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In this work, we present a numerical method that provides accurate real-time detection for the widths
of the fractures in a fractured porous medium based on observational data on porous medium fluid
mass and velocity. To achieve this task, an inverse problem is formulated by first constructing a
forward formulation based on the reduced fracture model of the diffusion equation. A parameter esti-
mation problem is then performed online by utilizing a direct filter method. Numerical experiments
are carried out to demonstrate the accuracy of our method in approximating the target parameters.
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1. INTRODUCTION

Fluid flow and transport problems in fractured porous media have many important applications in
various fields such as subsurface hydrology, geophysics, and reservoir geomechanics. Therefore,
it is necessary to have accurate and robust numerical simulations for such problems. However,
such a task is often challenging due to the presence of the fractures. In particular, a fracture can
represent either a fast pathway or a geological barrier, depending on whether its permeability is
much higher or much lower than the surrounding rock matrix. In addition, the width of the frac-
ture is much smaller than the size of the domain of calculation and any reasonable spatial mesh
size. This issue requires refining the mesh locally around the fracture after imposing a global
mesh on the entire domain, which is known to be computationally inefficient. One effective way
to deal with this situation is to treat the fractures as interfaces, which avoids local refinement
around the fractures. The original problem is then transformed into a new one where the inter-
action between the fractures and the surrounding rock matrix is taken into account [see Alboin
et al. (1999, 2002), Amir et al. (2021), Angot et al. (2009), Fumagalli and Scotti (2011), Gander
et al. (2021), Jaffre et al. (2005), Kadeethum et al. (2020), Morales and Showalter (2012) and the
references therein]. Models with such low-dimensional fractures are known as reduced fracture
models or mixed-dimensional models. Moreover, these models facilitate the use of different time
scales in the fracture and in the rock matrix via a multi-scale approach, such as global-in-time
domain decomposition methods (Hoang et al., 2013, 2016, 2017; Huynh et al., 2023a,b, 2024).

It is well known that the characteristics of the fractures significantly influence fluid flow pat-
terns and the selection of numerical algorithms. Thus, in this work, we consider the following
inverse problem: given the observations on the flow of the fluid in the fractured porous media,
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how can we infer the properties of the fractures, such as their widths? This is a practically impor-
tant problem for engineers who seek to gain knowledge of the fractures when the observable data
on the underground water is often limited. Such information will be invaluable when developing
reliable models of naturally fractured reservoirs in order to optimize the primary and enhanced
oil recovery methods. The study of inversion schemes for state and parameter estimation in flow
and transport in (fractured) porous media is challenging and has attracted great attention of re-
searchers (Ameur et al., 2002; Dai and Samper, 2004; Goc et al., 2010; Gwo, 2001; Krause et al.,
2013; Mauldon et al., 1993; Neuman and Yakowitz, 1979; Renshaw, 1996; Wei and Rabinovich,
2023). However, limited work exists for the inverse problems associated with reduced fracture
models. In Ameur et al. (2018), an iterative algorithm was proposed for the steady-state problem
to estimate the location and hydrogeological properties of a small number of lower-dimensional
fractures in a porous medium using given distributed pressure or flow data.

In this work, the fracture widths are considered as the parameter of interest, and the parame-
ters detection problem we shall construct is based on a reduced fracture model of compressible
fluid flow in which the fracture has larger permeability than the surrounding porous medium.
One benefit of using the reduced fracture model is that one can include the fracture widths in
the state estimation system, which facilitates the parameter estimation process. We aim to infer
the widths of the fractures based on the real-time measurements of the porous media flow. To
this end, the forward reduced fracture system is first implemented by using first-order backward
Euler and mixed finite element methods (Boffi et al., 2013; Brezzi and Fortin, 1991; Roberts
and Thomas, 1991), which are mass conservative and can handle heterogeneous and anisotropic
diffusion tensors effectively. Next, to solve the inverse problem, we develop an online estimation
method for the parameters representing the fractures widths. To achieve this goal, we utilize a
direct filter method (Archibald et al., 2019; Cogan et al., 2021; Sun et al., 2023) to dynamically
estimate the unknown parameters as we receive the observational data in an online manner. The
main idea of the direct filter method is to incorporate the physical model with the observations on
the state process through the likelihood and use Bayesian inference to project the observational
data onto the parameter space. Preliminary research has shown that the direct filter method can
accurately estimate the parameters for high dimensional data assimilation (Archibald and Bao,
2022; Archibald et al., 2019) and can be applied to solve practical problems (Cogan et al., 2021;
Dyck et al., 2021; Sun et al., 2023). We remark that the model problem presented in this work is
not complex, and our primary goal is to demonstrate the performance of the direct filter method
for flows in fractured porous media. Thus, a multi-scale approach for the time discretization is
not required here.

