [EXn [ (U)| 6«
= B[ (U9)|Gx] 42)

Then, take the square norm on both sides, multiply by an indicator function 1y,
and take conditional expectation E[-|Gk]. Noticing that UK is G is measurable and U* is
deterministic. In this case, we obtain the following
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N

— B [ J{E (U], UK — Uy + nRE [, |1 (UE) — B [ (W)l 6]

Gx] — 2B [, R (W) = TR (U3)

9| (43)
+ BN [ |1 () — BF [ ()l

= B[t UK — U3 112|Gx] — 20¢B9 (1, R (UX)

N,w
E[1g, |luy ™t = Ul[?|Gx] = ElLigy [[Uy — U;HHQK] = 2 (B (1 I (U

= El1g, ||[uy — U

+ IR (Uy) — ER (TR (Un)], Uk — ug)

— i, J§ (U), Uy — Uy)

Gk]

— 2 (B [y R (U] — B (1 B R (U] L, (UK = U3)
+ R [, |1 () — B 5 (U1l | G

< (1= Ag)EM [ ||UK — U3 12|«

N,w N,w
+ DB [, IR (U3) = 1o, B[R (U] |12 +92E" 1, Clxi P + €]

k3%

where in the last line, we used the following Lemma from [13] that states that there exists C
such that

E[|[j* (Ua)|[?] < Clx? +C (44)

Recall that B/« [J{(U*)] = 0, we then have

o < ||EM [ JRE(UT)] — B B9 [ (U)]] + B [P [T ()]
— B [ B[R (U] | P
< [EM (16, JRE(U")] = B 10, JRE(U)] + EP (10, JRE(U)] — BB [P35 ()] |2
< (14 E [ U]~ EM [ JEUIP + (14 2) B 1 S ()]
—EM R U))|P
C

< CIE [Lig (U] — B L U + 5 s)

Then, we take the expectation on both sides over the randomness and we have

* N * k Nw *
1y, [[UKH — U] < (1= Ao B [[|U* — u| ] + %Ew[CHEF” [, TN (U™)]

C
— B 1y TR (U] + At TCM,
n

UO — U 2 N,w N *
< % + CEC[|[EF (1, JR5 (U)] — B [0, T (U)[]5]
C CM3
TR 0
n

Notice that for the control U*, we know that for for a fixed x, | f\’]‘ (U*) is uniformly
bounded:
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Naw * *
[EF [ TR (U)] = BF [Ley R (U] 13
N N,w 2
= ) AHEMT [15, JR (U |[] = EF* [1, TR (U7) | ]
1=n
N N,w 2
< YAt sup [BRT1g J(U) ()] ] - B (UF)()] )
i=n  je{n,.,N}
N,w 2
< sup (BN [ JR (UM ][] - BM 1 S (U] ] (47)
je{n,...N}
However, since from the result in (44):
2
sup |JR(u)],[ < clxP+c (48)
je{n,...N}
we have that
2
1o, sup  JRW][ < CIMaf? 15 lq(x) (49)
je{n,...N}
for some q(x), where ||g(x)||c < 1. As a result, we see that
N 2. CM?
(46) < CMZE® [[EM [g(x)] — M [g()]| ] + ="
CM?
< CMy sup B[ g — g 2]+ = (50)
llqlleo<1
Thus, we have
Nw . C CM?
B [ [, sup ! —ut P | < CM3 sup B g — g P+ 3+ (51)
n

9]l <1
where we have absorbed the constant term N in C. [

Lemma 3 shows that when the empirical distribution y is close enough to the true
distribution y;, the difference between u, and u}, under the expectation restricted to a
compact set is bounded by the difference between the true distribution of the state and the
estimated distribution. Thus, suppose we can show the convergence of the distribution.
In that case, we have the convergence result of the estimated control to the "true control"
under the expectation restricted to a compact set.

Next, we want to show that by moving forward in one step, the distance between
the true distribution of the state and the estimated distribution through the SGD—particle
filter framework is bounded by the distance of the previous step with some constants in
Lemma 4.

