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Abstract
We define the half-volume spectrum {ω̃p}p∈N of a closed manifold (Mn+1, g). This is anal-
ogous to the usual volume spectrum of M , except that we restrict to p-sweepouts whose
slices each enclose half the volume of M . We prove that the Weyl law continues to hold for
the half-volume spectrum. We define an analogous half-volume spectrum c̃(p) in the phase
transition setting. Moreover, for 3 ≤ n + 1 ≤ 7, we use the Allen–Cahn min-max theory
to show that each c̃(p) is achieved by a constant mean curvature surface enclosing half the
volume of M plus a (possibly empty) collection of minimal surfaces with even multiplicities.

Mathematics Subject Classification 53A10

1 Introduction

The spectrum of the Laplacian is an important invariant of a closed Riemannian manifold
(Mn+1, g). A number λ is called an eigenvalue of the Laplacian provided there is a function
u : M → R such that �u + λu = 0. It is well-known that the eigenvalues form a discrete
sequence 0 = λ0 < λ1 ≤ λ2 ≤ . . . and λp → ∞ as p → ∞. In fact, the eigenvalues of
Laplacian are characterized by the min-max formula

λp = inf
(p+1)-planes P⊂W 1,2(M)

[
sup

u∈P\{0}

∫
M |∇u|2∫
M u2

]
,

and they satisfy the Weyl law

λp ∼ 4π2 Vol(B)−
2

n+1 Vol(M)−
2

n+1 p
2

n+1

as p → ∞. Here B is the unit ball in R
n+1.

In [11], Gromov proposed a non-linear analog of the spectrum of the Laplacian. Roughly
speaking, he defines a p-sweepout of M to be a family X of hypersurfaces with the following
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property: given any p points in M , there is a hypersurface� belonging to the family X which
passes through all p of these points. Then he defines the p-widths

ωp = inf
p-sweepouts X

[
sup
�∈X

Area(�)

]
.

See Sect. 2 for precise definitions. The sequence {ωp}p∈N is called the volume spectrum of
M .

Gromov [12] and Guth [14] proved that the volume spectrum satisfies sublinear growth
bounds. Namely, there are constants C1 and C2 depending on M such that

C1 p
1

n+1 ≤ ωp ≤ C2 p
1

n+1 .

Later, Liokumovich, Marques, and Neves [17] showed that the volume spectrum satisfies a
Weyl law. That is, there is a universal constant an depending only on the dimension such that

ωp ∼ an Vol(M)
n

n+1 p
1

n+1

as p → ∞; see Chodosh-Mantoulidis [6] for the calculation of an when n = 2. TheWeyl law
for the volume spectrum has been instrumental in the proof of many results on the existence
of minimal surfaces in Riemannian manifolds.

In the early 1980s, Almgren [2], Pitts [21], and Schoen-Simon [22] developed a min-
max theory for the area functional on closed Riemannian manifolds. Their combined work
implies that every closed Riemannian manifold of dimension 3 ≤ n + 1 ≤ 7, contains a
closed, smooth, embedded minimal surface. Around the same time, Yau [25] conjectured
that every closed manifold should contain infinitely many minimal surfaces. Marques and
Neves devised a program to prove Yau’s conjecture by using the Almgren-Pitts min-max
theory to find a minimal surface with area ωp for each p ∈ N.

This program has now been successfully carried out. Fix a closed Riemannian manifold
(Mn+1, g) with 3 ≤ n + 1 ≤ 7. Irie, Marques, and Neves [16] showed that, for a generic
metric g, the union of all minimal surfaces in M is dense in M . In particular, this proved
Yau’s conjecture for generic metrics. Later Marques, Neves, and Song [20] refined this result
to show that, for a generic metric g, there is a sequence of minimal surfaces in M which
becomes equidistributed in M . The Weyl law for the volume spectrum was a key ingredient
in the proof of both of these results. Following the second named author’s proof of the
Multiplicity One Conjecture [26], Marques and Neves [19] showed that, for a generic metric
g, there is a sequence of minimal surfaces �p with index p and Area(�p) = ωp . Song [23]
proved Yau’s conjecture for arbitrary metrics g. We refer to the survey articles [18, 27] for
more detailed history on this exciting field.

TheAlmgren-Pitts min-max theory relies heavily on tools from geometricmeasure theory.
There is a parallel min-max theory for finding minimal surfaces based on the theory of phase
transitions. This theory relies on the Allen–Cahn PDE and the varifold regularity theory
of Wickramasekera. Gaspar and Guaraco [9] defined a phase transition spectrum {c(p)}p∈N
associated to a Riemannianmanifold via theAllen–Cahn PDE. They showed that each c(p) is
achieved by a collection ofminimal surfaceswithmultiplicities. Chodosh andMantoulidis [5]
proved the Multiplicity One Conjecture in the phase transition setting in ambient dimension
three. Thus, for generic metrics on M3, they obtained the existence of a sequence of minimal
surfaces �p with index p and Area(�p) = c(p).

Gaspar and Guaraco [10] showed that the phase transition spectrum also satisfies a Weyl
law. That this, there is a constant τn depending only on the dimension such that

c(p) ∼ τn Vol(M)
n

n+1 p
1

n+1 .
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Dey [7] proved that actually ωp = c(p) for all p ∈ N and thus the Almgren-Pitts volume
spectrum and the phase transition volume spectrum coincide. In particular, the constants an
and τn appearing in the two Weyl laws are equal.

In this paper, we define a “half-volume” spectrum associated to a Riemannian manifold.
In the Almgren-Pitts setting, we restrict to p-sweepouts by families of hypersurfaces that
each enclose half the volume of M . Then we define

ω̃p = inf
half-volume p-sweepouts X

[
sup
�∈X

Area(�)

]
.

The sequence {ω̃p}p∈N is called the half-volume spectrum of M . In the phase transition
setting, we define an analogous half-volume spectrum c̃(p) by looking at critical points of
the Allen–Cahn energy subject to the volume constraint

∫
M u = 0. In both cases, we show

that the Weyl law continues to hold. This gives the following theorems.

Theorem 1 The Almgren-Pitts half-volume spectrum satisfies

ω̃p ∼ an Vol(M)
n

n+1 p
1

n+1 , as p → ∞.

Theorem 2 The phase transition half-volume spectrum satisfies

c̃(p) ∼ τn Vol(M)
n

n+1 p
1

n+1 , as p → ∞.

In the Allen–Cahn setting, we are able to use the results of Bellettini andWickramasekera
[3] to find varifolds achieving each c̃(p). In the following theorem, a hypersurface� is called
almost-embedded if near each point in M either � is embedded or � decomposes into an
ordered union of embedded sheets.

Theorem 3 Let (Mn+1, g) be a closed Riemannian manifold with 3 ≤ n + 1 ≤ 7. Fix a
number p ∈ N. There are

(i) a Caccioppoli set � ⊂ M with Vol(�) = 1
2 Vol(M) whose boundary is smooth and

almost-embedded with constant mean curvature,
(ii) a (possibly empty) collection of smooth, disjoint minimal surfaces�1, . . . , �k ⊂ M \�,
(iii) and positive integers θ0 ∈ Z and θ1, . . . , θk ∈ 2Z

such that c̃(p) = θ0 Area(∂�)+ θ1 Area(�1)+ . . .+ θk Area(�k). Moreover, θ0 = 1 unless
∂� is also a minimal surface.