The rest of this paper is organized as follows: in Section 2, we introduce the model problem,
formulate the corresponding reduced fracture model, and derive its fully discrete version. We
shall discuss the optimal filtering for online parameter estimation in Section 3. The direct filter
method and its implementation are also introduced. In Section 4, we discuss how to apply the
direct filter method to estimate the target parameter in the reduced fracture model. Numerical
experiments will also be carried out to illustrate the performance of the direct filter approach.
The paper is then closed with a conclusion section.

2. REDUCED FRACTURE MODEL FOR THE DIFFUSION EQUATIONS

Let Ω be a bounded domain in R2 with Lipschitz boundary ∂Ω and T > 0 be some fixed
time. Consider the flow problem of a single-phase, compressible fluid written in mixed form as
follows:
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ϕ∂tp+ div uuu = q in Ω× (0, T ),
uuu = −KKK∇p in Ω× (0, T ),
p = 0 on ∂Ω× (0, T ),

p(·, 0) = p0 in Ω,

(1)

where p is the pressure, uuu is the velocity, q is the source term, ϕ is the storage coefficient, and
KKK is a symmetric, time-independent, hydraulic conductivity tensor. Suppose that the fracture Ωf

is a subdomain of Ω, whose thickness is d, that separates Ω into two connected subdomains:
Ω\Ωf = Ω1 ∪Ω2, and Ω1 ∩Ω2 = ∅. For simplicity, we assume further that Ωf can be expressed
as

Ωf =

{
x ∈ Ω : x = xγ + snnn where xγ ∈ γ and s ∈

(
−d

2
,
d

2

)}
,

where γ is the intersection between a line with Ω (see Fig. 1).
We denote by γi the part of the boundary of Ωi shared with the boundary of the fracture Ωf :

γi = (∂Ωi ∩ ∂Ωf ) ∩ Ω, for i = 1, 2. Let nnni be the unit, outward pointing, normal vector field
on ∂Ωi, where nnn = nnn1 = −nnn2. For i = 1, 2, f , and for any scalar, vector, or tensor-valued
function φ defined on Ω, we denote by φi the restriction of φ to Ωi. The original problem (1)
can be rewritten as the following transmission problem:

ϕi∂tpi + div uuui = qi in Ωi × (0, T ), i = 1, 2, f,
uuui = −KKKi∇pi in Ωi × (0, T ), i = 1, 2, f,
pi = 0 on (∂Ωi ∩ ∂Ω)× (0, T ), i = 1, 2, f,
pi = pf on γi × (0, T ), i = 1, 2,

uuui ·nnni = uuuf ·nnni on γi × (0, T ), i = 1, 2,
pi(·, 0) = p0,i in Ωi, i = 1, 2, f.

(2)

The reduced fracture model that we consider in this paper was first proposed in Alboin
et al. (1999, 2002) under the assumption that the fracture has larger permeability than that in
the rock matrix. The model is obtained by averaging across the transversal cross sections of
the two-dimensional fracture Ωf . We use the notation ∇τ and divτ for the tangential gradient
and tangential divergence, respectively. We write ϕγ and KKKγ for dϕf and KKKf,τ, respectively,
whereKKKf,τ is the tangential component ofKKKf . The reduced model consists of equations in the
subdomains,

ϕi∂tpi + div uuui = qi in Ωi × (0, T ),
uuui = −KKKi∇pi in Ωi × (0, T ),
pi = 0 on (∂Ωi ∩ ∂Ω)× (0, T ),
pi = pγ on γ× (0, T ),

pi(·, 0) = p0,i in Ωi,

(3)

FIG. 1: The domain Ω with the fracture Ωf (left) and the fracture-interface γ (right)
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for i = 1, 2, and equations in the fracture-interface γ,

ϕγ∂tpγ + divτuuuγ = qγ +
2∑

i=1
(uuui ·nnni)|γ in γ× (0, T ),

uuuγ = −KKKγd∇τpγ in γ× (0, T ),
pγ = 0 on ∂γ× (0, T ),

pγ(·, 0) = p0,γ in γ,

(4)

where pγ, uuuγ, and qγ are the reduced pressure, flux, and the source term, respectively, which are
given by

pγ =
1
d

d/2∫
−d/2

pf (xγ + snnn)ds, uuuγ =

d/2∫
−d/2

uuuf,τ(xγ + snnn)ds, qγ =

d/2∫
−d/2

qf (xγ + snnn)ds,

where uuuf,τ is the tangential component of uuuf . To write the weak formulation of Eqs. (3) and
(4), we use the convention that if V is a space of functions, then VVV is a space of vector functions
having each component in V . For arbitrary domain O, we denote by (·, ·)O the inner product in
L2(O) or L2(O). We next define the following Hilbert spaces:

M =
{
v = (v1, v2, vγ) ∈ L2(Ω1)× L2(Ω2)× L2(γ)

}
,

Σ =
{
vvv = (vvv1, vvv2, vvvγ) ∈ L2(Ω1)× L2(Ω2)× L2(γ) : div vvvi ∈ L2(Ωi), i = 1, 2,

and divτ vvvγ −
2∑

i=1
vvvi ·nnni|γ ∈ L2(γ)

}
.

