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Abstract. We study a model for susceptible, infected, quarantined, and re-

covered (SIQR) populations, in the presence of an infectious disease. The three

feedback controls represent isolation, contact regulation, and vaccination. The
model contains four time-varying uncertainties. One uncertainty models un-

certain immigration. The other three uncertainties represent uncertainties in

the measurements of state components that are used in the feedback control.
We use the input-to-state stability (ISS) framework. Using a strict Lyapunov

function construction method from a recent paper by H. Ito, M. Malisoff, and

F. Mazenc whose uncertainties were confined to be uncertain immigration, we
provide two ISS results that quantify the robustness of the feedback control,

with respect to the four uncertainties. Our first theorem proves ISS of the

SIQR error dynamics with all four uncertainties present in the ISS overshoot
term. The error variable measures the difference between the current state

of the SIQR dynamics and the prescribed endemic equilibrium. Our second
theorem proves ISS where the overshoot in the ISS estimate only depends on

the immigration uncertainty, and so ensures robust asymptotic stability when

no immigration uncertainty is present, under a new condition on the allowable
measurement uncertainties. We illustrate the effectiveness of our approach in

simulations, using parameter values from the COVID-19 pandemic.

1. Introduction. This paper continues the development (which began in [9, 10])
of strict Lyapunov function based methods that quantify the effects of uncertainty
in feedback controlled models for susceptible, infected, quarantined, and recovered
individuals, called SIQR models. While [8, 9, 10] only allowed the uncertainty to
be in the immigration rate into the susceptible population, here our models con-
tain all three feedback controls and, in addition to uncertain immigration, there are
measurement uncertainties in the state values that are used in its feedback controls.
This models realistic scenarios having up to 20% (or more) overcounting or under-
counting of susceptible, infected, or quarantined individuals, and where the disease
cannot be eliminated by solely using vaccination. Undercounting and overcounting
occur, e.g., from reluctance of individuals to be tested, insufficiently many test kits,
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or false positives or false negatives arising from deficiencies in tests early in a pan-
demic. Unlike the immigration uncertainty which is an additive uncertainty on the
growth rate of the susceptible population, the measurement uncertainties multiply
the states in the controls, and so call for the novel methods below involving a new
equal signs condition; see Remark 3.2 in Section 3 below.

As noted in [9, 10], strict Lyapunov functions are a valuable alternative to tradi-
tional solutions to disease control problems, which often entail linearization. Since
linearization only implies convergence properties in a small enough region around
the setpoint, Lyapunov functions are often used to obtain global convergence re-
sults, i.e., for all componentwise positive initial state vectors. Nonstrict Lyapunov
functions are often used in conjunction with LaSalle invariance to obtain global con-
vergence [13]. Nonstrict means that the time derivative of the Lyapunov function
at all points outside the prescribed equilibrium is nonpositive (but not necessar-
ily negative), while the strict Lyapunov function condition [18] calls for this time
derivative to be negative at each point outside the equilibrium. This strictness
makes it possible to quantify the effects of uncertainty, which contrasts with non-
strict Lyapunov functions which are not amenable to robustness analysis [5, 6, 7].
Other approaches for population models include removal of variables and adding
state space restrictions [4, 14, 15, 16, 23, 24, 25], leading to Lyapunov functions in
a restricted domain or the assumption of a constant population. Such alternative
methods are usually not amenable to proving robustness properties in the input-
to-state stability (ISS) sense, which plays an essential role in robustness analysis
[13, 21]. Throughout this work, the uncertainties are unknown locally bounded
piecewise continuous functions.

The ISS property is a generalization of asymptotic stability that quantifies the
effects of uncertainties in overshoot terms; see the definition of ISS below. In this
paper, we prove two ISS theorems for SIQR models with uncertain immigration
rates and uncertain measurements of the susceptible, infected, and quarantined in-
dividuals in the feedback controls, whose significance can be summarized as follows:

1. Our first theorem provides an overshoot term that depends on all four un-
certainties, and the result is semiglobal, because it provides a different ISS
estimate for each compact set of initial states and each compact set of admis-
sible values for the uncertainties, and it computes rates of exponential decay
for the asymptotically decaying term in the ISS upper bound.

2. By contrast, our second theorem yields a global ISS estimate in which the
overshoot only depends on the uncertainty in the immigration rate. Hence,
when the immigration uncertainty is zero, we obtain robust global asymptotic
stability, where the same global asymptotic stability estimate holds regardless
of the initial state and regardless of the specific measurement uncertainties.
This calls for the measurement uncertainties to satisfy a set of inequalities
involving the current state, so the set of admissible measurement uncertain-
ties changes over time. This is a significant departure from prior robustness
analyses whose uncertainty bounds were independent of the state.

In our second theorem, the set of inequalities quantifies the requirement that
more measurement uncertainty is allowed when the state is far from the endemic
equilibrium, as compared with times when the state is closer to the equilibrium.
Also, as noted in [10], our approach is a significant departure from optimal control
approaches. While optimal control can be useful for policy makers who may not
always express their goals in a mathematical way, we believe that our approach is
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a useful complementary alternative that quantifies the effects of uncertainty in the
important ISS framework that facilitates comparing the effects of different feedback
control parameters, without incurring the cost of real-time updates that would rely
on numerical computations and data storage. It also differs from [1, 2, 3, 20], which
either do not involve feedback control or do not consider measurement uncertainty,
and so are not germane to or overlapping with this work.

We use the following definitions and notation. We use |f |J to denote the usual
sup norm of a function f over a subset J of its domain, |f |∞ is the sup norm over
its entire domain, and | · | is the usual Euclidean norm. Let K denote the set of all
strictly increasing continuous functions α : [0,+∞) → [0,+∞) such that α(0) = 0;
if, in addition, α is unbounded, then we say that α is of class K∞. We say that
a continuous function Φ : [0,+∞) × [0,+∞) → [0,+∞) is of class KL provided
for each fixed s > 0, the function Φ(·, s) belongs to class K, and for each fixed
r ≥ 0, the function Φ(r, ·) is non-increasing and Φ(r, s) → 0 as s → +∞, and 0
denotes the zero vector. A system of the form ẋ(t) = F (x(t), ε(t)) with a state space
X ⊆ Rn satisfying F (0, 0) = 0 is called input-to-state stable (also abbreviated as
ISS) [13] on X with respect to a disturbance set E provided: There are Φ ∈ KL and
Γ ∈ K∞ such that for each initial state x(0) ∈ X and each locally bounded piecewise
continuous function ε taking all of its values in E , the unique corresponding solution
x : [0,+∞) → X of the dynamics satisfies |x(t)| ≤ Φ(|x(0)|, t) + Γ(|ε|[0,t]) for all
t ≥ 0. We use the function sgn : R → {−1, 0, 1} which is defined by sgn(0) = 0 and
sgn(x) = −1 (resp., 1) for all x < 0 (resp., x > 0).

2. SIQR model and strict Lyapunov function from [10]. We review the SIQR
model and strict Lyapunov function from [10] in this section, to provide the essential
equations that we need in later sections and make our work self-contained. As in
[10], we study the dynamics

Ṡ(t) = B + ϵ(t)− ρ(t)S(t)− µS(t)− β(t)I(t)S(t),

İ(t) = β(t)I(t)S(t)− (γ + ν(t) + µ)I(t),

Q̇(t) = ν(t)I(t)− (τ + µ)Q(t),

Ṙ(t) = γI(t) + τQ(t)− µR(t) + ρ(t)S(t),

(1)

where the positive real valued state variables S, I, Q, and R are numbers of suscepti-
ble, infected, quarantined, and recovered individuals, respectively [4, 12, 19], and the
constant B > 0 is the immigration rate that includes newborn. The unknown locally
bounded piecewise continuous function ϵ represents the immigration perturbation,
and is assumed to take all of its values in the perturbation set P = (−B,+∞).

The non-negative-valued function β combines the rate of disease contact and
transmission. The positive constants µ and γ are the rates of non-associated mor-
tality rate and recovery from the disease, respectively. The non-negative-valued
functions ρ and ν are the vaccination rate and the rate at which infected indi-
viduals are isolated from quarantine, respectively. The positive constant τ is the
reciprocal of the average time spent in isolation, and ρ is the amount of vaccine
administration and the reciprocal of the average time to acquire immunity. The
positivity of the constants implies that with our choice D = (0,+∞)4 of the state
space for (1), each component of (1) is positive for all t ≥ 0 for each initial state
(S(0), I(0), Q(0), R(0)) ∈ D. We take ρ, ν, and β as feedback controls, which de-
pend on time t through their dependence on S, I, and Q.

To specify the desired endemic equilibrium, the error dynamics, and the class of
controls, we use
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ρ(t) = ρ̂+ uV (t), ν(t) = ν̂ + uI(t), and β(t) = β̂ + uC(t), (2)

for positive constants ρ̂, ν̂, and β̂ that represent nominal rates, where uV , uI , and uC
will be specified such that uV (t) ∈ [−ρ̂,+∞), uI(t) ∈ [−ν̂,+∞), and uC(t) ∈ [−β̂, 0]
for all t ≥ 0. We use the constants

λ = γ + ν̂ + µ, χ = ρ̂+ µ, and R̂0 = β̂B
(ρ̂+µ)(γ+ν̂+µ) ,

where R̂0 is called the basic reproduction number and is assumed to satisfy R̂0 > 1,
which implies that the nominal vaccination rate ρ̂ is not large enough relative to

the natural disease transmission rate β̂ to eliminate the disease. It also implies
that, when ϵ is the zero function and uV = uI = uC = 0, simple calculations show
that (1) has the componentwise positive equilibrium X⋆ = (S⋆, I⋆, Q⋆, R⋆) whose
components are defined by

(S⋆, I⋆, Q⋆, R⋆) =(
λ
β̂
, B

λ − χ

β̂
, ν̂
τ+µ

(
B
λ − χ

β̂

)
, 1
µ

[(
γ + τν̂

τ+µ

)(
B
λ − χ

β̂

)
+ ρ̂λ

β̂

])
.

For any constant β ∈ [0, β̂] and nonnegative constants ωV , ωI , and ωC , [10] used
the feedback controls

uV (t) = fV (S(t), I(t)) = max {−ρ̂, ωVH1(S(t), I(t))}
uI(t) = fI(S(t), I(t), Q(t)) = max {−ν̂, ωI(H2(S(t), I(t))− I(t)H3(Q(t)))}
uC(t) = fC(S(t), I(t))

= max
{
β−β̂, min {0, ωCS(t)(I(t)H1(S(t), I(t))−H2(S(t), I(t)))}

} (3)

using the functions and error variables

H1(S, I) = (1 + c)S̃ + c
(
ρ̂+µ

β̂
ln I

I⋆
+ Ĩ

)
,

H2(S, I) = c
(
S̃ + ρ̂+µ

β̂
ln I

I⋆
+ Ĩ

)(
ρ̂+µ

β̂
+ I

)
+ (c+1)(γ+ν̂+µ)

β̂
Ĩ , and

H3(Q) = c♢Q̃, where S̃ = S − S⋆, Ĩ = I − I⋆, and Q̃ = Q−Q⋆

(4)

for any positive constant c > 0 and any constant c♢ ∈ (0, 2c♢) where

c♢ = (τ+µ)cλ
ν̂2 , (5)

and where the preceding constants are used to tune the controls. Then H1(S⋆, I⋆) =
0, H2(S⋆, I⋆) = 0, and H3(Q⋆) = 0. Also as in [10], we study the dynamics for the

transformed error dynamics, using ξ̃ = ln(I/I⋆), ψ⋆ = λI⋆, ξ⋆ = ln(I⋆), ξ = ln(I),

and R̃ = R−R∗, which give ξ̃ = ξ − ξ⋆. Then (4) transforms (1) into [10]

˙̃S(t) = ϵ(t)−
(
χ+β̂eξ̃(t)+ξ⋆

)
S̃(t)+ψ⋆

(
1−eξ̃(t)

)
−uV (t)S(t)

