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ABSTRACT
Among existing schemes for soft error resilience, acoustic-sensor-
based detection stands out owing to its ability to prevent silent
data corruption at low hardware cost. However, the state-of-the-
art work not only incurs a considerable run-time overhead but
also complicates the processor pipeline with intrusive microarchi-
tectural modi!cations, hindering its practical deployment in real
silicon. To this end, this paper presents VeriPipe, a near-zero-cost
compiler/architecture codesign scheme for soft error resilience.
VeriPipe compiler partitions input program to a series of regions
(epochs) statically, while VeriPipe hardware veri!es if they are
error-free dynamically. In particular, VeriPipe achieves a simple yet
e"cient region-level veri!cation where each region goes through a
three-stage (Execute, Verify, and Commit) veri!cation pipeline to en-
sure the absence of soft errors before proceeding to the next region.
In particular, VeriPipe hardware overlaps the Verify stage of each
region with the Execute stage of the next region, thereby e#ectively
hiding the Verify delay. Experiments with 43 applications from
SPEC2006/2017/NPB-CPP/SPLASH3/DoE Mini-Apps highlight the
negligible overheads of VeriPipe, i.e., an average of 1% run-time
overhead and a storage overhead of only 3 registers and 1 countdown
timer.
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1 INTRODUCTION
Soft errors have been the root cause of many real-world failures,
especially for the large-scale high-performance computing (HPC)
systems and datacenters [2, 7, 52]. In general, soft errors—also
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known as transient faults—are predominantly caused by the strik-
ing of high-energy particles1, e.g., cosmic ray and alpha particle
from packaging materials, resulting in program crash or even worse
silent data corruption (SDC) [21]. Soft error resilience becomesmore
important in the era of post-Moore’s Law where near-threshold
computing (NTC) plays a critical role in improving energy e"-
ciency [30]. However, NTC makes the systems more vulnerable to
soft errors, increasing their rate up to 30x higher than that of those
systems with nominal voltage [30]. Thus, e#ective yet lightweight
methods for detecting and mitigating soft errors are absolutely nec-
essary not only to ensure program correctness but also to realize
the full potential of NTC.

This necessity has sparked interest in innovative detection tech-
niques. Among them, acoustic-sensor-based detection [61] is par-
ticularly prominent as the acoustic sensors eliminate silent data
corruption (SDC); they directly sense the sound wave, which is
always produced by particle striking as a physical phenomenon,
thereby guaranteeing the full detection of soft errors, i.e., none
of them is missed. More importantly, the acoustic-sensor-based
detection incurs minimal hardware costs [61]; only 0.0001% areal
cost of the chip area (0.7𝐿𝐿2; see Section 8) needs to be paid to
deploy 30 sensors without requiring an extra metal layer for their
interconnection.

Given the guaranteed error detection capability of acoustic sen-
sors, researchers have leveraged them to realize soft error veri!-
cation with the sensing latency in mind [43, 61, 69, 71]. The idea
is that program execution prior to a given time 𝑀 can be veri!ed
to be error-free the worst-case-detection-latency (WCDL) cycles
later, provided that no sensor alarms in between. This makes senses
because every soft error is to be detected within the WCDL cycles
after its occurrence. In light of this, Liu et al. [43] proposed Turn-
stile to achieve core-level error containment. It enforces that data
to be written must be error-free when they leave the core—with
caches and memory protected by error-correcting code (ECC)—for
no error to escape from the core.

To contain soft errors in the core, Turnstile delays writing the
data of retired stores back to the L1 data cache, until they are veri!ed
to be error-free. That is, Turnstile leverages the store queue (SQ)2 of
each core as a redo bu#er [26] to hold the retired stores for at least
WCDL cycles till their data turn out to be veri!ed. To avoid the SQ
over$ow during region execution, which would otherwise lead to
incorrect error recovery, Turnstile compiler partitions program into
a series of regions—comprising a sequence of instructions possibly
including branches. As such, the stores of each region are veri!ed
as a whole onceWCDL cycles are passed since the end of the region.
1Because of this, VeriPipe targets only such radiation-induced errors which we refer
to as soft errors hereafter for simplicity.
2We assume a uni!ed store queue in out-of-order cores without di#erentiating store
bu#er from store queue.
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This is so-called region-level error veri!cation. Notably, Turnstile
turns the veri!cation of registers into the memory veri!cation by
inserting stores to checkpoint region’s live-out [3] registers—used
by some following regions as inputs—to the memory.

Unfortunately, Turnstile is not practically implementable for two
reasons: (1) its microarchitectural modi!cations are intrusive pres-
suring out-of-order pipeline optimization at design time; (2) it incurs
a non-trivial run-time overhead, i.e., 9% on average and up to 53%.
To unveil why Turnstile leads to the high hardware complexity
and the signi!cant performance degradation, VeriPipe presents a
new viewpoint of the region-level error veri!cation. In Turnstile,
all regions go through a three-stage (Execute, Verify, and Commit)
veri!cation pipeline. Each region begins with the Execute stage
and transits to the Verify stage at the end of the region. Spending
WCDL cycles thereafter (more precisely if no error is detected in the
Verify stage for the WCDL cycles), the region !nally moves to the
Commit stage !nishing the region veri!cation. Upon the Commit
of each region, Turnstile signals the store queue (SQ) to release the
region’s stores to the L1 data cache. With the help of this veri!ca-
tion pipeline, Turnstile could overlap the Verify of an old region
(i.e., executed but unveri!ed) with the Execute of a younger region,
thus hiding the veri!cation latency and achieving instruction-level
parallelism (ILP).

Nonetheless, the Execute of a younger region is not always long
enough to fully cover the Verify of the prior region, which causes
the CPU pipeline to stall degrading the performance (see Section 2).
Moreover, the Verify latency increases as WCDL goes up, i.e., the
CPU pipeline stalls more frequently, and each stall takes longer. In
case the Verify delay cannot be fully hidden by a single region’s
Execute latency, Turnstile introduces a special hardware FIFO queue
called region boundary bu#er (RBB) that schedules multiple follow-
ing younger regions for their execution time to overlap with the
Verify of the oldest unveri!ed region sitting at the RBB head.

Apart from the chip area occupancy, Turnstile’s RBB puts signi!-
cant pressure on realizing high-performance out-of-order pipeline—
whose timing is already highly optimized—with the related con-
trol/signal and the critical path extension due to RBB-over$ows
stalling the pipeline. The crux of the problem is that this design chal-
lenge eventually prevents Turnstile from being fabricated on top of
real silicon. In addition, Turnstile’s register checkpoints (essentially
stores), inserted for turning register veri!cation into memory veri-
!cation, are sometimes too many, thus incurring a non-negligible
run-time overhead.

Thanks to our 3-stage pipeline modeling of Turnstile, we found
out that its veri!cation hardware can be dramatically simpli!ed
to only three registers and one countdown timer. In fact, only one
region on the Execute stage is enough—if it is su"ciently long—
to fully cover the latency of the prior region’s Verify stage. With
the above !nding in mind, VeriPipe proposes a simple yet e"cient
veri!cation pipeline where the Verify latency of a region can be
hidden by only one following region execution, which obviates the
need of complex RBB-like hardware. The key idea is to let each
region get veri!ed at the end of the next region. Figure 1 shows
how VeriPipe’s simpli!ed three-stage veri!cation pipeline works.
As usual, each region starts with the Execute and moves to the
Verify when reaching its end; however, the region here reaches the
Commit as soon as the next region !nishes with no error detected.

Region terminatesStart

Commit
(Verified)

Verify 
(Timer=WCDL)

Next region ends
Execute

Restart the region
on error detected

Figure 1: VeriPipe’s region veri!cation automaton
However, it is challenging to ensure that the execution time of

each region is never smaller than WCDL cycles. To overcome this
challenge, VeriPipe proposes a simple yet e#ective hardware tech-
nique called region stitching. At run time, it combines any short
region (whose execution time is less than WCDL) with the follow-
ing regions so that the stitched region’s execution cycles are at
least WCDL. This allows VeriPipe to fully hide the Verify latency
of every region! The beauty of region stitching is that it scales to
arbitrarily long WCDL with neither storage overhead—other than
only one logic gate for control—nor run-time overhead. In addition,
VeriPipe compiler eliminates redundant checkpoint stores, lower-
ing the run-time overhead further without jeopardizing the soft
error resilience guarantee.

The experiments with 43 applications from SPEC2006/2017 [9,
24], NPB-CPP [46], SPLASH3 [56], and DoE Mini-Apps [29, 60]
demonstrate that VeriPipe incurs only a 1% run-time overhead on
average regardless of WCDLs. In summary, VeriPipe:

• Incurs near-zero run-time overhead with the intelligent com-
piler/architecture codesign regardless of long WCDL.

• Incurs only a 0.018% areal cost according to the RTL synthesis
results with TSMC 7nm technology, reducing Turnstile’s
hardware cost and power consumption by ↑91%.

• Is the !rst to achieve near-zero-hardware-cost soft error
resilience, making its commercialization possible in silicon.