Lemma4. Foreachn =0,1,..., N —1, there exist My, Ly, 0y, Ky, such that the following inequality
holds

cC M 3
N, - N,
Ay ) < 262 (1 CALa M)A jn) + 7+ 24200+ ) (52
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Proof. The key step is to estimate the quantity d?(PY ynN ", Py ]/lnN) in (34). WLOG, we
assume that the sup is realized by the function f with ||f|| < 1; then, we have

d>(PNu), Paph) = BC[|PNu) f — Py f1?] (53)

Notice that PV is the prediction operator that uses the control u, which carries the
randomness from SGD, and P, uses the control . Then PY y%’“’ is a random measure,
and we comment that both u}; and y,, are deterministic.

Without loss of generality, we use uj; and i to denote the random control and
the random measure. (Even though the randomness can be different, we can concatenate
(w1, wy) := w to define them as w in general.)

We have for the fixed randomness w, and by Fubini’s theorem

N,w
PN f = Pap f12 = B [B[f (X + b(Xar 16 )Mt + (X)) AWa) [ X = ]

f

R []E[f(Xn + b( Xy, 1) At + 0 (X)) AW,) | X = x]} 2

f2

B4 (B~ fof X = o]

2

2

B (L, ELAY = fo] X = %]

Aq
2

+|Em [LGELF = fol Xu = ] (54)

Ap

where the inner conditional expectation is taken with respect to AW;,.
Now, since we can pick M, to be a large compact set containing the origin, then

C

'rl,U[)

(55)

To deal with A, Ay, we see that it is desirable that the function f has the Lipschitz property.
However, it is only measurable in general. The strategy to overcome this difficulty is to
first use Lusin’s Theorem to find a continuous identification f with f on a large compact set;
then, on this compact set, we can approximate f uniformly by a Lipschitz function.

We see that

A SB[, B — S X0 = ] (56)

Then, by taking expectation on both sides over all the randomness in this quantity,
we have

E“[A41] < EYEM [1u EN £ — fol?] (57)
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We know that there exists a big compact K, (so a large M;;) containing the origin
such that

C
P X, | > diam(KC,)) < —= 58
(iﬁjl | > diam(ICy)) M2 (58)

and a continuous f" with f"[c, = f|x, by Lusin’s theorem.
Thus, we know that f" |, Am, = flk,nm,, and we also have the following inequality:

Nw N,w
EYRH [1MnE[|f{“ —f2|2]] = EWEHn [(IM,,QICH + 1 pm,nis ) EILAY —f2|2]}
N,w
< BB (Lo, + U )BIA - £ 69)

Moreover, since both K,, and M,, are compact, K/, := K,, N M,, is also compact with
diam(K},) < M. From Lemma 2, we know that there exists some constant C such that for

any 7'(2{ [ ngj Ity that one obtains from or particle filter-SGD algorithm, X ~ ntl:l’ it 4 OF
N
tn ‘tn ’
C
E* {E[l{XGkg}]} < V2 (60)
Hence, we have that
N,w C
(59) < EYE" [16,E(f - £)] + 15> (61)
n
To deal with A;, notice that |f{” — f2| < 2 by the choice of f, we have the following.
N,w 2
Ay <K [1M;EW{” — ol |Xn = xﬂ
= E“[Ag] < 4EC[E" " 1]
C
< — 62
<3 (62)

by Lemma 2.

To deal with A;, we have by the density of the Lipschitz function that there exists
I = K00 < 0n with Lipschitz constant L,. We point out that L, may depend on
K1, 6, and the function f]| k- Now, by taking the expectation on both sides and using the
Lipschitz property, we have

C 4 442 (63)

E“[A1] < (CAtL,)*EY +35
n

ol [y 1 — 03] X = ]

*

We realize that  is the SGD optimization part of the algorithm in expectation, and
we note that we have dropped the inner expectation. The expectation En [] means that
given the initial condition X, = x € 1 K with X, ~ ynN “ one wants to find the difference
in expectation between u, and u},. The outer expectation E“[-] means averaging overall
the randomness in both the measure and the SGD.