We define the bilinear forms a(·, ·; d), b(·, ·), and c(·, ·) on Σ×Σ, Σ×M , andM ×M , respec-
tively, and the linear form Lq onM by

a(uuu,vvv; d) =
2∑

i=1

(
KKK−1

i uuui, vvvi
)
Ωi

+
(
(KKKγd)

−1
uuuγ, vvvγ

)
γ
,

b(uuu,µ) =
2∑

i=1

(div uuui,µi)Ωi
+

(
divτ uuuγ −

2∑
i=1

uuui ·nnni|γ,µγ

)
γ

,

cϕ(η,µ) =
2∑

i=1

(ϕiηi,µi)Ωi
+ (ϕγηγ,µγ)γ, Lq(µ) =

2∑
i=1

(qi,µi)Ωi
+ (qγ,µγ)γ.

(5)

The weak form of Eqs. (3) and (4) can be written as follows:
Find p ∈ H1(0, T ;M) and uuu ∈ L2(0, T ; Σ) such that

a(uuu,vvv; d)− b(vvv, p) = 0∀vvv ∈ Σ,

cϕ(∂tp,µ) + b(uuu,µ) = Lq(µ)∀µ ∈ M,
(6)

together with the initial conditions:

pi(·, 0) = p0,i, in Ωi, i = 1, 2, and pγ(·, 0) = p0,γ, in γ. (7)

The well-posedness of problem (6) and (7) was proved in Hoang et al. (2016). To find the nu-
merical solutions to Eqs. (6) and (7), we discretize the problem in space using mixed finite
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element method (Boffi et al., 2013; Brezzi and Fortin, 1991; Roberts and Thomas, 1991) and
in time using backward Euler method. To this end, let Kh,i be a finite element partition of
Ωi (i = 1, 2) into triangles. We denote by Gh,i the set of the edges of elements Kh,i lying
on the interface γ. Since K1 and K2 coincide on γ, the spaces Gh,1 and Gh,2 are identical; thus
we set Gh := Gh,1 = Gh,2. For i = 1, 2, we consider the lowest-order Raviart–Thomas mixed
finite element spacesMh,i × Σh,i ⊂ L2(Ωi)×H(div,Ωi):

Mh,i =
{
µh,i ∈ L2(Ωi) : µh,i|Ki

= const, ∀Ki ∈ Kh,i

}
,

Σh,i =
{
vvvh,i ∈ H(div,Ωi) : vvvh,i|Ki

= (bK,i + aK,ix, cK,i + aK,iy),

(aK,i, bK,i, cK,i) ∈ R3, ∀Ki ∈ Kh,i

}
.

Similarly for the fracture, let Λh × Σh,γ ⊂ L2(γ) × H(divτ,γ) be the lowest-order Raviart–
Thomas spaces in one dimension:

Mh,γ =
{
µh,γ ∈ L2(γ) : λ|E = const, ∀E ∈ Gh

}
,

Σh,γ =
{
vvvh,γ ∈ H(divτ,γ) : vvvh,γ|E = az + b, (a, b) ∈ R2, ∀E ∈ Gh

}
.

For the discretization in time, we consider a uniform partition of (0, T ) into N subinter-
vals (tn, tn+1) of length ∆t = tn+1 − tn, for n = 0, . . . , N − 1. The time derivatives are
approximated by the backward difference quotient

∂̄cn =
cn − cn−1

∆t
, n = 1, . . . , N,

where the superscript n indicates the evaluation of a function at the discrete time t = tn.
Finally, denote

MMMh = Mh,1 ×Mh,2 ×Mh,γ, ΣΣΣh = Σh,1 × Σh,2 × Σh,γ,

the fully discrete version of Eqs. (6) and (7) reads as follows:
For n = 1, . . . , N , find (pnh,uuun

h) ∈MMMh ×ΣΣΣh satisfying

a(uuun
h, vvvh; d)− b(vvvh, p

n
h) = 0∀vvvh ∈ ΣΣΣh,

cϕ
(
∂̄pnh,µh

)
+ b(uuun

h,µh) = Ln
q (µh)∀µh ∈MMMh,

(8)

together with the initial conditions:

p0h,i|Ki
:=

1
|Ki|

∫
Ki

p0,i, ∀Ki ∈ Kh,i, i = 1, 2, and p0h,γ|E =
1
|E|

∫
E

p0,γ, ∀E ∈ Gh. (9)

