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Abstract

We define the half-volume spectrum {@} ,en of a closed manifold (M n+1 ¢). This is anal-
ogous to the usual volume spectrum of M, except that we restrict to p-sweepouts whose
slices each enclose half the volume of M. We prove that the Weyl law continues to hold for
the half-volume spectrum. We define an analogous half-volume spectrum ¢(p) in the phase
transition setting. Moreover, for 3 < n + 1 < 7, we use the Allen—-Cahn min-max theory
to show that each ¢(p) is achieved by a constant mean curvature surface enclosing half the
volume of M plus a (possibly empty) collection of minimal surfaces with even multiplicities.

Mathematics Subject Classification 53A10

1 Introduction

The spectrum of the Laplacian is an important invariant of a closed Riemannian manifold
(M"*1, g). A number A is called an eigenvalue of the Laplacian provided there is a function
u: M — R such that Au + lu = 0. It is well-known that the eigenvalues form a discrete
sequence 0 = A9 < A; < A2 < ...and A, — o0 as p — oo. In fact, the eigenvalues of
Laplacian are characterized by the min-max formula

Vul?
Ap = inf sup IM|72| ,
(p+1)-planes PCWL2(M) | yeP\{0} fM u
and they satisty the Weyl law
2 _2 2 2
)"P ~ 47 Vol(B) n+l Vol(M) n+l1 pn+|

as p — oo. Here B is the unit ball in R"*!,
In [11], Gromov proposed a non-linear analog of the spectrum of the Laplacian. Roughly
speaking, he defines a p-sweepout of M to be a family X of hypersurfaces with the following
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property: given any p points in M, there is a hypersurface ¥ belonging to the family X which
passes through all p of these points. Then he defines the p-widths

wp = inf [sup Area(E)j| .
p-sweepouts X | ey
See Sect. 2 for precise definitions. The sequence {w} e is called the volume spectrum of
M.
Gromov [12] and Guth [14] proved that the volume spectrum satisfies sublinear growth
bounds. Namely, there are constants C; and C» depending on M such that

1 1
Clpn+1 <wp < C2Pn+1_

Later, Liokumovich, Marques, and Neves [17] showed that the volume spectrum satisfies a
Weyl law. That is, there is a universal constant a,, depending only on the dimension such that

wp ~ ay Vol(M)ﬁpnlﬁ

as p — 00; see Chodosh-Mantoulidis [6] for the calculation of @, whenn = 2. The Weyl law
for the volume spectrum has been instrumental in the proof of many results on the existence
of minimal surfaces in Riemannian manifolds.

In the early 1980s, Almgren [2], Pitts [21], and Schoen-Simon [22] developed a min-
max theory for the area functional on closed Riemannian manifolds. Their combined work
implies that every closed Riemannian manifold of dimension 3 < n + 1 < 7, contains a
closed, smooth, embedded minimal surface. Around the same time, Yau [25] conjectured
that every closed manifold should contain infinitely many minimal surfaces. Marques and
Neves devised a program to prove Yau’s conjecture by using the Almgren-Pitts min-max
theory to find a minimal surface with area w), for each p € N.

This program has now been successfully carried out. Fix a closed Riemannian manifold
(ML g) with 3 < n 4+ 1 < 7. Irie, Marques, and Neves [16] showed that, for a generic
metric g, the union of all minimal surfaces in M is dense in M. In particular, this proved
Yau’s conjecture for generic metrics. Later Marques, Neves, and Song [20] refined this result
to show that, for a generic metric g, there is a sequence of minimal surfaces in M which
becomes equidistributed in M. The Weyl law for the volume spectrum was a key ingredient
in the proof of both of these results. Following the second named author’s proof of the
Multiplicity One Conjecture [26], Marques and Neves [19] showed that, for a generic metric
g, there is a sequence of minimal surfaces ¥, with index p and Area(X,) = w,. Song [23]
proved Yau’s conjecture for arbitrary metrics g. We refer to the survey articles [18, 27] for
more detailed history on this exciting field.

The Almgren-Pitts min-max theory relies heavily on tools from geometric measure theory.
There is a parallel min-max theory for finding minimal surfaces based on the theory of phase
transitions. This theory relies on the Allen-Cahn PDE and the varifold regularity theory
of Wickramasekera. Gaspar and Guaraco [9] defined a phase transition spectrum {c(p)}peN
associated to a Riemannian manifold via the Allen—Cahn PDE. They showed that each c(p) is
achieved by a collection of minimal surfaces with multiplicities. Chodosh and Mantoulidis [5]
proved the Multiplicity One Conjecture in the phase transition setting in ambient dimension
three. Thus, for generic metrics on M3, they obtained the existence of a sequence of minimal
surfaces X, with index p and Area(X,) = c(p).

Gaspar and Guaraco [10] showed that the phase transition spectrum also satisfies a Weyl
law. That this, there is a constant 7, depending only on the dimension such that

1
1

c(p) ~ Ty Vol(M) 7T pirs
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Dey [7] proved that actually @, = c(p) for all p € N and thus the Almgren-Pitts volume
spectrum and the phase transition volume spectrum coincide. In particular, the constants a,
and 7, appearing in the two Weyl laws are equal.

In this paper, we define a “half-volume” spectrum associated to a Riemannian manifold.
In the Almgren-Pitts setting, we restrict to p-sweepouts by families of hypersurfaces that
each enclose half the volume of M. Then we define

Dy = inf Area(X) | .
@p half—volumelg—sweepouts X [;lél))( rea( )i|

The sequence {@)}yen is called the half-volume spectrum of M. In the phase transition
setting, we define an analogous half-volume spectrum ¢(p) by looking at critical points of

the Allen—Cahn energy subject to the volume constraint || 4 = 0. In both cases, we show
that the Weyl law continues to hold. This gives the following theorems.

Theorem 1 The Almgren-Pitts half-volume spectrum satisfies

n 1
@p ~ ay Vol(M)#+1 paFT | as p — oo.

Theorem 2 The phase transition half-volume spectrum satisfies

E(p) ~ 1, VOl(M) 1 pisT | as p — o0.

In the Allen—Cahn setting, we are able to use the results of Bellettini and Wickramasekera
[3] to find varifolds achieving each ¢(p). In the following theorem, a hypersurface X is called
almost-embedded if near each point in M either ¥ is embedded or ¥ decomposes into an
ordered union of embedded sheets.