Now, by using (50) in Lemma 3, absorbing N in the constant C, we obtain the following
cMz  C

E“[A1] < (CAtL,)>NMj sup E“[| uh“q — paq |*] + +—>+46  (64)
gll<1 Kn Mg
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By definition of the distance between two random measures, we have that:

2
E[A] < (CAth)zNM,%dz(yQ’f',yn) + M, + < + 462
K, ' M2
. C
E[A1] < CAtLyMud(ph7, 1y + W v + 26, (65)
Since v/E[A;] < MLﬂ,we have that
./ 3 N, CM, C 2 N,
(34) < 2k (\/—N+CAthMnd(;4n )+ g 2t g, ,yn))
C M 3
N,. < -2 . = n
= d(uNr ) ) < 2% ((1 + CAtLy M)A (1N, 1) + VY i —W) (66)

where in (66), we have merged v/N into C. [

Remark. Lusin’s theorem requires the underlying measure to be finite Borel regular, and in this case,
we are looking at the measure i defined as follows: for A C R", fi(A) = P({w| there exist n, Uy

such that X, (w) € A}). fi is clearly a probability measure induced on the Polish space R", and so
it is tight by the inverse implication of Prokhorov’s theorem (or we can use the fact that all finite
Borel measures defined on a complete metric space are tight). Thus, it is inner regular; since now fi
is also clearly locally finite, it also implies the outer reqularity.

Finally, we can use Lemma 4 repeatedly to show the convergence result:

Theorem 5. By taking yé‘] = 1Y, there exist {My|M, € R,n =0,1,.N =1}, {Ly|L, € R,n =
0,1,.N —1} and {6,|6, € R,n =0,1,..N — 1} such that

N-1

CMn_; 3 > 67)

i—1 C
7 C_ +25 + +7
) < 1 2 130 f<M N R N

i=0

where C; := 1+ CAtL;M;. Then, for any M > 0, we have by picking {My}, {Kn}, N large
enough and {6, } small enough, and then the following holds

C
d(ul, un) < . (68)
for some fixed constant C which depends only on «.
Proof. With C,, defined as
Cp =14 CAtL, M, (69)

and by using (66) repeatedly, we obtain the following result:

z
L

. C CM 3
AN un) < 262 T Cnos + = IN=i 4 o5 =
(N un) < ) ( )j:I—([) N ](wai K, N—i \/N)

i
o

i
N-1

+ (2 )N T Cnjd(pd, o)
=0

N—

[uny

i—1
2yi

||C _j 26 — 70
)‘_0 N ](MNfi—i_ KNfz + N—i t+ ) ( )
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Since we know that d(u{', j19) = 0, we now just need to show that (70) vanishes when
K;, N gets large and J; gets small, i € {0,1, ..., N}. Notice that M; comes from the domain
truncation for each time step and §; comes from the uniform approximation which is free
to choose. The choice of J; will potentially determine the value of L,.

We fix My := NM, dy := ﬁ where N is the number of time discretization and M is
potentially a large number.

Then, we define §;, M, through the following:

S i1
(2 2) ] Cnoj20N—io1 = (2 2) [ [ 20n-i (71)
=0 =0
20+ T C L= C
2Kk~ — = (2K~ — 72
( K ) ]-I;[OCNijMNfifl ( K ) j:HOCNijMNfi ( )

Here, we define Cn41 = 1.
Notice that one should iterate (71) and (72) iteratively, since defining J; will lead to the
Lipschitz constant L; at stage i, which is needed for the definition for C;.

Then, we have that
R | C C
L (2% 2)1]130CN,]-m < NW
<= 73)
and we also have
N-1 = 1
L (279) ]’:HOCij25n7i < Ny
<+ 74)
By picking Ky _; to be large, we then can have
= =l CMy 1
l;; (272 ].:HOCij KNIL < NNM
<+ 75)
Last but not least, by taking A so large such that
FeeTlov )<L 76)
i=0 j=0 VN T M

we can see that (70) converges to 0 by taking M to be very large. [

Remark. Notice that in Theorem 5, it is natural to have terms that depend on K% and ﬁ The
presence of My, and 6y, are due to technical difficulties. M, basically gives the growth of the particles
in the worst-case scenario (we want our domain to be compact), while L, and 6, come from the
Lipchitz approximation for the test function f.