3. DATA ASSIMILATION

In this section, we are interested in the following problems: given the observations on the so-
lution of Eqs. (8) and (9), what can we say about the characteristics of the existing fractures?
In particular, we aim to estimate the widths of the fractures provided some partial information
of the solution. To address this question, we need to incorporate some techniques from data
assimilation.
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3.1 General Framework

We first briefly present the general framework of data assimilation. Suppose we have the follow-
ing state-space model of a dynamical system

Sn+1 = g(Sn) + εn, n = 0, 1, . . . , (10)

where g : Rl → Rl is a given mathematical model (linear of nonlinear), and the term εn ∈ Rl is
the noise in the system which is usually assumed to be Gaussian. The process {Sn}n is referred
to as the state process, which is often not directly observable, and the available data one received
typically consist of partial observations of the state Sn, which are given by

On+1 = G(Sn+1) + ζn+1, n = 0, 1, . . . . (11)

The process {On}n ⊂ Rk (k ≤ l) is called the observation process, and G : Rl → Rk could
be either a linear or nonlinear function, and ζn+1 is a Gaussian noise. The goal of the data
assimilation is to obtain the best estimate for the state Sn given the observation process {Oi}ni=1.
Mathematically, we need to find the optimal filer for Sn, denoted by S̄n with

S̄n := E[Sn|O1:n]. (12)

In this work, we use the Bayesian inference framework to obtain such estimation, which consists
of two steps. The first step is the prediction step where the Chapman–Kolmogrov formula is
applied to compute

p(Sn+1|O1:n) =

∫
p(Sn+1|Sn)p(Sn|O1:n)dSn, (13)

where we assume that p(Sn|O1:n) is known, and p(Sn+1|Sn) is the transition kernel which can
be computed by using Eq. (10).

The next step is to use the Bayes’ formula to update the new posterior:

p(Sn+1|O1:n+1) =
p(On+1|Sn+1)p(Sn+1|O1:n)

p(On+1|O1:n)
. (14)

As the given dynamical system is nonlinear in general, the terms occurring in Eqs. (13) and (14)
may not have analytic expressions. The general idea to handle this difficulty is to construct an
ensemble of particles, which represents a convex combination of Dirac measure, and iteratively
update their locations and weights. As the number of particles increases, the conditional distri-
bution is expected to converge to the exact distribution [see, e.g., Doucet et al. (2001b)]. This
approach consists of the following steps: at time step n, assume we have a collection of particles
{s(m)

n }Mm=1.

1. Approximate p(Sn|O1:n) by the empirical distribution p̃(Sn|O1:n) given by

p̃(Sn|O1:n) =
M∑

m=1

w(m)
n δ

s
(m)
n

(Sn), (15)

where w(m)
n stands for the weight of the particle smn , which is given, and δx is the Dirac

delta function at x.
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2. For the prediction step, we first use the state equation (10) to generate M empirical par-
ticles s̃(m)

n+1 satisfying

s̃
(m)
n+1 = g(s(m)

n ) + ε(m)
n , m = 1, . . . ,M.

Those particles are used to compute the empirical distribution π̃(Sn+1|O1:n), which is an
approximation for p(Sn+1|O1:n), through the Chapma–Kolmogrov formula:

π̃(Sn+1|O1:n) =
M∑

m=1

w(m)
n δ

s̃
(m)
n+1

(Sn+1). (16)

3. The empirical distribution of the update step is given by the following relation:

π̃(Sn+1|O1:n+1) :=
M∑

m=1

w
(m)
n+1δs̃(m)

n+1
(Sn+1), (17)

where

w
(m)
n+1 =

w̃
(m)
n+1

M∑
m=1

w̃
(m)
n+1

, w̃
(m)
n+1 = p

(
On+1|s̃(m)

n+1

)
w(m)

n .

4. To avoid degeneracy, which means that a lot of the weights of the particles will be ignored,
one needs a re-sampling step for the updated measure. This involves generatingM sam-
ples from the distribution (17) and assigning a weight of 1/M to each of the particles.
The goal of this step is to eliminate particles with small weights.

Since estimating the parameter d is our main focus, and the state estimates are unnecessary,
we adopt the direct particle filter method, developed in Archibald et al. (2019). Such method
will help us avoid unwanted distraction in the state estimation process and directly provide the
approximations of the target parameter. As a consequence, the dimension of the problem is the
same as the dimension of the parameter of interest, which would address the “curse of dimen-
sionality” when solving nonlinear filtering problems in online parameter estimation (Archibald
et al., 2019). Therefore, this method could solve the parameter estimation problem efficiently,
especially for our case when the dimension of the state model is very high and the parameter d
is a low-dimensional vector.