2 BACKGROUND AND MOTIVATION
2.1 Acoustic-Sensor-Based Soft Error Detection
Recently, Upasani et al. [61] proposed to detect soft errors using
acoustic sensors. In the event of energetic particle striking (e.g.,
cosmic ray and alpha particle), the sensors perceive the acoustic
wave—generated by the physical phenomenon of the striking—and
thus always detect the resulting soft error. According to the prior
work [61], an acoustic sensor only occupies the same die size as
one 6T SRAM bit, i.e., 0.027𝑁𝐿2 with TSMC 7𝑂𝐿 node [10].

Nevertheless, this detection scheme cannot immediately detect
soft errors due to inherent sensing delays. Consequently, errors
might bypass the detection and eventually propagate the corrupted
data to ECC-protected memory, causing detected-but-uncorrectable
errors (DUEs). To address this issue, the prior work [61] includes
caches in the error containment domain. It holds L1 dirty cachelines
for WCDL until they are veri!ed to be error-free before their write-
back to L2. Unfortunately, this design requires signi!cant changes
to the existing cache structures and their cache coherence protocol.

2.2 Region-Level Soft Error Veri!cation
To tolerate the detection latency without changing caches, Liu et al.
proposed Turnstile [43] that contains errors in the core. Turnstile
holds data being stored in the SQ forWCDL before merging them to
the L1 data cache. To avoid the SQ over$ow that leads to incorrect
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error recovery, Turnstile compiler partitions input program into a
series of veri!able/recoverable regions with SQ size in mind. More
precisely, each region is formed so that the number of its stores
never exceeds the half of SQ size; that way while a region is under
veri!cation occupying a half of the SQ, the other half can be used
to accommodate the stores of the following region(s). For example,
Figure 2 (a) and (b) shows that input program is divided into 𝑃𝑄1
and 𝑃𝑄2 such that each region has at most 2 stores since SQ size is
4 here. Once region boundaries are delineated, Turnstile compiler
identi!es each region’s live-out registers and checkpoints them to
the memory for recovery purpose, e.g., checkpoint 1𝑅 and 2𝑅 that
are essentially stores.

1. r0 = r0 + 4
1c.ckpt r0
2. r1 = r1 + 1
2c.ckpt r1

...

3. r2 = ld [r0]
4. r3 = r1 + r2
4c.ckpt r3

...
Recovery 
Block

ld r0, …
ld r1, …

Tim
er

expiration
Region

term
ination

Restart after
error detection

Start

Tim
e

Rg1

Rg2W
CDL

error 
detected

region
boundary

At most 2 stores in each region (assume SQ 
size 4)

recovery
flow

……

t1

t2

t3

Verify
(Timer

=WCDL)

Tim
er is

not zero

Commit
(Verified)

Execute

Figure 2: (a) Turnstile’s region veri!cation automaton; (b)
store queue aware region partitioning; eager checkpointing

Turnstile hardware checks the integrity of the regions, i.e., the
absence of a soft error during their execution, by leveraging the
veri!cation pipeline as shown in Figure 2 (a). For example, 𝑃𝑄1
enters into the Execute at 𝑆1 and moves to the Verify as soon as it
!nishes execution at 𝑆2. Later, 𝑃𝑄1 reaches the Commit at 𝑆3 after
spending WCDL cycles since its end, provided none of deployed
acoustic sensors alarms the occurrence of soft errors in between.

PC GSQ Ptr Region Exec
Time

Recovery PC Verification
Timing Logic

Fetch Decode Execute Mem Access Writeback

Gated-Store 
Queue (GSQ)

ECC-Protected
Memory

Control 
Logic

Region Boundary Buffer (RBB)

Release

Figure 3: Turnstile architectural diagram with marking
newly added components gray; bold lines correspond to data
paths while thin lines to control paths

To implement the above veri!cation pipeline, Turnstile proposes
several hardware components—marked gray in Figure 3—with the
existing store queue (SQ) repurposed as a gated store queue (GSQ).
During the execution of each region, the GSQ holds the stores of

the region until it is veri!ed, though they are already retired from
the reorder bu#er (ROB). Subsequently, if no errors are detected
within WCDL, the veri!ed GSQ entries are to be merged to the L1
data cache. To !gure this out, Turnstile introduces a FIFO queue
called region boundary bu#er (RBB) that tracks the progress of
regions being executed or veri!ed. When the ROB commits a region
boundary, Turnstile allocates the corresponding entry in the RBB;
the core pipeline stalls when encountering a region boundary if
RBB is already full. Each RBB entry contains 3 items: (1) the PC
of the next instruction, (2) GSQ Ptr—pointing to the tail of the
GSQ—for releasing the stores of the region when it reaches the
Commit, and (3) timing information for determining when the
region veri!cation completes, i.e., Commit. With the FIFO nature of
RBB, Turnstile keeps the head of the RBB up-to-date with the oldest
unveri!ed region. For example, Figure 2 shows that 𝑃𝑄1 becomes
error-free at 𝑆3. As a result, Turnstile (1) signals the GSQ to write
back 𝑃𝑄1’s stores (e.g., 1𝑅 and 2𝑅) to the L1 data cache, (2) copies
the PC !eld of the head RBB entry to Recovery PC in case an error
occurs thereafter, and (3) deallocates the head entry with it set to
the next entry becoming the oldest among unveri!ed regions.

Upon soft errors (!) detected, Turnstile performs three actions to
recover from them: (1) discarding (unveri!ed) GSQ entries which
are younger than the GSQ Pointer, (2) executing the code in a recov-
ery block—shown in Figure 2 (b)—to reload the oldest unveri!ed
region’s live-in registers from a dedicated checkpoint storage in the
memory, and (3) resuming the program execution from the region’s
beginning pointed to by Recovery PC.

2.3 Limitations of Prior Work
Unfortunately, Turnstile’s RBB and its control logic require complex
peripheral circuitry, resulting in way longer access latency than
VeriPipe, e.g., Turnstile (0.26𝑂𝑇) vs VeriPipe (0.07𝑂𝑇) as shown in
Table 1. This implies that Turnstile restricts the core frequency to a
maximum of 3.86GHz, making it impossible to be used for current
and future high-end processors. Even if future process technologies
might be ready for higher clock frequency, Turnstile’s intricate
peripheral circuitry poses a signi!cant challenge in reducing its
wire delay—scaling more slowly compared to transistor delay—as
highlighted by prior work [1, 47] on processor core design. Conse-
quently, it is a daunting challenge to increase the clock frequency
of Turnstile-enabled processors in the future.

Another prior work Turnpike [69] also leverages GSQ to con-
tain soft errors in an in-order that usually has a tiny SQ, e.g., 4 SQ
entries in ARM Cortex-A53 [33]. To lower the pressure on the tiny
GSQ caused by store veri!cation, Turnpike compiler eliminates
unnecessary stores, while its hardware early releases certain stores
to the L1 data cache without holding them in the GSQ for veri-
!cation. However, Turnpike incurs a high run-time overhead for
out-of-order cores, despite its additional hardware support for the
fast store release. This is because Turnpike compiler fails to form
large regions for out-of-order cores—as with Turnstile compiler—
and thus quickly over$ows RBB , causing the core pipeline to stall
frequently. Moreover, Turnpike’s fast store release turns out to be
unnecessary for two reasons: (1) stores are o#-the-critical-path in
out-of-order cores thanks to their large SQs, e.g., SQ size of ARM
Cortex-A77 is 90 [38]; (2) their dynamic scheduling easily !nds
non-store instructions even if the SQ is full.
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3 OVERVIEW OF VERIPIPE
What makes VeriPipe stand out from prior schemes [43, 69] is that
it always veri!es a region to be error-free at the end of the next
region. As such, each stage of VeriPipe’s 3-stage veri!cation pipeline
is always occupied by at most one region (see Figure 1). This allows
VeriPipe to track the region veri!cation with minimal hardware
cost, unlike the prior schemes that require expensive RBB whose
over$ow leads to signi!cant core pipeline stalls.

To realize the low-cost 3-stage veri!cation pipeline, VeriPipe only
introduces 3 registers, e.g., GSQ Pointer, Region Register, and Recov-
ery PC, and 1 countdown timer, as shown in Figure 4. Recovery PC
refers to the end of the latest veri!ed region, i.e., whenever Commit
stage gets a new region, it is pointed to by Recovery PC to serve as
a recovery point. Region Register is a pointer referring to the last
instruction of the region on the Verify; this is technically a region
boundary instruction and thus points to the beginning of the next
region that is currently on the Execute. GSQ Pointer refers to the
tail of gated store queue (GSQ), indicating that all the following
younger stores are not veri!ed yet and thus must be squashed in
case of a soft error. Finally, to track the remaining cycles for a region
on the Verify to transit to Commit, the timer is reset to WCDL cycles
at each region boundary and counts down each cycle thereafter.