−uC(t)eξ(t)S(t),
˙̃
ξ(t) = β̂S̃(t)− uI(t) + uC(t)S(t),
˙̃Q(t) = ν̂eξ⋆(eξ̃(t) − 1)− (τ + µ)Q̃(t) + uI(t)e

ξ(t),
˙̃R(t) = γeξ⋆(eξ̃(t) − 1) + τQ̃(t)− µR̃(t) + ρ̂S̃(t) + uV (t)S(t)

(6)

which are called the transformed error dynamics, and which are defined on the state
space D̃ = (−S⋆,+∞)× R× (−Q⋆,+∞)× (−R⋆,+∞). The ISS analysis in [10] is
performed for (6), using the ISS Lyapunov function
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V (S̃, ξ̃, Q̃, R̃) = U(S̃, ξ̃, Q̃) +W (S̃, ξ̃, Q̃, R̃), where

U(S̃, ξ̃, Q̃) = 1
2 S̃

2 + c
2

[
S̃ + χ

β̂
ξ̃ + I⋆

(
eξ̃ − 1

)]2
+ (c+1)ψ⋆

β̂

(
eξ̃ − 1− ξ̃

)
+ c♢

2 Q̃
2,

andW (S̃, ξ̃, Q̃, R̃) = g
2

[
S̃ + I⋆

(
eξ̃ − 1

)
+ Q̃+ R̃

]2
,

(7)

where g > 0 is another tuning constant. Although not stated in [10], the proof of
this lemma follows from the proofs in [10] and is reported here because it will be
essential for future sections below:

Lemma 2.1. Let c > 0, g > 0, c♢ ∈ (0, 2c♢), β ∈ [0, β̂], and the nonnegative
values ωV , ωI , and ωC be given constants, and choose the functions α and σ and
the constants ki for i = 1, 2, 3, 4 that are defined by

α(r) = min
{

1
2 , 1−

√
c♢
2c♢

}[√
k4 +min

{
1/k3, 4

√
k4µ

}
r −

√
k4

]
,

σ(r) =
[
ln(2)cχ

β̂
+ cI⋆

]
r +

[
(1+c)2

2χ + g
2µ

]
r2,

k1 = max
{

1+2c
χ , 2

cψ⋆I⋆

[
2cI2⋆ +

(c+1)ψ⋆

2β̂

]}
,

k2 = k1 +
(

4cχ2

β̂
+ (c+ 1)ψ⋆

)
4

cψ⋆(2χ+β̂I⋆)
, k3 =

(
2cχ2

β̂
+ (c+1)ψ⋆

2

)
16β̂

c2ψ2
⋆χ

2 ,

and k4 =
k22
4k23

.

(8)

Then, for any piecewise continuous locally bounded time-varying functions uV , uI ,
and uC , the time derivative of the function V in (7) along all solutions of (6)
satisfies

V̇ (t) ≤ −α(V (S̃(t), ξ̃(t), Q̃(t), R̃(t)))− S(t)H1(S(t), I(t))uV (t)
+
(
I(t)H3(Q(t))−H2(S(t), I(t))

)
uI(t)

+S(t)
(
H2(S(t), I(t))− I(t)H1(S(t), I(t))

)
uC(t) + σ(|ϵ(t)|)

(9)

for all t ≥ 0 and all piecewise continuous functions ϵ : [0,+∞) → [−ψ∗/4, ψ∗/4] ∩
(−B,+∞). □

Since α and σ are of class K∞, (9) implies that V is an ISS Lyapunov function for
the closed loop dynamics with the controls (3), because as noted in [10], these choices

of the controls imply that V̇ (t) ≤ −α(V (S̃(t), ξ̃(t), Q̃(t), R̃(t))) + σ(|ϵ(t)|) for all
t ≥ 0, which implies the required ISS property when no measurement uncertainties
are present. We next provide conditions under which V continues to provide ISS
when measurement uncertainties ∆S , ∆I , and ∆Q are also present.

3. Exponential ISS result. This paper shares the goal of [10] of deriving formu-
las for feedback controls that achieve ISS of the error system (6). This will imply
convergence of the states to desired values with an overshoot depending on the
uncertainty. However, unlike [10] where the only uncertainty is ϵ, here the uncer-
tainty is valued in R4, because the uncertainties also include 1−∆S(t), ln(∆I) and
1−∆Q(t), where ∆S , ∆I , and ∆Q are positive valued multiplicative uncertainties
multiplying the corresponding values of S, I, and Q in the feedback controls, to
model measurement uncertainty. This produces the vector of uncertainties ϵ♯ that
is defined by ϵ♯(t) = (ϵ(t), 1 −∆S(t), ln(∆I), 1 −∆Q(t)). The justification for this
choice of ϵ♯ (instead of (ϵ(t),∆S(t),∆I(t),∆Q(t))) is that ISS requires the vector of
uncertainties to take the value 0 at all times when no uncertainty is present, which
in our case occurs exactly when ϵ(t) = 0 and ∆S(t) = ∆I(t) = ∆Q(t) = 1. Also,
we treat ∆I differently from ∆S and ∆Q through the use of the ln to match the



SIQR EPIDEMIC MODEL UNDER MEASUREMENT UNCERTAINTY 73

logarithmic transformation ξ = ln(I) in (6). There is no measurement uncertainty
∆R, because R will not appear in our feedback controls.

Hence, to account for the fact that the exact measurements S(t), I(t), and Q(t)
in (3) might not be available in practice, our controls in this and the next section
will instead be

uV = max {−ρ̂, ωVH1(∆SS,∆II)} ,
uI = max {−ν̂, ωI(H2(∆SS,∆II)−∆IIH3(∆QQ))} , and
uC = max

{
β−β̂, min {0, ωC∆SS(∆IIH1(∆SS,∆II)−H2(∆SS,∆II))}

} (10)

instead of (3), in terms of the above constants and the Hi’s in (4). Our first result

is as follows where S̃, Ĩ, Q̃, R̃, and V are from Section 2 as before, and the term
exponential refers to the fact that the decaying function in the ISS estimate (11)
has the form Φ(s, t) = b1se

−rt for positive constants b1 and r:

Theorem 3.1. For each compact neighborhood C0 ⊆ (−S∗,+∞) × (−I∗,+∞) ×
(−Q∗,+∞) × (−R∗,+∞) of 0, each compact set D0 ⊆ (−B,+∞) × (−∞, 1) ×
R × (−∞, 1), each set of positive constants ρ̂, ν̂, β̂, c, ωV , ωI , and ωC , and

each constant β ∈ [0, β̂), we can construct positive constants b1, b2, and r such
that for all solutions (S(t), I(t), Q(t), R(t)) of the SIQR dynamics (1) in closed

loop with the controls (10) having initial states (S̃(0), Ĩ(0), Q̃(0), R̃(0)) in C0 and
for all piecewise continuous bounded functions ϵ : [0,+∞) → (−B,+∞), ∆S :
[0,+∞) → (0,+∞), ∆I : [0,+∞) → (0,+∞), and ∆Q : [0,+∞) → (0,+∞) sat-
isfying (ϵ(t), 1 −∆S(t), ln(∆I(t)), 1 −∆Q(t)) ∈ D0 for all t ≥ 0, the corresponding

solutions (S̃, Ĩ, Q̃, R̃) : [0,+∞) → R4 satisfy

|(S̃(t), Ĩ(t), Q̃(t), R̃(t))| ≤ b1|(S̃(0), Ĩ(0), Q̃(0), R̃(0))|e−rt

+b2

(
|ϵ|[0,t] +

√
|ϵ|[0,t]+|ϵ|2[0,t]+|1−∆S |[0,t]+| ln(∆I)|[0,t]+|1−∆Q|[0,t]

)
(11)

for all t ≥ 0.

Proof. The proof has three parts. First, we obtain bounds on the differences be-
tween values of terms in the controls (10) and the values of corresponding terms in
the controls (3). Then, we use the bounds from the first part to prove that the strict
Lyapunov function V from (7) satisfies a suitable ISS Lyapunov function decay con-

ditions for the transformed SIQR error dynamics in the variable x̃ = (S̃, ξ̃, Q̃, R̃)

where ξ̃ = ln(I/I∗), which will produce an ISS estimate in the variable x̃ when
|ϵ|∞ ≤ ψ∗/4. In the third part, we convert the ISS estimate in the variable x̃ into

the required ISS estimate in the variable X̃ = (S̃, Ĩ, Q̃, R̃).
First Part. Fix C0, D0, and constants satisfying the requirements of the theo-

rem. We can find a compact set C1 such that all solutions (S, I,Q,R) : [0,+∞) →
(0,+∞)4 of the SIQR dynamics with the controls (10) for all choices of the perturba-
tion ϵ♯(t) = (ϵ(t), 1−∆S(t), ln(∆I(t)), 1−∆Q(t)) that are valued in D0 and all initial

states that satisfy (S̃(0), Ĩ(0), Q̃(0), R̃(0)) ∈ C0 also satisfy: (S(t), I(t), Q(t), R(t)) ∈
C1 for all t ≥ 0. This is because the structure of the SIQR dynamics (1) gives

Ṡ(t) + İ(t) + Q̇(t) + Ṙ(t) = −µ(S(t) + I(t) + Q(t) + R(t)) + B + ϵ(t) and so also
S(t)+ I(t)+Q(t)+R(t) ≤ e−µt(S(0)+ I(0)+Q(0)+R(0))+ (B+ |ϵ|[0,t])/µ for all

t ≥ 0 (using the integrating factor eµt), so we can choose C1 = ∪z∈C0
{x ∈ [0,+∞)4 :

x1 + x2 + x3 + x4 ≤ z1 + z2 + z3 + z4 + S∗ + I∗ + Q∗ + R∗ + (B + ϵ̄)/µ}, where
ϵ̄ = max{|d1| : there exist (d2, d3, d4) such that (d1, d2, d3, d4) ∈ D0}. Fixing any
solution and ϵ♯ satisfying the preceding requirements, set ∆ξ = ln(∆I), J1(S, I) =
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H1(S, I), J2(S, I,Q) = H2(S, I)− IH3(Q), and J3(S, I) = S(IH1(S, I)−H2(S, I))
in terms of our formulas (4) for H1, H2, and H3, so our controls (10) are

uV = max{−ρ̂, ωV J1(∆SS,∆II)}, uI = max {−ν̂, ωIJ2(∆SS,∆II,∆QQ)} ,
and uC = max{β−β̂, min{0, ωCJ3(∆SS,∆II)}}.