3.2 Direct Filter for Parameter Estimation

Similar to Eqs. (10) and (11), let Xn ∈ Rl describe the state of some physical model, and Yn ∈
Rk is a noisy observation ofXn with a noise perturbation ξn. We also denote by θ ∈ Rp (p ≪ l)
the vector of target parameters and assume that we have the following system for the parameter
estimation problem:

Xn+1 = h(Xn, θ) + wn, (18)

Yn+1 = HXn+1 + ξn+1, (19)

where h : Rl × Rp → Rl is a function (linear or nonlinear) representing the considered physics
model, H : Rl → Rk is a linear matrix, and (wn, ξn) is a pair of independent Gaussian noises.
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The parameter estimation problem we are interested in is to estimate θ in Eq. (18) by using the
observational data Y provided in Eq. (19).

In the direct filter method, instead of treating θ as a vector containing deterministic constant
entries, we consider θ as a stochastic process to be estimated with respect to time. To this end,
we replace θ in Eq. (18) with θn and rewrite Eqs. (18) and (19) in the following form:

θn+1 = θn + ϵn, (20)

Yn+1 = H(h(Xn, θn+1) + wn) + ξn+1, (21)

where ϵn is an artificial dynamic noise. We define ζn+1 = Hwn+ξn+1, which is a multivariate
Gaussian variable, and we can obtain the following dynamics:

θn+1 = θn + ϵn, (22)

Yn+1 = Hh(Xn, θn+1) + ζn+1. (23)

We aim to find the best estimate E[θn|Y1:n] for θn at any time instant n given the observation
process {Yi}ni=1. Instead of generating a long-term simulation trajectory for the process of Xn

[e.g., Kantas et al. (2015)], we follow the idea in Archibald et al. (2019) and use the fact that the
observation data Yn provides direct observations onXn and introduce the following approxima-
tion scheme:

H−1Yn ≈ H−1(Yn − ξn) = Xn,

which leads to the approximation dynamical system

θn+1 = θn + ϵn, (24)

Ỹn+1 = Hh(H−1Ỹn, θn+1) + ζn+1. (25)

We conclude this section by introducing the implementation of the direct filter method. More
detailed discussions can be found in Archibald et al. (2019). This method is initialized by first

generating a collection of M particles
{
θ
(m)
n

}M

m=1
that describes p(θn|Y1:n) at time instant n

and consists of the following three steps:

1. The prediction step. Generates a prior estimate θ̃n+1 =
{
θ̃
(m)
n+1

}M

m=1
for the target pa-

rameter θn+1, using Eq. (24) by adding
{
ϵ
(m)
n

}M

m=1
to
{
θ
(m)
n

}M

m=1
:

θ̃
(m)
n+1 = θ(m)

n + ϵ(m)
n , m = 1, 2, . . . ,M.

The prediction step provides an empirical distribution π̃(θn+1|Y1:n) for the prior
p(θn+1|Y1:n), which is computed by

π̃(θn+1|Y1:n) =
1
M

M∑
m=1

δ
θ̃
(m)
n+1

(θn+1). (26)
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2. The update step. The update step incorporates the observational data and derives a
weighted posterior distribution based on the prior π̃(θn+1|Y1:n) given in Eq. (26):

π̃(θn+1|Y1:n+1)=
1
C

M∑
m=1

p
(
Yn+1|θ̃(m)

n+1

)
δ
θ̃
(m)
n+1

(θn+1)=
M∑

m=1

w
(m)
n+1δθ̃(m)

n+1
(θn+1), (27)

wherew(m)
n+1 = p

(
Yn+1|θ̃(m)

n+1

)
/C is the weight for the particle θ̃(m)

n+1 with a normalization
factor C, and the likelihood function in Eq. (26) is given by

p
(
Yn+1|θ̃(m)

n+1

)
= exp

(
−1
2
||Hh

(
H−1Yn, θ̃

(m)
n+1

)
− Yn+1||2R

)
, (28)

where ||α||R := αR−1α, withR standing for the invariance variance of the observational
noise ζn+1.

3. Resampling step. The purpose of the resampling step is to generate a set of equally
weighted samples to avoid the degeneracy issue (Archibald et al., 2019; Bao et al., 2014,
2018, 2019, 2020; Bao and Maroulas, 2017). In this work, we simply use the importance
sampling method (Doucet et al., 2001a; Morzfeld et al., 2018) to generate samples, de-

noted by
{
θ
(m)
n+1

}M

m=1
, from the weighted importance distribution π̃(θn+1|Y1:n+1). More

specifically, we use the distribution π̃(θn+1|Y1:n+1) to sample with replacement M par-

ticles
{
θ̃
(m)
n+1

}M

m=1
according to the weights

{
w

(m)
n+1

}M

m=1
to obtain

{
θ
(m)
n+1

}M

m=1
. This

way, we can replace particles with small weights by particles with large weights. We then
obtain an “unweighted” empirical distribution as follows:

p̃(θn+1|Y1:n+1) =
1
M

M∑
m=1

δ
θ
(m)
n+1

(θn+1),

and use p̃(θn+1|Y1:n+1) as the initial empirical distribution for the next time instant n+1.