Fetch

Decode

LQ
GSQ

Recovery 
PC

Region 
Register

GSQ 
Pointer

Issue &
Dispatch Execute Commit

Load/Store Unit

Countdown
Timer

Figure 4: VeriPipemicroarchitecture; shaded are newly added

When a region !nishes its execution, i.e., the region boundary
instruction is committed from the core pipeline, the prior region—
whose end has been pointed to by Region Register—moves on to the
Commit. VeriPipe then updates its registers and countdown timer
accordingly as shown in Figure 4: (✁) updating Recovery PC with
the current Region Register, (✂) resetting it to the address of the
region boundary instruction, (✃) releasing the stores older than
GSQ Pointer to the L1 data cache with GSQ Pointer reset to the
current tail of the GSQ, and (✄) resetting the countdown timer to
WCDL cycles.

timeRg1 Rg2

t2

WCDL

t3

Rg0

WCDL
t1

t4

Recovery PC Region Register

Rg0 verification
pipeline

Rg1 verification
pipeline

Rg2 verification
pipeline

Figure 5: Veri!cation pipeline status at time 𝑆3; 𝑃𝑄0 has been
veri!ed to be error-free; 𝑃𝑄1 on Verify, while 𝑃𝑄2 on Execute

Figure 5 shows how the three-stage veri!cation pipeline works
using the three registers and the countdown timer. Suppose all

regions 𝑃𝑄0-𝑃𝑄2 are long enough to cover WCDL cycles. At 𝑆1, 𝑃𝑄0
enters into the Execute, and VeriPipe resets the timer to WCDL
cycles. At 𝑆2, 𝑃𝑄0 moves to the Verify, 𝑃𝑄1 starts with the Execute,
and VeriPipe resets the timer again. While the core pipeline reaches
the end of 𝑃𝑄1 at 𝑆3, 𝑃𝑄0 reaches the Commit. Accordingly, VeriPipe
updates Recovery PC with the end of 𝑃𝑄0 and sets Region Register to
the end of 𝑃𝑄1. After resetting the timer, VeriPipe starts to verify
𝑃𝑄1. Once a soft error (!) is detected in 𝑃𝑄2, VeriPipe consults
Recovery PC to resume the program execution from 𝑃𝑄0’s end.

4 VERIPIPE COMPILER
This section illustrates how VeriPipe compiler forms a series of
veri!able/recoverable regions as shown in Figure 6.

4.1 Region Partitioning
VeriPipe—akin to prior work [69]—leverages the gated store queue
(GSQ) as a redo bu#er to hold the data being stored for veri!cation.
To circumvent GSQ over$ow which would otherwise cause incor-
rect error recovery, VeriPipe compiler partitions input program
into a series of regions with half of the GSQ size in mind. Thus, the
GSQ never over$ows when a region is being executed while a prior
region is on the Verify. VeriPipe compiler !rst partitions program at
callsites and loop headers. Speci!cally, it inserts a region boundary
at all entry and exit points of functions. To avoid GSQ over$ow dur-
ing the execution of loops, VeriPipe compiler also inserts a region
boundary in the loop headers, i.e., each loop iteration forms a region.
Starting with these initial boundaries, VeriPipe compiler counts the
stores while traversing the control $ow graph (CFG) of the input
function; it picks the maximum of store counts from multiple paths
at joint points. When the count reaches the threshold—i.e., half of
GSQ size, a region boundary is inserted and serves as a recovery
point in case the following region gets interrupted by soft errors.

4.2 Live-Out Register Checkpointing
However, the GSQ only veri!es memory data, leaving register val-
ues unveri!ed. To address this issue, VeriPipe turns register veri!-
cation into memory veri!cation by checkpointing registers to the
memory. First, VeriPipe compiler identi!es live-out registers in each
region using liveness analysis [3]; these registers are used as inputs
of subsequent regions. Later, VeriPipe compiler checkpoints live-out
registers of each region to the memory by inserting stores after
their most recent de!nitions in the region; VeriPipe still ensures
that none of regions has more stores than the partitioning thresh-
old. In particular, a region’s checkpoints will be used to recover a
subsequent region in case of soft error detected. As such, soft errors
occurred in a region do not compromise the region’s error recovery
since its recovery uses the checkpoints in the prior regions that
must be already veri!ed before proceeding to the error-interrupted
region.

4.3 Checkpoint Elimination
VeriPipe’s register checkpointing inserts checkpoint stores that
incur more run-time overhead. VeriPipe exploits four existing com-
piler optimizations to eliminate unnecessary checkpoints while still
maintaining the soft error resilience guarantee.
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Speculative Loop 
Unrolling (§4.3.4)

Target Independent 
Code Optimization

Region 
Partitioning

Other Code
Generations

LLVM IR
MIR

LIVM
(§4.3.1)

LICM
(§4.3.2)

Pruning
(§4.3.3)

ckpt
ckpt

ckpt(§4.1)

Live-Out Register
Checkpointing

(§4.2)

Figure 6: VeriPipe compiler work"ow; shaded passes are newly proposed

4.3.1 Loop Induction Variable Merging (LIVM). Existing compilers
use loop strength reduction (LSR) [3] to replace an expensive ex-
pression of induced induction variables, such as multiplication of
computing array element’s address, by a cheap addition of basic
induction variables and constants. Figure 7 (b) shows that the cal-
culation of an array element’s address is replaced by the addition
(𝑈1 = 𝑈1 + 4) of a basic induction variable 𝑈1. However, LSR leads to
more checkpoints as (1) it introduces more basic induction variables
involving loop-carried dependence, e.g., 𝑈0 and 𝑈1 in Figure 7(b);
(2) they are live-out to the next loop iteration (i.e., region) and thus
must be checkpointed, e.g., 5𝑅 and 6𝑅 in the !gure.

4: str …, [r1];
5: r1 = r1 + 4;
5c: ckpt r1;
6: r0 = r0 + 1;
6c: ckpt r0;
7: r0 < N?

1: r0 = 0; /*var i*/
2: r1 = &A[0];
3: ckpt r1;

(a) (b) (c)

int i = 0;
static int A[N];
do {

A[i] = …;
i = i + 1;

} while(i < N);

4: r2 = r1 + r0 * 4;
5: str …, [r2];
5c: ckpt r1;
6: r0 = r0 + 1;
6c: ckpt r0;
7: r0 < N?

1: r0 = 0; /*var i*/
2: r1 = &A[0];
3: ckpt r1;

Figure 7: (a) original C code, (b) assembly code with LSR
enabled, and (c) eliminating checkpoint 5𝑅 by LIVM

To eliminate the loop-carried dependencies for certain regis-
ters and their corresponding checkpoints, VeriPipe implements the
same loop induction variable merging (LIVM) of prior work [69].
LIVM merges induced induction variables into the expressions of
basic induction variables, resulting in only one checkpoint per in-
duction variable chain. For example, Figure 7 (c) shows that 𝑈2 is
now computed using basic induction variable 𝑈0 and constants. This
eliminates the checkpoint 5𝑅 . Consequently, LIVM brings a signi!-
cant performance improvement for loop-intensive applications.

3:

1: r1 = …;
1c: ckpt r1;

2: r1 = …;
2c:ckpt r1;

(a)

3: ckpt r1;

1: r1 = …;
1c: ckpt r1;

2: r1 = …;

(b)

Figure 8: (a) original
code, (b) moving check-
point 2𝑅 out of loop with
LICM

1c: ckpt r1;
2c: ckpt r2;
3: if (r1>r2)

4: r3 = r2*2;
4c: ckpt r3;

5: r3 = 0
5c: ckpt r3;

Live in:r1,r2,r3

Rg1

Squash SQ 
entries after 
Rg1’s end;
r1 = ld [1c];
r2 = ld [2c];
r3 = r1>r2?

r2*2 : 0;

Recovery Block

Rg0

Rg2

Figure 9: Eliminate checkpoint 4𝑅
and 5𝑅 with optimal pruning; re-
covery process on the right

4.3.2 Loop-Invariant Checkpoint Motion (LICM). For certain re-
maining checkpoints inside loops, VeriPipe employs the same loop-
invariant checkpoint motion (LICM) as in Turnpike [69]. LICM can

safely move checkpoints from within loops to their exit blocks,
provided that the checkpointed registers are loop-invariant, i.e., no
write-after-read (WAR)-dependence on them in the loops. Figure 8
shows that checkpoint 2𝑅 is moved out of the loop to the bottom ba-
sic block because 𝑈1 is loop-invariant. Moreover, with 2𝑅 moved to
the bottom basic block, 1𝑅 in the top basic block becomes redundant
and thus can be eliminated, enabling synergy further.

4.3.3 Optimal Checkpoint Pruning. To further reduce the run-time
overhead caused by checkpoints, VeriPipe exploits the optimal
checkpoint pruning—invented by [32]—to eliminate redundant
checkpoints since they can be reconstructed using constants and/or
other remaining checkpoints at recovery time. For example, Figure
9 shows that checkpoint 4𝑅 and 5𝑅 are eliminated. In the wake of
soft error interruption, VeriPipe runtime recomputes register 𝑈3’s
value using the checkpoint 1𝑅/2𝑅 and immediate values in the recov-
ery block and resumes the program execution from the beginning
of 𝑃𝑄2. Consequently, VeriPipe shifts checkpoint overhead from
run time to the recovery time, signi!cantly lowering the run-time
overhead without jeopardizing the soft error resilience guarantee.