Note that Theorem 3 produces a constant mean curvature surface that encloses half the
volume of M . Previously, the second author and Zhu [28] developed a min-max theory
in the Almgren-Pitts setting capable of finding surfaces of constant mean curvature c; see
also [29]. However, there is no control over the volume enclosed by the surface. Likewise,
Bellettini and Wickramasekera [3] developed a min-max theory in the Allen–Cahn setting
capable of finding surfaces of constant mean curvature c. Again there is no control over the
volume enclosed by the surface. Thus there is a trade off. Theorem 3 produces constant mean
curvature surfaces enclosing half the volume of M , but at the expense of losing control over
the exact value of the mean curvature.

We conclude the introduction with some open problems. First, we conjecture that ω̃p =
c̃(p) for all p ∈ N. Second,we conjecture that, for a genericmetric g, the phase transition half-
volume spectrum is achieved by multiplicity one constant mean curvature surfaces enclosing
half the volume of M . In other words, in Theorem 3 the collection �1, . . . , �k is empty and
θ0 = 1 for every p. In particular, we conjecture that generically there are infinitely many
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constant mean curvature surfaces enclosing half the volume of M . Finally, it is interesting to
know whether one can find surfaces achieving ω̃p by applying the Almgren-Pitts min-max
theory with a volume constraint. This seems to be a difficult task. Already it is not obvious
how to define a suitable pull-tight on the space of half-volume cycles.

2 The Almgren–Pitts half-volume spectrum

In this section, we investigate the topology of the space of half-volume cycles in a given
manifold, and then define the Almgren-Pitts half-volume spectrum. Let (Mn+1, g) be a
closed Riemannian manifold. We will use the following notation.

• Let h = 1
2 VolM .

• Let C(M) denote the collection of all Caccioppoli sets in M .
• Let Ch(M), C≥h(M), and C≤h(M) denote the space of Caccioppoli sets with volume

equal to h, greater than or equal to h, and less than or equal to h, respectively.
• Let Z(M,Z2) denote the set of all n-dimensional flat chains mod 2 in M .
• LetB(M,Z2) denote the set of all T ∈ Z(M,Z2) such that T = ∂� for some� ∈ C(M).

This is the connected component of the empty set in Z(M,Z2) in the flat topology.
• Let H(M,Z2) be the set of all T ∈ Z(M,Z2) such that T = ∂� for some � ∈ Ch(M).

This is the space of “half-volume cycles.”
• We use F to denote the flat topology, F to denote the F-topology, and M to denote the

mass topology. All spaces are assumed to be equippedwith the flat topology except where
otherwise noted.

• We will abuse notation and write Vol(�) and Area(T ) instead of M(�) and M(T ) for
� ∈ C(M) and T ∈ Z(M,Z2), respectively.

We will show that H(M,Z2) is weakly homotopy equivalent to RP∞. The first step is to
show that the double cover Ch(M) is contractible.

Proposition 4 The space C≤h(M) deformation retracts to Ch(M).

Proof The union of two Caccioppoli sets is a Caccioppoli set. Choose a Morse function
f : M → R. For s ∈ [0, h], let Bs be the sublevel set of f with volume equal to s. Note that
each Bs is a Caccioppoli set. For each � ∈ C≤h(M) and t ∈ [0, 1], choose a number s(�, t)
so that

Vol(� ∪ Bs(�,t)) = Vol(�) + t(h − Vol(�)).

Note that there is not necessarily a unique choice for s(�, t), and the mapping (�, t) �→
s(�, t) may not be continuous. Nevertheless, we claim that the map φ : C≤h(M) × [0, 1] →
C≤h(M) defined by

φ(�, t) = � ∪ Bs(�,t)

is continuous in the flat topology. Given this claim, φ is the required deformation retraction.
Indeed, φ(�, t) = � for all � ∈ Ch(M) and all t ∈ [0, 1], and moreover, φ(�, 1) ∈ Ch(M)

for all � ∈ C≤h(M).
To see that φ is continuous, let ε, η > 0 be small positive numbers. Assume that �,� ∈

C≤h(M) satisfy Vol(���) < ε and that t, r ∈ [0, 1] satisfy |t − r | < η. We need to check
that Vol

(
φ(�, t)�φ(�, r)

)
is small. First observe that

Vol(φ(�, t)�φ(�, r)) = Vol(φ(�, t)) + Vol(φ(�, r)) − 2Vol(φ(�, t) ∩ φ(�, r))).

123



The half-volume spectrum of a manifold Page 5 of 22   155 

Now, without loss of generality, we can suppose that s(�, t) ≤ s(�, r). Then

Vol(φ(�, t) ∩ φ(�, r)) ≥ Vol((� ∪ Bs(�,t)) ∩ (� ∪ Bs(�,t)))

= Vol((� ∩ �) ∪ Bs(�,t))

≥ Vol(� ∪ Bs(�,t)) − ε

= Vol(φ(�, t)) − ε.

Therefore we have

Vol(φ(�, t)�φ(�, r)) ≤ Vol(φ(�, r)) − Vol(φ(�, t)) + 2ε.

It remains to note that

|Vol(φ(�, r)) − Vol(φ(�, t))| = |Vol(�) + r(h − Vol(�)) − Vol(�) − t(h − Vol(�))|
≤ |Vol(�) − Vol(�)| + |r − t |h + |r Vol(�) − t Vol(�)|
≤ ε + ηh + r |Vol(�) − Vol(�)| + |r − t |Vol(�)

≤ 2ε + 2ηh.

Therefore we obtain

Vol(φ(�, t)�φ(�, r)) ≤ 4ε + 2ηh

and the continuity of φ follows. 
�
Proposition 5 The space C(M) deformation retracts to Ch(M), and the space B(M,Z2)

deformation retracts to H(M,Z2).

Proof Consider the deformation retractionφ : C≤h(M)×[0, 1] → C≤h(M) from the previous
proposition. We can extend φ to an odd map ψ : C(M) × [0, 1] → C(M) by the formula

ψ(�, t) =
{

φ(�, t), if Vol(�) ≤ h

M \ φ(M \ �, t), if Vol(�) ≥ h.

Then ψ is a deformation retraction of C(M) onto Ch(M). Moreover, since ψ is odd, this
descends to a map θ : B(M,Z2) × [0, 1] → B(M,Z2). This is the required deformation
retraction of B(M,Z2) onto H(M,Z2). 
�
Proposition 6 Let K be the maximal area of a level set of the Morse function f used in
the proof of Proposition 4. Let θ be the deformation retraction from Proposition 5. Then
Area(θ(T , t)) ≤ Area(T ) + K for all T ∈ B(M,Z2) and all t ∈ [0, 1].
Proof Fix some T ∈ B(M,Z2) and some t ∈ [0, 1]. Choose a set � ∈ C≤h(M) such that
∂� = T . Let φ be the deformation retraction from Proposition 4. Then

θ(T , t) = ∂φ(�, t) = ∂(� ∪ Bs(�,t)).