4. Numerical Example

In this section, we carry out two numerical examples. In the first example, we consider
a classic linear quadratic optimal control problem, in which the optimal control can be
derived analytically. We use this example as a benchmark example to show the baseline
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performance and the convergence trend of our algorithm. In the second example, we solve
a more practical Dubins vehicle maneuvering problem, and we design control actions based
on bearing angles to let the target vehicle follow a pre-designed path.

4.1. Example 1. Linear Quadratic Control Problem with Nonlinear Observations

Assume B, K are symmetric, positive definite. The forward process Y and the observa-
tion process M are given by

Y (t) = A(u(t) —r(t))dt + oBu(t)dW;

77
dM(t) = sin(Y(t))dt + dB; @
The cost functional is given by
1 T x « 1T 1
Jlu] = 5E /0 (ROY: = Y7, (Y — Y7 ))dt + E/0 (Kug )t + 2 (Qr, Yr) | (78)

and we want to find J(u*) = inf, ¢y ,10,1) (1)

4.1.1. Experimental Design

An interesting fact of such an example is that one can construct a time deterministic
exact solution which depends only on xg.
By simplifying (78), we have

=5 / (RE[Y{Yy] — 2RY;TE[Y)] + RY*TY* + (Kuy, us)dt) + %E[(QYT, Yr)]  (79)
Then, we define:

Xy = E[Y:] = E[Yo+ /TA(u(s) —r(s))ds + /OT oBu(s)dWs]

E[Yp + / r(s)ds] o
Hence, we see that
E[Y Y] = E[(Yo—i-/OtA(u(s) —r(s))ds—i—/OtUBu(s)dWS)Z]
— E Yo+ / () = r(s)TATAGuls) ~ r(s)ds + Y] [ AGus) — r(s))ds o

n / $))TATYods] + E| / u(s)T BT Bu(s)ds]
= XI'X; +(72/0 u(s)"BT Bu(s)ds

and (81) is true because all the terms are deterministic in time given xg. Moreover, we
observe that

E[YEYr] = E[(Yo + /OTA(u(s) —r(s))ds + /OT oBu(s)dWs)?]
(82)
= X X1 + 02 /OTu(s)TBTBu(s)ds
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As a result, we see that (79) now takes the form:
1 T
I =5 / (XTRX, — 2XTRX* + X:TRX? + ul (02BTQB + K)us)ds
3 . . (83)
+ =02 / / ul BT RBusdsdt + =~ X1QXr
2 o Jo 2
and by performing a simple integration by part, we have
1 /T
Il =5 /O (XTRXs — 2XTRX? + X:TRX? + ul (0BT QB + K)us)ds
84
1, (7 TpT o1 &9
+50 / (T — t)ul BTRBusds + 5 XJQXr
0
As a result, we have the following standard deterministic control problem:
1 /T
Jiu) =5 / (XIRXs — 2XIRX? + X TRX? 4 ul (6®>BTQB + K)us + 0*(T — t)ul BTRBus) ds
0
2f (85)
1
+ EX%QXT
aX
= Al — (D), Xy, = Xo (86)
b
Then, one can form the following Hamiltonian
H(x,p,u) =bp+f (87)
where p is V40, and v is the value function.
Then, to find the optimal control, we have
0
By & g
o 0 (88)
which is
Ap +u(c?BTRB(T — t) + (K 4+ ¢*BTQB)) =0 (89)
Thus, we obtain
—Ap(t)
= 90
"= Z2BTRB(T — 1) + (K + 02BTQB) ©0)
Additionally, notice that
d ,
Sp() = —ROG=X7), p(T) = QXr o)
and then,
T
pl) = QX7 + [ R(X: = X{)ds (92)

Combining (86), (90) and (92) together, we can solve the control of the system.
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Then, set

1 02 02 02
02 1 02 02
A= 02 02 1 02 (93)
02 02 02 1

Set B, R, K and Q as identity matrices. With Xy = 0, we have the following solution
according to this setup.