Theorem 3 Let (M, g) be a closed Riemannian manifold with 3 < n+ 1 < 7. Fix a
number p € N. There are

(1) a Caccioppoli set 2 C M with Vol(2) = %VOI(M ) whose boundary is smooth and
almost-embedded with constant mean curvature,

(ii) a (possibly empty) collection of smooth, disjoint minimal surfaces X1, ..., Xy C M\ L,
(iii) and positive integers 0y € Z and 01, . .., 0, € 27

such that ¢(p) = 6y Area(02) 4+ 601 Area(X1) +. ..+ 0 Area(Zy). Moreover, 0y = 1 unless
d%2 is also a minimal surface.

Note that Theorem 3 produces a constant mean curvature surface that encloses half the
volume of M. Previously, the second author and Zhu [28] developed a min-max theory
in the Almgren-Pitts setting capable of finding surfaces of constant mean curvature c; see
also [29]. However, there is no control over the volume enclosed by the surface. Likewise,
Bellettini and Wickramasekera [3] developed a min-max theory in the Allen—Cahn setting
capable of finding surfaces of constant mean curvature c¢. Again there is no control over the
volume enclosed by the surface. Thus there is a trade off. Theorem 3 produces constant mean
curvature surfaces enclosing half the volume of M, but at the expense of losing control over
the exact value of the mean curvature.

We conclude the introduction with some open problems. First, we conjecture that @, =
¢(p) forall p € N. Second, we conjecture that, for a generic metric g, the phase transition half-
volume spectrum is achieved by multiplicity one constant mean curvature surfaces enclosing
half the volume of M. In other words, in Theorem 3 the collection Xy, ..., ¥; is empty and
6o = 1 for every p. In particular, we conjecture that generically there are infinitely many
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constant mean curvature surfaces enclosing half the volume of M. Finally, it is interesting to
know whether one can find surfaces achieving @, by applying the Almgren-Pitts min-max
theory with a volume constraint. This seems to be a difficult task. Already it is not obvious
how to define a suitable pull-tight on the space of half-volume cycles.

2 The Almgren-Pitts half-volume spectrum

In this section, we investigate the topology of the space of half-volume cycles in a given
manifold, and then define the Almgren-Pitts half-volume spectrum. Let (M"! g) be a
closed Riemannian manifold. We will use the following notation.

o Leth = Vol M.

e Let C(M) denote the collection of all Caccioppoli sets in M.

e Let Cy(M), C>y(M), and C<y (M) denote the space of Caccioppoli sets with volume
equal to b, greater than or equal to b, and less than or equal to b, respectively.

o Let Z(M, Z») denote the set of all n-dimensional flat chains mod 2 in M.

o LetB(M, Z,)denotethesetofall T € Z(M, Z;) suchthat T = 92 forsome 2 € C(M).
This is the connected component of the empty set in Z(M, Z,) in the flat topology.

o Let H(M,Z;) be the setof all T € Z(M, Z) such that T = 9<2 for some Q € Cy(M).
This is the space of “half-volume cycles.”

e We use F to denote the flat topology, F to denote the F-topology, and M to denote the
mass topology. All spaces are assumed to be equipped with the flat topology except where
otherwise noted.

e We will abuse notation and write Vol(£2) and Area(T') instead of M(£2) and M(T') for
QelCM)and T € Z(M, Z,), respectively.

We will show that H(M, Z;) is weakly homotopy equivalent to RP°°. The first step is to
show that the double cover Cy (M) is contractible.

Proposition 4 The space C<y (M) deformation retracts to Cy(M).

Proof The union of two Caccioppoli sets is a Caccioppoli set. Choose a Morse function
f: M — R.Fors € [0, h], let Bs be the sublevel set of f with volume equal to s. Note that
each By is a Caccioppoli set. For each 2 € C<p (M) and ¢ € [0, 1], choose a number s(£2, 1)
so that

Vol(Q U Byg.1) = Vol(R) + 1(h — Vol(Q)).

Note that there is not necessarily a unique choice for s(£2, ¢), and the mapping (2, ¢) +—
5(£2, t) may not be continuous. Nevertheless, we claim that the map ¢: C<p(M) x [0, 1] —
C<p(M) defined by
@(2,1) = QU By,

is continuous in the flat topology. Given this claim, ¢ is the required deformation retraction.
Indeed, ¢ (2, 1) = Q for all @ € Cy(M) and all ¢ € [0, 1], and moreover, ¢ (2, 1) € Cy(M)
forall Q € C<p(M).

To see that ¢ is continuous, let ¢, n > 0 be small positive numbers. Assume that 2, ® €

C<p(M) satisfy Vol(2A®) < ¢ and that ¢, r € [0, 1] satisfy |t — | < 1. We need to check
that Vol (¢(R, 1) A¢(©, r)) is small. First observe that

Vol(¢p (2, 1) A¢p (O, 1)) = Vol(¢(£2, 1)) + Vol(¢ (O, 1)) —2Vol(¢p(2,1) NP (O, 1))).

@ Springer



The half-volume spectrum of a manifold Page50f22 155

Now, without loss of generality, we can suppose that s(€2,¢) < s(®, r). Then
Vol(¢p(2,1) N (O, 1)) = Vol((2 U By,1)) N (O U By 1))
= Vol((2 N ®) U Byq.1)
> Vol(Q U By.1) — &
= Vol(¢(£2,1)) — &.
Therefore we have
Vol(¢p (2, 1) A (O, 1)) < Vol(¢(®,r)) — Vol(¢p(£2, 1)) + 2¢.
It remains to note that
| Vol(¢ (©, 1)) — Vol(¢(£2, 1))| = | Vol(®) + r(h — Vol(®)) — Vol(2) — 1(h — Vol(2))|
< | Vol(®) — Vol(2)| + |[r — t|h + |r Vol(®) — ¢ Vol(2)|
< e+ nh+r|Vol(®) — Vol(2)| + |[r — t| Vol(2)
<2+ 2nh.
Therefore we obtain
Vol(¢p (2, 1) A (O, r)) < 4e 4+ 2nh
and the continuity of ¢ follows. O

Proposition 5 The space C(M) deformation retracts to Cy(M), and the space B(M, Z3)
deformation retracts to H(M, 7).