Note that ∂(� ∪ Bs(�,t)) ⊂ ∂� ∪ ∂Bs(�,t) and therefore Area(θ(T , t)) ≤ Area(∂�) + K =
Area(T ) + K , as needed 
�

The homotopy groups of the cycle spaceswere originally computed byAlmgren [1]. Later,
Marques and Neves [19] gave a simplified proof in the case of codimension 1 cycles.

Theorem 7 (Marques-Neves) The map ∂ : C(M) → B(M,Z2) is a double cover. The space
C(M) is contractible, and B(M,Z2) is weakly homotopy equivalent to RP∞.
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Combined with the previous propositions, this yields the following corollary.

Corollary 8 The map ∂ : Ch(M) → H(M,Z2) is a double cover. The space Ch(M) is
contractible and H(M,Z2) is weakly homotopy equivalent to RP∞. The inclusion map
H(M,Z2) → B(M,Z2) is a homotopy equivalence.

We now recall the notion of sweepouts. SinceB(M,Z2) is weakly homotopy equivalent to
RP∞, it follows that the cohomology ring of B(M,Z2) with Z2 coefficients is Z2[λ], where
the generator λ is of degree 1. Let X be a cubical complex.

Definition 9 A flat continuous map � : X → B(M,Z2) is called a p-sweepout if �∗λp �= 0
in H p(X ,Z2).

Definition 10 Amap � : X → Z(M,Z2) is said to have no concentration of mass provided

lim
r→0

[
sup
q∈M

sup
x∈X

Area(�(x)�B(q, r))

]
= 0.

Definition 11 Let Pp(M) denote the collection of all p-sweepouts of M with no concentra-
tion of mass. Note that different p-sweepouts may have different domains.

Definition 12 The p-width of M is

ωp = inf
�∈Pp(M)

[
sup

x∈dom(�)

Area(�(x))

]
.

Remark 13 In [17], the authors state that the cohomology ring of Z(M,Z2) is isomorphic to
Z2[λ]. Then they define a p-sweepout as a map � : X → Z(M,Z2) such that �∗(λp) �= 0.
However, the cohomology ring of Z(M,Z2) is actually ⊕iZ2[λi ] where the direct sum is
taken over the connected components of Z(M,Z2). These connected components are in
bijection with homology classes in Hn(M,Z2). Given this, there are several possible ways to
define a p-sweepout. The simplest, which we shall adopt, is to replace the space Z(M,Z2)

with B(M,Z2) as in Definition 9 so that the cohomology ring is indeed Z2[λ]. Alternatively,
one could define a p-sweepout as a map� : X → Z(M,Z2) such that�∗(λp

i ) �= 0 for some
i . In either case, it is straightforward to see that one still obtains a Weyl law for the resulting
p-widths.

We can now introduce the central object of the paper. By Corollary 8, the cohomology
ring of H(M,Z2) with Z2 coefficients is also Z2[λ]. Again let X be a cubical complex.

Definition 14 Aflat continuousmap� : X → H(M,Z2) is called a half-volume p-sweepout
if �∗λp �= 0 in H p(X ,Z2).

Definition 15 Let Qp(M) denote the collection of all half-volume p-sweepouts of M with
no concentration of mass.

Definition 16 The half-volume p-width of M is

ω̃p = inf
�∈Qp(M)

[
sup

x∈dom(�)

Area(�(x))

]
.
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We will call the sequence {ω̃p}p∈N the half-volume spectrum of M .
Liokumovich, Marques, and Neves [17] showed that the p-widths of M satisfy a Weyl

law.

Theorem 17 (Liokumovich, Marques, Neves) There is a universal constant an such that
ωp ∼ an Vol(M)n/(n+1) p1/(n+1) as p → ∞.

Next, we will show that the half-volume spectrum also satisfies a Weyl law. It is possible
to prove this directly. However, this is not the approach we will take. Rather, we will show
that the Weyl law for the half-volume spectrum follows from Theorem 17, together with the
fact that every p-sweepout is homotopic to a p-sweepout by half-volume cycles.

Proposition 18 The half-volume spectrum satisfies ωp ≤ ω̃p for all p ∈ N.

Proof Notice that any half-volume p-sweepout with no concentration of mass automatically
belongs to Pp(M). Therefore, the proposition follows immediately from the definitions of
ωp and ω̃p . 
�
Proposition 19 There is a constant K depending only on M such that ω̃p ≤ ωp + K + 1 for
all p ∈ N.

Proof Choose a p-sweepout � : X → B(M,Z2) in Pp(M) with

sup
x∈X

Area(�(x)) ≤ ωp + 1.

Let θ : B(M,Z2) × [0, 1] → B(M,Z2) be the deformation retraction constructed in Propo-
sition 5. By Proposition 6, there is a constant K such that

Area(θ(T , t)) ≤ Area(T ) + K

for all T ∈ B(M,Z2) and all t ∈ [0, 1]. Therefore, the map � : X → H(M,Z2) given by
�(x) = θ(�(x), 1) is a half-volume p-sweepout with

sup
x∈X

Area(�(x)) ≤ sup
x∈X

Area(�(x)) + K .

Moreover, it is straightforward to check that � has no concentration of mass. Indeed, for any
q ∈ M and r > 0, we have

sup
x∈X

Area(�(x)�B(q, r)) ≤ sup
x∈X

Area(�(x)�B(q, r)) + sup
s∈[0,h]

Area(∂Bs�B(q, r)),

where Bs is defined as in Proposition 4. Since � has no concentration of mass, and the
level sets of a Morse function also have no concentration of mass, it follows that � has no
concentration of mass. This proves that ω̃p ≤ ωp + K + 1. 
�

We are now able to prove Theorem 1.

Theorem 1 The Weyl law holds for the half-volume spectrum. In other words, we have ω̃p ∼
an Vol(M)n/(n+1) p1/(n+1) as p → ∞.

Proof This follows from Proposition 18 and Proposition 19. Indeed, we have

ωp ≤ ω̃p ≤ ωp + K + 1.
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Theorem 17 implies that

lim
p→∞

ωp

an Vol(M)n/(n+1) p1/(n+1)
= 1 and lim

p→∞
ωp + K + 1

an Vol(M)n/(n+1) p1/(n+1)
= 1,

and it follows that

lim
p→∞

ω̃p

an Vol(M)n/(n+1) p1/(n+1)
= 1

as well. 
�

3 The phase transition half-volume spectrum

There is also an analogous half-volume spectrum in the Allen–Cahn setting. LetW : R → R

be an even double-well potential. This means that

(i) W is smooth and non-negative,
(ii) W (x) = W (−x) for all x ∈ R,
(iii) W has non-degenerate minima W (±1) = 0,
(iv) W has a non-degenerate maximum W (0) > 0,
(v) W is increasing on (−1, 0) and (1,∞) and decreasing on (0, 1) and (−∞,−1),
(vi) there are constants κ > 0 and α ∈ (0, 1) such that W ′′(x) ≥ κ for all |x | ≥ α.

Define the constant

σ =
∫ 1

−1

√
W (s)/2 ds.

Let u : M → R be an W 1,2 function. For ε > 0 define the Allen–Cahn energy

Eε(u) =
∫
M

ε

2
|∇u|2 + W (u)

ε
.