To solve (92), let
XX =t
X? — X2 := cos(t)
X3P — X3 =

Xi — X .= —2msin(27mt)

Then, we have

TZ 2
2
sin(T) — sin(t
py = | X | oD o) (o)
t 33
X} cos(2nT) — cos(27tt)
Let 7(t) be
g4 —t*/2 5,  —sin(t) 5 -~ , —cos(2mt)
]"t g , }’t = , t = -_—, r’t e S——
Pt Bt 3Pt Bt
where B; = (14 02) + ¢%(T — t). Then,
r(t) = A#(t)
Then, plug (94) into (90), and we solve (86)
X Ap(t R
X ) - (1)) = A2 i) ()
Bt
and obtain
TZ
Xé A2 7( ) X%
| XP L a sin(T X7
X = 3| = ( %3 T x: ) (96)
X} cos(27T) X7
Thus, replacing X; with X}, we obtain
1% 12 1
;(tz* cost(t) wp A2 sirzT) ii(%
X;k = X?,* = t2 + 0_2 ( ’1:;3 - X§ ) (97)
X —27sin(27tt) cos(27T) X2

where XiT can be obtained from the system (96) by letting t = T, and

1402+ 2T

=1
M) T 2(T— 1)
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Then, to find the exact form by following the trajectory of y; in this setup, one will
have to solve the following coupled forward-backward ODE.

% =A(ur—re)  Xp =y, (98)
dp(t) * tnYty
= X — X, pr=ax" (99)

withuy = —Apy/(0*(T —t) + (1 + 02)). As a result, we have

dX

d—tt =A(=Apt /(X (T—t)+ (1+02) — 1)  xp0 = 1y, (100)
dp(t N Vs

Zi) =X, - X{, pr=xa¥ (101)

That is, we need to solve the above coupled FBODE. Then, seeing that p; = xtT"’y 4
ftf X5 — X}ds, and writing a; := 1/ (0?(T — t) + (14 ¢?)), we have

dX; T

- = A(—mAXr —mA | (Xs — X3)ds — 1), X, = Y, (102)
tn

To solve (102) numerically, we conduct a numerical discretization:

N-1

xth — Xt, = —ﬂtnAZXTAf — at”(At)zAz Z (Xti — X;kz) — Ai’t
i=n
N-1 N-1
= Arp—ap, (A?A Y XE =Xp, — Xy, — an, (A2A% Y Xy —ay, A’ X1, X1, =y, (103)
i=n i=n

We can put (103) into a large linear system and solve it numerically.

4.1.2. Performance Experiment

We set the total number of discretizations to be N = 50. Set iteration L = 10%,¢ = 0.1,
the number of particles in each dimension is 128, T = 1, and Xy = 0.

In Figure 1, we present the estimated data-driven control and the true optimal control.

ul u2
eot: 021 &,
02 .;if"v &1\_\)‘“ "‘klxuxxxxIﬂI‘“meh\
o \ 00
00 Ges
3 3 02
3 02 3
ki § 04
-04 K
e 0.6
061 © TFue optimal contral "::" o TFue optimal contral
PF-SGD estimate " 0E PF-5GD estimate S
(1] 02 04 06 oe j) (1] 02 04 06 oe j)
TILIBe 'I'|Lr'|ae
02 13
) SO, A,
.4.‘# n""\;\ - = g,
P : 3
FF 10 a
oo . 4
ooy F
3 303 &
5 02 5
] c 5 B
[} [T 2 B
-0.4
o attr
@ TFue optimal contral LN 2031 of @ Fue optimal contral
0.6 PF-SGD estimate B PF-5GD estimate B
(1] 02 04 06 oe j) (1] 02 04 06 oe j)
Time Time

Figure 1. Estimated control vs. true optimal control.
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In Figure 2, we show the estimated state trajectories with respect to true state trajecto-
ries in each dimension.