(12)

Then we can use our formulas for H1, H2, and H3 to check that the preceding
functions satisfy

J1(∆SS,∆II) = J1(S, I) + (c+ 1)(∆S − 1)S

+c
[
ρ̂+µ

β̂
∆ξ + (∆I − 1)I

]
,

J2(∆SS,∆II,∆QQ) = J2(S, I,Q) + c

(
(∆S − 1)S + ρ̂+µ

β̂
∆ξ

+(∆I − 1)I

)(
ρ̂+µ

β̂
+∆II

)
+c

(
S̃ + ρ̂+µ

β̂
ln

(
I
I∗

)
+ Ĩ

)
(∆I − 1)I

+ (c+1)(γ+ν̂+µ)

β̂
(∆I − 1)I

−(∆I − 1)Ic♢(∆QQ−Q∗)− Ic♢(∆Q − 1)Q,

(13)

and

J3(∆SS,∆II) = J3(S, I) + (∆S − 1)S

[
(∆SS − S∗)∆II

−c
{
∆SS − S∗ +

ρ̂+µ

β̂

[
ln
(
I
I∗

)
+∆ξ

]
+∆II − I∗

}
ρ̂+µ

β̂

− (c+1)(γ+ν̂+µ)

β̂
(∆II − I∗)

]
+ S

[
(∆S − 1)S∆II

+S̃(∆I − 1)I − c
(
(∆S − 1)S + ρ̂+µ

β̂
∆ξ + (∆I − 1)I

)
ρ̂+µ

β̂

− (c+1)(γ+ν̂+µ)

β̂
(∆I − 1)I

]
,

(14)

using the formula faga−fbgb = (fa−fb)ga+fb(ga−gb) for suitable functions fa and
ga (which contain the disturbance terms ∆S , ∆I , and ∆Q) and suitable functions
fb and gb (which do not contain the disturbance terms), and where (14) used the
fact that our formulas for H1 and H2 in (4) give

IH1(S, I)−H2(S, I) =

S̃I − c
(
S̃ + ρ+µ

β̂
ln

(
I
I∗

)
+ Ĩ

)
ρ̂+µ

β̂
− (c+1)(γ+ν̂+µ)

β̂
Ĩ

(15)

and the fact that if we set G(S, I) = IH1(S, I)−H2(S, I), then J3(S, I) = SG(S, I)
and so also J3(∆SS,∆II)− J3(S, I) = (∆S − 1)SG(∆SS,∆II) + S(G(∆SS,∆II)−
G(S, I)). Also, by the compactness of D0 and (15), we can find a constant L∗ ≥ 1
such that |∆I − 1| = |e∆ξ − 1| ≤ L∗|∆ξ| along all disturbance values that satisfy

the assumptions of the theorem. Therefore, if we set C = max{|x| : x ∈ C1} (which
exists because C1 is compact), then we can use the first equality of (13) to get

|J1(∆SS,∆II)− J1(S, I)| ≤
{
(1 + c(1 + L∗))C + c ρ̂+µ

β̂

}
|(∆S − 1,∆ξ)|. (16)

Also, by the compactness of C1 and D0 and the formula J3(S, I) = SG(S, I)
and the positiveness of the model parameters, we can find a constant ξ0 > 0 such
that J1(∆SS,∆II) < 0, J1(S, I) < 0, J2(∆SS,∆II,∆QQ) < 0, J2(S, I,Q) < 0,
J3(∆SS,∆II) > 0, and J3(S, I) > 0 all hold for all (S, I,Q,R) ∈ C1 and all
(∆S ,∆I ,∆Q) such that ln(I) = ξ < −ξ0 and such that ϵ♯ ∈ D0. We fix a ξ0



SIQR EPIDEMIC MODEL UNDER MEASUREMENT UNCERTAINTY 75

satisfying the preceding requirements in the rest of the proof, and any constant d̄
such that d̄ ≥ max{|∆S |∞, |∆I |∞, |∆Q|∞, |∆ξ|∞} for all disturbance functions that
satisfy the assumptions of the theorem (which exists because of the compactness of
D0). It follows from (13)-(14) that

|J2(∆SS,∆II,∆QQ)− J2(S, I,Q)| ≤
{
c
[
C(1 + L∗) +

ρ̂+µ

β̂

] [
ρ̂+µ

β̂
+ d̄C

]
+ (c+1)(γ+ν̂+µ)C

β̂
L∗

+c

(
C + S∗ +

ρ̂+µ

β̂
max{ξ0, | ln(C)|}

+| ln(I∗)|+ C + I∗

)
L∗C

+L∗Cc♢(d̄C +Q∗) + C2
c♢

}
×|(∆S − 1,∆ξ,∆Q − 1)| and

(17)

|J3(∆SS,∆II)− J3(S, I)| ≤
{
C
[
(d̄C + S∗)d̄C + c

(
d̄C + S∗

+ ρ̂+µ

β̂

[
max{ξ0, | ln(C)|}+ | ln(I∗)|+ d̄

]
+d̄C + I∗

)
ρ̂+µ

β̂
+ (c+1)(γ+ν̂+µ)

β̂
(d̄C + I∗)

]
+C

[
C2
d̄+ (C + S∗)CL∗

+c

(
C + ρ̂+µ

β̂
+ L∗C

)
ρ̂+µ

β̂

+ (c+1)(γ+ν̂+µ)

β̂
CL∗

]}
|(∆S − 1,∆ξ)|

(18)

for all (S, I,Q,R) ∈ C1 such that ξ ≥ −ξ0 and all (∆S ,∆I ,∆Q) satisfying the
preceding requirements, where the |∆ξ|∞ in the max that we used to define the
lower bound for d̄ was needed to bound the ∆ξ in the second line of (14). We let
J̄i denote the quantity in curly braces in (16), (17), and (18) that multiplies either
|(∆S − 1,∆ξ)| or |(∆S − 1,∆ξ,∆Q− 1)| respectively for i = 1, 2, 3 in the next part.

Second Part. We show that the function V from (7) admits a class K∞ function
σ♯ such that

V̇ (t) ≤ −α(V (S̃(t), ξ̃(t), Q̃(t), R̃(t)) + σ♯(|ϵ♯|[0,t]) (19)

along all solutions of the closed loop system from our Theorem 3.1 for all t ≥ 0
when |ϵ|∞ ≤ ψ∗/4, where α was defined in (8). This will provide the required

ISS Lyapunov function decay condition in the variable x̃ = (S̃, ξ̃, Q̃, R̃) that we

will convert to the required ISS estimate in the original SIQR error variable X̃ =
(S − S∗, I − I∗, Q − Q∗, R − R∗) at the end of the proof. By the decay estimate
(9) on V from Lemma 2.1, (19) will be satisfied if we can find nonnegative valued
nondecreasing functions σV , σI , and σC that are 0 at 0 such that

−S(t)J1(S(t), I(t))uV (t) ≤ σV (|ϵ♯|[0,t]),
−J2(S(t), I(t), Q(t))uI(t) ≤ σI(|ϵ♯|[0,t]), and
−J3(S(t), I(t))uC(t) ≤ σC(|ϵ♯|[0,t])

along all trajectories of the closed loop system with initial states in C0 and dis-
turbances ϵ♯ that are valued in D0 for all t ≥ 0, which will let us pick σ♯ =
σ + σV + σI + σC , where σ is from (8). Hence, we next construct σV , σI , and
σC . To build σV , we consider two cases:
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Case 1. Consider a t ≥ 0 such that −ρ̂ ≥ ωV J1(∆S(t)S(t),∆I(t)I(t)). Then
J1(∆S(t)S(t),∆I(t)I(t)) ≤ 0 (since ωV > 0 and ρ̂ > 0) and our formula for uV
from (12) gives uV (t) = −ρ̂, so (16) gives

−S(t)J1(S(t), I(t))uV (t) = ρ̂S(t)J1(S(t), I(t))
≤ ρ̂S(t)J1(∆S(t)S(t),∆I(t)I(t))

+ ρ̂S(t)J̄1|(∆S(t)− 1,∆ξ(t))|
≤ ρ̂CJ̄1|(∆S(t)− 1,∆ξ(t))|

Case 2. Consider a t ≥ 0 such that −ρ̂ < ωV J1(∆S(t)S(t),∆I(t)I(t)). Then the
control value is uV (t) = ωV J1(∆S(t)S(t),∆I(t)I(t)), so

−S(t)J1(S(t), I(t))uV (t) = −ωV S(t)J1(S(t), I(t))J1(∆S(t)S(t),∆I(t)I(t)). (20)

The right side of (20) is nonpositive if ξ < −ξ0, by our choice of ξ0. On the other
hand, if we set

B̄V = sup{|J1(S, I)| : ξ̃ ≥ −ξ0, ξ̃ = ln(I/I∗), S ∈ (0, C], I ∈ (0, C]},

then B̄V < +∞. Therefore, in Case 2, if ξ̃(t) ≥ −ξ0, then we can use the bound
(16) to get

−S(t)J1(S(t), I(t))uV (t) ≤ −ωV S(t)J2
1 (S(t), I(t))

+ωV S(t)|J1(S(t), I(t))|J̄1|(∆S(t)− 1,∆ξ(t))|
≤ ωV CB̄V J̄1|(∆S(t)− 1,∆ξ(t))|.

By combining the preceding two cases, we get

−S(t)J1(S(t), I(t))uV (t) ≤ CJ̄1 max{ρ̂, ωV B̄V }|(∆S(t)− 1,∆ξ(t))|

for all t ≥ 0, so we can choose σV (s) = CJ̄1 max{ρ̂, ωV B̄V }s. The same reasoning
except without the S(t) factors on the left sides of the preceding inequalities, and
with J1 replaced by J2, and with the V subscripts replaced by I subscripts, and
with ρ̂ replaced by ν̂ and using (17) instead of (16), gives

−J2(S(t), I(t), Q(t))uI(t) ≤ J̄2 max{ν̂, ωIB̄I}|(∆S(t)− 1,∆ξ(t),∆Q(t)− 1)|

for all t ≥ 0, so we can choose σI(s) = J̄2 max{ν̂, ωIB̄I}s. We next derive σC , by
considering three cases.

Case 1. Consider a t ≥ 0 where J3(∆S(t)S(t),∆I(t)I(t)) ≥ 0. Then our assump-
tion on β and our formula for uC from (12) gives uC(t) = 0, so−J3(S(t), I(t))uC(t) ≤
0.

Case 2. Consider a t ≥ 0 where ωCJ3(∆S(t)S(t),∆I(t)I(t)) < β − β̂. Then

uC(t) = β − β̂ ≤ 0.

Also, by our choice of ξ0, we have ξ ≥ −ξ0, since ωC > 0. Therefore, our bound
(18) gives

−J3(S(t), I(t))uC(t) = −J3(S(t), I(t))(β − β̂)

≤ −J3(∆S(t)S(t),∆I(t)I(t))(β − β̂)

+J̄3(β̂ − β)|(∆S − 1,∆ξ)|
≤ J̄3(β̂ − β)|(∆S − 1,∆ξ)|.

Case 3. Consider a t ≥ 0 where ωCJ3(∆S(t)S(t),∆I(t)I(t)) ∈ [β − β̂, 0). Then
(12) provides the control value uC(t) = ωCJ3(∆S(t)S(t),∆I(t)I(t)), and our choice
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ξ0 > 0 again gives ξ ≥ −ξ0, so (18) gives

−J3(S(t), I(t))uC(t) = −J3(S(t), I(t))ωCJ3(∆S(t)S(t),∆I(t)I(t))
≤ −ωCJ2

3 (S(t), I(t))
+ωC |J3(S(t), I(t))|J̄3|(∆S(t)− 1,∆ξ(t))|

≤ ωCB̄C J̄3|(∆S(t)− 1,∆ξ(t))|,

where B̄C = sup{|J3(S, I)| : ξ̃ ≥ −ξ0, ξ̃ = ln(I/I∗), S ∈ (0, C], I ∈ (0, C]}. Combin-

ing the preceding cases lets us choose σC(s) = J̄3 max{β̂ − β, ωCB̄C}s.
Third Part. To obtain our exponential ISS condition (11), we first build positive

constants ci for i = 1, 2, 3 such that c1|x̃|2 ≤ V (x̃) ≤ c2|x̃|2 and α(V (x̃)) ≥ c3V (x̃)
along all solutions of the closed loop system from the theorem. To this end, we
first build positive constants ci for i = 1, 2 such that c1|(S̃, ξ̃, Q̃)|2 ≤ U(S̃, ξ̃, Q̃) ≤
c2|(S̃, ξ̃, Q̃)|2 along all solutions of this closed loop system, where U is the function
defined in (7) that is used in the formula for V . To find c1, first note that we can
find a constant ξ > 0 such that

U(S̃, ξ̃, Q̃) ≥ c
2

(
χ

2β̂

)2

ξ̃2 ≥ c
4

(
χ

2β̂

)2

|(S̃, Q̃)|2, hence

U(S̃, ξ̃, Q̃) ≥ c
4

(
χ

2β̂

)2

ξ̃2 + c
4

(
χ

2β̂

)2

ξ̃2 ≥ c
4

(
χ

2β̂

)2

ξ̃2 + c
8

(
χ

2β̂

)2

|(S̃, Q̃)|2

≥ c
32

(
χ

β̂

)2

|(S̃, ξ̃, Q̃)|2

along all solutions of the closed loop system at all times when ξ̃ < −ξ, by the
boundedness of C1. On the other hand, we can find a constant ca > 0 such that

eξ̃ − ξ̃ − 1 ≥ caξ̃
2 (21)

for all ξ̃ ≥ −ξ, so (21) and our formula for U from (7) give

U(S̃, ξ̃, Q̃) ≥ 1
2 S̃

2 + (c+1)ψ∗ca
β̂

ξ̃2 + c♢
2 Q̃

2.