In [9], Gaspar and Guaraco define a phase-transition spectrum associated to M via the Allen–
Cahn energy.

In order to state the definition of the spectrum, we shall need some further background.
A paracompact topological space X is called a Z2-space if it admits a free Z2-action. Given
such a space, there is always a quotient space T = X/Z2 and the natural map X → T is
a principal Z2-bundle. Any such bundle arises as a pullback of the universal bundle S∞ →
RP∞. More precisely, there is a classifying map f : T → RP∞ such that X → T is the
pullback of S∞ → RP∞ via f . The Alexander-Spanier cohomology ring of RP∞ with Z2

coefficients is Z2[μ] where the generator μ is in degree one. The map f is unique up to
homotopy, and therefore the cohomology classes f ∗μp are well-defined in the Alexander-
Spanier cohomology ring H∗(T ,Z2). The Z2-index of X is defined to be the largest p such
that f ∗μp−1 �= 0 in H∗(T ,Z2). A subspace A of X is called invariant if it is closed under
the Z2-action.

The Z2-index enjoys the following useful properties. See Fadell and Rabinowitz [8] for
more details.

(i) (Monotonicity) If X1 and X2 are Z2-spaces and there is a continuous equivariant map
X1 → X2 then indZ2(X1) ≤ indZ2(X2).

(ii) (Subadditivity) If X is a Z2-space and A1 and A2 are closed, invariant subsets with
A1 ∪ A2 = X then indZ2(X) ≤ indZ2(A1) + indZ2(A2).
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(iii) (Continuity) If X is a Z2-space and A is a closed, invariant subset of X then there is an
invariant neighborhood V of A in X such that indZ2(A) = indZ2(V ).

The space W 1,2(M) \ {0} is paracompact since it is a metric space. Moreover, it admits a
natural Z2 action u �→ −u. Note that Eε respects this action since Eε(u) = Eε(−u). This
uses the fact that W is even. A set A ⊂ W 1,2(M) \ {0} is called invariant provided u ∈ A if
and only if −u ∈ A. The Z2-action on W 1,2(M) \ {0} descends to any such A. Define the
families

Fp = {A ⊂ W 1,2(M) \ {0} : A is compact and invariant with indZ2(A) ≥ p + 1}.
Gaspar and Guaraco define the min-max values

c(ε, p) = 1

2σ
inf
A∈Fp

[
sup
u∈A

Eε(u)

]
.

Then they set c(p) = lim infε→0 c(ε, p). The sequence {c(p)}p∈N is the phase transition
spectrum of M .

Gaspar and Guaraco [10] showed that the Weyl law also holds for the phase transition
spectrum.

Theorem 20 (Gaspar and Guaraco) There is a universal constant τn such that c(p) ∼
τn Vol(M)n/(n+1) p1/(n+1) as p → ∞.

Dey [7] proved that ωp = c(p) for all p ∈ N. In particular, this implies that the constant τn
is equal to the constant an .

Remark 21 Gaspar andGuaraco do not include the normalization constant 1
2σ in the definition

of c(ε, p) and c(p). We have chosen to include it so that one has ωp = c(p).

It is also possible to define a half-volume spectrum in the phase transition setting. Define

Y = {u ∈ W 1,2(M) :
∫
M
u = 0}.

Note that Y is a closed subspace of W 1,2(M) and so Y is also a Hilbert space. We can run
essentially the same construction using Y in place of W 1,2(M). For each p ∈ N, define

Gp = {A ⊂ Y \ {0} : A is compact and invariant with indZ2(A) ≥ p + 1},
and then set

c̃(ε, p) = 1

2σ
inf
A∈Gp

[
sup
u∈A

Eε(u)

]
.

Taking the limit as ε → 0 gives the phase-transition half volume spectrum.

Definition 22 For each p ∈ N, let c̃(p) = lim infε→0 c̃(ε, p). The phase transition half
volume spectrum of M is the sequence {c̃(p)}p∈N.
Proposition 23 The phase transition half-volume spectrum satisfies c(p) ≤ c̃(p) for all
p ∈ N.

Proof Note that Gp ⊂ Fp for every p ∈ N. Therefore, for every ε > 0, it holds that
c(ε, p) ≤ c̃(ε, p). The result then follows by sending ε → 0. 
�

123
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Proposition 24 The phase transition half-volume spectrum satisfies c̃(p) ≤ c(p + 1) for all
p ∈ N.

Proof Fix an ε > 0. Select a set A ∈ Fp+1 with

sup
u∈A

Eε(u) ≤ 2σ [c(ε, p + 1) + ε] .

Define the set B = {u ∈ A : ∫
M u = 0} and note that B is closed and invariant. We claim

that indZ2(B) ≥ p + 1 so that B ∈ Gp . Given this, we obtain that c̃(ε, p) ≤ c(ε, p + 1) + ε,
and the result follows upon sending ε → 0.

It remains to prove the claim. By the continuity of the index, there is a neighborhood V
of B in A such that indZ2(B) = indZ2(V ). There is an η > 0 such that

{u ∈ A : −η <

∫
M
u < η} ⊂ V .

Indeed, if not, then there is a sequence uk in A \V with
∫
M uk → 0. Since A \V is compact,

we can find a subsequence uk j that converges to a limit u in A \ V . But u satisfies
∫
M u = 0

and therefore u ∈ B ⊂ V and this is a contradiction. Therefore, such an η exists.
Let K = {u ∈ A : ∣∣∫

M u
∣∣ ≥ η

2 }. Then K is a closed invariant subset of A and K ∪V = A.
Define a map K → S0 by sending u to 1 if

∫
M u > 0 and sending u to −1 if

∫
M u < 0. This

map is continuous and equivariant and so by the monotonicity of the index we have

indZ2(K ) ≤ indZ2(S
0) = 1.

Hence by the subadditivity of the index, we get

p + 2 ≤ indZ2(A) ≤ indZ2(K ) + indZ2(V ) ≤ indZ2(V ) + 1.

This implies that indZ2(B) = indZ2(V ) ≥ p + 1, and so B ∈ Gp as needed. 
�
Remark 25 The upper bound c̃(p) ≤ c(p + 1) proven above is more natural than the upper
bound ω̃p ≤ ωp + K + 1 proven in Proposition 19 in the Almgren-Pitts setting. We believe
it should also be true that ω̃p ≤ ωp+1. In other words, every (p + 1)-sweepout contains
a half-volume p-sweepout. In principle, it should be possible to prove this by using the
relative cup product to adapt the above argument. However, there are technical difficulties
in this approach, relating to the fact that restriction is not well-defined on cycles; c.f. [17,
Lemma 2.15] where Liokumovich, Marques, and Neves encountered and overcame a similar
difficulty. We found it simpler to argue as in Proposition 19, rather than adapting [17, Lemma
2.15] to the half-volume setting.

We can now prove Theorem 2.

Theorem 2 The phase transition half-volume spectrum satisfies theWeyl law. In other words,
we have c̃(p) ∼ τn Vol(M)n/(n+1) p1/(n+1) as p → ∞.

Proof By Propositions 23 and 24 we have

c(p) ≤ c̃(p) ≤ c(p + 1).