Proof Consider the deformation retraction¢: C<p (M) x [0, 1] — C<p (M) from the previous
proposition. We can extend ¢ to an odd map ¥ : C(M) x [0, 1] — C(M) by the formula

d(2,1), if Vol(2) <bh

Y2, 1) = {M\¢(M \ ©,1), if Vol(2) > §.

Then v is a deformation retraction of C(M) onto Cy(M). Moreover, since ¥ is odd, this
descends to a map 6: B(M, Z,) x [0, 1] — B(M, Z3). This is the required deformation
retraction of B(M, Z>) onto H(M, Z3). O

Proposition 6 Let K be the maximal area of a level set of the Morse function f used in
the proof of Proposition 4. Let 0 be the deformation retraction from Proposition 5. Then
Area(0(T, 1)) < Area(T) + K forall T € B(M,Z3) and all t € [0, 1].

Proof Fix some T € B(M, Z>) and some ¢ € [0, 1]. Choose a set 2 € C<p(M) such that
902 = T. Let ¢ be the deformation retraction from Proposition 4. Then

0T, 1) =09(2,1) = 3(2U Byq,n)-

Note that 9(2 U By(q,r) C 022U dBgq,;) and therefore Area(6(T', 1)) < Area(dQ) + K =
Area(T) + K, as needed ]

The homotopy groups of the cycle spaces were originally computed by Almgren [1]. Later,
Marques and Neves [19] gave a simplified proof in the case of codimension 1 cycles.

Theorem 7 (Marques-Neves) The map d: C(M) — B(M, Z) is a double cover. The space
C(M) is contractible, and B(M, Z) is weakly homotopy equivalent to RP*°.
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Combined with the previous propositions, this yields the following corollary.

Corollary 8 The map 0: Cy(M) — H(M,Z3) is a double cover. The space Cy(M) is
contractible and H(M, Z,) is weakly homotopy equivalent to RP*°. The inclusion map
H(M, Zy) — B(M, Z3) is a homotopy equivalence.

‘We now recall the notion of sweepouts. Since B(M, Z,) is weakly homotopy equivalent to
RP*°, it follows that the cohomology ring of B(M, Z;) with Z, coefficients is Z>[A], where
the generator X is of degree 1. Let X be a cubical complex.

Definition 9 A flat continuous map ®: X — B(M, Z,) is called a p-sweepout if D*AP # 0
in HP (X, Z).

Definition 10 Amap ®: X — Z(M, Z,) is said to have no concentration of mass provided

lim | sup sup Area(®(x).B(g,r)) | =0.
=V geM xeX

Definition 11 Let P, (M) denote the collection of all p-sweepouts of M with no concentra-
tion of mass. Note that different p-sweepouts may have different domains.

Definition 12 The p-width of M is

wp = inf sup Area(d(x)) | .
PeP,(M) | xedom(d)

Remark 13 In [17], the authors state that the cohomology ring of Z(M, Z,) is isomorphic to
Z[A]. Then they define a p-sweepout as a map ®: X — Z(M, Z,) such that ®*(A”) # 0.
However, the cohomology ring of Z(M, Z;) is actually @;Z,[*;] where the direct sum is
taken over the connected components of Z(M, Z;). These connected components are in
bijection with homology classes in H, (M, Z,). Given this, there are several possible ways to
define a p-sweepout. The simplest, which we shall adopt, is to replace the space Z(M, Z,)
with B(M, Z) as in Definition 9 so that the cohomology ring is indeed Z[A]. Alternatively,
one could define a p-sweepoutas amap ®: X — Z(M, Z,) such that d>*()\lp) # 0 for some
i. In either case, it is straightforward to see that one still obtains a Weyl law for the resulting
p-widths.

We can now introduce the central object of the paper. By Corollary 8, the cohomology
ring of H(M, Z) with Z, coefficients is also Z;[A]. Again let X be a cubical complex.

Definition 14 A flatcontinuous map ®: X — H(M, Z) is called a half-volume p-sweepout
if ®*AP £ 0in HP (X, Zo).

Definition 15 Let Q, (M) denote the collection of all half-volume p-sweepouts of M with
no concentration of mass.

Definition 16 The half-volume p-width of M is

wp, = inf sup  Area(d(x)) | .
PeQ)p(M) | yedom(d)
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We will call the sequence {@p} pen the half-volume spectrum of M.
Liokumovich, Marques, and Neves [17] showed that the p-widths of M satisfy a Weyl
law.

Theorem 17 (Liokumovich, Marques, Neves) There is a universal constant a, such that
wp ~ ap Vol (M) +D pl/ 4D g5 jp — o0,

Next, we will show that the half-volume spectrum also satisfies a Weyl law. It is possible
to prove this directly. However, this is not the approach we will take. Rather, we will show
that the Weyl law for the half-volume spectrum follows from Theorem 17, together with the
fact that every p-sweepout is homotopic to a p-sweepout by half-volume cycles.

Proposition 18 The half-volume spectrum satisfies w, < @, for all p € N.

Proof Notice that any half-volume p-sweepout with no concentration of mass automatically
belongs to P, (M). Therefore, the proposition follows immediately from the definitions of
wp and ). O

Proposition 19 There is a constant K depending only on M such that ®, < w, + K + 1 for
all p e N.

Proof Choose a p-sweepout &: X — B(M, Z) in P,(M) with

sup Area(®(x)) < w, + 1.

xeX

Let6: B(M,Z) x [0, 1] — B(M, Z5) be the deformation retraction constructed in Propo-
sition 5. By Proposition 6, there is a constant K such that

Area(0(T,t)) < Area(T) + K

forall T € B(M,Z,) and all t € [0, 1]. Therefore, the map ¥: X — H(M, Z,) given by
W(x) =0(P(x), 1) is a half-volume p-sweepout with

sup Area(W(x)) < sup Area(d(x)) + K.

xeX xeX

Moreover, it is straightforward to check that W has no concentration of mass. Indeed, for any
q € M and r > 0, we have

sup Area(W (x)LB(q,r)) < sup Area(®(x)_B(q,r)) + sup Area(dB;LB(q,r)),
xeX xeX s€[0,h]

where B; is defined as in Proposition 4. Since ® has no concentration of mass, and the
level sets of a Morse function also have no concentration of mass, it follows that W has no
concentration of mass. This proves that ®, < w, + K + 1. O

We are now able to prove Theorem 1.