With the above procedure, the estimate we obtain for the target parameter at the time instant
n+ 1 is given by

θ̃ =
1

n+ 1− j

n+1∑
i=j

Ẽ[θi|Y1:i],

where j is a number of burn-in steps to reduce the influence of large noises at some time instants,
and Ẽ[θi|Y1:i] is the mean estimate of the empirical distribution p̃(θi|Y1:i).

Remark 1. Throughout Section 4, the values of the perturbation noise {ϵn} in Eq. (20) will be
chosen empirically. However, we note that there is a method for systematically selecting these
values. Specifically, the authors in Liu andWest (2001) used the kernel smoothing approach with
location shrinkage developed in West (1993) to derive a relation between the variance matrix of
the perturbed noise ϵn+1 at time instant n+1 with the variance matrix of the particle parameters
θn at the previous time step n. From this relation, we can determine the values of the noise.
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4. NUMERICAL RESULTS

In this section, we shall explain how to apply the direct filter method to estimate the width of
the fracture based on the fully discrete version of the reduced fracture model, i.e., the system of
Eqs. (8) and (9). We then carry out some numerical experiments with different fracture configu-
rations to demonstrate the performance of the method.

4.1 Problem Setup

To incorporate the direct filter algorithm, we first rewrite the system (8) and (9) in a more com-
pact form. Let M̄MMh and Σ̄ΣΣh be the finite collections of basis functions inMMMh andΣΣΣh, respectively.
We introduce the following matrices resulted in the bi-linear forms given in Eq. (5):

AAAh(d) = (a(rrrh, vvvh; d))rrrh,vvvh∈Σ̄ΣΣh
, BBBh = (−b(vvvh,ηh))vvvh∈Σ̄ΣΣh,ηh∈M̄MMh

,

CCCh,ϕ = (−cϕ(ηh, λh))ηh,λh∈M̄MMh
.

(29)

By replacing vh and µh in Eq. (8) by the basis functions and expressing uuun
h and pnh in terms of

those basis functions, we obtain the following matrix form for Eq. (8):

ΛΛΛh(d)Xn = F (Xn−1, GGGh), (30)

where

ΛΛΛh(d) =

[
AAAh(d) BBBh

∆t(BBBh)
T

CCCh,ϕ,

]
, (31)

with ∆t being the chosen timestep size,GGGh is a vector containing the boundary conditions, and
Xn = (uuun

h, p
n
h). Equivalently, we have the following recursive relation:

Xn = ΦΦΦ(Xn−1, d), n = 1, 2, . . . , (32)

where
ΦΦΦ(Xn−1, d) = (ΛΛΛ(d))

−1
F (Xn−1, GGGh).

We can see that by using the reduced fracture model, the parameter of interest d is included in
the state equation (32). Thus, the direct filter method can be applied to approximate d. For all
test cases shown in this section, we fix ∆t = 0.1 and the spatial meshsize h = 1/50; therefore,
we have a total collection ofK = T/∆t such state vectors, where T is the terminal time.

To formulate the data assimilation problem for parameter estimation, we assume that we
receive datasets

Yn+1 = HXn+1 + ξn+1,

as the observational process with linear dependence on Xn+1 and ξn+1 is a noise following a
Gaussian distribution. As we aim to learn the information about the fracture, we assume that the
received data is directly related to the solution on the fracture. In particular, we have

HXn+1 = Xγ,n+1,

where Xγ,n+1 =
(
uuun+1
h,γ , pn+1

h,γ

)
is the solution on the fracture at time instant n + 1. As the

width of the fracture in general is significantly small compared to the overall size of the domain
of calculation, instead of approximating d, we denote θ := 1/d to be the parameter of interest,
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and we add noise to θ to make it a stochastic process. The introduction of additional noise to the
parameter of interest will transform it into an ensemble. As such, data assimilation techniques
such as particle methods can be applied to facilitate the state estimation of those parameters. All
together, we obtain the following optimal filtering problem for the parameter estimation task:

θn+1 = θn + ϵn, (33)

Yn+1 = HΦΦΦ
(
H−1(Yn), 1/θn+1

)
+ ξn+1. (34)

Note that Eqs. (33) and (34) are derived from the system (8) and (9) for the case with a single
fracture. Similar reduced fracture models can be extended readily to the other test cases presented
in this section, and the corresponding parameter estimation system can then be formulated. In
what follows, we consider three different test cases with different settings of the fractures to
study the applicability of the direct filter method to estimate the parameter of interest.