By the Weyl law for the phase-transition spectrum, we have

lim
p→∞

c(p)

τn Vol(M)n/(n+1) p1/(n+1)
= 1 and lim

p→∞
c(p + 1)

τn Vol(M)n/(n+1) p1/(n+1)
= 1

123



The half-volume spectrum of a manifold Page 11 of 22   155 

and therefore

lim
p→∞

c̃(p)

τn Vol(M)n/(n+1) p1/(n+1)
= 1

as well. 
�

4 Surfaces associated to the half-volume spectrum

In this section, we use the Allen–Cahn min-max theory to construct surfaces associated to
the phase transition half-volume spectrum. The goal is to prove Theorem 3. Fix a closed
Riemannian manifold (Mn+1, g) with 3 ≤ n + 1 ≤ 7. Fix a number p ∈ N. In this section,
we require the following additional hypothesis on the double-well potential W .

(vii) There are constants 0 < C1 < C2 and β > 1 and 2 < q < 11
5 such that

C1|x |q ≤ W (x) ≤ C2|x |q and C1|x |q−1 ≤ |W ′(x)| ≤ C2|x |q−1

for all |x | ≥ β.

The first step of the proof is to construct, for each small enough ε > 0, a critical point uε

of Eε subject to the volume constraint ∫
M
uε = 0.

Given such a uε , there is a Lagrange multiplier λε ∈ R such that uε is a critical point of

Fε,λε (v) = Eε(v) + λε

∫
M

v

on all of W 1,2. The construction of uε is similar to that of Gaspar and Guaraco [9] in the
unconstrained case.

Remark 26 The assumption (vii) is not new, and has been considered before by Hutchinson
and Tonegawa (c.f. [15, Section 6.1]). For us, there are two purposes for imposing the growth
condition (vii):

• First, the bound |W ′| ≤ C2|x |q−1, is used to verify the Palais-Smale condition with the
volume constraint. In the unconstrained case, one has

Eε(max(min(u, 1),−1)) ≤ Eε(u)

and so by a truncation argument it is enough to verify the Palais-Smale condition along
Palais-Smale sequences which are bounded in L∞. See [9] for more details. However,
truncation may not preserve the volume constraint. In the volume constrained case, we
instead rely on the estimate |W ′| ≤ C2|x |q−1 to show that W 1,2 bounds on u imply L2

bounds onW ′(u). Then we show that these L2 bounds onW ′(u) still suffice to check the
Palais-Smale condition.

• Second, assumption (vii) is needed to get uniform L∞ bounds on critical points of Fε,λ,
and to get uniform bounds on the Lagrange multipliers λ. See Proposition 32 in the
Appendix, which is based on [15, Section 6.1] and work of X. Chen [4]. More precisely,
the upper bound |W ′| ≤ C2|x |q−1 is used in the elliptic estimates at the beginning of the
proof of Proposition 32, the lower bound |W | ≥ C1|x |q is used in Lemma 34 which is
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  155 Page 12 of 22 L. Mazurowski, X. Zhou

needed to bound the Lagrange multiplier, and the lower bound |W ′| ≥ C1|x |q−1 is used
at the end of the proof of Proposition 32 to obtain uniform L∞ bounds on the critical
points.

The upper bound |W | ≤ C2|x |q is not explicitly used, but follows from |W ′| ≤ C2|x |q−1.
Also, it is not essential that the exponent in the upper and lower bounds are the same, but we
have chosen to assume this for simplicity.

We recall (see Proposition 4.4 in [13]) that the first variation of Eε is given by

DEε(u)(v) =
∫
M

ε

2
∇u · ∇v + W ′(u)

ε
v.

Fix a number ε > 0. A sequence Ak in Gp is called a critical sequence if

lim
k→∞

[
sup
u∈Ak

Eε(u)

]
= 2σ c̃(ε, p).

A sequence uk ∈ Ak is called a min-max sequence provided limk→∞ Eε(uk) = 2σ c̃(ε, p).
In the unconstrained case, it is not necessarily true that everymin-max sequence is bounded

in W 1,2. However, one can obtain the existence of a bounded min-max sequence via a
truncation argument. See, for example, the remarks before Proposition 4.5 in [13].We cannot
employ truncation because it doesn’t preserve the volume constraint. Fortunately, in the
volume constrained case, every min-max sequence is automatically bounded in W 1,2.

Proposition 27 Any min-max sequence uk is uniformly bounded in W 1,2(M).

Proof Assume that u ∈ Y satisfies Eε(u) ≤ K . Since W ≥ 0, it follows immediately that∫
M

|∇u|2 ≤ 2K

ε
.

Since u has average 0, the Poincare inequality implies that ‖u‖W 1,2 ≤ CK/ε. This proves
the result. 
�
Proposition 28 Assume that uk is a sequence uniformly bounded in W 1,2. Then W ′(uk) is
uniformly bounded in L2.

Proof By assumption the sequence uk is uniformly bounded in W 1,2. As 3 ≤ n + 1 ≤ 7, the
Sobolev embedding theorem implies that uk is uniformly bounded in L12/5. Now |W ′(uk)| ≤
C |uk |q−1 ≤ C |uk |6/5 whenever |uk | ≥ β. Therefore∫

M
W ′(uk)2 =

∫
|uk |≤β

W ′(uk)2 +
∫

|uk |>β

W ′(uk)2

≤ C Vol(M) + C
∫
M

|uk |12/5,

and it follows that W ′(uk) is uniformly bounded in L2. 
�
The functional Eε|Y satisfies the Palais-Smale condition. See [13] Proposition 4.4 for the

proof without a volume constraint.

Proposition 29 The functional Eε|Y satisfies the Palais-Smale condition. More precisely,
assume that uk is a bounded sequence in Y and that ‖DEε|Y (uk)‖ → 0. Then a subsequence
of uk converges strongly to a limit u ∈ Y .
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Proof Assume that uk is a bounded sequence in Y such that ‖DEε|Y (uk)‖ → 0. We need to
show that some subsequence of uk converges strongly to a limit u ∈ Y . Note that Y is closed
and convex in W 1,2(M) and so Y is weakly closed. Thus, passing to a subsequence, we can
assume that uk converges weakly in W 1,2 and strongly in L12/5 to a point u ∈ Y .

Observe that

DEε|Y (u)(uk − u) =
∫
M

ε∇u · ∇(uk − u) +
∫
M

W ′(u)

ε
(uk − u).

The first term on the right hand side goes to 0 by the weak convergence uk⇀u. Note that
W ′(u) ∈ L2 since u ∈ L12/5. Therefore the second term on the right hand side also goes to
0 since uk → u in L2. Thus we obtain

DEε|Y (u)(uk − u) → 0, as k → ∞.

Also note that DEε|Y (uk)(uk − u) → 0 since ‖DEε|Y (uk)‖ → 0 and uk − u is uniformly
bounded in W 1,2. On the other hand,

DEε|Y (uk)(uk − u) =
∫
M

ε∇uk · ∇(uk − u) +
∫
M

W ′(uk)
ε

(uk − u).

The second term on the right hand side goes to 0 as W ′(uk) is uniformly bounded in L2 and
uk − u → 0 in L2.