4.3.4 Speculative Loop Unrolling. Recall that VeriPipe compiler
inserts a region boundary in all loop headers to avert GSQ over-
$ow during loop execution. However, this often generates a lot of
short regions given that small loops are prevalent in the evaluated
benchmarks; Figure 10 shows that 50% of the loops in the evaluated
applications have less than 30 instructions. Given that registers
tend to be short-lived [48] and thus long regions likely have fewer
live-out registers to be checkpointed, VeriPipe’s region partitioning
generates super$uous checkpoints for the short regions.

Figure 10: CDF of instruction count in loops

To address the above issue, VeriPipe applies the speculative loop
unrolling—invented by Capri [28]—to enlarge loops no matter if
their iteration counts are static-unknown; conventional loop un-
rolling only unrolls the loops with constant iteration counts3. While
duplicating a loop body for a certain number of times, VeriPipe com-
piler inserts the code to check for proper loop termination after
each duplicated loop body. To compute a proper unrolling factor,
VeriPipe takes an optimistic approach that assumes each instruction
!nishes in one cycle on out-of-order cores with commit width CW.

3GCC can unroll some loops with static-unknown iteration counts if they are computed
as expressions, while VeriPipe’s unrolling is generic to any loops.
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Thus, the unrolling factor is computed as 𝐿𝑀𝑁𝑂↓𝑀𝐿
Loop Size to balance

code size with the size of unrolled loops. In particular, VeriPipe
carefully tunes speculative loop unrolling to incur as little negative
impact on the performance as possible.

4: r2 = r1 + r0 * 4;
5: str …, [r2];
6: r0 = r0 + 1;
6c: ckpt r0;
7: r0 < N?

1: r0 = 0; /*var i*/
2: r1 = &A[0];
3: ckpt r1;

BB1
BB2

8: r2 = r1 + r0 * 4;
9: str …, [r2];
10: r0 = r0 + 1;
10c: ckpt r0;
11: r0 < N?

Figure 11: Reduce the dynamic instances of 𝑈0’s checkpoint
by a factor of 1/2 via speculative loop unrolling

Once regions are enlarged, certain registers become no longer
live-out anymore, rendering their checkpoints redundant. For ex-
ample, supposeWCDL is 10 cycles while CW is 1 on an out-of-order
core, Figure 11 shows that VeriPipe unrolls the loop in Figure 7(c)
by a factor of 2 [45]. That way, checkpoint 6𝑅 becomes unnecessary
and can be eliminated since 𝑈0 de!ned at line 6 is not live-out any-
more. Consequently, VeriPipe reduces the number of dynamically
executed checkpoints by 2x.

5 DEALINGWITH SHORT REGIONS
Recall that VeriPipe compiler inserts a region boundary at all entry
and exit points of functions, this generates a lot of short regions
for small functions if they are recursive and called inside loops.
Even worse, in certain evaluated applications, e.g., povray and
leela, many small recursive functions cannot be transformed to
be non-recursive by tail call elimination [3] for inlining. Here, the
problem is that the presence of short regions causes incorrect region
veri!cation. This is because at the end of a short region, WCDL
cycles have not passed since the end of the prior region that is on
the Verify. Therefore, moving the prior region to the Commit could
release potentially corrupted data to the L1 data cache, resulting in
detected-but-uncorrectable errors (DUEs).

5.1 Naive Dynamic Enforcement
To address the above issue, one naive way is arti!cially extending
the execution time of the short region to be WCDL cycles. That
is, the core pipeline stalls at the end of each short region until the
countdown timer hits zero, i.e.,WCDL cycles have passed since the
end of the prior region that is on the Verify. However, the naive
approach incurs a signi!cant run-time overhead due to frequent
core pipeline stalls occurred at the end of short regions, which
becomes even worse for longer WCDLs; Section 8.2 shows that this
strategy incurs an average of 8% and up to 50% run-time overhead.

5.2 Region Stitching
We !nd out it is unnecessary to stall the core pipeline at the end
of a short region as long as the stores of the prior region are held
in the GSQ for WCDL cycles. In light of this observation, VeriPipe
proposes a simple hardware technique called region stitching that
dynamically combines a short region with the following regions
while holding the stores of the prior region in the GSQ. VeriPipe
continues this process until the countdown timer hits zero at a

region boundary, i.e., the stitched region is now long enough to
cover WCDL. We can even relax this for higher performance. When
the timer becomes zero, the prior region is immediately veri!ed to
be error-free without waiting for the next region boundary. This
early releases the region’s stores from the GSQ to the L1 data cache.
The beauty of region stitching is that it does not incur any storage
overhead and scales up to arbitrarily long WCDL.

1 Function VerificationController(𝑀 , 𝑉):
Data: Countdown Timer 𝑀
Data: Instruction 𝑉

2 if 𝑀 == 0 then
3 foreach 𝑊𝑆𝑈 ↔ GSQ[𝑇𝑆𝑋𝑈𝑆_𝑌𝑂𝑍𝑎𝑏 , 𝑐𝑊𝑑 𝑒𝑓𝑌𝑂𝑆𝑎𝑈 ] do
4 merge 𝑊𝑆𝑈 to L1 data cache;
5 end
6 if 𝑉 is a region boundary instruction then

/* Performing the following 4 steps
simultaneously at circuit level */

7 𝑀 ↗𝑔𝑕𝑖𝑗;
8 𝑃𝑎𝑅𝑓𝑘𝑎𝑈𝑙 𝑒𝑕 ↗ 𝑃𝑎𝑄𝑌𝑓𝑂 𝑃𝑎𝑄𝑌𝑇𝑆𝑎𝑈 ;
9 𝑃𝑎𝑄𝑌𝑓𝑂 𝑃𝑎𝑄𝑌𝑇𝑆𝑎𝑈 ↗ 𝑉 ↘𝑇 𝑒𝑕;

10 𝑐𝑊𝑑 𝑒𝑓𝑌𝑂𝑆𝑎𝑈 ↗ 𝑐𝑊𝑑 𝑆𝑋𝑌𝑚 ;
11 end
12 else if 𝑉 is a region boundary instruction then
13 Treat 𝑉 as a noop;

Algorithm 1: Veri!cation Controller

Algorithm 1 describes VeriPipe’s actions upon committing an
instruction, which accepts two inputs: the countdown timer 𝑀 and
the instruction 𝑉 . If𝑀 hits zero (at line 2), VeriPipe early merges the
stores older than GSQ Pointer to the L1 data cache since they are
already veri!ed to be error-free. This relieves the pressure on the
GSQ while still maintaining soft error resilience guarantee. If 𝑉 is a
region boundary instruction, VeriPipe updates its three registers
accordingly and resets the timer as shown in the algorithm from line
7 to 10. Otherwise, VeriPipe treats the region boundary instruction
as a noop, doing nothing special. In particular, region stitching
still veri!es inserted checkpoints, though it might render some
checkpoints not live-out and thus unnecessary.

Most important, region stitching still works correctly for syn-
chronization primitives, e.g., atomic operations and memory fences,
which force all prior stores to be merged into the L1 data cache
before committing them. This is because VeriPipe treats the prim-
itives as region boundaries during region formation (see Section
4.1). Therefore, stores prior to the synchronization primitives are
held in the GSQ for veri!cation until the regions ending at the
primitives reach the Commit. After that, the stores of the regions
are released to the L1 data cache, i.e., they become visible to other
cores, allowing the ROB to commit the primitives. Consequently,
other cores competing for the primitives can start their execution
without observing any unveri!ed data.

6 RECOVERY PROTOCOL
To resume program from soft errors, VeriPipe performs three ac-
tions in a row: (1) discarding the stores younger than GSQ Pointer
from the GSQ, (2) restoring live-in registers of the oldest unveri!ed
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region in a compiler-generated per-region recovery block (see Fig-
ure 9), and (3) resuming the program execution from the region’s
beginning. Figure 12 shows how VeriPipe recovers the program
with region stitching enabled. Assume 𝑃𝑄0-𝑃𝑄1 and 𝑃𝑄5-𝑃𝑄6 are
long enough to cover WCDL, while 𝑃𝑄2 ≃ 𝑃𝑄4 are not.