Theorem 1 The Weyl law holds for the half-volume spectrum. In other words, we have @, ~
an Vol(M)M (1D pl/ntD) gg 1y 5 o0,

Proof This follows from Proposition 18 and Proposition 19. Indeed, we have

pr&pSwp+K+1
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Theorem 17 implies that

. wp _1 4 i wp+K+1 _1
P50 @y Vol (M) p/rny = 1 4G IR o My /4D p1 /D)
and it follows that
lim ©p —1
pP—00 ay V()I(M)"/(’l+1)p1/('l+1)
as well. O

3 The phase transition half-volume spectrum

There is also an analogous half-volume spectrum in the Allen—Cahn setting. Let W: R — R
be an even double-well potential. This means that

(i) W is smooth and non-negative,
(i) W(x) = W(—x) forall x € R,
(iii) W has non-degenerate minima W(%1) =0,
(iv) W has a non-degenerate maximum W (0) > 0,
(v) W isincreasing on (—1, 0) and (1, co) and decreasing on (0, 1) and (—oo, —1),
(vi) there are constants k > 0 and @ € (0, 1) such that W”(x) > « for all |x| > «.

Define the constant

1
a=/ VW(s)/2ds.
-1

Letu: M — R be an W2 function. For & > 0 define the Allen—Cahn energy

B = [ Svup+ T
M

In [9], Gaspar and Guaraco define a phase-transition spectrum associated to M via the Allen—
Cahn energy.

In order to state the definition of the spectrum, we shall need some further background.
A paracompact topological space X is called a Z,-space if it admits a free Z,-action. Given
such a space, there is always a quotient space T = X /Z; and the natural map X — T is
a principal Z,-bundle. Any such bundle arises as a pullback of the universal bundle S*° —
RP>. More precisely, there is a classifying map f: T — RP* such that X — T is the
pullback of $°° — RP* via f. The Alexander-Spanier cohomology ring of RP* with Z;
coefficients is Zy[] where the generator w is in degree one. The map f is unique up to
homotopy, and therefore the cohomology classes f*u” are well-defined in the Alexander-
Spanier cohomology ring H*(T', Z). The Z;-index of X is defined to be the largest p such
that f*u?~! £ 0in H*(T, Z»). A subspace A of X is called invariant if it is closed under
the Z-action.

The Z,-index enjoys the following useful properties. See Fadell and Rabinowitz [8] for
more details.

(i) (Monotonicity) If X; and X, are Z;-spaces and there is a continuous equivariant map
X1 — X, then indz, (X1) < indgz, (X>).

(i) (Subadditivity) If X is a Zp-space and A; and A, are closed, invariant subsets with
A1 U Az = X then indz, (X) < indz,(A}) + indz, (A2).
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(iii) (Continuity) If X is a Z,-space and A is a closed, invariant subset of X then there is an
invariant neighborhood V of A in X such that indz, (A) = indz, (V).

The space W12(M) \ {0} is paracompact since it is a metric space. Moreover, it admits a
natural Z action u — —u. Note that E, respects this action since E.(u) = E.(—u). This
uses the fact that W is even. A set A ¢ W12(M) \ {0} is called invariant provided u € A if
and only if —u € A. The Zs-action on W'2(M) \ {0} descends to any such A. Define the
families

Fp=1{AC W' (M) \ {0} : A is compact and invariant with indz, (A) > p + 1}.

Gaspar and Guaraco define the min-max values

1
. p)= — inf E .
AR

Then they set c(p) = liminf,_.c(e, p). The sequence {c(p)}pen is the phase transition
spectrum of M.

Gaspar and Guaraco [10] showed that the Weyl law also holds for the phase transition
spectrum.

Theorem 20 (Gaspar and Guaraco) There is a universal constant T, such that c(p) ~
1, Vol(M)"/ 1 +D pl/ 1) g — o0,

Dey [7] proved that w,, = c(p) for all p € N. In particular, this implies that the constant z,
is equal to the constant a,,.

Remark 21 Gaspar and Guaraco do not include the normalization constant % in the definition
of c(g, p) and c(p). We have chosen to include it so that one has w, = c(p).

It is also possible to define a half-volume spectrum in the phase transition setting. Define
Y={ueWM): / u = 0}.
M

Note that Y is a closed subspace of W12(M) and so Y is also a Hilbert space. We can run
essentially the same construction using Y in place of W'2(M). For each p € N, define

Gp ={A CY\{0}: Aiscompact and invariant with indz, (A) > p + 1},

and then set

c(e, p) = % inf |:sup Ee(u)i| .

€Y9p LueA

Taking the limit as ¢ — 0 gives the phase-transition half volume spectrum.

Definition 22 For each p € N, let ¢(p) = liminf,_¢c(e, p). The phase transition half
volume spectrum of M is the sequence {¢(p)}pen.

Proposition 23 The phase transition half-volume spectrum satisfies c(p) < ¢(p) for all
peN.

Proof Note that G, C F, for every p e N. Therefore, for every ¢ > 0, it holds that
c(e, p) < c(e, p). The result then follows by sending ¢ — 0. ]
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155  Page 10 of 22 L. Mazurowski, X. Zhou

Proposition 24 The phase transition half-volume spectrum satisfies ¢(p) < c(p + 1) for all
peN.

Proof Fix an & > 0. Select a set A € F,41 with

sup Ec.(u) <20 [c(e,p+ 1) +¢€].
ueA
Define the set B = {u € A : f » 4 = 0} and note that B is closed and invariant. We claim
thatindz, (B) > p + 1 so that B € G,,. Given this, we obtain that ¢(e, p) < c(e, p+1) + &,
and the result follows upon sending ¢ — 0.
It remains to prove the claim. By the continuity of the index, there is a neighborhood V
of B in A such that indz, (B) = indz, (V). There is an > 0 such that

{ueA:—n</u<n}CV.
M

Indeed, if not, then there is a sequence uy in A \ V with f y Wk — 0. Since A\ V is compact,
we can find a subsequence uy; that converges to a limit# in A\ V. But u satisfies f wu=0
and therefore u € B C V and this is a contradiction. Therefore, such an n exists.