By separately considering the two cases where ξ̃ < −ξ or ξ̃ ≥ −ξ, it follows that we
can pick

c1 = min
{
cχ2

32β̂2
, 12 ,

c♢
2 ,

(c+1)caψ∗

β̂

}
.

To find c2, notice that we can find a constant cb > 0 such that max{(eξ̃−1)2, |eξ̃−
1−ξ̃|} ≤ cbξ̃

2 along all solutions of the closed loop system (by separately considering
cases where ξ ≤ −ξ0 and ξ > −ξ0 for a big enough constant ξ0 > 0, and by again
using the boundedness of C1), so we can use the relation

c
2

[
S̃ + χ

β̂
ξ̃ + I∗(e

ξ̃ − 1)
]2

≤ 3c
2

[
S̃2 +

(
χ

β̂

)2

ξ̃2 + I2∗cbξ̃
2

]
and our formula for U from (7) to conclude that we can satisfy our upper bounding
condition on U using

c2 = max

{
1
2 (1 + 3c), 3c2

((
χ

β̂

)2

+ I2∗cb

)
+ (c+1)ψ∗

β̂
cb,

1
2c♢

}
.

Also, if |R̃| ≥ 2|S̃ + I∗(e
ξ̃ − 1) + Q̃|, then the formula for W in our expression (7)

for V satisfies W (S̃, ξ̃, Q̃, R̃) ≥ g
8 R̃

2. If instead |R̃| < 2|S̃ + I∗(e
ξ̃ − 1) + Q̃|, then

R̃2 ≤ 6
(
S̃2 + I2∗ (e

ξ̃ − 1)2 + Q̃2
)
≤ 6max{1, I2∗cb}(S̃2 + ξ̃2 + Q̃2),
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and therefore also
c1

12max{1,I2∗cb}
R̃2 ≤ 1

2c1(S̃
2 + ξ̃2 + Q̃2)

so we can use our lower bound U(S̃, ξ̃, Q̃) ≥ c1|(S̃, ξ̃, Q̃)|2 to get

V (S̃, ξ̃, Q̃, R̃) ≥ c1
2 (S̃

2 + ξ̃2 + Q̃2) +
c1
2 (S̃

2 + ξ̃2 + Q̃2)

≥ min
{
c1
2 ,

c1
12min{1,I2∗cb}

}
(S̃2 + ξ̃2 + Q̃2 + R̃2).

By separately considering the preceding two cases, we conclude that we can choose

c1 = min
{
c1
2 ,

g
8 ,

c1
12max{1,I2∗cb}

}
.

Also, since W (S̃, ξ̃, Q̃, R̃) ≤ 2g(S̃2 + I2∗ (e
ξ̃ − 1)2 + Q̃2 + R̃2), we can choose c2 =

c2 + 2gmax{1, I2∗cb}.
To find c3, first note that we can use (19) to get

V (x̃(t)) ≤ max{V (x̃(0)), α−1(2σ♯(ϵ))}

for all t ≥ 0 for any bound ϵ > 0 on the elements of D0 when |ϵ|∞ ≤ ψ∗/4,
by separately considering the cases where V (x̃(0)) ≥ α−1(2σ♯(ϵ)) and V (x̃(0)) <

α−1(2σ♯(ϵ)) and using the fact that V̇ (t) < 0 when α(V (x̃(t))) ≥ 2σ♯(ϵ). Hence, we
can choose

c3 = inf{α(s)/s : 0 < s ≤ max{V , α−1(2σ♯(ϵ))}},
where V = max{V (p1, p2, p3, p4) : (p1, I∗(e

p2 − 1), p3, p4) ∈ C0}, which is defined
because C0 is compact, and because we can use the formula for α from (8) and
L’Hopital’s rule to get lims→0+(α(s)/s) > 0. Hence, by upper bounding −α(V (x̃(t))
in (19) by −c3V (x̃(t)) and then applying an integrating factor to the result, we get

c1|x̃(t)|2 ≤ V (x̃(t)) ≤ e−c3tV (x̃(0)) + 1
c3
σ♯(|ϵ♯|[0,t])

≤ e−c3tc2|x̃(0)|2 + 1
c3
σ♯(|ϵ♯|[0,t])

(22)

and then we can divide (22) through by c1 and then use the subadditivity of the
square root to get

|x̃(t)| ≤
√

c2
c1
e−c3t/2|x̃(0)|+ 1√

c1c3

√
σ♯(|ϵ♯|[0,t]) (23)

for all t ≥ 0 along all of the solutions of the closed loop system when |ϵ|∞ ≤ ψ∗/4.

Also, we can find constants d1 ∈ (0, 1] and d2 ≥ 1 such that |ξ̃| ≥ d1|Ĩ| at all times

when X = (S, I,Q,R) is in C1 and such that |ξ̃| ≤ d2|Ĩ| at all times when X̃ ∈ C0,
as follows. First, we can find a constant ξ0 > 0 such that |ξ̃| ≥ |Ĩ| when ξ < −ξ0;
while for ξ ≥ −ξ0 and at points where X ∈ C1, the Mean Value Theorem gives

|Ĩ| = |I − I∗| = |eξ − eξ∗ | ≤ emax{|ξ|,|ξ∗|}|ξ̃|.

Hence, we can choose

d1 = min{1, 1/max{emax{| ln(I)|,|ξ∗|} : X ∈ C1, ξ ≥ −ξ0}}.

To find d2, first write |ξ̃| = | ln(I)− ln(I∗)| ≤ L∗|Ĩ| for a Lipschitz constant L∗ ≥ 1

for ln on {I > 0 : X̃ ∈ C0}, so we can take d2 = L∗. Therefore, if ϵ satisfies the
additional requirement that |ϵ|∞ ≤ ψ∗/4, then (23) gives

|X̃(t)| ≤ d2
d1

√
c2
c1
e−c3t/2|X̃(0)|+ 1

d1
√
c1c3

√
σ♯(|ϵ♯|[0,t]) (24)

for all t ≥ 0 along all solutions of the closed loop system from the theorem.
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It remains to show how to eliminate the requirement that |ϵ|∞ ≤ ψ∗/4. To this
end, note that using the proof of [10, Theorem 3.2] except with Γ(|ϵ|[0,t]) replaced
by the second term on the right side of (24), we get

|X̃(t)| ≤ d3e
−c4t|X̃(0)|+ 1

d1
√
c1c3

√
σ♯(|ϵ♯|[0,t]) + Γ(|ϵ|[0,t]) (25)

for all t ≥ 0, where c4 = min{c3/2, µ}, d3 = max{4, (d2/d1)
√
c2/c1}, and Γ ∈ K∞

is chosen such that

Γ(s) ≥ s+B
µ + 5|(S∗, ξ∗, Q∗, R∗)| for all s ≥ min{B,ψ∗/4},

and condition (25) is satisfied along all solutions of the SIQR error dynamics for X̃
satisfying the assumptions of the theorem, without requiring the additional condi-
tion that |ϵ|∞ ≤ ψ∗/4. Choosing

Γ(s) = s
µ +

(
B
µ + 5|(S∗, ξ∗, Q∗, R∗)|

)
s

min{B,ψ∗/4} ,

then gives the required constants b1, b2, and r.

Remark 3.2. A key ingredient in the proof of Theorem 3.1 is an equal sign condi-
tion, which called for a constant ξ0 > 0 such that J1(∆SS,∆II) < 0, J1(S, I) < 0,
J2(∆SS,∆II,∆QQ) < 0, J2(S, I,Q) < 0, J3(∆SS,∆II) > 0, and J3(S, I) > 0 all
hold for all (S, I,Q,R) ∈ C1 and all (∆S ,∆I ,∆Q) such that ln(I) = ξ < −ξ0 and
such that ϵ♯ ∈ D0, i.e., for each i, the Ji sign is equal at each state vector argu-
ment regardless of the uncertainty. This made it possible to prove semiglobal ISS
estimates, namely, a collection of ISS estimates (11) that provide one ISS estimate
for each pair (C0,D0). In the next section, we provide an alternative ISS result,
where the set of allowable values for the measurement uncertainties implies that
the preceding equal signs conclusions are satisfied without requiring that the ξ take
sufficiently negative values.

4. Robust ISS result. Theorem 3.1 provides Φ ∈ KL and Γ ∈ K∞ such that
all solutions X̃(t) = (S̃(t), Ĩ(t), Q̃(t), R̃(t)) of the SIQR error dynamics with initial
states in C0 for all disturbances satisfying the assumptions of the theorem satisfy

|(S̃(t), Ĩ(t), Q̃(r), R̃(t))| ≤ Φ(|(S̃(0), Ĩ(0), Q̃(0), R̃(0))|, t) + Γ(|ϵ♯|[0,t])

for all t ≥ 0, where Φ and Γ depend on C0 and on the set of admissible values
D0 for the disturbance functions. Hence, the solutions of the closed loop system
converge to 0 (so the states of the original SIQR dynamics (1) converge to the
endemic equilibrium) as t → +∞ with an overshoot Γ(|ϵ♯|[0,t]) depending on the
immigration disturbance ϵ and the multiplicative disturbance functions ∆S , ∆I ,
and ∆Q.

Under alternative conditions, we can prove an analog where the overshoot only
depends on the immigration uncertainty ϵ instead of ϵ♯. To state this analog, we
fix any constant c > 0, and we use the functions

M1(S, I, d1, d2) = (c+ 1)(d1 − 1)S + c
[
ρ̂+µ

β̂
d2 + (ed2 − 1)I

]
,

M2(S, I,Q, d1, d2, d3) = c
(
(d1 − 1)S + ρ̂+µ

β̂
d2 + (ed2 − 1)I

)(
ρ̂+µ

β̂
+ ed2I

)
+c

(
S − S∗ +

ρ̂+µ

β̂
ln

(
I
I∗

)
+ I − I∗

)
(ed2 − 1)I

+ (c+1)(γ+ν̂+µ)

β̂
(ed2 − 1)I − (ed2 − 1)Ic♢(d3Q−Q∗)

−Ic♢(d3 − 1)Q, and

(26)
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M3(S, I, d1, d2) = (d1 − 1)S

[
(d1S − S∗)e

d2I − c

{
d1S − S∗

+ ρ̂+µ

β̂

[
ln
(
I
I∗

)
+ d2

]
+ ed2I − I∗

}
ρ̂+µ

β̂

− (c+1)(γ+ν̂+µ)

β̂
(ed2I − I∗)

]
+ S

[
(d1 − 1)Sed2I

+S̃(ed2 − 1)I

−c
(
(d1 − 1)S + ρ̂+µ

β̂
d2 + (ed2 − 1)I

)
ρ̂+µ

β̂

− (c+1)(γ+ν̂+µ)

β̂
(ed2 − 1)I

]
(27)

with the notation from above. The motivation for the preceding functions is that
(13)-(14) give

Ji(∆SS,∆II) = Ji(S, I) +Mi(S, I,∆S ,∆ξ) for i = 1, 3 and
J2(∆SS,∆II,∆QQ) = J2(S, I,Q) +M2(S, I,Q,∆S ,∆ξ,∆Q)

for all state and disturbance values. Therefore, for i = 1 and i = 3, Ji(∆SS,∆II)
and Ji(S, I) have the same sign if and only if |Mi(S, I,∆S ,∆ξ)| ≤ |Ji(S, I)|,
and also, J2(∆SS,∆II,∆QQ) and J2(S, I,Q) have the same sign if and only if
|M2(S, I,Q,∆S ,∆ξ,∆Q)| ≤ |J2(S, I,Q)|. This motivates our choice of the set

DM(S, I,Q) ={
(d1, d2, d3) : |Mi(S, I, d1, d2)| ≤ |Ji(S, I)| for i = 1 and 3,

|M2(S, I,Q, d1, d2, d3)| ≤ |J2(S, I,Q)|
}
,

(28)

and the following theorem:

Theorem 4.1. For each set of positive constants ρ̂, ν̂, β̂, c, ωV , ωI , and ωC , and

each constant β ∈ [0, β̂), there exist functions Φ ∈ KL and Γ ∈ K∞ depending on

the preceding constants such that for all solutions (S̃(t), Ĩ(t), Q̃(t), R̃(t)) of the SIQR
error dynamics in closed loop with the controls (10) and all piecewise continuous
locally bounded choices of ϵ : [0,+∞) → (−B,+∞) such that |ϵ|∞ ≤ ψ∗/4 and all
piecewise continuous locally bounded choices of (∆S ,∆I ,∆Q) : [0,+∞) → (0,+∞)3

that satisfy (∆S(t), ln(∆I(t)),∆Q(t)) ∈ DM(S(t), I(t), Q(t)) for all t ≥ 0, the fol-
lowing bound is satisfied:

|(S̃(t), Ĩ(t), Q̃(t), R̃(t))| ≤ Φ(|(S̃(0), Ĩ(0), Q̃(0), R̃(0))|, t) + Γ(|ϵ|[0,t]). (29)

for all t ≥ 0.