To start with, 𝑃𝑄0 is on the Commit (i.e., it is error-free), and
𝑃𝑄1 is on the Verify, as shown in Figure 12 (a). Upon reaching the
end of 𝑃𝑄2—on the Execute, VeriPipe combines 𝑃𝑄2, 𝑃𝑄3, and 𝑃𝑄4
into a single region referred to as 𝑃𝑄234 hereafter to ensure that
the total execution time of 𝑃𝑄234 meets or exceeds the required
WCDL cycles. When a soft error is detected in either 𝑃𝑄2 or 𝑃𝑄3,
it is safe to resume the program from 𝑃𝑄1’s beginning pointed to
by Recovery PC. This is because 𝑃𝑄1’s live-in registers are already
veri!ed to be error-free in prior regions; all stores in 𝑃𝑄1 ≃ 𝑃𝑄4 are
squashed from the GSQ and thus do not a#ect the memory states.

timeRg1 Rg2Rg0
Recovery PC Region Register

Rg3 Rg4

Stitched into Rg234

Rg5

time

Rg6

Rg2

Region RegisterRecovery PC

Rg3 Rg4

Stitched into Rg234

Rg5

(a) Verifying Rg1

(b) Verifying Rg234

time
Rg2

Recovery PC Region Register

Rg3 Rg4

Stitched into Rg234

Rg5

(c) Verifying Rg5

Rg1

Rg1

Figure 12: VeriPipe recovery example with region stitching

When reaching the end of 𝑃𝑄234, 𝑃𝑄1 moves to the Commit and
is veri!ed to be error-free, 𝑃𝑄234 enters into the Verify, and 𝑃𝑄5
starts with the Execute. Here, Recovery PC is updated with 𝑃𝑄1’s end,
while Region Register points to 𝑃𝑄234’s end, as shown in Figure 12
(b). That way, upon a soft error detected in 𝑃𝑄5, VeriPipe guarantees
the program to be recoverable from the beginning of 𝑃𝑄234. The
reason is three-fold: (1) VeriPipe only uses the live-in registers of
𝑃𝑄234 to recover the program; (2) all of them are live-out from the
prior veri!ed regions and must already be error-free; (3) region
stitching only makes certain checkpoints in 𝑃𝑄2 ≃ 𝑃𝑄4 redundant,
which do not a#ect 𝑃𝑄234’s live-in registers.

Eventually, 𝑃𝑄234 is veri!ed and transits to the Commit at the
end of 𝑃𝑄5. 𝑃𝑄5 then moves to the Verify, and 𝑃𝑄6 starts with the
Execute; VeriPipe updates its three registers and the countdown
timer accordingly. Upon a soft error detected in 𝑃𝑄6, as shown in
Figure 12 (c), VeriPipe runtime can successfully resume the program
execution from 𝑃𝑄5’s beginning—it is also the end of the veri!ed
region 𝑃𝑄234. The reason is twofold: (1) 𝑃𝑄5’s live-in registers are
de!ned in prior regions and thus already be veri!ed to be error-free;
(2) region stitching still reserves the checkpoints in 𝑃𝑄2-𝑃𝑄4 for
recovering 𝑃𝑄5.

7 DISCUSSION
7.1 Fault Model
VeriPipe assumes that the memory system (i.e., caches and DRAM)
is already protected with error-correcting code (ECC) as in com-
modity processors [11]. Also, VeriPipe assumes that its proposed
hardware structures, e.g., three registers and one timer, and store
queue are hardened against soft errors as in prior designs [61, 69].

7.2 Why No Fault Injection?
As stated in [50, 63], soft errors are predominantly generated by
energetic particle strikes that always generate a sound wave. Due
to the physical phenomena, the sound wave must be detected by
deployed acoustic sensors. Consequently, soft errors are sure to be
detected [61] within a bounded latency no matter how many soft
errors occur simultaneously, leading to never missed soft errors.
Thus, the 100% guaranteed detection of particle-induced soft errors
obviates the need for fault injections. Thanks to the near-zero
overhead, VeriPipe can be integrated with other techniques [54] to
achieve a full protection against all kinds of soft errors.

7.3 False Positive Rate
As prior work [61] shows, with calibration, acoustic sensors can
avoid the detection of those particle strikes which do not generate
bit $ips, thus reducing the chance of reporting such weak strikes to
zero. Nevertheless, false-positive case still occurs since not every
bit $ip causes a program failure, e.g., incorrect program output,
program crash, and program hang, because of the so-called bit-
masking e#ect. If acoustic sensors do not trigger the detection of
weak particle strikes, the false positive rate becomes the same as bit
masking rate. According to prior studies [22, 23], the bit masking
rate of soft errors is ↑90% for CPU applications, and Gupta et al.
[22] found the post-masking failure rate is typically 0.9 error per
day. Given all this, the pre-masking error rate per day is 0.9

1≃0.9 = 9.0.
Therefore, acoustic sensors are expected to report 9.0 ↓ 0.9 = 8.1
errors per day. The implication is that VeriPipe runtime re-executes
a region to correct a soft error occurred therein every ↑3 hours, in
which case the overhead is negligible considering that the average
region execution time is 47.63 𝑂𝑇 (see Section 8.5).

7.4 Error Recovery for Multi-Cores
To ensure program recovery for multi-cores, VeriPipe assumes data-
race-freedom (DRF) programwhich is guaranteed by C/C++ 11 stan-
dard [49] onwards. As with prior proposals [43, 69], VeriPipe treats
synchronization primitives, e.g., atomic operations and memory
fences, as region boundaries such that critical sections form regions.
The implication is three-fold: (1) the stores of critical sections are
released to the memory and thus visible to other cores only after
their veri!cation; (2) upon detecting soft errors, there must be at
most one core in a critical section since other cores have not ob-
tained the lock of the section; (3) in the case of soft error detected,
the cores can be independently rollbacked to their latest veri!ed
points without the need of tracking inter-thread dependence.

7.5 Exception and Interrupt
Upon detecting a soft error while receiving an exception/interrupt
signal, VeriPipe resumes the program execution from the end of the
latest veri!ed region and continues the execution till the program
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point where the exception took place, After that, VeriPipe invokes
the corresponding exception handler to deal with the speci!ed ex-
ception as a regular processor does. Notably, VeriPipe has a minimal
impact on the performance of exception handling since the chance
of encountering both soft error and exception at the same time is
practically negligible. Even if this case occurs, VeriPipe delays the
exception handling by only 47.63 𝑂𝑇 on average.

8 EVALUATION AND ANALYSIS
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Figure 13: Detection la-
tency across the number
of sensors deployed

We implement our compiler op-
timizations atop Clang/LLVM 13
compiler [37] with about 2300
lines of code. All evaluated C/C++
applications are compiled with
-O3 $ag and statically linked.
We implement our hardware de-
sign using gem5 [8] simulator
to model an eight-core out-of-
order ARMv8 Cortex-A77 proces-
sor [38] clocked at 2.42GHz. Each
core has 256 reorder bu#er (ROB)
entries, 85 load queue (LQ) en-
tries, 90 store queue (SQ) entries,
160 instruction queue (IQ) entries,
and 256 physical registers. Also,
each core is equipped with a 64KB
4-way private L1 data cache with 4-cycle hit latency and a 512KB
8-way private L2 cache with 9-cycle hit latency. All the eight cores
share a 4MB 16-way L3 cache with 31-cycle hit latency. The main
memory is con!gured to 16GB DDR4 2400 8x8. We treat the original
program running on the original hardware platform without soft
error resilience as our baseline.

We run multi-threaded benchmarks, e.g., SPLASH3 [56] and
NPB-CPP [46], on gem5 full system (FS) mode, while simulating
SPEC2006/2017 [9, 24]/Mini-Apps [29, 60] on system call emulation
(SE) mode. We synchronize the number of simulated instructions
by measuring the number of function calls in the baseline which
is a constant across di#erent binary version generated by various
compiler optimizations. As with prior techniques [43, 68, 69], all
SPEC/Mini-Apps applications are chosen to be fast forwarded 5
billion instructions with an atomic CPU, and then are simulated for
1 billion instructions in O3 CPU model. The FS simulation boots an
Ubuntu 14.04 with Linux kernel 4.18.0 and runs SPLASH3/NPB-CPP
with eight cores by default.

As WCDL is a#ected by the number of sensors deployed, we
calculate the number of desired sensors for the given WCDL cycles
as with prior work [43, 69]. Figure 13 shows that deploying 30-
300 sensors achieves 50-10 cycles of WCDL on an ARM Cortex-
A77 core—0.7 𝐿𝐿2 core size excluding caches with TSMC 7𝑂𝐿
technology—with varying clock frequency. With this in mind, we
conservatively set the default WCDL to 30 cycles.

8.1 Run-time Overhead Analysis
To demonstrate the high performance of VeriPipe, we compare
VeriPipe to the state-of-the-art work Turnstile [43] across a va-
riety of WCDLs. We also apply VeriPipe compiler optimizations

to Turnstile, forming a scheme called Turnstile+VeriPipe Com-
piler. We further implement the fast store release of Turnpike
[69]—which proposes a hardware-based fast store release to bypass
store veri!cation and thus relieves the pressure on SQ, represented
as Turnstile+VeriPipe Compiler+Fast Store Release.

As shown in Figure 14, VeriPipe is greatly superior to all prior
techniques across all WCDLs from 10 to 50 cycles. VeriPipe incurs
an average of only 1% run-time overhead for all the WCDLs, while
Turnstile incurs an average of 5% to 14% and up to a 62% run-
time overhead for the varying WCDLs. Here, Turnstile+VeriPipe
Compiler still results in an unacceptable overhead for certain ap-
plications, e.g., 61% for povray, 28% for fft, and 33% for lu-contig,
though our compiler optimizations can improve the performance of
Turnstile owing to eliminating redundant checkpoints. The reason
is twofold: (1) Turnstile cannot tolerate small regions due to lim-
ited region boundary bu#er (RBB)—20 entries in our con!guration;
and (2) VeriPipe compiler fails to enlarge these small regions (see
Section 5 for the discussion in details). As a result, Turnstile cannot
scale up to longer WCDLs no matter if enabling VeriPipe compiler
optimizations. Noteworthily,Turnstile+VeriPipe Compiler+Fast
Store Release still does not help in improving the performance of
Turnstile+VeriPipe Compiler at all, despite bypassing the ver-
i!cation for certain stores. This is because (1) out-of-order cores
are equipped with 10x larger store queue (SQ) than in-order cores,
and thus (2) holding stores in the SQ for veri!cation has no extra
pressure on the SQ as con!rmed in Section 8.6.2.