LetK ={u€ A: |f,,u| = }}. Then K is a closed invariant subset of A and KUV = A.
Define amap K — S° by sending u to 1 if J3yu > 0and sending u to —1if [}, u < 0. This
map is continuous and equivariant and so by the monotonicity of the index we have

indz, (K) < indz,(s%) = 1.
Hence by the subadditivity of the index, we get
p +2 <indz,(A) <indz,(K) + indz, (V) < indz, (V) + 1.
This implies that indz, (B) = indz, (V)>=p+1l,andsoB e g p as needed. O

Remark 25 The upper bound ¢(p) < c(p + 1) proven above is more natural than the upper
bound @, < w, + K + 1 proven in Proposition 19 in the Almgren-Pitts setting. We believe
it should also be true that @, < wj,1. In other words, every (p + 1)-sweepout contains
a half-volume p-sweepout. In principle, it should be possible to prove this by using the
relative cup product to adapt the above argument. However, there are technical difficulties
in this approach, relating to the fact that restriction is not well-defined on cycles; c.f. [17,
Lemma 2.15] where Liokumovich, Marques, and Neves encountered and overcame a similar
difficulty. We found it simpler to argue as in Proposition 19, rather than adapting [17, Lemma
2.15] to the half-volume setting.

We can now prove Theorem 2.

Theorem 2 The phase transition half-volume spectrum satisfies the Weyl law. In other words,
we have &(p) ~ 1, Vol(M )"/ (+D pl/(tD) go b 5 o0,

Proof By Propositions 23 and 24 we have
c(p) =é(p) =clp+ D).

By the Weyl law for the phase-transition spectrum, we have

c(p+1)

<« lim —
p—00 T, Vol(M)n/(n+D) pl/(+1)

Jim T, Vol (M)n/ @+ 1) pl/Gnt 1) =

1 and 1
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and therefore

c(p)

S T Vol (M )"/ (D) p /(1) — !

as well. O

4 Surfaces associated to the half-volume spectrum

In this section, we use the Allen—Cahn min-max theory to construct surfaces associated to
the phase transition half-volume spectrum. The goal is to prove Theorem 3. Fix a closed
Riemannian manifold (M n+l g)with3 <n + 1 < 7. Fix anumber p € N. In this section,
we require the following additional hypothesis on the double-well potential W.

(vii) There are constants 0 < C; < Coand 8 > land2 < g < 15—1 such that
Cilx|? < W(x) < Colx|? and Cylx|?7" < [W ()| < Calx|?™!
for all |x| > B.

The first step of the proof is to construct, for each small enough ¢ > 0, a critical point u,
of E, subject to the volume constraint
f u, = 0.
M

Given such a u,, there is a Lagrange multiplier A, € R such that u, is a critical point of
Fs,)»g (V) = E¢(v) + Ag / v
M

on all of W12, The construction of u, is similar to that of Gaspar and Guaraco [9] in the
unconstrained case.

Remark 26 The assumption (vii) is not new, and has been considered before by Hutchinson
and Tonegawa (c.f. [15, Section 6.1]). For us, there are two purposes for imposing the growth
condition (vii):

e First, the bound |W’| < C|x|97!, is used to verify the Palais-Smale condition with the
volume constraint. In the unconstrained case, one has

E.(max(min(u, 1), —1)) < E.(u)

and so by a truncation argument it is enough to verify the Palais-Smale condition along
Palais-Smale sequences which are bounded in L*°. See [9] for more details. However,
truncation may not preserve the volume constraint. In the volume constrained case, we
instead rely on the estimate |W’| < C1|x17~ ! to show that W2 bounds on u imply L?
bounds on W’ («). Then we show that these L2 bounds on W’ (u) still suffice to check the
Palais-Smale condition.

e Second, assumption (vii) is needed to get uniform L° bounds on critical points of F; ;,
and to get uniform bounds on the Lagrange multipliers A. See Proposition 32 in the
Appendix, which is based on [15, Section 6.1] and work of X. Chen [4]. More precisely,
the upper bound |W’| < C3|x|7~! is used in the elliptic estimates at the beginning of the
proof of Proposition 32, the lower bound |W| > C|x|? is used in Lemma 34 which is
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needed to bound the Lagrange multiplier, and the lower bound |W’| > C;|x|?~! is used
at the end of the proof of Proposition 32 to obtain uniform L bounds on the critical
points.

The upper bound |W| < C;|x|? is not explicitly used, but follows from |W’'| < Colx|a~ 1.
Also, it is not essential that the exponent in the upper and lower bounds are the same, but we
have chosen to assume this for simplicity.

We recall (see Proposition 4.4 in [13]) that the first variation of E; is given by

W' (u)

DEg(u)(v):/ EVu-vu + 2.
2

Fix a number ¢ > 0. A sequence Ay in G, is called a critical sequence if

lim |:sup Eg(u):| =20c(e, p).

k—00 ueAy

A sequence uy € Ay is called a min-max sequence provided limg_, » E¢(ug) = 20¢(¢, p).
In the unconstrained case, it is not necessarily true that every min-max sequence is bounded
in W2, However, one can obtain the existence of a bounded min-max sequence via a
truncation argument. See, for example, the remarks before Proposition 4.5 in [13]. We cannot
employ truncation because it doesn’t preserve the volume constraint. Fortunately, in the
volume constrained case, every min-max sequence is automatically bounded in W12,

Proposition 27 Any min-max sequence uy, is uniformly bounded in W12 (M).

Proof Assume that u € Y satisfies E.(u) < K. Since W > 0, it follows immediately that

» 2K
[Vul|* < —.
M &

Since u has average 0, the Poincare inequality implies that |[u||y1.2 < CK/e. This proves
the result. O

Proposition 28 Assume that uy is a sequence uniformly bounded in W'2. Then W' (uy) is
uniformly bounded in L>.

Proof By assumption the sequence uy is uniformly bounded in W!-2. As 3 < n+1 < 7, the
Sobolev embedding theorem implies that uy is uniformly bounded in L 12/5 Now |W’ (up)| <
Clur|?~" < Clug|® whenever |uy| > B. Therefore

/ W' (up)* = f W (up)* + / W (u)*
M lug|<p |ug|>pB

< C Vol(M) + C/ lug| "/,
M

and it follows that W’ (uy) is uniformly bounded in L2, O

The functional E;|y satisfies the Palais-Smale condition. See [13] Proposition 4.4 for the
proof without a volume constraint.