Proof. We again use the strict Lyapunov function V from (7). Along all solutions
of the closed loop system, Lemma 2.1 provides class K∞ functions α and σ0 such
that

V̇ (t) ≤ −α(V (S̃(t), ξ̃(t), Q̃(t), R̃(t))− {S(t)J1(S(t), I(t))uV (t)
+J2(S(t), I(t), Q(t))uI(t) + J3(S(t), I(t))uC(t)}+ σ0(|ϵ|[0,t])

(30)

holds for all t ≥ 0 along all solutions of the closed loop system. Therefore, by
considering the cases that we studied in the second part of the proof of Theorem
3.1, it suffices to show that the quantity in curly braces in (30) is nonnegative.
By reasoning that is similar to the second part of the proof of Theorem 3.1, this
nonnegativity will hold if

sgn(J1(S(t), I(t))) = sgn(J1(∆S(t)S(t),∆I(t)I(t)))
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and

sgn(J2(S(t), I(t), Q(t))) = sgn(J2(∆S(t)S(t),∆I(t)I(t),∆Q(t)Q(t)))

and

sgn(J3(S(t), I(t))) = sgn(J3(∆S(t)S(t),∆I(t)I(t)))

hold along all solutions of the closed loop system. As explained above, this equal
signs condition is equivalent to the requirements that |Mi(S, I,∆S ,∆ξ)| ≤ |Ji(S, I)|,
for i = 1 and i = 3 and that |M2(S, I,Q,∆S ,∆ξ,∆Q)| ≤ |J2(S, I,Q)|. This in turn
is equivalent to the inequalities in the definition of DM(S, I,Q) holding at all times
t ≥ 0 with the choices (d1, d2, d3) = (∆S , ln(∆I),∆Q). The theorem now follows
from our assumption that (∆S(t), ln(∆I(t)),∆Q(t)) ∈ DM(S(t), I(t), Q(t)) for all
t ≥ 0.

Remark 4.2. Theorem 4.1 includes a robust global asymptotic stability result,
namely, when ϵ(t) is the zero function, then the overshoot Γ(|ϵ|[0,t]) in the final
ISS estimate (29) is zero so (29) is a global asymptotic stability estimate for all
choices of the other uncertainty functions ∆S(t), ∆I(t), and ∆Q(t) that satisfy
the assumptions of the theorem. This differs from traditional robust asymptotic
stability results, where the bounds on the uncertainty ensuring asymptotic sta-
bility are constant, because here, the set DM(S(t), I(t), Q(t)) that must contain
(∆S(t),∆ξ(t),∆Q(t)) at each time t is a time-varying set instead of a fixed compact
box.

Hence, key differences between Theorems 3.1 and 4.1 above are that (a) Theorem
4.1 eliminates the effects of ∆S , ∆I , and ∆Q from the added overshoot term in
the final ISS estimate, (b) whereas the conclusion of Theorem 3.1 is semi-global
insofar that its constants b1, b2, and r depend on the compact sets C0 and D0, the
conclusion of Theorem 4.1 is a global one that produces comparison functions Φ and
Γ that are independent of the sets of initial states, (c) the conclusion of Theorem
4.1 is not an exponential stability one like it is in the conclusion of Theorem 3.1,
and (d) Theorem 4.1 adds the condition |ϵ|∞ ≤ ψ∗/4 that was not present in the
conclusion of Theorem 3.1 but which was needed in [10, Theorem 1]. On the other
hand, if we add the assumption to Theorem 4.1 that there is a compact subset
D0 ⊆ (−B,+∞)× (−∞, 1)×R× (−∞, 1) such that (ϵ(t), 1−∆S(t), ln(∆I(t)), 1−
∆Q(t)) ∈ D0 for all t ≥ 0, and if we only consider solutions of the SIQR dynamics
whose initial states lies in in a given compact set C0 of initial states, then the proof
of Theorem 4.1 and the third part of the proof of Theorem 3.1 provide positive
constants b1, b2, and r such that

|(S̃(t), Ĩ(t), Q̃(t), R̃(t))| ≤ b1|(S̃(0), Ĩ(0), Q̃(0), R̃(0))|e−rt

+ b2

(
|ϵ|[0,t] +

√
|ϵ|[0,t]+|ϵ|2[0,t]

)
for all t ≥ 0 along all solutions of the closed loop system from Theorem 4.1
with initial states in C0 whose uncertainties satisfy the additional requirement that
(ϵ(t), 1 −∆S(t), ln(∆I(t)), 1 −∆Q(t)) ∈ D0 for all t ≥ 0, where b1, b2, and r again
depend on C0 and D0, but where the condition |ϵ|∞ ≤ ψ∗/4 is no longer required.

Remark 4.3. Our uncertainties ∆S , ∆I , and ∆Q can model the effects of sampling
or time delays in the measurements of S, I, and Q, e.g., lags between the times
that perturbed population measurements are taken and the times that the feedback
controls can be implemented. For instance, consider the case where the available S
measurement at each t ≥ 0 is ∆∗

S(t)S(t−dS(t)) where ∆∗
S is a piecewise continuous
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unknown function that represents measurement uncertainty as before and dS(t)
denotes a time delay. This models the effects of sampled measurements at sample
times {ti} that admit constants t > 0 and t > 0 such that t0 = 0 and ti+1−ti ∈ [t, t]
for i = 0, 1, 2, . . ., by choosing dS(t) = t−Σ(t) for all t ≥ 0, where Σ(t) is the largest
sample time on each interval [0, t] for each t ≥ 0. This produces sawtooth-shaped
discontinuous delays dS . Then we can choose ∆S(t) = ∆∗

S(t)S(t − dS(t))/S(t) for
all t ≥ 0 to get ∆S(t)S(t) = ∆∗

S(t)S(t − dS(t)) for all t ≥ 0, and similar reasoning
applies to I and Q. This is an analog of the delayed results from [10, Section 5],
which analyzed the effects of delayed measurements in the unperturbed controls (3)
but did not allow the multiplicative measurement uncertainties in the measurements
in the feedback controls that we allow here.

Remark 4.4. Since Theorems 3.1-4.1 assume that the constants ρ̂ and ωV in the
control formulas in (2) and (10) are positive, the statements of these theorems do
not allow cases where no vaccination control is present. However, the conclusions
of the two theorems remain true if we change their assumptions by instead having
ρ̂ = ωV = 0 and keep all other assumptions the same, and this covers cases where
no vaccination is being used. Their proofs remain the same with this change, except
the σV in the proof of Theorem 3.1 is the zero function. We illustrate this variant
of the theorems in the next section.

5. Simulations and discussions.

5.1. Objectives. We present our MATLAB simulations to illustrate the effectiveness
of the feedback controls (10). In [10], the values for the constants in the model and
in the controls were chosen to model the COVID-19 pandemic in Japan, and we use
the same parameter settings in this section; see Table 1 for parameter descriptions,
settings, and the sources of those parameter values. The unit of population is in
millions, and the time t is in days. As in [10], we assume a 20% perturbation of
immigrants and newborns, which gives

ϵ(t) = −311× 10−6 cos (πt/150) (31)

and the computed basic reproduction number R̂0 from (2) is 1.1001 when vaccina-
tion is being used.

For our simulations, we study how the feedback controls and states change due
to the measurement uncertainties ∆S , ∆I , and ∆Q in (10) and we consider the bi-
ological implications of these results. We first study cases of constant uncertainties
that correspond to undercounting or overcounting. The majority of the experiments
focus on undercounting. To curtail the spread of disease, underestimating the num-
ber of infectious individuals can be a more serious problem than overestimating.
Undercounting the infected compartments can be expected due to reluctance of
individuals to be tested, insufficiently many test kits, false negative test results,
and a significant number of untested asymptomatic infected individuals. We also
consider mixed constant levels of uncertainty occur due to undercounting in classes
I and Q and overcounting in S because undercounting of I and Q could result in
an overcounting of the susceptible population. We also consider what happens with
these constant levels of uncertainties in the absence of vaccination, as described
in Remark 4.4. This simulates cases of the beginning stages of an outbreak of a
novel strain (like COVID or the 2009 swine flu pandemic) when a vaccine is being
developed but not yet readily available.
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We also study cases where ∆S , ∆I , and ∆Q vary over time. These uncertainties
account for undercounting. The uncertainties that we consider are sigmoidal Hill
functions (with varying heights) and periodic (for varying periods). The Hill func-
tions model increases in resources (e.g., test kits, vaccines, and resources needed to
administer such products) that can improve measurements over time. The periodic
functions model population participation in vaccination and testing fluctuating over
time. Lastly, we study how the feedback controls and states change due to time-
varying uncertainties that are generated from Theorem 4.1.

5.2. Description of numerical implementation. For numerical simulations to
illustrate Theorem 3.1 in which ∆S , ∆I , and ∆Q are specified, we generate solutions
for states and controls using an iterative process involving the Runge-Kutta method.
With specified controls and uncertainty functions, the system is of the form ẋ(t) =
f(t, x(t)), for which MATLAB’s ODE solvers (like ode23 and ode45) can generate
solutions for any initial conditions. However, we build a numerical scheme that can
be modified to handle the constraints in Theorem 4.1 and is similar in spirit to the
forward-backward sweep method (e.g., from [17, Chapter 4]), which is commonly
used in mathematical biology.

Our numerical scheme is as follows. First, we partition the time interval [0, T ]
into n+1 equally spaced nodes, with mesh size h = T/n. For the simulations where
the uncertainty measures are specified, we set T equal to 500 days and n set to
being 5000, so the mesh size is h = 0.1. We denote the kth mesh point kh by tk for
each k. We construct an n+ 1 vector for each state variable S, I, Q, and R, which
are denoted by S, I, Q, and R respectively, and an n + 1 vector for each control
variable ui for i = C, I, V which are denoted by ui respectively, whose entries are
the value of the variables at the mesh points, so for instance, the kth entry of S is
Sk = S(tk) and the kth entry of uV is denoted by uV,k = uV (tk) for k = 0, . . . , n.
The values of these n + 1 vectors are updated in an iterative procedure that we
explain below. We use superscripts to indicate these updated values, as follows.
For i = C, I, V , uj

i is the jth update of ui for all j ≥ 0, where the 0th update is
initialized as described in Step 1. Similarly, Sj, Ij, Qj, and Rj are the jth updates
of these vectors, but the first entry of each vector is set based on the initial values.
Additionally, for ℓ = S, I, and Q we construct an n + 1 vector for each input ∆ℓ,
which is denoted ∆ℓ whose kth entry is defined as ∆ℓ,k = ∆ℓ(tk). These vectors are
fixed during this iterative process. In the descriptions below, we use the definition
Xj = (Sj, Ij,Qj,Rj) which is an (n+1)×4 matrix whose columns Xj

∗,ℓ correspond
to the jth iteration of state vector ℓj for ℓ = S, I,Q, and R. The numerical scheme
is as follows:

Step 1. Initialize u0
i to be the zero vector for all i. For initializing X0, let X0

0 =
(S(0), I(0), Q(0), R(0)) = (S0, I0, Q0, R0) given in Table 1. Fix vectors ∆ℓ and the
convergence tolerance parameter δ.