8.2 Impact of VeriPipe’s Optimizations
To investigate the e#ect of each VeriPipe optimization, we conduct a
series of experiments with the optimizations enabled incrementally
and present the results in Figure 15.
Enforcement: shows the run-time overhead of enabling the naive
dynamic enforcement. The !gure shows that this naive strategy
causes a signi!cant run-time overhead, e.g., 8% on average and up to
50%, due to pipeline stalls incurred at the end of each short region.
Stitching: stands for the run-time overhead of enabling region
stitching. As the !gure shows, region stitching signi!cantly reduces
the run-time overhead compared to the naive enforcement. On
average, region stitching incurs 3% run-time overhead. In particular,
region stitching lowers the overhead of many applications, e.g.,
h264ref, povray, leela, fft, and ocean-contig, to near-zero.
+LICM: shows the run-time overhead after incrementally enabling
the LICM. It further lowers the run-time overheads of certain appli-
cations, e.g., 1% reduction for xalancbmk, 2% reduction for mcf and
nab, and 5% reduction for radix.
+LIVM: depicts that the LIVM lowers the average run-time over-
head to only 2%. In particular, the LIVM lowers the overheads of cer-
tain applications to near zero, e.g., mcf, lu-config, and radiosity,
thanks to its ability to move checkpoints out of loops.
+Pruning: indicates the run-time overhead of enabling the optimal
pruning further. The !gure shows that the pruning reduces the
average overhead to only 1% as it eliminates redundant checkpoint
stores. Note that the pruning lowers the overheads of many appli-
cations to near zero, e.g., cg, mg, lu-config, and ocean-contig.
+Unrolling (VeriPipe): stands for the overall run-time overhead
VeriPipe incurs with all optimizations enabled. Eventually, VeriPipe
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Figure 14: Run-time overhead comparison between VeriPipe and prior approaches with varying WCDL (default to 30 cycle);
lower is better
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Figure 15: Impact of each VeriPipe optimization; lower is better
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Figure 16: The ratio of the region eliminated by the region stitching to total regions; higher is better

incurs only 1% run-time overhead on average for total 43 applica-
tions. The !gure shows that the unrolling can further reduce the
overheads of some applications, e.g., 2% reduction for namd, as it
can avoid certain checkpoints of enlarged regions.

8.3 E#ect of Region Stitching
To investigate the e#ectiveness of region stitching in eliminating
region boundaries, we compute the ratio of the regions removed by
the region stitching to total amount of regions. Figure 16 shows that
the region stitching eliminates 49% of regions. This explains why
the region stitching is so good at obviating pipeline stalls occurred
at the end of short regions and lowering the run-time overhead.
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Figure 17: Normalized dynamic instruction increases of Turn-
stile and VeriPipe to the baseline; lower is better
8.4 Dynamic Instruction Increase
To inspect how e#ective VeriPipe’s compiler optimizations are in
eliminating redundant checkpoints, we collect the number of com-
mitted instructions of Turnstile and VeriPipe. Figure 17 shows that

VeriPipe leads to an average of only 1.09% increase in committed
instructions, while Turnstile incurs an average of 7.61% increase.
Consequently, VeriPipe incurs minimal pressure on the instruction
cache of modern server-class processors where the pressure has
been becoming a concern [55].

8.5 Region Characteristics
To investigate why the state-of-the-art work Turnstile causes sig-
ni!cant pipeline stalls at the end of regions, while VeriPipe incurs
near-zero pipeline stalls at region end. We demonstrate the average
region execution time of Turnstile and VeriPipe in Figure 18. We
compute the region execution time by subtracting the commit time
of the region’s !rst instruction from that of the last instruction.
Then, we average the execution time of all regions for each appli-
cation. The !gure shows that Turnstile’s average region execution
time is only 24.63 cycles—implying that Turnstile wastes many CPU
cycles at the end of short regions, while VeriPipe’s is 115.26 cycles
thanks to the synergistic compiler/architecture codesign. Notably,
owing to the region stitching, we can enlarge VeriPipe’s region size
further for longer WCDLs with no overhead incurred.
8.6 Sensitivity Analysis
8.6.1 Sensitivity to WCDL. To clearly show how WCDL a#ects
VeriPipe’s run-time performance, we test VeriPipe for varying
WCDLs from 10 to 50 cycles as shown in Figure 19. The trend
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Figure 18: Average region execution time in cycles; higher is better for less CPU pipeline stalls at a region boundary
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Figure 19: Normalized slowdown of VeriPipe with varying WCDL (default to 30); lower is better

is that VeriPipe incurs the same run-time overhead for all evaluated
applications no matter how long the WCDL is owing to the simple
yet e#ective region stitching. This implies that VeriPipe can signi!-
cantly reduce the number of deployed acoustic sensors—lowering
hardware complexity further—with no performance impact.
8.6.2 Sensitivity to Store !eue Size. You might think that bu#er-
ing the data being stored in the store queue (SQ) for veri!cation
imposes extra pressure on the SQ. To see how this a#ects the run-
time performance of VeriPipe, we vary the SQ size from 56 up to
110, which represent the SQ sizes of four typical high-performance
out-of-order cores, e.g., Marvell ThunderX3 [59], ARM Cortex-A76
[39], ARM Cortex-A77 [38], and Apple M1 [31]. Figure 20 shows
that VeriPipe leads to no increase in the run-time overhead. This is
because VeriPipe puts minimal pressure on the SQ owing to its com-
piler optimizations, allowing VeriPipe to be integrated into varying
computing devices ranging from mobile platforms to datacenters.
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Figure 20: Normalized slowdown of VeriPipe to the baseline
with varying SQ size from 56 up to 110; lower is better
8.6.3 Sensitivity to Thread Count. As with prior techniques [43, 69,
70], VeriPipe treats synchronization primitives as region boundaries
for correct multi-cores recovery. This might delay the inter-thread
synchronization due to adding veri!cation latency to the execution
delay of the synchronization primitives. To investigate such an
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Figure 21: Normalized slowdown of VeriPipe with varying
thread count from 8 to 64; lower is better

impact, we vary the number of threads for NPB and SPLASH3
from 8 up to 64. As shown in Figure 21, VeriPipe practically has
negligible (1%) impact on the performance of these program for all
con!gurations. The reason is twofold: (1) critical sections account
for a small portion of the program execution time; (2) VeriPipe
incurs minimal stall cycles at the end of critical sections (regions)
thanks to long enough regions.
8.7 Power and Area Overheads
VeriPipe proposes only two 64-bit registers (Recovery PC and Region
Register), a 7-bit register (GSQ Pointer), a 5-bit countdown timer,
and a simple control logic comprised of a few comparators. We
implement the hardware components of Turnstile/VeriPipe using
Chisel [6] and compile the code into RTL with TSMC 28𝑂𝐿—the
open-source RTL compiler we get only supports 28𝑂𝐿. Table 1
shows that VeriPipe incurs 8.8% area, 8.7% power consumption, and
26.9% access latency of Turnstile.

Table 1: Hardware cost comparison between Turnstile and
VeriPipe with TSMC 28𝑂𝐿 technology

Area (𝑃𝑄2) Power (𝑄𝐿 ) Max. Access latency (𝑅𝑆)
VeriPipe 849.1 2.4 0.07
Turnstile 9667.3 27.5 0.26

VeriPipe / Turnstile 8.8% 8.7% 26.9%
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Due to the lack of open-source RTL compiler that supports TSMC
7𝑂𝐿 node, we scale the synthesis results of the 28𝑂𝐿 down by 6.6x
[64, 65] to approximate the results of TSMC 7𝑂𝐿 technology. It
turns out that VeriPipe occupies only 0.018% area of a 0.7𝐿𝐿2 ARM
Cortex-A77 core (excluding caches).

9 OTHER RELATEDWORK
Many prior techniques [18–20, 36, 54, 57, 58] propose to leverage
instruction-level/thread-level/process-level duplication to detect
the occurrences of soft errors, ending up with high run-time over-
head. Although hardware-based techniques [4, 5, 35] can lower
run-time overhead, they come with expensive hardware costs.
Other schemes [62, 66] detect the error occurrence by checking
for the symptoms that soft errors generate, while dual/triple mod-
ular redundancy (DMR/TMR) schemes [51, 53] check for faulty
consequences. However, they all su#er from lower detection cov-
erage. Prior recovery schemes [12–17, 25, 27, 34, 41, 67, 70, 72]
cause high run-time overhead regardless of their recovery gran-
ularity. Recently, Kim et al. proposed Penny [32] to provide high-
performance soft error resilience for GPUs. Penny makes use of
parity code for immediate soft error detection and idempotent pro-
cessing [17, 40, 42, 44] for error recovery. Flame [71] leverages
acoustic sensors and idempotent processing for GPU soft error re-
silience. It exploits the massive multi-threading of GPUs to hide
the veri!cation latency of warps, achieving lightweight resilience.