4.2 Test Case 1: One Single Fracture

For the first test case, the domain of calculation Ω = (0, 2) × (0, 1) is divided into two equally
sized subdomains by a fracture of width d = 0.001 parallel to the y-axis (see Fig. 2). For the
boundary conditions, we impose p = 1 at the bottom and p = 0 at the top of the fracture. On the
external boundaries of the subdomains, a no-flow boundary condition is imposed except on the
lower fifth (length 0.2) of both lateral sides where a Dirichlet condition is imposed: p = 1 on the
right, and p = 0 on the left. In Fig. 3, the snapshots of the pressure and velocity fields at final
time T = 5 are shown to illustrate the behavior of the solutions.

In this test case, we chooseM = 80 particles to empirically approximate the distribution of
the unknown parameter and let ξn in Eq. (34) be ξn ∼ N (0, 500). We also consider two sets
of noise ϵ̄ = {ϵ̄n} and ϵ̃ = {ϵ̃n} in Eq. (33), where ϵ̄n ∼ N (0, 400) and ϵ̃n ∼ N (0, 800).
Finally, we denote ρ̄ = {1/θ̄n} and ρ̃ = {1/θ̃n} to be the sets of parameters obtained from the
direct filter method corresponding to the noise ϵ̄ and ϵ̃, respectively.

We present in Fig. 4 the estimation for d for each set of noise. We observe that both cases
give accurate approximations for the true value d. Moreover, the direct filter ρ̃ tends to the true
value of d after 30 steps, which is faster than the direct filter parameters ρ̄ (around 40 steps). This
means that increasing the range of the noise, which is equivalent to increasing the exploration
rate for the parameters, may accelerate the convergence speed of the algorithm.

FIG. 2: [Test case 1] (Left) Geometry and boundary conditions of the test case. (Right) Example of a
uniform triangular mesh for spatial discretization.
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FIG. 3: [Test case 1] Pressure field (left) and velocity field (right) at time T = 5
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FIG. 4: [Test case 1] The estimations for d

4.3 Test Case 2: Two Parallel Fractures

In the second test case, we consider the domain of calculation being divided into three subdo-
mains by two thin fractures γ1 and γ2, whose widths are d1 = 2.5e− 03 and d2 = 5e− 03,
respectively. The boundary conditions are the same as in Test case 1, with additional boundary
conditions imposed on the second fracture γ2 (see Fig. 5). We note the the reduced fracture
model (3) and (4), and its discretization (8) and (9) can be extended straightforwardly to this
case.

FIG. 5: [Test case 2] Geometry and boundary conditions of the test case
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We aim to approximate d1 and d2 using the direct filter algorithm. The parameter θ in Eq. (33)
is now a vector given by θ = (1/d1, 1/d2). We still choose the number of particles M to be 80
and ξn ∼ N (0, 500). On the other hands, to accurately approximate both parameters, we need
to choose bigger exploration rates. In particular, we consider two sets of noise ϵ̄ = {ϵ̄n}n =
{(ϵ̄1,n, ϵ̄2,n)}n and ϵ̃ = {ϵ̃n}n = {(ϵ̃1,n, ϵ̃2,n)}n, where ϵ̄k,n and ϵ̃k,n are the noises cor-
responding to the filtering particles for dk, k = 1, 2 with ϵ̄n ∼ N (0, diag(2000, 7000)) and
ϵ̃n ∼ N (0, diag(4000, 8000)). Finally, we denote by ρ̄ = (ρ̄1, ρ̄2) and ρ̃ = (ρ̃1, ρ̃2) the particle
estimates corresponding to the noise ϵ̄ and ϵ̃, respectively.

We can observe from Fig. 6 that in both cases, the particles provide nearly identical approx-
imations for the true values of d1 and d2. Similar to Test case 1, bigger exploration rates lead
to faster convergence speed. For example, it took 30 steps for ϵ̃ to approach the true value of
d1, while nearly 47 steps were required for ϵ̄ to reach the same value. We also remark that in-
creasing the exploration rates does not significantly raise the computational cost, so the method’s
efficiency remains preserved.