Step 2. To obtain the iterates Xj+1 for j ≥ 0, we treat (1) as an initial value
problem with the initial state (S(0), I(0), Q(0), R(0)) = (S0, I0, Q0, R0) in Table 1
and the immigration uncertainty in (31). set Xj

0 = X0

0 for all j. We use a fourth-
order Runge-Kutta routine to numerically solve (1) forward in time, with the control
being the previous iteration of the controls uj

i .

Step 3. After generating Xj+1, we use (10) with the values of the measurement
uncertainties that we specify below to compute the feedback control values, which
we denote as ũj

i , and set uj+1

i = 0.5uj

i + 0.5ũj

i .
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Step 4. We check for convergence. We measure the relative error between the
current and previous iterate of the states and between the current and previous
iterate of the controls. Let ∥ · ∥ be the Euclidean 1-norm, i.e., ∥y∥ = |y1|+ . . . |yn|.
If both δ∥uj

i∥−∥uj+1

i −uj

i∥ ≥ 0 for all i = C, I, V and δ∥Xj+1

∗,ℓ ∥−∥Xj+1

∗,ℓ −Xj

∗,ℓ∥ ≥ 0
for all ℓ = S, I,Q, and R, then output their current values as solutions; otherwise,
if any of these values violate the above inequalities, then return to Step 2.

For Step 3, we use a convex combination to update the controls to speed up
convergence, and we use δ = 10−8. The main differences between our technique
and the forward-backward sweep are that there is no backward implementation of
Runge-Kutta (since our method has no costate variables to update) and the control
is a feedback (instead of an optimal) control. See Fig. 1 for a flow chart explaining
our method.

Figure 1. Flow chart when ∆S , ∆I , and ∆Q are specified.

To construct uncertainty measurements for which the overshoot function depends
only on the immigration disturbance function ϵ, we apply Theorem 4.1. For our
experiments, due to our settings for immigration disturbances that satisfy |ϵ|∞ >
ψ∗/4, we are simulating results corresponding to Remark 4.2. To find uncertainty
values that satisfy the requirements (d1(t), d2(t), d3(t)) = (∆S(t), ln(∆I(t)),∆Q(t))
∈ DM(S(t), I(t), Q(t)) for all t ≥ 0 from Theorem 4.1, we can consider the following
optimization problem:

min
d1,d2,d3

J(d1(t), d2(t), d3(t)) = 0

subject to |M1(S(t), I(t), d1(t), d2(t))| − |J1(S(t), I(t))| ≤ 0
|M2(S(t), I(t), Q(t), d1(t), d2(t), d3(t))|−|J2(S(t), I(t), Q(t))|≤0
|M3(S(t), I(t), d1(t), d2(t))| − |J3(S(t), I(t))| ≤ 0
0 < d1(t) ≤ 1, d2(t) ≤ 0, 0 < d3(t) ≤ 1
for all t ≥ 0,

(32)

where Mi and Ji are defined above (in the first part of the proof of Theorem 3.1
and (26)-(27)) and the immigration perturbation as defined in (31) is also applied
in the above problem. Our methods cover more general cases where the constraints
in the last line are only that 0 < d1(t) and 0 < d3(t) for all t ≥ 0; however, in our
experiments we restricted the problem to where we are searching for uncertainty
measures that correspond to undercounting in classes S, I, and Q. Since d2(t) =
ln(∆I(t)), the inequality constraint d2(t) ≤ 0 corresponds to the constraint 0 <
∆I(t) ≤ 1. The objective function used in (32) is set to 0 to simply find a solution
that satisfies the inequality constraints, but other objective functions can be used.

For computational purposes, we performed our simulations by solving a dis-
cretized variant of (32) over time interval [0, T ], with T = 250. We partition the
time interval as described in our previous simulations with the same mesh size being
considered. We construct an n+1 vector of dm for m = 1, 2, 3, and we use bold font
for these symbols to express these vectors. For m = 1, 2, 3, the kth entry of dm is
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defined by dm,k = dm(tk) for k = 0, . . . , n. The discretized variant of problem (32)
is:

min
(d1,d2,d3)

J(d1,d2,d3) = 0

subject to |M1(Sk, Ik, d1,k, d2,k)| − |J1(Sk, Ik)| ≤ 0
|M2(Sk, Ik, Qk, d1,k, d2,k, d3,k)| − |J2(Sk, Ik, Qk)| ≤ 0
|M3(Sk, Ik, d1,k, d2,k)| − |J3(Sk, Ik)| ≤ 0
for all k = 0, . . . , n,
0 < d1 ≤ 1,0 < d3 ≤ 1, and d2 ≤ 0,

(33)

where 0 ∈ Rn+1 is the vector of all zeros and 1 ∈ Rn+1 is the vector of all 1’s, and
the inequalities in the last line of (33) should be understood to hold componentwise.

In numerically solving problem (33), we use MATLAB’s optimization solver fmincon
which handles large scale nonlinear constrained optimization problems using an it-
erative procedure called the interior-point method. In using fmincon, we rewrote
each nonlinear constraint |Mi(·)| − |Ji(·)| ≤ 0 as the two inequality constraints
Mi(·)− |Ji(·)| ≤ 0 and −Mi(·)− |Ji(·)| ≤ 0 so that the function generated by the
left hand side of each of these inequalities is differentiable with respect to dm,k. We
solve (33) to produce a sequence of triplets (dj

1,d
j

2,d
j

3) for the jth iterate in the
algorithm that we state next. When using fmincon, we chose initial values d0

m for
m = 1, 2, 3 to be randomly generated values corresponding to overcounting rather
than undercounting because with such initialization the solver ran faster and the
final update satisfied all of the constraints given in problem (32). In numerically im-
plementing simulations corresponding to Theorem 4.1 and Remark 4.2, we perform
the following, where we continue our other notation for state and control sequences:

Step 1. Initialize each control u0
i as being the all zeros vector. In order to initialize

X0, let X0

0 = (S(0), I(0), Q(0), R(0)) = (S0, I0, Q0, R0) given in Table 1. Initialize
the uncertainty measures as d0

1 = 1+ rand(1, n+ 1), d0

3 = 1+ rand(1, n+ 1), and
d0

2 = rand(1, n + 1), where rand(1, n + 1) is a MATLAB command that generates
an n + 1 vector whose entries are randomly generated numbers on (0, 1]. Fix the
convergence tolerance parameter δ.

Step 2. Using the initial values (S(0), I(0), Q(0), R(0)) = (S0, I0, Q0, R0) from
Table 1 and the values of the previous iteration uj of the controls for j ≥ 0, apply a
fourth-order Runge-Kutta routine to simultaneously update all of the states Xj+1

forward in time according to the system of equations in (1).

Step 3. Use fmincon to solve (33) with the Sk, Ik, Qk, and Rk values chosen to
be the corresponding components of the newly updated states Xj+1. For updating
dj+1

m , we use a convex combination of the previous iterate dj

m and the numerical
solution dj+1∗

m to (33). That is, dj+1

m = 0.5dj

m + 0.5dj+1∗
m .

Step 4. After generating the updated states Xj+1 and uncertainty measures dj+1

m ,
use (10) to compute the feedback controls, which we denote as ũj

i , and set uj+1

i =
0.5uj

i + 0.5ũj

i .

Step 5. We check for convergence. Here we wish to measure the relative error
between the current and previous iterate of the states and between the current and
previous iterate of the controls. Let ∥ · ∥ denote the Euclidean 1-norm as before. If
both δ∥uj

i∥ − ∥uj+1

i − uj

i∥ ≥ 0 for i = C, I, V and δ∥Xj+1

∗,ℓ ∥ − ∥Xj+1

∗,ℓ − Xj

∗,ℓ∥ ≥ 0
for all ℓ = S, I,Q, and R, then output their current values as solutions; otherwise,
if any of these values violate the above inequalities, then return to Step 2. See Fig.
2 for a flow chart describing these steps.
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Figure 2. Flow chart for applying Theorem 4.1.

For using fmincon, we had to adjust the “MaximumFunctionEvaluations” to
being 500,000 (although we can decrease this setting if we were to run this problem
over a smaller time interval). Additionally, in using fmincon to solve the discretized
problem, we had to set our model parameters and state variables as being global
variables. A convex combination between the previous control values and the values
generated by the feedback control is used in Step 4 for speeding up convergence.
For our simulations pertaining to Theorem 4.1, we used δ = 10−6, and we generate
solutions over the time interval [0, 250].

5.3. Constant levels of uncertainty. We first study constant levels of uncer-
tainty measures in compartments S, I, and Q to investigate how such measures
(and the immigration perturbation (31)) influence the behaviors of the controls and
the states. These uncertainty measurements correspond to uncertainties due to un-
dercounting or overcounting. The percentage of undercounting class ℓ is obtained
by computing 1 − ∆ℓ (for ℓ = S, I, and Q), and the percentage of overcounting
class ℓ is obtained by computing ∆ℓ− 1 (for ℓ = S, I, and Q). For our simulations,
we compare our results to the case in which no measurement uncertainties are being
applied to the classes (∆ℓ = 1 for all ℓ = S, I, and Q). In all of these simulations,
we have the immigration perturbation set as (31). We conducted these types of
simulations associated with constant levels of uncertainty:

1. Measurement uncertainties applied to classes S, I, and Q that correspond
to undercounting each class for varying percentage levels of undercounting,
using the parameter values from Table 1. The percentage levels are 20%
undercounting of each class (∆ℓ = 0.8 for ℓ = S, I, Q), 30% undercounting
of each class (∆ℓ = 0.7 for ℓ = S, I, Q), 50% undercounting of each class
(∆ℓ = 0.5 for ℓ = S, I, Q), 70% undercounting (∆ℓ = 0.3 for ℓ = S, I, Q),
and 80% undercounting (∆ℓ = 0.2 for ℓ = S, I, Q).

2. Measurement uncertainties applied to classes S, I, and Q that correspond
to undercounting each class for varying percentage levels of undercounting in
the absence of vaccination (as in Remark 4.4), which correspond to choosing
ρ̂ = ωV = 0 in the simulations. The percentage levels are 20% undercounting
of each class (∆ℓ = 0.8 for ℓ = S, I, Q), 30% undercounting of each class
(∆ℓ = 0.7 for ℓ = S, I, Q), 50% undercounting of each class (∆ℓ = 0.5 for
ℓ = S, I, Q), 70% undercounting (∆ℓ = 0.3 for ℓ = S, I, Q), and 80%
undercounting (∆ℓ = 0.2 for ℓ = S, I, Q).

3. Measurement uncertainties applied to S, I, and Q that correspond to under-
counting class I and Q and overcounting class S for varying percentage levels
using the values from Table 1. The percentage levels are 20% undercounting in
class I and Q (∆ℓ = 0.8 for ℓ = I,Q) and 20% overcounting in compartment
S (∆S = 1.2), 30% undercounting in class I and Q (∆ℓ = 0.7 for ℓ = I,Q)
and 30% overcounting in compartment S (∆S = 1.3), 50% undercounting in
the infected and isolated compartments (∆ℓ = 0.5 for ℓ = I and Q) and 50%
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Parameter Description Value Reference

N0 initial total population size (millions) 126 [11, 22]

I0 the initial size of the infectious population (millions) 0.06 [10]

Q0 the initial size of the isolated population (millions) 0.0001 [10]

R0 the initial size of the recovered population (millions) 0.0001 [10]

S0 the initial size of the susceptible population (millions) N0 − I0 −Q0 −R0 [10]

β̂ nominal transmission and contact in (2) 0.126
N0

[19]

γ recovery rate in (1) 0.03 [19]

τ reciprocal of average isolation time in (1) 0.03 [19]

µ nonassociative mortality in (1) 0.0000307 [11, 22]

B immigration rate in (1) 3110× 10−4 [11, 22]

ρ̂ nominal vaccination rate in (2) 0.00005 [10]

ν̂ nominal isolation rate in (2) 0.005 [10]

β tuning constant in uC(t) from (10) β̂
4 [10]

λ and χ λ = γ + ν̂ + µ and χ = ρ̂+ µ used in equilibrium - [10]

ωV tuning parameter for control uV (t) 0.000015 [10]

ωI tuning parameter for control uI(t) 0.00006 [10]

ωC tuning parameter for control uC(t) 0.0000001 [10]

c constant from (4) 0.02 [10]

c♢ constant from (4) 1.8c♢ [10]

c♢ bound (5) relating to tuning constant c♢
(τ+µ)cλ

ν̂2 [10]

Table 1. Parameter settings and descriptions when vaccination is
present. These values were used in [10]. When no vaccination is
present, the parameters are the same as in the table, except with
ωV = ρ̂ = 0.

overcounting in class S (∆S = 1.5), 70% undercounting in the infected and
isolated compartments (∆ℓ = 0.3 for ℓ = I and Q) and 70% overcounting
in class S (∆S = 1.7), and 80% undercounting in the infected and isolated
compartments (∆ℓ = 0.2 for ℓ = I and Q) and 80% overcounting in class S
(∆S = 1.8).