10 CONCLUSION
This paper presents VeriPipe, a near-zero-overhead resilience
scheme that protects out-of-order cores against soft errors with
acoustic-sensor-based detection. VeriPipe compiler partitions in-
put program into a series of recoverable regions, while VeriPipe
hardware veri!es whether they are error-free at run time. For the
veri!cation purpose, VeriPipe delays the writeback of any data
stored during region execution until the region is veri!ed to be
error-free. If an error is detected, VeriPipe corrects it by resum-
ing the program from the end of the latest veri!ed (error-free)
region. The experiments with 43 applications of SPEC 2006/2017/
NPB-CPP/SPLASH3/Mini-Apps demonstrate that VeriPipe incurs
only a 1% run-time overhead, on average. In particular, VeriPipe
achieves such high-performance soft error resilience at minimal
hardware complexity (3 registers and 1 countdown timer), unlike
the state-of-the-art work that requires intrusive microarchitectural
modi!cations and yet causes a signi!cant run-time overhead. We
believe that VeriPipe lays the foundation for the commercialization
of acoustic-sensor-based soft error protection.

ACKNOWLEDGMENTS
We thank anonymous reviewers for their valuable comments. This
work was supported by NSF grants 2001124, 2153749, and 2314681.

REFERENCES
[1] Vikas Agarwal, MS Hrishikesh, StephenWKeckler, and Doug Burger. 2000. Clock

rate versus IPC: The end of the road for conventional microarchitectures. In
Proceedings of the 27th annual international symposium on Computer architecture.
248–259.

[2] Dimitris Agiakatsikas, George Papadimitriou, Vasileios Karakostas, Dimitris Gi-
zopoulos, Mihalis Psarakis, Camille Belanger-Champagne, and Ewart Blackmore.
2023. Impact of Voltage Scaling on Soft Errors Susceptibility of Multicore Server

CPUs. In Proceedings of the 56th Annual IEEE/ACM International Symposium on
Microarchitecture. 957–971.

[3] Alfred V Aho, Ravi Sethi, and Je#rey D Ullman. 1986. Compilers, principles,
techniques. Addison wesley 7, 8 (1986), 9.

[4] Sam Ainsworth and Timothy M Jones. 2018. Parallel error detection using
heterogeneous cores. In 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 338–349.

[5] Sam Ainsworth and Timothy M Jones. 2019. Paramedic: Heterogeneous paral-
lel error correction. In 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 201–213.

[6] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avi%ienis, JohnWawrzynek, and Krste Asanovi&. 2012. Chisel: constructing
hardware in a scala embedded language. In DAC Design Automation Conference
2012. IEEE, 1212–1221.

[7] David F Bacon. 2022. Detection and Prevention of Silent Data Corruption in an
Exabyte-scale Database System. (2022).

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer Architecture
News 39, 2 (2011), 1–7.

[9] James Bucek, Klaus-Dieter Lange, et al. 2018. Spec cpu2017: Next-generation com-
pute benchmark. In Companion of the 2018 ACM/SPEC International Conference
on Performance Engineering. ACM, 41–42.

[10] Jonathan Chang, Yen-Huei Chen, Wei-Min Chan, Sahil Preet Singh, Hank Cheng,
Hidehiro Fujiwara, Jih-Yu Lin, Kao-Cheng Lin, John Hung, Robin Lee, et al. 2017.
12.1 a 7nm 256mb sram in high-k metal-gate !nfet technology with write-assist
circuitry for low-v min applications. In 2017 IEEE International Solid-State Circuits
Conference (ISSCC). IEEE, 206–207.

[11] Wei Chen, Szu-Liang Chen, Siufu Chiu, Raghuraman Ganesan, Venkata Lukka,
Wei Wing Mar, and Stefan Rusu. 2013. A 22nm 2.5 MB slice on-die L3 cache for
the next generation Xeon® processor. In 2013 Symposium on VLSI Circuits. IEEE,
C132–C133.

[12] Jongouk Choi, Hyunwoo Joe, and Changhee Jung. 2022. CapOS: Capacitor Error
Resilience for Energy Harvesting Systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 41, 11 (2022), 4539–4550.

[13] Jongouk Choi, Hyunwoo Joe, Yongjoo Kim, and Changhee Jung. 2019. Achieving
stagnation-free intermittent computation with boundary-free adaptive execution.
In 2019 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 331–344.

[14] Jongouk Choi, Larry Kittinger, Qingrui Liu, and Changhee Jung. 2022. Compiler-
directed high-performance intermittent computation with power failure immu-
nity. In 2022 IEEE 28th Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 40–54.

[15] Jongouk Choi, Qingrui Liu, and Changhee Jung. 2019. CoSpec: Compiler di-
rected speculative intermittent computation. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 399–412.

[16] Jongouk Choi, Jianping Zeng, Dongyoon Lee, Changwoo Min, and Changhee
Jung. 2023. Write-light cache for energy harvesting systems. In Proceedings of
the 50th Annual International Symposium on Computer Architecture. 1–13.

[17] Marc De Kruijf and Karthikeyan Sankaralingam. 2013. Idempotent code gen-
eration: Implementation, analysis, and evaluation. In Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
IEEE Computer Society, 1–12.

[18] Moslem Didehban and Aviral Shrivastava. 2016. nZDC: A compiler technique for
near zero silent data corruption. In 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE, 1–6.

[19] Moslem Didehban and Aviral Shrivastava. 2018. A compiler technique for
processor-wide protection from soft errors in multithreaded environments. IEEE
Transactions on Reliability 67, 1 (2018), 249–263.

[20] Moslem Didehban, Aviral Shrivastava, and Sai Ram Dheeraj Lokam. 2017. NEME-
SIS: A software approach for computing in presence of soft errors. In 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE,
297–304.

[21] James Elliott, Mark Hoemmen, and Frank Mueller. 2014. Tolerating silent data
corruption in opaque preconditioners. arXiv preprint arXiv:1404.5552 (2014).

[22] Saurabh Gupta, Tirthak Patel, Christian Engelmann, and Devesh Tiwari. 2017.
Failures in large scale systems: long-term measurement, analysis, and implica-
tions. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. 1–12.

[23] Siva Kumar SastryHari, Sarita VAdve, andHelia Naeimi. 2012. Low-cost program-
level detectors for reducing silent data corruptions. In IEEE/IFIP international
conference on dependable systems and networks (DSN 2012). IEEE, 1–12.

[24] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News 34, 4 (2006), 1–17.

[25] Shao-Yu Huang, Jianping Zeng, Xuanliang Deng, Sen Wang, Ashrarul Haq Sifat,
Burhanuddin Bharmal, Jiabin Huang, Ryan Williams, Haibo Zeng, and Changhee
Jung. 2023. RTailor: Parameterizing Soft Error Resilience for Mixed-Criticality
Real-Time Systems. In 2023 IEEE Real-Time Systems Symposium (RTSS). IEEE.



ICS ’24, June 04–07, 2024, Kyoto, Japan Jianping Zeng, Shao-Yu Huang, Jiuyang Liu, and Changhee Jung

[26] Jungi Jeong, Jaewan Hong, Seungryoul Maeng, Changhee Jung, and Youngjin
Kwon. 2020. Unbounded hardware transactional memory for a hybrid
DRAM/NVM memory system. In 2020 53rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). IEEE, 525–538.

[27] Jungi Jeong and Changhee Jung. 2021. PMEM-spec: persistent memory specu-
lation (strict persistency can trump relaxed persistency). In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 517–529.

[28] Jungi Jeong, Jianping Zeng, and Changhee Jung. 2022. Capri: Compiler and
architecture support for whole-system persistence. In Proceedings of the 31st
International Symposium on High-Performance Parallel and Distributed Computing.
71–83.

[29] Ian Karlin, Je# Keasler, and J Robert Neely. 2013. Lulesh 2.0 updates and changes.
Technical Report. Lawrence Livermore National Lab.(LLNL), Livermore, CA.

[30] Himanshu Kaul, Mark Anders, Steven Hsu, Amit Agarwal, Ram Krishnamurthy,
and Shekhar Borkar. 2012. Near-threshold voltage (NTV) design: Opportunities
and challenges. In Proceedings of the 49th Annual Design Automation Conference.
1153–1158.

[31] Connor Kenyon and Collin Capano. 2022. Apple Silicon Performance in Scienti!c
Computing. In IEEE High Performance Extreme Computing Conference. 1–10.

[32] Hongjune Kim, Jianping Zeng, Qingrui Liu, Mohammad Abdel-Majeed, Jaejin Lee,
and Changhee Jung. 2020. Compiler-directed soft error resilience for lightweight
GPU register !le protection. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation. 989–1004.

[33] Kevin Krewell. 2012. Cortex-A53 Is ARM’s next little thing. Microprocessor Report
11, 5 (2012), 12–2.

[34] Dmitrii Kuvaiskii, Rasha Faqeh, Pramod Bhatotia, Pascal Felber, and Christof
Fetzer. 2016. HAFT: Hardware-assisted fault tolerance. In Proceedings of the
Eleventh European Conference on Computer Systems. 1–17.