Proposition 29 The functional E¢|y satisfies the Palais-Smale condition. More precisely,
assume that uy is a bounded sequence in Y and that || DE. |y (uy)|| — 0. Then a subsequence
of uy converges strongly to a limitu € Y.
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Proof Assume that uy is a bounded sequence in Y such that || DE, |y (ux)| — 0. We need to
show that some subsequence of uj converges strongly to a limit u € Y. Note that Y is closed
and convex in W12(M) and so Y is weakly closed. Thus, passing to a subsequence, we can
assume that u; converges weakly in W2 and strongly in L'?/> to a point u € Y.

Observe that

(ur —u).

DE5|Y(u)(uk—u>=/ gvu.wuk_uH/ W' )
M M &

The first term on the right hand side goes to 0 by the weak convergence u;—u. Note that
W'(u) € L? since u € L'?/3. Therefore the second term on the right hand side also goes to
0 since u; — u in L2. Thus we obtain

DE.|y(u)(uy —u) — 0, ask — oo.

Also note that DE|y (ug)(ur — u) — 0 since || DE;|y (ux)|| — 0 and ug — u is uniformly
bounded in W2, On the other hand,

W' (ux)

(ux —u).

DE;|y(up)(uy —u) = / eVuy - V(ug —u) +/
M M

The second term on the right hand side goes to 0 as W’ () is uniformly bounded in L? and
uy —u — 0in L2
Now observe that

DEg|y(up)(ur — u) — DEg|y (u)(ug — u)
= / e|Vuy — Vu|2 +/ M(uk —u) — / W) (ug —u).
M M € M

&

We have already seen that every term in this formula goes to 0 except f w ElVug —Vu |2, and
therefore fM e|Vuy — Vu|* goes to 0 as well. This proves that u; — u strongly in W2, as
needed. O

According to Gaspar and Guaraco [9], for each given p, we have 2oc(e, p+ 1) < E.(0)
provided ¢ is small enough. Therefore, we also have 2o ¢ (e, p) < E(0) provided ¢ is small
enough. Hence, for ¢ small enough, any min-max sequence remains bounded away from 0.
By the classical theory for functionals satisfying the Palais-Smale condition (see [24]), we
get the following existence result for critical points of E;|y. See Theorem 3.3 in [9] for the
corresponding result in the unconstrained case.

Proposition 30 Fix p € N. For all small enough ¢, there is a critical point us € Y of E¢|y
with E¢(ug) = ¢(g, p). There is a number A € R such that u; is a critical point of

vie Fg (V) = Eq(v) +AS/ v
M
on all of W'2, and u, satisfies the PDE

W' (ue) N

—eAug + Ae

in the weak sense. Moreover, we have fM ue = 0. The index of u. as a critical point of E¢ |y
is at most p.
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Given the existence of u,, the second step in the proof is to study the convergence of u,
as ¢ — 0. Fortunately for us, Bellettini and Wickramasekera [3] have already studied the
regularity of such limits. Let us recall the setup in [3]. For each ¢ > 0, suppose u, is a critical
point of Fe ;, and that E¢ (u.) and indp, ;_ (u) and ||ug || Lo are uniformly bounded. Choose
a sequence ¢; — 0 and assume that 1., — A. Passing to a subsequence if necessary, there
exist a radon measure p on M and a function us, € BV (M) such that

I (& 5 Wug,)
- — |V X ) .
20 (2 | “e,| + e 1

J

and Ug; —> Uoo in L. Moreover, un, takes only the values £1. Hutchinson and Tonegawa
[15] proved that there is an integral varifold V on M such that |V || = w. The following is
the special case of Theorem 4.1 in Bellettini and Wickramasekera [3] where the prescription
functions are assumed to be constants and the ambient dimension is assumed to be between
3and 7.

Theorem 31 (See Theorem 4.1 in [3]) Let (M”“,g) be a closed Riemannian manifold
with3 < n+1 < 7. Assume (ug;) is a sequence as above, and assume that . > 0. Let
Q=int({x € M : uso(x) =1}). Then V.= Vy + V, where

(1) Vo is induced by a collection of smooth, disjoint minimal surfaces equipped with even
multiplicities. Moreover, spt(||Vol) C M \ 2.

) If Q=0 then V), = 0. If Q # @ then V), = |0*Q2| # 0, and moreover, V), is induced by
a smooth surface with constant mean curvature A whose mean curvature vector points
into Q.

The minimal surfaces may have tangential intersection with the CMC surface. Likewise, the
CMC surface may have tangential intersections with itself but it never crosses itself.

We can now complete the proof of Theorem 3.

Theorem 3 Let (M, g) be a closed Riemannian manifold with 3 < n+1 < 7. Fix a
number p € N. There are

(i) a Caccioppoli set Q@ C M with Vol(2) = %VOI(M) whose boundary is smooth and
almost-embedded with constant mean curvature,

(ii) a(possibly empty) collection of smooth, disjoint minimal surfaces X1, ..., Ly C M\,
(iii) and positive integers 6y € Z and 61, . .., 60k € 27

such that ¢(p) = 6y Area(02) 4+ 601 Area(X1) +. ..+ 0 Area(Xy). Moreover, 0y = 1 unless
dS2 is also a minimal surface.

Proof Choose a sequence &x — 0 so that c(ex, p) — ¢(p). Let ug, be the critical points
of Fg, hey constructed in Proposition 30. Then E, (u¢,) and ind Fuyre, (ug,) are uniformly
bounded. According to Hutchinson and Tonegawa [15] Section 6.1 and Lemma 3.4 in [4],
the Lagrange multipliers A, are also uniformly bounded and there is a constant K > 0 such
that ||ug, ||~ < K for all k. For the interested reader, we include the details of the argument
in the appendix. Applying Theorem 31 to the sequence u,, now yields the result. O
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5 Appendix

The goal of the appendix is to prove the following proposition. We largely follow the sketch
in [15, Section 6.1], giving details as appropriate. The proof that the Lagrange multipliers
are bounded depends on work of Chen [4].