Now observe that

DEε|Y (uk)(uk − u) − DEε|Y (u)(uk − u)

=
∫
M

ε|∇uk − ∇u|2 +
∫
M

W ′(uk)
ε

(uk − u) −
∫
M

W ′(u)

ε
(uk − u).

We have already seen that every term in this formula goes to 0 except
∫
M ε|∇uk −∇u|2, and

therefore
∫
M ε|∇uk − ∇u|2 goes to 0 as well. This proves that uk → u strongly in W 1,2, as

needed. 
�

According to Gaspar and Guaraco [9], for each given p, we have 2σc(ε, p + 1) < Eε(0)
provided ε is small enough. Therefore, we also have 2σ c̃(ε, p) < Eε(0) provided ε is small
enough. Hence, for ε small enough, any min-max sequence remains bounded away from 0.
By the classical theory for functionals satisfying the Palais-Smale condition (see [24]), we
get the following existence result for critical points of Eε|Y . See Theorem 3.3 in [9] for the
corresponding result in the unconstrained case.

Proposition 30 Fix p ∈ N. For all small enough ε, there is a critical point uε ∈ Y of Eε|Y
with Eε(uε) = c̃(ε, p). There is a number λε ∈ R such that uε is a critical point of

v �→ Fε,λε (v) = Eε(v) + λε

∫
M

v

on all of W 1,2, and uε satisfies the PDE

−ε�uε + W ′(uε)

ε
= λε

in the weak sense. Moreover, we have
∫
M uε = 0. The index of uε as a critical point of Eε|Y

is at most p.
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Given the existence of uε , the second step in the proof is to study the convergence of uε

as ε → 0. Fortunately for us, Bellettini and Wickramasekera [3] have already studied the
regularity of such limits. Let us recall the setup in [3]. For each ε > 0, suppose uε is a critical
point of Fε,λε and that Eε(uε) and indFε,λε

(uε) and ‖uεk‖L∞ are uniformly bounded. Choose
a sequence ε j → 0 and assume that λε j → λ. Passing to a subsequence if necessary, there
exist a radon measure μ on M and a function u∞ ∈ BV (M) such that

1

2σ

(
ε j

2
|∇uε j |2 + W (uε j )

ε j

)
⇀μ

and uε j → u∞ in L1. Moreover, u∞ takes only the values ±1. Hutchinson and Tonegawa
[15] proved that there is an integral varifold V on M such that ‖V ‖ = μ. The following is
the special case of Theorem 4.1 in Bellettini and Wickramasekera [3] where the prescription
functions are assumed to be constants and the ambient dimension is assumed to be between
3 and 7.

Theorem 31 (See Theorem 4.1 in [3]) Let (Mn+1, g) be a closed Riemannian manifold
with 3 ≤ n + 1 ≤ 7. Assume (uε j ) is a sequence as above, and assume that λ > 0. Let
� = int({x ∈ M : u∞(x) = 1}). Then V = V0 + Vλ where

(i) V0 is induced by a collection of smooth, disjoint minimal surfaces equipped with even
multiplicities. Moreover, spt(‖V0‖) ⊂ M \ �.

(ii) If � = ∅ then Vλ = 0. If � �= ∅ then Vλ = |∂��| �= 0, and moreover, Vλ is induced by
a smooth surface with constant mean curvature λ whose mean curvature vector points
into �.

The minimal surfaces may have tangential intersection with the CMC surface. Likewise, the
CMC surface may have tangential intersections with itself but it never crosses itself.

We can now complete the proof of Theorem 3.

Theorem 3 Let (Mn+1, g) be a closed Riemannian manifold with 3 ≤ n + 1 ≤ 7. Fix a
number p ∈ N. There are

(i) a Caccioppoli set � ⊂ M with Vol(�) = 1
2 Vol(M) whose boundary is smooth and

almost-embedded with constant mean curvature,
(ii) a (possibly empty) collection of smooth, disjoint minimal surfaces�1, . . . , �k ⊂ M \�,
(iii) and positive integers θ0 ∈ Z and θ1, . . . , θk ∈ 2Z

such that c̃(p) = θ0 Area(∂�)+ θ1 Area(�1)+ . . .+ θk Area(�k). Moreover, θ0 = 1 unless
∂� is also a minimal surface.

Proof Choose a sequence εk → 0 so that c̃(εk, p) → c̃(p). Let uεk be the critical points
of Fεk ,λεk

constructed in Proposition 30. Then Eεk (uεk ) and indFεk ,λεk
(uεk ) are uniformly

bounded. According to Hutchinson and Tonegawa [15] Section 6.1 and Lemma 3.4 in [4],
the Lagrange multipliers λεk are also uniformly bounded and there is a constant K > 0 such
that ‖uεk‖L∞ ≤ K for all k. For the interested reader, we include the details of the argument
in the appendix. Applying Theorem 31 to the sequence uεk now yields the result. 
�
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5 Appendix

The goal of the appendix is to prove the following proposition. We largely follow the sketch
in [15, Section 6.1], giving details as appropriate. The proof that the Lagrange multipliers
are bounded depends on work of Chen [4].

Proposition 32 Assume that the potential W satisfies the growth condition (vii). Choose a
sequence εk → 0 and let uεk be a critical point of Fεk ,λεk

. Assume that Eεk (uεk ) is uniformly
bounded. Then the Lagrange multipliers λεk are uniformly bounded and ‖uεk‖L∞ is also
uniformly bounded.

Proof The first step is to check that each uεk is smooth. Recall that |W ′(uεk )| ≤ C |uεk |q−1 for
|uεk | ≥ β. For simplicity, we will give the argument assuming 3 ≤ n+1 ≤ 5. In this case, by
the Sobolev embedding theorem, uεk belongs to L10/3. It follows thatW ′(uεk ) ∈ L10/(3q−3).
Hence by elliptic regularity we have uεk ∈ W 2,q1 for q1 = 10/(3q − 3). Note that

n + 1

q1
≤ 3

2
(q − 1) ≤ 18

10
< 2.

Thus by the Sobolev inequalities we obtain that uεk is Hölder continuous. Standard elliptic
regularity then implies that uεk is smooth. The cases 6 ≤ n + 1 ≤ 7 are handled similarly.
One applies the Sobolev inequalities together with elliptic regularity several times. Each
application improves the regularity of uεk until eventually one obtains uεk ∈ W 2,q1 with
2 > (n + 1)/q . This gives Hölder continuity of uεk , and standard elliptic regularity then
implies that uεk is smooth. Note at this point we do not have uniform L∞ estimates on uεk .

To prove that the Lagrange multipliers are bounded we follow [4] Lemma 3.4. Note that
[4] Lemma 3.4 is proved for domains in Euclidean space. Some addition difficulties arise in
adapting the mollifier arguments used in [4] to the case of a closed manifold. We need to
prove a sequence of lemmas. In what follows, C denotes a positive constant that is allowed
to change from line to line.

Lemma 33 We have ∫
M

(|uεk | − 1)2 → 0, as k → ∞.