X1 X2

0401 o PF-SGD estimated trajectory
true trajectory

O PF-5GD estimated trajectory A
true trajectory ad

03

0.4
03
0.2
01

000 & 00

00 0z 0.4 o6 0.8 1o 0.0 02 04 o6 0.8 1o
Time Time

© PF-SGD estimated trajectory

& PF-SGD estimated trajectory .2
030 true trajectory 4

035 true trajectory

0.4

03

Xa

g o
-
i
02 o

01

noo{ & 00

00 02 04 06 [1%:] 10 00 02 04 06 [1%:] 10
Time Time

Figure 2. Estimated state vs. true state.

We can see from these Figures that our data-driven feedback control algorithm works
very well for this 4-D linear quadratic control problem despite there being nonlinear
observations.

4.1.3. Convergence Experiment

In this experiment, we demonstrate the convergence performance of our algorithm,
and we study the error decay of the algorithm in the L, norm with respect to the number
of particles used. Each result is an average of ||u®! — u*||, of 50 independent tests.

Specifically, we set L = 10* and we just increase the number of particles S = {2, 8, 32,
128, 512, 2048, 4096, 8192, 16,384, 32,768}, and we obtained the result in Figure 3.

-0.05

—-0.06

-0.07

—0.08

-0.09

Log error in L2 norm

—-0.10

-0.11

1 2 3 4
Log #Particles

Figure 3. Error vs. number of particles.

Set the number of particles S = {2,8,32,128,512,1024,2048,4096}, and L = S2. We
obtained the result in Figure 4.
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b= |

1

04

03

02

0l

00

Log error in L2 narm

=01

-02
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Figure 4. Error vs. number of steps.

From the results above, we can see that the error will decrease and converge as we
increase the number of particles and the number of iterations.

4.2. Example 2. Two-Dimensional Dubins Vehicle Maneuvering Problem

In this example, we solve a Dubins vehicle maneuvering problem. The controlled
process is described by the following nonlinear controlled dynamics:

o dXt o sin(Gt)dt
ds; = [dYt] = [COS(()t)df + ocdW; (104)
d0; = udt + o2dW; (105)
. Xi+1 Xt =27
dM; = [arctan( Y, 1 ), arctan( Y, 1 )N+ (106)

where the pair (X, Y) gives the position of a car-like robot moving in the 2D plane, 6 is the
steering angle that controls the moving direction of the robot, which is governed by the
control action u¢, and ¢ is the noise that perturbs the motion and control actions. Assume
that we do not have direct observations on the robot. Instead, we use two detectors located
on different observation platforms at (—1,1) and (2,1) to collect bearing angles of the
target robot as indirect observations. Thus, we have the observation process M;. Given
the expected path 5%, the car should follow it and arrive at the terminal position on time.
The performance cost functional based on observational data that we aim to minimize is
defined as:

T 1 T
| (RSt =87, (51 = Syt + 5 [ (Kugyun)dt +(Q(St — ), (51— 7)) (107)

2 Jo

In our numerical experiments, we let the car start from (Xo, Yp) = (0,0) to (X1, Y1) =
(1,1). The expected path S is X?‘ + Ytz = 1. Other settings are T = 1, At = 0.02, i.e,,
Nr =50,0=0.1,1 ~ N(O, 0.1), L = 1000, K = 1, and the initial heading direction is 77/2.
To emphasize the importance of following the expected path and arriving at the target
location at the terminal time, let R = Q = 20.

In Figure 5, we plot our algorithm’s designed trajectory and the estimated trajectory.
We can see from this figure that the car moves towards the target along the designed path
and is “on target” at the final time with a very small error.
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Figure 5. Controlled trajectory from (0,0) to (1,1).

We set L = 10% and we just increase the number of particles S = {2,8,32,128,512,
1024, 2048, 4096, 8192,16384, 32768 }. To provide the convergence of our algorithm in solving

this Dubins vehicle maneuvering problem, we repeated the above experiment 50 times and

we obtained the error = M}ew ZXZT' ((St = S7), (St — S})) in Figure 6 where Myept. = 50.

L]
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04

0z

]

Log errar in L2 norm

—0.2

-04

1 2 3 4
Log #Particles

Figure 6. Error vs. number of particles.