4.4 Test Case 3: Two Intersecting Fractures

We consider a test case adapted from Alboin et al. (2002) where the domain of calculation is
divided into four subdomains Ωk, k = 1, . . . , 4 by two intersecting fractures Γ1 and Γ2, whose
widths are d1 = 1e − 03 and d2 = 6e − 04, respectively. To write the reduced model in this
case, we further partition each fracture into two smaller parts: Γ1 = γ1 ∪ γ3 and Γ2 = γ2 ∪ γ4
(see Fig. 7). The boundary conditions are given in Fig. 7. The reduced fracture model is then a
coupled system between the four diffusion equations on Ωk, k = 1, . . . , 4 and the four tangential
PDEs on γk, k = 1, . . . , 4.

For each k = 1, . . . , 4, denote by Zn
h,k =

(
uuun
h,k, p

n
h,k

)
the solution on Ωk and by Zn

h,γk
=(

uuun
h,γk

, pnh,γk

)
the solution on γk at time instant n. The solution Xn at time instant n is given

by Xn =
(
Zn
h,k, Z

n
h,γk

)
k=1,...,4

, and the noisy observational data can be written as

Yn+1 =
(
Zn
h,γk

)
k=1,...,4 + ξξξn+1 =

(
Zn
h,γk

)
k=1,...,4 +

(
ξkn+1

)
k=1,...,4.

The vector of targer parameters θ is set to be the same as Test case 2, which is θ =
(1/d1, 1/d2), and the noise ϵn in Eq. (33) also consists of two components ϵn = (ϵ1,n, ϵ2,n).
Unlike Test case 2, we need to impose additional conditions at the intersection point of Γ1 and
Γ2. Since the permeability in the fractures is considered to be much larger than the one in the
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FIG. 6: [Test case 2] The estimations for d1 [left] and d2 [right]

Volume 6, Issue 1, 2025



36 Huynh, Bao, & Hoang

FIG. 7: [Test case 3] Geometry and boundary conditions of the test case

subdomains, we can impose the following boundary conditions at the intersection point (Alboin
et al., 2002; Amir et al., 2021; Formaggia et al., 2014):

pnh,γ1
= pnh,γ2

= pnh,γ3
= pnh,γ4

, un
h,γ1

+ un
h,γ2

+ un
h,γ3

+ un
h,γ4

= 0.

These conditions express the continuity of the pressure and the normal fluxes on the fractures
across the intersection point.

We consider two sets of boundary conditions for Test case 3. For the first set, we let a = 1
and b = 0, which leads to Test case 3a. We show the snapshot of the solution for Test case 3a
in Fig. 8. We can observe that the magnitude of the fluxes on the two fractures are relatively the
same, and they flow in the direction driven by the boundary conditions. For Test case 3a, we fix
the number of particles to beM = 120 and choose ϵn ∼ N (0, diag(8000, 10,000)) and present
the direct filter estimations for ρ1 = 1/θ1 and ρ2 = 1/θ2 in Fig. 9. With the chosen noise, we
can see that the parameters converge to the true values relatively fast. We observed that the rate
of convergence of ρ2 is slower than that of ρ1. It can be explained that the flow in the vertical
fracture is a combination between the vertical flow in the fracture and the flow from the right
subdomain. This mixed information may cause the parameter d2 to be less sensitive so that the
convergence rate is slower.

Next, we consider a different set of boundary conditions where a = 5 and b = 0, which leads
us to Test case 3b. The snapshot of the solution for this test case is shown in Fig. 10. We can see
that the flux in the horizontal fracture dominates the vertical one, which drives the flux on the
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FIG. 8: [Test case 3a] Pressure field (left) and velocity field (right) for a = 1 and b = 0 at time T = 5
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FIG. 9: [Test case 3a] The estimations for d1 and d2
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FIG. 10: [Test case 3b] Pressure field (left) and velocity field (right) for a = 5 and b = 0

lower part of the vertical fracture to flow in the opposite direction compared to Test case 3a. For
this test case, to accurately approximate the values of d1 and d2, we need to choose large values
for the noise, which is ϵn ∼ N (0, diag(18,000, 18,000)). The parameter estimates are presented
in Fig. 11. Again, we observe that the convergence rate of ρ2 is slower than that of ρ1 due to d2
being less sensitive than d1. However, similar to the previous test cases, the convergence speeds
of the parameters to the exact values are relatively fast.

5. CONCLUSION

In this work, we studied the inverse problem of estimating the widths of the fractures in a frac-
tured porous medium based on observations of the fluid flow in the rock matrix. A reduced
fracture model was introduced and was fully discretized to serve as the forward problem of the
model inversion. The inverse problem was then solved by using an online parameter estimation
technique by adopting the direct filter method developed in Archibald et al. (2019). We pre-
sented several numerical experiments to show that the parameters of interest can be recovered
accurately by our method under various circumstances. For the future work, we aim to extend
our work to a more general goal where a complete characterization of a fracture can be inferred
based on the observational data in the porous medium.
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FIG. 11: [Test case 3b] The estimations for d1 and d2
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