Proof Define the sets

A1 = {|uεk | ≥ α}, A2 = {|uεk | < α},
whereα is the constant appearing in assumption (vi) for the potentialW . Then sinceW (±1) =
0 and W ′(±1) = 0 and W ′′(t) ≥ κ for |t | ≥ α, it follows that

κ

2
(|uεk | − 1)2 ≤ W (uεk )

on A1. This gives the estimate∫
A1

(|uεk | − 1)2 ≤ 2εk
κ

Eεk (uεk ).

On the other hand, since W (uεk ) ≥ W (α) on A2, it follows that∫
A2

(|uεk | − 1)2 ≤
∫
A2

1 ≤ 1

W (α)

∫
A2

W (uεk ) ≤ εk

W (α)
Eεk (uεk ).

The lemma now follows by combining the previous two estimates, and using the fact that the
energy is uniformly bounded. 
�
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Define

�(s) =
∫ s

0

√
W (t)/2 dt .

Let wεk = � ◦ uεk . It is easy to check that ∇wεk is uniformly bounded in L1 (see [15]).

Lemma 34 There is a constant C > 0 such that |x− y|2 ≤ C |�(x)−�(y)| for all x, y ∈ R.

Proof We check a number of cases. First suppose that x, y ≥ β and assume without loss of
generality that x ≥ y. Then

|�(x) − �(y)| =
∫ x

y

√
W (s)/2 ds ≥ 1√

2

∫ x

y
sq/2 ds

≥ 1√
2

∫ x

y
s ds = 1

2
√
2
(x2 − y2) ≥ 1

2
√
2
|x − y|2,

where the last inequality uses the fact that x ≥ y ≥ 0 and so x + y ≥ x − y. The same
argument works in the case where x, y ≤ −β.

Now suppose that x ≥ β and y ≤ −β. Let a = ∫ β

−β

√
W (s)/2 ds > 0. Then

|�(x) − �(y)| =
∫ x

β

√
W (s)/2 ds + a +

∫ −β

y

√
W (s)/2 ds

≥ 1√
2

∫ x

β

s ds + a + 1√
2

∫ −β

y
(−s) ds

≥ 1

2
√
2
(x2 − β2) + a + 1

2
√
2
(y2 − β2).

We have

|x − y|2 ≤ 2(x2 + y2) ≤ 4β2 + 2(x2 − β2) + 2(y2 − β2) ≤ C |�(x) − �(y)|.
The same argument works if x ≤ −β and y ≥ β.

It remains to handle the case when −β ≤ x, y ≤ β. Assume for contradiction there are
two sequences x j , y j ∈ [−β, β] such that

|x j − y j |2 > j |�(x j ) − �(y j )|. (1)

Passing to a subsequence if necessary, we can assume that x j → x ∈ [−β, β] and y j →
y ∈ [−β, β]. It is clear from (1) that x = y. Passing to the limit in

|x j − y j | ≥ j
|�(x j ) − �(y j )|

|x j − y j |
we obtain that�′(x) = 0. ThusW (x) = 0 and so x = ±1.Without loss of generality assume
that x = 1. Note that there is a constant C > 0 such that W (s) ≥ C |s − 1|2 for s close to 1.
Thus

|�(x j ) − �(y j )| =
∣∣∣∣∣
∫ x j

y j

√
W (s)/2 ds

∣∣∣∣∣ ≥ C

∣∣∣∣∣
∫ x j

y j
|s − 1| ds

∣∣∣∣∣ .
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If x j ≥ y j ≥ 1 then

∣∣∣∣∣
∫ x j

y j
|s − 1| ds

∣∣∣∣∣ =
∫ x j

y j
s − 1 ds = 1

2

[
(x j − 1)2 − (y j − 1)2

]

= 1

2

[
(x j + y j − 2)(x j − y j )

] ≥ 1

2
(x j − y j )

2,

which combined with the previous equation yields a contradiction. If x j ≥ 1 ≥ y j then

∣∣∣∣∣
∫ x j

y j
|s − 1| ds

∣∣∣∣∣ =
∫ 1

y j
1 − s ds +

∫ x j

1
s − 1 ds

= 1

2

[
(1 − y j )

2 + (x j − 1)2
] ≥ 1

4
(x j − y j )

2

since either x j − 1 ≥ 1
2 (x j − y j ) or 1 − y j ≥ 1

2 (x j − y j ). Again this gives a contradiction.
The remaining possibilities likewise lead to contradiction and the lemma is proved. 
�

For each η ∈ (0, 1), let uεk ,η be a mollified version of uεk . More precisely, choose an
isometric embedding of M into Rm . Let N be a small tubular neighborhood of M where the
nearest point projection � : N → M is well-defined and a submersion. Let Br (x) denote the
open ball of radius r centered at x ∈ R

m . Also let B1 denote the open unit ball centered at
the origin in R

m . Choose a non-negative smooth function ρ : B1 → R which is compactly
supported in B1 and satisfies

∫
B1

ρ(y) dLm(y) = 1.

Extend uεk to a function vεk on N by setting vεk = uεk ◦ �. Then let

uεk ,η(x) =
∫
B1

ρ(y)vεk (x − ηy) dLm(y), x ∈ M

be the mollified version of uεk .

Lemma 35 For each fixed η, there is a uniform bound ‖uεk ,η‖L∞(M) ≤ C(η).

Proof Observe that

|uεk ,η(x)| ≤
∫
B1

ρ(y)|vεk (x − ηy)| dLm(y)

≤ 1 +
∫
B1

ρ(y)
∣∣|vεk (x − ηy)| − 1

∣∣ dLm(y)

≤ 1 + Cη−(n+1)
∫
Bη(x)

∣∣|vεk (z)| − 1
∣∣ dLm(z).
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By the co-area formula we have∫
Bη(x)

∣∣|vεk (z)| − 1
∣∣ dLm(z)

≤ C
∫
Bη(x)

∣∣|vεk (z)| − 1
∣∣ J�(z) dLm(z)

≤ C
∫

�(Bη(x))

∫
p∈�−1(q)

∣∣|vεk (p)| − 1
∣∣ dHm−n−1(p) dHn+1(q)

≤ C
∫

�(Bη(x))

∣∣|uεk (q)| − 1
∣∣ dHn+1(q).

Inserting this into the previous equation and using Lemma 33 gives the result. 
�
Lemma 36 For each fixed η, there is a uniform bound ‖∇uεk ,η‖L∞(M) ≤ C(η).

Proof Fix an index i ∈ {1, . . . ,m}. Note the formula for uεk ,η(x) also makes sense for x ∈ N
so we can regard uεk ,η as a function defined on N . For x ∈ M we have

∂i uεk ,η(x) =
∫
B1

∂iρ(y)vεk (x − ηy) dLm(y).

Thus we have

|∂i uεk ,η(x)| ≤
∫
B1

|∂iρ(y)||vεk (x − ηy)| dLm(y)

≤ C +
∫
B1

|∂iρ(y)|(|vεk (x − ηy)| − 1) dLm(y)

≤ C + Cη−(n+1)
∫
Bη(x)

∣∣|vεk (z)| − 1
∣∣ dLm(z).

Using the coarea formula as in the proof of the previous lemma now gives the result. 
�
Lemma 37 There is a uniform bound ‖uεk ,η − uεk‖2L2(M)

≤ Cη for k ≥ K (η).