Set the number of particles S = {8,16,32,64,128,256,512,1024}, and L = S2. We

obtained the error= Mrlm ngf‘ ((St — Sf), (St — Sf)) in Figure 7, where the error is the

average of ||S; — Sf||». A
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From the results above, we can see that the error will decrease and converge as we
increase the number of particles and the number of iterations.

5. Conclusions

In this paper, we present the weak convergence of the data-driven feedback control
algorithm proposed in [1]. We do not discuss the convergence rate due to the challenge of
determining the radius M of the compact subspace that bounds all particles X;. However,
in practice, given a terminal time T, one can use Monte Carlo simulations to find an M that
satisfies a certain probability in Lemma 2. Our numerical experiments indicate that both
the estimated control and estimated distribution converge at a rate related to the number
of particles and iterations.

Future work can focus on analyzing the convergence rate and error bounds for a given
state system. This will provide clarity on the number of particles and iterations required to
achieve the desired estimation accuracy when applying the algorithm from [1].
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Appendix A
Appendix A.1

Proof of Lemma 2.

Proof. We start with time ¢;.
Step 1. Starting from X, ~ & with E[¢?] < Cy, and by fixing an arbitrary control u,
we have for the prediction step:

E[|X; 2] = E[|Xo + b(Xo, uo) At + o(Xo) AWy |
< E[(1+ADX + (14 1)0P(AN?] + GO

< (1+ AHCE + (C2(At+1) + C2)At

Step 2. We denote the distribution £(X; ) ~ 7 |,, and then the particle method will
perform a random resampling from such a distribution and obtain a random distribution

N Z Srifw) = T (A2)

Hence, we have for X ~ nf\lf v

over all randomness in the measure

taking the expectation where the expectation is taken

- /\/’
E[X’] = E[E[X*|G1]] = TFE[E[x{|G; ]] = E[X’] (A3)
where x; ~ 71, |, are i.i.d random samples, Gy contains the sampling randomness and
X ~ Ty,|t,- The conditional expectation is meant to show that all the particles ¢ are

conditionally independent (since there is other randomness that has accumulated in the
history if we want to apply this argument recursively.) Thus, by (A1)

E[X’] <Cy (A4)

Step 3. We now have the random measure ¥

bt and we proceed to the analysis step.

We have by definition

glx)dml, (x)
Xl fg tltt ) : i\ljlfl

where ﬂf\lf It (x) is the distribution of the terminal state X,  from the previous step. Recalling

(A5)

assumption 7, we give an estimate over E[| X1|?]:

B3P < (VB[ P, (0] < (05 =Gy (A6

K

Step 4. Now, we again apply the random sampling step

N
= T ln (A7)

[ Mz

1
N
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where x;(w) ~ 7N bt . Then, for X ~ 7rt 1, We have
E[X?] = E[E[X?|G:]]
N
= NEEL?|6:)
= E[X?] (A8)

References

where X ~ #N
b ]ty

current sampling. Then, by (A6), we have

and G, is the filtration that builds on G;” and the randomness of the

E[XZ] < Cl/ X ~ ﬁjg\li‘tl (A9)

and this completes all the estimates for the first time-stepping. Hence, after one time step,
we have

Cp =« 2(14 At)Cy + CAt (A10)

which means that by applying the same argument, we will have the following recursion in
general:
Cp1 = K 2(14 At)Cy + CAt (A11)

As aresult, by picking arbitrary u,, using this same argument repeatedly until N, we
have that foralln =1, ..., N:

Cn = (k2(14 A1)"Co + 2 2(1+ At))'CAt (A12)

and we notice that C, is increasing in n. As a result, we know that for any X, ~

N ,7N,, we have that
tn‘tn—l tn‘tn

E[|Xu|*] < Cn (A13)

Hence, by Chebyshev’s inequality, we have

P(|X,| > M) < % vn € {1,2,..,N} (A14)
and then we have that
Cn
P(sup | X,| > M) < e (A15)
n

By noticing that the control values are arbitrarily picked, we have that

B(sup |X,| > M) <

Xy~ N or N
tn‘tn—l
n,Uy

bl (Ale)
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