Proposition 32 Assume that the potential W satisfies the growth condition (vii). Choose a
sequence g — 0 and let ug, be a critical point of Fsk,,\gk . Assume that E¢, (ug,) is uniformly
bounded. Then the Lagrange multipliers A, are uniformly bounded and ||ug, || .~ is also
uniformly bounded.

Proof The first step is to check that each u,, is smooth. Recall that |[W’ (us, )| < Clug, |2=! for
lug,| = B. For simplicity, we will give the argument assuming 3 < n+1 < 5. In this case, by
the Sobolev embedding theorem, u,, belongs to L1073 1t follows that W' (ug,) € L10/Gg=3)
Hence by elliptic regularity we have u,, € W>4! for ¢; = 10/(3q — 3). Note that
L gn<=2 o
q1 2 10

Thus by the Sobolev inequalities we obtain that u,, is Holder continuous. Standard elliptic
regularity then implies that u,, is smooth. The cases 6 < n + 1 < 7 are handled similarly.
One applies the Sobolev inequalities together with elliptic regularity several times. Each
application improves the regularity of u,, until eventually one obtains u,, € W29 with
2 > (n+ 1)/q. This gives Holder continuity of ug,, and standard elliptic regularity then
implies that u,, is smooth. Note at this point we do not have uniform L> estimates on u, .

To prove that the Lagrange multipliers are bounded we follow [4] Lemma 3.4. Note that
[4] Lemma 3.4 is proved for domains in Euclidean space. Some addition difficulties arise in
adapting the mollifier arguments used in [4] to the case of a closed manifold. We need to
prove a sequence of lemmas. In what follows, C denotes a positive constant that is allowed
to change from line to line.

Lemma 33 We have
/ (lug, | — 1)2 — 0, ask — oo.
M

Proof Define the sets
Ay ={lug | > a}, Az = {lug | < a},

where « is the constant appearing in assumption (vi) for the potential W. Then since W (+1) =
0and W'(£1) = 0 and W”(t) > « for |t| > «, it follows that

K 2
E(Iuskl =17 < W(ug)
on Aj. This gives the estimate
2¢ex
(lue,| = 1) < == Eg (ug,).
Ay K
On the other hand, since W (u,, ) > W(a) on A», it follows that

12 1 Gk
/Az(luskl D < /Az 1< @ L, W(ue,) < W(a)Esk(uek)-

The lemma now follows by combining the previous two estimates, and using the fact that the
energy is uniformly bounded. O
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Define
®(s) = / JW@)/2dr.
0

Let wg, = ® o ug,. Itis easy to check that Vwg, is uniformly bounded in L! (see [13]).
Lemma 34 There is a constant C > 0 such that |x — y|2 < ClP(x)—D(y)|forallx,y € R.

Proof We check a number of cases. First suppose that x, y > 8 and assume without loss of
generality that x > y. Then

|¢u>—¢@n=/w¢wmvmmzAl/fﬂﬂw

_f/ (—ﬁ_NMﬂ

where the last inequality uses the fact that x > y > 0 and so x + y > x — y. The same
argument works in the case where x, y < —f.

Now suppose thatx > fand y < —f. Leta = ffﬂ VW(s)/2ds > 0. Then

x —B
|P(x) — D(y)| :/ \/W(s)/2ds+a+/ VW(s)/2ds
B

Z%/‘ sds—}—a—i——/ (—s)ds

<ﬁ—ﬁ%+a+2 O* - B).

1
=22 NG

We have
x—yP? <224+ yY) <482 +2(x2 = BH + 2007 = B2 < C|D(x) — D(y)|.

The same argument works if x < —f8 and y > B.
It remains to handle the case when —8 < x, y < B. Assume for contradiction there are
two sequences x;, y; € [—f, 8] such that

= yil? > 1)) — Pl ey

Passing to a subsequence if necessary, we can assume that x; — x € [—8, 8]l and y; —
e [—B, B]. Itis clear from (1) that x = y. Passing to the limit in

i, _y|>|®un d(y))l
! lxj — y;l

we obtain that ®'(x) = 0. Thus W (x) = 0 and so x = +1. Without loss of generality assume
that x = 1. Note that there is a constant C > 0 such that W(s) > C|s — 1|2 for s close to 1.

Thus
Xj
/ s —1|ds|.
Yj

|P(x;) — Pyl = >C

/xj VWi(s)/2ds
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Iij >y = 1 then

Xj
/ s —1|ds
Vi

J

Xj 1
:/ s—lds:i[(xj—l)z—(yj—l)z]

Yi

1
= —yph

1
=5 [(j 4y =2 —yp] = 3

which combined with the previous equation yields a contradiction. If x; > 1 > y; then

)Cj 1 Xj
/ |s—1|ds:/1—sds+/ s —1lds
y y 1

J J

1 1
=5 l0- i)+ (-] = i vi)?

since either x; — 1 > %(xj —yj)orl—y; > %(xj — ¥j)- Again this gives a contradiction.
The remaining possibilities likewise lead to contradiction and the lemma is proved. O

For each n € (0, 1), let ug, , be a mollified version of u.,. More precisely, choose an
isometric embedding of M into R™. Let N be a small tubular neighborhood of M where the
nearest point projection IT: N — M is well-defined and a submersion. Let B, (x) denote the
open ball of radius r centered at x € R™. Also let B; denote the open unit ball centered at
the origin in R™. Choose a non-negative smooth function p: B; — R which is compactly
supported in B and satisfies

/ p() AL (y) = 1.
B

Extend u,, to a function v, on N by setting vg, = ug, o I1. Then let

Ueyn(X) :/B p(Mg (x —ny)dL"(y), x €M
I
be the mollified version of ug, .
Lemma 35 For each fixed n, there is a uniform bound ||ug, , |l Ly < C(1).
Proof Observe that
a1 = [P0l tx =)l )
1
<1+ /Bl PO lve, (x = ny)| = 1] dL™ ()

<1+ Cn 0t / [lve, ()| — 1] dL™ ().

By (x)
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By the co-area formula we have

/ |lve, ()| = 1]dL™ (2)
Bn(x)

‘),
By(

n

C/ / ||U5k (p)| — 1| dHm! (p) dH! @)
(B, (x)) J pel~!(q)

IA

: [lve, ()] = 1] JTI(2) dL™(2)

IA

< C/ e, (@) — 1] dH™+ (g).
(B (x))

Inserting this into the previous equation and using Lemma 33 gives the result. O
Lemma 36 For each fixed n, there is a uniform bound |Vug, yll Loy < C(n).