Proof Observe that∫
M

|uεk ,η − uεk |2 =
∫
M

∣∣∣∣
∫
B1

ρ(y)vεk (x − ηy) dLm(y) − uεk (x)

∣∣∣∣
2

dHn+1(x)

≤
∫
M

∫
B1

ρ(y)|vεk (x − ηy) − uεk (x)|2 dLm(y) dHn+1(x)

≤ C
∫
M

∫
B1

ρ(y)| f (x − ηy) − f (x)| dLm(y) dHn+1(x),

where f = � ◦ uεk ◦ � = wεk ◦ � and we used Lemma 34 to get the last inequality. By
Fubini’s theorem we get∫

M

∫
B1

ρ(y)| f (x − ηy) − f (x)| dLm(y) dHn+1(x)

≤ η

∫
M

∫
B1

∫ 1

0
ρ(y)|∇ f (x − tηy)| dt Lm(y) dHn+1(x)

= η

∫
B1

ρ(y)
∫ 1

0

∫
M

|∇ f (x − tηy)| dHn+1(x) dt dLm(y).
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Now for fixed y and t , we have∫
M

|∇ f (x − tηy)| dHn+1(x) =
∫
M−tηy

|∇ f (z)| dHn+1(z).

Provided η is small enough, the map � : M − tηy → M is a diffeomorphism and so by the
change of variables forumla∫

M−tηy
|∇ f (z)| dHn+1(z) ≤

∫
M−tηy

|∇wεk (�(z))| dHn+1(z)

≤ C
∫
M−tηy

|∇wεk (�(z))|J�(z) dHn+1(z)

= C
∫
M

|∇wεk (q)| dHn+1(q).

Thus we obtain

η

∫
B1

ρ(y)
∫ 1

0

∫
M

|∇ f (x − tηy)| dHn+1(x) dt dLm(y)

≤ Cη

∫
B1

ρ(y)‖wεk‖L1(M) dLm(y) ≤ Cη.

Putting everything together we get∫
M

|uεk ,η − uεk |2 ≤ Cη,

and the result follows. 
�
Lemma 38 Let uεk ,η be the average of uεk ,η. There is a uniform bound |uεk ,η| ≤ Cη

1
2 for

k ≥ K (η).

Proof Observe that

uεk ,η = 1

Vol(M)

∫
M
uεk ,η = 1

Vol(M)

∫
M

(uεk ,η − uεk ).

Now the result follows from Lemma 37 and Hölder’s inequality. 
�
Now fix an η to be specified later. Given a large integer k, let ψ be the solution to

−�ψ = uεk ,η − uεk ,η,

∫
M

ψ = 0.

By Lemmas 35, 36, and 38 the right hand side of the above PDE is uniformly bounded in
C1. Therefore by elliptic regularity, ψ is bounded in C2 by a constant that depends on η but
not on k. Note that uεk satisfies the PDE

−εk�uεk + W ′(uεk )

εk
= λεk .

Multiplying by ∇ψ · ∇uεk and integrating yields

λεk

∫
M

∇ψ · ∇uεk =
∫
M

∇ψ · ∇uεk

(
−εk�uεk + W ′(uεk )

εk

)
. (2)
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Observe that∫
M

∇ψ · ∇uεk

W ′(uεk )

εk
=

∫
M

∇ψ · ∇
(
W (uεk )

εk

)
= −

∫
M

W (uεk )

εk
�ψ.

Also, by the integration by parts formula for the Hessian, we have

εk

∫
M
D2ψ(∇uεk ,∇uεk ) = −εk

∫
M

∇ψ · ∇uεk�uεk + εk

2

∫
M

|∇uεk |2�ψ.

Thus we have the following formula for the right hand side of (2):∫
M

∇ψ · ∇uεk

(
−εk�uεk + W ′(uεk )

εk

)

= εk

∫
M
D2ψ(∇uεk ,∇uεk ) −

∫
M

(
εk

2
|∇uεk |2 + W (uεk )

εk

)
�ψ.

Since ‖ψ‖C2 ≤ C(η), this gives a bound∣∣∣∣
∫
M

∇ψ · ∇uεk

(
−εk�uεk + W ′(uεk )

εk

)∣∣∣∣ ≤ C(η)Eεk (uεk ).

We now turn attention to the left hand side of (2). Integrating by parts, we have

λεk

∫
M

∇ψ · ∇uεk = −λεk

∫
M
uεk�ψ = λεk

∫
M
uεk (uεk ,η − uεk ,η).

Now observe that∫
M
uεk (uεk ,η − uεk ,η) =

∫
M
uεk (uεk ,η − uεk ) +

∫
M

(u2εk − 1) − uεk ,η

∫
M
uεk + Vol(M).

By Lemmas 33 and 38 and Hölder’s inequality, we can select η small enough that∣∣∣∣
∫
M
uεk (uεk ,η − uεk )

∣∣∣∣ ≤ 1

4
Vol(M),

∣∣∣∣uεk ,η

∫
M
uεk

∣∣∣∣ ≤ 1

4
Vol(M).

By Lemma 33 and Hölder’s inequality, we have∣∣∣∣
∫
M

(u2εk − 1)

∣∣∣∣ ≤
∫
M

||uεk | − 1|(|uεk | + 1) ≤ 1

4
Vol(M)

for k large enough. It follows that∫
M

∇ψ · ∇uεk ≥ 1

4
Vol(M)

for large enough k. Using equation (2) then gives an upper bound on λεk which is independent
of k.

To complete the proof of the Proposition 32, it remains to show that ‖uεk‖L∞ is uniformly
bounded. Let Mεk = M/εk . Define the rescaled functions hεk : Mεk → R by hεk (x) =
uεk (εk x). Then hεk solves

−�hεk + W ′(hεk ) = εkλεk .

Fix some p ≥ 1. Multiplying the equation by |hεk |p−1hεk and integrating gives∫
Mεk

p|hεk |p−1|∇hεk |2 +
∫
Mεk

W ′(hεk )|hεk |p−1hεk = εkλεk

∫
Mεk

|hεk |p−1hεk . (3)
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Now for |x | ≥ β we have W ′(x)|x |p−1x ≥ C |x |p+q−1. Since εkλεk → 0, it follows from
(3) that ∫

{|hεk |≥β}
|hεk |p+q−1 ≤ 1

2

∫
Mεk

|hεk |p

assuming k is large enough. This implies that∫
Mεk

|hεk |p+q−1 ≤
(

βq−1 + 1

2

) ∫
Mεk

|hεk |p.

By induction, for any positive integer r , this gives∫
Mεk

|hεk |2+r(q−1) ≤
(

βq−1 + 1

2

)r ∫
Mεk

|hεk |2.

By Hölder’s inequality, this implies

‖hεk‖r(q−1)
L2+r(q−1)(Mεk )

≤
(

βq−1 + 1

2

)r

.

Raising both sides to the power (r(q − 1))−1 and then sending r → ∞ gives the bound

‖hεk‖L∞(Mεk ) ≤
(

βq−1 + 1

2

) 1
q−1

provided k is large enough. This implies that ‖uεk‖L∞(M) has a uniform L∞ bound for all
large k, as needed. 
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