4. Measurement uncertainties applied to classes S, I, and Q that correspond to
undercounting class I and Q and overcounting class S for varying percentage
levels in the absence of vaccination, which correspond to choosing ρ̂ = ωV = 0
in the simulations. The percentage levels are 20% undercounting in class I
and Q (∆ℓ = 0.8 for ℓ = I,Q) and 20% overcounting in compartment S
(∆S = 1.2), 30% undercounting in class I and Q (∆ℓ = 0.7 for ℓ = I,Q)
and 30% overcounting in compartment S (∆S = 1.3), 50% undercounting
in the infected and isolated compartments (∆ℓ = 0.5 for ℓ = I, Q) and 50
% overcounting in class S (∆S = 1.5), 70% undercounting in the infected
and isolated compartments (∆ℓ = 0.3 for ℓ = I, Q) and 70% overcounting
in class S (∆S = 1.7), and 80% undercounting in the infected and isolated
compartments (∆ℓ = 0.2 for ℓ = I, Q) and 80% overcounting in class S
(∆S = 1.8).

5. Measurement uncertainties applied to classes S, I, and Q that correspond to
overcounting in compartments S, I, and Q for varying percentage levels using
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the values from Table 1. The percentage levels are 20% overcounting in class
S, I, and Q (∆ℓ = 1.2 for ℓ = S, I, Q), 30% overcounting in class S, I, and
Q (∆ℓ = 1.3 for ℓ = S, I, Q), 50% overcounting in compartments S, I, and
Q (∆ℓ = 1.5 for ℓ = S, I, Q), 70% overcounting in compartments S, I, and
Q (∆ℓ = 1.7 for ℓ = S, I, Q), and 80% overcounting in compartments S, I,
and Q (∆ℓ = 1.8 for ℓ = S, I, Q).

5.3.1. Undercounting constant level of uncertainty results. In Figure 3, we plot the
states and controls corresponding to constant levels of measurement uncertainty due
to undercounting in classes S, I, and Q. In Subfigures 3d, 3e, and 3f, the isolation
control and the vaccination control rates are reduced dramatically when higher levels
of uncertainty are assumed and the contact control is being prioritized. In Subfigure
3f, the behavior of each vaccination procedure is a decreasing function. In the case
where no measurement uncertainty is applied (which is plotted by blue solid lines),
the vaccination protocol is administered throughout time interval [0, 500]. As the
undercounting percentages increase, the vaccination protocol is turned off sooner
(meaning, uV takes the value uV (t) = −ρ̂). In particular, in the case in which there
is 50% undercounting (the purple dashed line) vaccination is turned off around day
180, and when there is 80% undercounting (the blue dashed line), vaccination is
never activated.
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Figure 3. Constant levels of uncertainties due to undercounting
in the S, I, and Q populations. The solid blue lines correspond to
the case in which no undercounting occurs (∆ℓ = 1 for ℓ = S, I,Q),
the solid red lines correspond to 20% undercounting (∆ℓ = 0.8 for
ℓ = S, I,Q), the solid gold lines correspond to 30% undercounting
(∆ℓ = 0.7 for ℓ = S, I,Q,), the purple dash-dot lines correspond to
50% undercounting, the lime solid line corresponds to 70% under-
counting, and the blue dash lines correspond to 80% undercounting.
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In Subfigure 3d, we see that as the level of uncertainty due to undercounting
increases, the contact control needs to be applied sooner. The blue solid line in
Subfigure 3d is the feedback contact control in which no uncertainty measures are
applied to the compartments. Here, the feedback control is activated around day
88. However, all of the other contact controls in Subfigure 3d are activated at earlier
times. In cases where we assume that compartments S, I, and Q are underestimated
by 50% (purple dash-dot line), by 70% (light green solid line), and by 80% (light
blue dashed line), the contact control is applied within the first 20 days (albeit at
very low levels) and the intensity of the contact control peaks around day 90 to day
100.

For the contact control corresponding to the 50% undercounting, the level of
intensity of applying contact control peaks at a lower magnitude compared to the
contact control in which there is not any uncertainty, and yet in Subfigure 3b we
see (in the purple dash-dot line) that the infection peak is much lower compared
to the peak infection that was generated by the feedback controls having no mea-
surement uncertainty. Biologically speaking, this pertains to acting more quickly
with nonpharmaceutical interventions (such as social distancing and mask usage)
can “flatten the curve”. Considering the susceptible population and the vaccination
rate corresponding to the uncertainty measures set to being 0.5 (given by purple
dash-dot lines in Subfigures 3a and 3f), the susceptible population remains high for
the first 100 days because the contact control decreases their chances of becoming
infected but also a large portion of the susceptible are not receiving long-term im-
munity through vaccination. Once the contact control starts to relax (near day 100),
these susceptibles are now at risk of becoming infected. This explains Subfigure 3b
where the infection class corresponding to 50% undercounting (purple dash-dot line)
does not decrease towards zero as quickly compared to other cases. This illustrates
the effects of constant undercounting of the compartments.

5.3.2. Constant levels of uncertainty due to undercounting without vaccination. We
now examine the effects of constant levels of uncertainties due to undercounting but
in the absence of vaccination. Therefore, in these simulations, we set ρ̂ = ωV = 0 as
in Remark 4.4, which produces the constant vaccination rate ρ(t) = 0 as explained
in Remark 4.4. The motivation behind these simulations is to represent a scenario
in which only non-pharmaceutical interventions (such as social distancing, mask
usage, contact tracing, and quarantine/isolation) can be applied. In Figure 4, we
provide plots of the states and controls, and in Figure 5 we provide a comparison
plot of the transmission functions associated with using constant undercounting
uncertainties and with vaccination (on the left) versus the transmission functions
that are obtained when no vaccination is administered (on the right). In comparing
the plots of the contact control in the absence of vaccination (in Subfigure 4d)
with the contact controls with vaccination (in Subfigure 3d), both behave very
similarly. The main difference between the two is the peak intensity is larger in
the contact controls in the absence of vaccine, in comparison to the peak intensities
of the contact control with vaccination. For example, in the case in which no
uncertainity is applied the transmission rate (which is indicated by the blue solid
line in Subfigure 5a) β(t) drops to 0.000350068 at day 104.4, while in the same case
but in the absence of vaccination (represented by the blue solid line in Subfigure
5b) β(t) drops to 0.000286686 on day 100.6. In the case in which vaccination
is considered and undercounting is 20% (which is represented by the red line in
Subfigure 5a), β(t) drops to 0.000378254 on day 94.7, while in the same case but
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Figure 4. Constant levels of uncertainties due to undercounting
in classes S, I, and Q without vaccination. The color and line style
used represents the same levels of uncertainty as what was used in
Figure 3.
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Figure 5. Left. Transmission rate with constant undercounting
uncertainty measurements and with vaccination. Right. Trans-

mission rate (β(t) = β̂ + uC(t)) with constant undercounting un-
certainty measurements and without vaccination. (Note: both sub-
figures are a vertical shift of the contact controls presented in Sub-
figures 3d and 4d).

with no vaccination applied (represented by the red line in Subfigure 5b), β(t)
drops to 0.000339657 on day 92. When pertaining to uncertainty measures that
correspond to 50% undercounting or higher percentages of undercounting, these
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changes in intensity are not really distinguishable. Regarding the isolation control
with vaccination (Subfigure 3e) and without vaccination (Subfigure 4e), the overall
behavior of the isolation controls remain the same, but the isolation controls peaks
at a slightly larger rates when vaccination is not applied. The higher peaks are
more noticeable in cases in which the levels of uncertainty are small, and become
less pronounced when the percentage undercounting is very high. In the absence
of vaccination, it makes sense to administer stricter measures that correspond to
non-pharmaceutical interventions.

The more interesting characteristic corresponding to these simulations is in view-
ing how I(t) changed due to no vaccination. With ρ set to being zero, the com-

puted basic reproduction number is R̂0 = 2.8918. Consequently, we should expect
increased peaks in I(t). We compare the plots of the resulting state variable with
all controls considered (given in Subfigure 3b) with the resulting state variable in
which the vaccination is ρ(t) = 0 (given in Subfigure 4b). What we observed is that
in cases in which undercounting is at high percentage levels, the change in the peak
incidence is not as significant in comparison to what occurs when we have more cer-
tainty. In particular, in the case where no uncertainty measures is applied (which is
represented by the solid blue line) the peak incidence is about 17.27 million people
when vaccination is considered, but without vaccination the peak incidence is about
21.5 million. Similarly, when the compartments are undercounted by 20%, the peak
incidence is approximately 16 million when vaccination is considered, but without
vaccination the peak incidence jumps to about 19.3 million. When the percentage of
undercounting of classes is 50%, the peak incidence is a little over 9.9 million when
vaccination is considered, but without vaccination the peak incidence is approxi-
mately 10.68 million. We see little change in peak incidences in simulations where
undercounting is larger than 50%. This is because the role of the contact control
is prioritized more than vaccination in the case of high levels of undercounting. In
cases where we were more certain, vaccination played a stronger role, so ignoring
vaccination led to higher peaks in compartment I.

5.3.3. Mixed constant levels of uncertainty. We next provide simulations where the
uncertainty for class S represents overcounting and the uncertainty for I and Q
correspond to undercounting. Our motivation is that it is likely that those who
are infectious but not counted as being infected could be incorrectly classified as
susceptible. This can occur when considering asymptomatic individuals who do not
get tested, or individuals who are infectious but get a false negative test result. We
refer to the following simulations as mixed constant levels of uncertainty.

In Figure 6, we provide plots of the states and controls when incorporating mixed
constant levels of uncertainty. In these simulations, the values of uC and uI in our
formulas for the contact and isolation control are closer to zero as the uncertainty
increases, and vaccination is being prioritized as we become more uncertain about
each compartment. In Subfigure 6d, as the uncertainty due to undercounting I
and Q and overcounting S increases, the contact control is activated later, and the
intensity of that contact control decreases. In Subfigure 6e, the maximum of the
isolation control decreases as the percentages of undercounting in I and Q and of
overcounting in S increase. In the vaccination control uV values in Subfigure 6f,
the rate of vaccination is increased (at the start of the epidemic) as the percents
of undercounting in I and Q and of overcounting in S increase. From a stability
analysis standpoint, vaccination is being prioritized here to ensure that S(t) ap-
proaches S∗ (i.e., the endemic steady state value which is the red dotted line given
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Figure 6. Mixed constant levels of uncertainty results due to un-
dercounting I and Q and overcounting S. The solid blue lines
correspond to the case in which no undercounting occurs (∆ℓ = 1
for ℓ = S, I,Q), the solid red lines correspond to 20% undercount-
ing in I and Q (∆ℓ = 0.8 for ℓ = I,Q) and 20% overcounting in S
(∆S = 1.2). The solid gold lines correspond to 30% undercounting
in I and Q (∆ℓ = 0.7 for ℓ = I,Q) and 30% overcounting in S
(∆S = 1.3), the purple dash-dot lines correspond to 50% under-
counting in I and Q (∆ℓ = 0.5 for ℓ = I,Q) and 50% overcounting
in S (∆S = 1.5), the lime solid line corresponds to 70% under-
counting in I and Q and 70% overcounting in S, and the blue dash
lines correspond to 80% undercounting in I and Q and 80% over-
counting in S.

in Subfigure 6a)) as t grows. The resulting feedback controls lead to increases in
the peak incidence (as seen in Subfigure 6b) as we become more uncertain about
the measurements for S, I, and Q.