Proof Fixanindexi € {1, ..., m}. Note the formula for u,, , (x) also makes sense forx € N
so we can regard ug, , as a function defined on N. For x € M we have

Bilhgy n(X) =/ 3 p(V)ve, (x —ny)dL™ (y).
By
Thus we have

[9ittey. (0)] s/B 190 v (x — )| L™ ()
< c+/B 190 () (Jveg (¥ — 1) — 1) dL™ ()
1

<C+Cn D / |lve, (@) = 1] dL™ (2).

By

Using the coarea formula as in the proof of the previous lemma now gives the result. O
Lemma 37 There is a uniform bound ||ug, n — g, |Ii2(M) < Cnfork > K(n).

Proof Observe that

2
/ |Msk,n —Ug | = /
M M

5/ / PNve, (6 = 1y) = e, (O AL (y) dH™ ! (x)
M J By

2
/B POV (x = 0y) L™ () = ug (0)| dH"T(x)
1

=< C/M/B PN fx —ny) — f(x)|d£m(y)d7'(n+l(x),

where f = ® ou,, o I1 = wg, o IT and we used Lemma 34 to get the last inequality. By
Fubini’s theorem we get

//”(”'f(x‘"y)—f(X>ld£m(y)dH"+1(x>
M JB
1
Sn///Io(y)|vf(x_t7’)y)|dth(y)dHn+l(x)
M JBy JO

1
=n/ p(y)/ / V£ G — )| dH™ () di L™ ().
B 0o JMm
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Now for fixed y and ¢, we have

/ V£ Gx = )l dH () = f V£ dH Q).
M M

—tny

Provided # is small enough, the map IT: M — tny — M is a diffeomorphism and so by the
change of variables forumla

/ IVf(@)dH" () < f Ve, (T1(2))| dH" (2)
M—iny

M—tny

< c/ |Vwe, (T1(2)|JT1(z) dH" T (z)
M—tny

e /M Vwe, (@) dH™ (q).

Thus we obtain
1
" f o) / f IV £ (e — )| dH () di dC ()
B 0 JM

= C’I/ PO lwe 1oy ac"(y) < Cn.
B

Putting everything together we get

/ |uak,n - u8k|2 = C77,
M
and the result follows. ]

Lemma 38 Let ug, , be the average of ug, y. There is a uniform bound |ug, ;| < Cr]% for
k> K(@).

Proof Observe that

1 1
o = S0 = S e~

Now the result follows from Lemma 37 and Holder’s inequality. O

Now fix an 7 to be specified later. Given a large integer k, let ¢ be the solution to

—AY = Ugynp — Uey,ns / Y =0.
M

By Lemmas 35, 36, and 38 the right hand side of the above PDE is uniformly bounded in
C!. Therefore by elliptic regularity, ¥ is bounded in C? by a constant that depends on 7 but
not on k. Note that u,, satisfies the PDE

W' (ug,)

—&kAug, + A = Ag-
k

Multiplying by Vi - Vu,, and integrating yields

Wl(”£k>> @

Ek

)Lak/ VY - Vug, :/ V- Vug, <_8kAugk 4+
M M
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Observe that

/Vw'vuekw(uak)=/ VW'V<M)=—/ MAW
M Ek M Ek M &k

Also, by the integration by parts formula for the Hessian, we have

Ek
ek / D>y (Vug,, Vug,) = —ex / VY - Vug Aug + o / Vg, |> A
M M M
Thus we have the following formula for the right hand side of (2):
W/(usk)>

&k

/ V- Vg, (—8kAu5k +
M

&k W (ug,)
= Sk/ DZW(Vugk, Viug) —/ (5|Vu8k|2 + 7&) Ay,
M M Ek

Since [|[{[|c2 < C(n), this gives a bound

W/(usk)
Ek

’/ vw-vm%(—unq4— )‘scwnEﬂwq»
M

We now turn attention to the left hand side of (2). Integrating by parts, we have

ksk/ Vi - Vg, = —ksk/ U A = )\sk/ Ugy (Ugy .y — Ugyn)-
M M M

Now observe that

/ usk(usk,r] _ﬁsk,n) = / usk(usk,n - uak) +/ (Mgk -1 - ﬁsk,n/ Ug + Vol(M).
M M M M

By Lemmas 33 and 38 and Holder’s inequality, we can select  small enough that

/MSk(MSk,n_MSk) ﬁEkJI/ Usy
M M

By Lemma 33 and Hélder’s inequality, we have
1
< [t = 1+ 1) = 5 Vol(an)
M

oo

for k large enough. It follows that

1 1
< - Vol(M < — Vol(M).
_40(), _40()

1
/ Vi - Vg, > — Vol(M)
u 4

for large enough k. Using equation (2) then gives an upper bound on A, which is independent
of k.

To complete the proof of the Proposition 32, it remains to show that ||u, || . is uniformly
bounded. Let My, = M /ey. Define the rescaled functions kg, : M,, — R by hg (x) =
ug, (exx). Then hg, solves

—Ahg, + W (he) = erhe, -
Fix some p > 1. Multiplying the equation by |k, |P~'h,, and integrating gives

Jo

ek

plhe P~ Vi, |2 + / W/ ho) ey 1P~ ey = 610, / e P e 3)
Me, M

ek
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Now for |x| > B we have W'(x)|x|?~'x > C|x|P*9~!. Since ggre, — 0, it follows from

(3) that
/ ey P01 < & / e |7
{Ihey 128} 2/m

ek

assuming k is large enough. This implies that

-~ _ 1
/ ey |77 < (ﬂq 1+5>/ ey 7.
M, M,

k
By induction, for any positive integer r, this gives

_ _ 1\
/ ey |+ ”5(/3" 1+5) / e 2.
Mg M,

k
By Holder’s inequality, this implies
(g1 Y
r(g— —
el Zerin ar, ) = (ﬂq +5> :

Raising both sides to the power (r(¢ — 1))~! and then sending r — oo gives the bound

k

k

1
R
ey Lo ey < (ﬂq Lt 5)

provided k is large enough. This implies that ||ug, ||10c(am) has a uniform L* bound for all
large k, as needed. O
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