5.3.4. Mixed constant levels of uncertainty without vaccination. We next provide
simulations of mixed constant levels of uncertainty without vaccination, i.e., the
case of Remark 4.4, where only non-pharmaceutical interventions can be applied.
We set ρ̂ = ωV = 0 as in Remark 4.4, which produces the constant vaccination rate
ρ(t) = 0 as explained in Remark 4.4. The computed basic reproduction number is
approximately 2.8918. An increase in the basic reproduction number should lead
to increased peak incidences. In Figure 7, the plots of the states and controls are
provided. Comparing these results to those where vaccination is applied (in Figure
6), we see that the behaviors of the contact controls are similar, but the intensity
for the control increased. Comparing the minimum values of uC in Subfigure 6d to
minimum values of the contact controls of uC without vaccination (in Subfigure 7d),
we see little change in values when we are more certain about S, I, and Q. However,
when the uncertainty measurements corresponding to percentages of undercounting
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Figure 7. Constant uncertainties due to undercounting of I and
Q and overcounting of S (without vaccination). The color and
line style represents same levels of uncertainty as what was used in
Figure 6.

in I and Q and of overcounting in S is 50% or larger, the corresponding contact
controls drop to lower minima when vaccination is ignored.

Considering the isolation control in the absence of vaccination (in Subfigure 7e),
we observe that the peak values of uI are larger when vaccination is ignored in
comparison to the peak values of uI when vaccination is considered in Subfigure 6e.
These changes are distinguishable regardless of what level of uncertainty is applied.
This, and the changes in compartments Q(t) (compared with Subfigures 6c with 7c),
suggest that isolation plays a larger role when vaccination is unavailable and the
susceptible population is overcounted; however, combining the isolation and contact
controls has limited effects on reducing the peak incidence. Comparing Subfigure
6b with 4b, we see an increase in peak incidence when vaccination is not available.

5.3.5. Constant level of uncertainty due to overcounting. We provide simulations
with constant uncertainty due to overcounting compartments S, I, and Q, and
where vaccination is also being used, in Figure 8. Compared with the simulations
for mixed overcounting and undercounting in Figure 6 where the only overcounting
is for class S, the simulations when overcounting is present for all three variables in
the controls are similar. This suggests that the impact of overcounting class S in
Figure 6 is greater than than the combined impacts of undercounting classes I and
Q in Figure 6, because changing from undercounting to overcounting in the classes
I and Q had no significant impact.

5.4. Time-varying measurement uncertainties from undercounting. We
next study time-varying uncertainty measurements of S, I, and Q to study how
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Figure 8. Constant uncertainties due to overcounting S, I, and
Q. The solid blue lines correspond to the case with no uncer-
tainty measurements (∆ℓ = 1 for ℓ = S, I,Q), the red solid line
corresponds to 20% overcounting of S, I, and Q (∆ℓ = 1.2 for
ℓ = S, I, Q), the solid gold line corresponds to 30% overcounting
of S, I, and Q (∆ℓ = 1.3 for ℓ = S, I, Q), the purple dash-dotted
line corresponds to 50% overcounting of S, I, and Q (∆ℓ = 1.5
for ℓ = S, I, Q), the solid lime colored lime corresponds to 70%
overcounting of S, I, and Q (∆ℓ = 1.7 for ℓ = S, I, Q), and
blue dashed-line corresponds to 80% overcounting of S, I, and Q
(∆ℓ = 1.8 for ℓ = S, I, Q).

such measures (and the immigration perturbation) influence the behaviors of the
controls and states. The first set of time-varying uncertainty measures are of the
form similar to Hill functions. Our reason for this form is to represent a poten-
tial scenario in which the level of uncertainty decreases, which can occur during
an epidemic as increased availability of resources (such as test kits and vaccines)
can occur. The Hill functions investigated have a vertical shift included because
∆I(t) ̸= 0 at any time. For ℓ = S, I,Q, the uncertainty takes the form

∆ℓ(t) =
(Km−K0)t

2

H0+t2
+K0, (34)

where K0, Km, and H0 are constants. Here H0 is the saturating constant (in all of
our simulations H0 =10,000), and 1−K0 is the initial percentage level of uncertainty
due to undercounting (in all of our simulations K0=0.2). As t → +∞, we get
∆ℓ(t) → Km for each i. This means that the percentage level of undercounting
class ℓ (for ℓ = S, I,and Q) is approaching (1 − Km)%. In our simulations we
vary Km ∈ {0.3, 0.4, 0.5, 0.7, 0.8, 1}, and in Subfigure 9a, we plot the Hill function
uncertainties that we studied.
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Figure 9. Left. Measurement uncertainties ∆S = ∆I = ∆Q of
the form of Hill functions (34) where K0 = 0.2, H0 = 10, 000, and
Km is varied. Right. Plots of the periodic uncertainty measures.

We also investigate periodic time-varying uncertainty for varying periods. Our
motivation is to consider timed events when a population’s participation (in getting
tested or vaccinated) fluctuates. The idea is that when individuals participate in
testing and vaccination at higher levels of frequency, we have more accurate S, I,
and Q counts. Increased population participation could occur in an event where a
vaccine is approved to be administered for a specific age group, or near holidays,
when individuals need to get tested and/or vaccinated to be approved for traveling.
The periodic uncertainty functions are ∆ℓ(t) = 0.2 cos(2πt/p) + 0.6 for ℓ = S, I,
and Q, where p is the period (in days). These uncertainty measurements fluctuate
due to undercounting classes S, I and Q by 20% or undercounting the classes by
60%. For our simulations, we vary the period p ∈ {50, 100, 200}, and in Subfigure
9b, we provide plots of the periodic uncertainty measurements.

5.4.1. Hill function and periodic uncertainty results. We provide simulations where
the measurement uncertainties are Hill functions or periodic, to illustrate Theorem
3.1, for the uncertainty functions in Figure 9. The values of the states and feedback
controls are in Figures 10 and 11. In the simulations associated with using the
Hill functions, each experiment begins with the assumption that the classes are
undercounted by 80% but that the level of uncertainty is improved to where the
level of undercounting for each class approaches (1 − Km)% as t → +∞. When
the uncertainties are Hill functions, the decrease in the susceptible population (in
Subfigure 10a) was slower than the decreases in the susceptible population when
there is constant overcounting or undercounting (in Figures 6a and 8a). This can
be attributed to significant uncertainties at the start, which later have less effect.
We observed similar slower reduction in the populations of infected individuals, but
the peak infection levels were similar to the plots in Figures 6b and 8b for cases
where the measurement uncertainties were constant. One difference between the
plots is in the vaccination levels, where the vaccination levels for the Hill shaped
uncertainty functions remained near zero for several choices of the Hill function
parameters; see Figure 10f. This can be attributed to uncertainty in the population
counts, resulting in more reliance on contact or isolation control.

In Subfigure 10b, as the percentage of undercounting is reduced (e.g., with Km =
0.7, 0.8, and 1), the peak incidence is reduced significantly compared with the peak
incidence corresponding to the feedback control that has no uncertainty (see solid
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Figure 10. Uncertainties (in all classes) being Hill functions
(plots of uncertainty measurements are in Subfigure 9a)

blue line). This suggests the usefulness of non-pharmaceutical interventions being
applied early, when undercounting of the infectious populations is at high levels
at the beginning of the epidemic. We observed a similar increase in settling times
for S, I, and Q under periodic uncertainties, in Subfigures 11a-11c. Although the
periodicity of the measurement uncertainties did not produce periodic oscillation of
the states in Figures 11a-c, we see such oscillations in Figures 11d-11f. A notable
difference between the vaccination control levels in the periodic case in Figure 11f
and the Hill function case in Figure 10f is that, unlike the Hill function case, the
periodic case called for positive vaccination levels early.

5.4.2. Measurement uncertainties in Theorem 4.1. Our final simulations correspond
to cases where ∆S , ∆I , and ∆Q are time-varying and satisfy the requirements of
Theorem 4.1, where the uncertainty values are generated by solving the discretized
optimization problem (33). The number of iterations needed to reach convergence
is 21. In Figure 12, we see a trade-off that when the state is close to the equilibrium,
the ranges of allowable uncertainty values that satisfy the requirement of Theorem
4.1 may be reduced, e.g., ∆S(t) in Figure 12c must be chosen to be closer to 1. How-
ever, our requirements from Theorem 4.1 allowed ∆I(t) and ∆Q(t) values that were
far from 1. In Figure 14, we compare the feedback control values that are generated
without uncertainty with the values that arise using the uncertainty measurements
that are generated by Theorem 4.1. In Figure 13 we plot the resulting states. The
behaviors of the contact and isolation controls are similar in both cases, except
for regions where the controls spike or drop when the measurement uncertainties
spike or drop. This can be attributed to our feedback structures that depend on
measurement uncertainties and state values (through products of uncertainty and
state values), i.e., the controls react to the uncertainty by calling for more isolation.



SIQR EPIDEMIC MODEL UNDER MEASUREMENT UNCERTAINTY 97

0 100 200 300 400 500
20

40

60

80

100

120

140

(a)

0 100 200 300 400 500
0

5

10

15

20

(b)

0 100 200 300 400 500
0

2

4

6

8

10

(c)

0 100 200 300 400 500
-7

-6

-5

-4

-3

-2

-1

0 10-4

(d)

0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

0.03

(e)

0 100 200 300 400 500
0

5

10

15 10-4

(f)

Figure 11. States and controls when periodic levels of uncertain-
ties are in classes S, I and Q.

This contrasts significantly with standard optimal controls, which do not take the
state or measurement uncertainties into account.

Comparing the feedback controls generated by the uncertainty measurements
from Theorem 4.1 to the controls generated without uncertainty, we see that the
uncertainty measurements contribute to generating a contact control that is acti-
vated sooner, an isolation control that has a lower peak intensity, and a vaccination
control that involves lower rates of vaccination for the majority of the time interval.
As shown in Figure 13, the feedback control strategy generated by Theorem 4.1
yields an increase in the peak incidence, which can be attributed to the uncertain-
ties, which are largely compensated for by our feedback controls.

6. Conclusions. We advanced the state of the art in the study of
SIQR models, by developing new equal signs conditions that enabled us to quan-

tify the effects of measurement uncertainties that arise from using feedback controls
that ensure ISS. This contrasts with prior ISS studies of SIQR models, whose un-
certainties were confined to being immigration uncertainties. Our multiplicative
measurement uncertainties are amenable to modeling the effects of measurement
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Figure 12. Results corresponding to Theorem 4.1. Subfigure (d)
shows that the uncertainties satisfy condition (28).
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Figure 13. Left. Plot of the state solutions when applying the
feedback controls in which no uncertainty is applied. Right. Plots
of the state solutions when applying the feedback controls corre-
sponding to Theorem 4.1.

delays, sampled measurements, and over- and under-counting of susceptible, in-
fected, and quarantined individuals. We applied our approach using parameters
that arose in the COVID-19 pandemic, by illustrating the effects of overcounting
and undercounting. We hope to extend our analysis to cover delay compensat-
ing age-structured SIQR models, where instead of a system of ordinary differential
equations, the dynamics would be a system of ordinary differential equations inter-
connected with a system of first order hyperbolic differential equations.
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Figure 14. Left. The results corresponding to the feedback con-
trols in which no uncertainty measures are applied. Right. The re-
sults corresponding to the feedback controls corresponding to The-
orem 4.1.
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