[35] Christopher LaFrieda, Engin Ipek, Jose F Martinez, and Rajit Manohar. 2007.
Utilizing dynamically coupled cores to form a resilient chip multiprocessor.
In 37th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’07). IEEE, 317–326.

[36] Ignacio Laguna, Martin Schulz, David F Richards, Jon Calhoun, and Luke Olson.
2016. Ipas: Intelligent protection against silent output corruption in scienti!c
applications. In 2016 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 227–238.

[37] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75–86.

[38] ARM Limited. 2019. ARM Cortex A77. "https://www.arm.com/products/silicon-
ip-cpu/cortex-a/cortex-a77".

[39] ARM limited Corporation. 2019. Cortex-a76 technique reference manual. https:
//developer.arm.com/Processors/Cortex-A76.

[40] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L Scott, Sam H Noh, and
Changhee Jung. 2018. iDO: Compiler-directed failure atomicity for nonvolatile
memory. In 2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 258–270.

[41] Qingrui Liu and Changhee Jung. 2016. Lightweight hardware support for transpar-
ent consistency-aware checkpointing in intermittent energy-harvesting systems.
In 2016 5th Non-Volatile Memory Systems and Applications Symposium (NVMSA).
IEEE, 1–6.

[42] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016. Compiler-
directed lightweight checkpointing for !ne-grained guaranteed soft error recov-
ery. In SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 228–239.

[43] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016. Low-cost
soft error resilience with uni!ed data veri!cation and !ne-grained recovery
for acoustic sensor based detection. In The 49th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Press, 25.

[44] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2017. Compiler-
directed soft error detection and recovery to avoid DUE and SDC via Tail-DMR.
ACM Transactions on Embedded Computing Systems (TECS) 16, 2 (2017), 32.

[45] Jack L Lo and Susan J Eggers. 1995. Improving balanced scheduling with compiler
optimizations that increase instruction-level parallelism. ACM SIGPLAN Notices
30, 6 (1995), 151–162.

[46] Júnior Lö#, Dalvan Griebler, Gabriele Mencagli, Gabriell Araujo, Massimo
Torquati, Marco Danelutto, and Luiz Gustavo Fernandes. 2021. The NAS parallel
benchmarks for evaluating C++ parallel programming frameworks on shared-
memory architectures. Future Generation Computer Systems 125 (2021), 743–757.

[47] Doug Matzke. 1997. Will physical scalability sabotage performance gains? Com-
puter 30, 9 (1997), 37–39.

[48] Pablo Montesinos, Wei Liu, and Josep Torrellas. 2007. Using register lifetime
predictions to protect register !les against soft errors. In 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN’07). IEEE,
286–296.

[49] Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. 2013. Compiler
testing via a theory of sound optimisations in the C11/C++ 11 memory model.

ACM SIGPLAN Notices 48, 6 (2013), 187–196.
[50] Shubhendu S Mukherjee, Joel Emer, and Steven K Reinhardt. 2005. The soft

error problem: An architectural perspective. In 11th International Symposium on
High-Performance Computer Architecture. IEEE, 243–247.

[51] Shubhendu S Mukherjee, Michael Kontz, and Steven K Reinhardt. 2002. Detailed
design and evaluation of redundant multi-threading alternatives. In Proceedings
29th annual international symposium on computer architecture. IEEE, 99–110.

[52] George Papadimitriou and Dimitris Gizopoulos. 2023. Silent Data Corruptions:
Microarchitectural Perspectives. IEEE Trans. Comput. (2023), 1–13. https://doi.
org/10.1109/TC.2023.3285094

[53] Joydeep Ray, James C Hoe, and Babak Falsa!. 2001. Dual use of superscalar
datapath for transient-fault detection and recovery. In Proceedings of the 34th
annual ACM/IEEE international symposium on Microarchitecture. IEEE Computer
Society, 214–224.

[54] George A Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I
August. 2005. SWIFT: Software implemented fault tolerance. In Proceedings of the
international symposium on Code generation and optimization. IEEE Computer
Society, 243–254.

[55] Alberto Ros and Alexandra Jimborean. 2020. The entangling instruction
prefetcher. IEEE Computer Architecture Letters 19, 2 (2020), 84–87.

[56] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros. 2016.
Splash-3: A properly synchronized benchmark suite for contemporary research.
In 2016 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 101–111.

[57] Hwisoo So, Moslem Didehban, Yohan Ko, Aviral Shrivastava, and Kyoungwoo
Lee. 2018. EXPERT: E#ective and $exible error protection by redundant multi-
threading. In 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 533–538.

[58] Hwisoo So, Moslem Didehban, Aviral Shrivastava, and Kyoungwoo Lee. 2019.
A software-level redundant multithreading for soft/hard error detection and
recovery. In 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 1559–1562.

[59] Rabin Sugumar, Mehul Shah, and Ricardo Ramirez. 2021. Marvell ThunderX3:
Next-Generation Arm-Based Server Processor. IEEE Micro 41, 2 (2021), 15–21.

[60] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. 2014.
XSBench-the development and veri!cation of a performance abstraction for
Monte Carlo reactor analysis. The Role of Reactor Physics toward a Sustainable
Future (PHYSOR) (2014).

[61] Gaurang R Upasani. 2016. Soft error mitigation techniques for future chip multi-
processors. Ph. D. Dissertation. Universitat Politècnica de Catalunya.

[62] Nicholas J Wang and Sanjay J Patel. 2006. ReStore: Symptom-based soft error de-
tection in microprocessors. Dependable and Secure Computing, IEEE Transactions
on 3, 3 (2006), 188–201.

[63] Christopher Weaver, Joel Emer, Shubhendu S Mukherjee, and Steven K Rein-
hardt. 2004. Techniques to reduce the soft error rate of a high-performance
microprocessor. ACM SIGARCH Computer Architecture News 32, 2 (2004), 264.

[64] Shien-Yang Wu, CY Lin, MC Chiang, JJ Liaw, JY Cheng, SH Yang, CH Tsai, PN
Chen, T Miyashita, CH Chang, et al. 2016. A 7nm CMOS platform technology
featuring 4 th generation FinFET transistors with a 0.027 um 2 high density 6-T
SRAM cell for mobile SoC applications. In 2016 IEEE International Electron Devices
Meeting (IEDM). IEEE, 2–6.

[65] Shien-Yang Wu, Colin Yu Lin, MC Chiang, JJ Liaw, JY Cheng, SH Yang, Ming
Liang, Tadakazu Miyashita, CH Tsai, BC Hsu, et al. 2013. A 16nm FinFET CMOS
technology for mobile SoC and computing applications. In 2013 IEEE International
Electron Devices Meeting. IEEE, 9–1.

[66] Jing Yu, Maria Jesus Garzaran, and Marc Snir. 2009. Esoftcheck: Removal of
non-vital checks for fault tolerance. In 2009 International Symposium on Code
Generation and Optimization. IEEE, 35–46.

[67] Jianping Zeng, Jongouk Choi, Xinwei Fu, Ajay Paddayuru Shreepathi, Dongyoon
Lee, Changwoo Min, and Changhee Jung. 2021. ReplayCache: Enabling Volatile
Cachesfor Energy Harvesting Systems. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 170–182.

[68] Jianping Zeng, Jungi Jeong, and Changhee Jung. 2023. Persistent Processor Ar-
chitecture. In Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture. 1075–1091.

[69] Jianping Zeng, Hongjune Kim, Jaejin Lee, and Changhee Jung. 2021. Turnpike:
Lightweight Soft Error Resilience for In-Order Cores. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture. 654–666.

[70] Jianping Zeng, Tong Zhang, and Changhee Jung. 2024. Compiler-DirectedWhole-
System Persistence. In Proceedings of the 51th Annual International Symposium
on Computer Architecture.

[71] Yida Zhang and Changhee Jung. 2022. Featherweight soft error resilience for
GPUs. In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 245–262.

[72] Yuchen Zhou, Jianping Zeng, Jungi Jeong, Jongouk Choi, and Changhee Jung.
2023. SweepCache: Intermittence-Aware Cache on the Cheap. In Proceedings of
the 56th Annual IEEE/ACM International Symposium on Microarchitecture. 1059–
1074.

https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a77
https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a77
https://developer.arm.com/Processors/Cortex-A76
https://developer.arm.com/Processors/Cortex-A76
https://doi.org/10.1109/TC.2023.3285094
https://doi.org/10.1109/TC.2023.3285094

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Acoustic-Sensor-Based Soft Error Detection
	2.2 Region-Level Soft Error Verification
	2.3 Limitations of Prior Work

	3 Overview of VeriPipe
	4 VeriPipe Compiler
	4.1 Region Partitioning
	4.2 Live-Out Register Checkpointing
	4.3 Checkpoint Elimination

	5 Dealing with Short Regions
	5.1 Naive Dynamic Enforcement
	5.2 Region Stitching

	6 Recovery Protocol
	7 Discussion
	7.1 Fault Model
	7.2 Why No Fault Injection?
	7.3 False Positive Rate
	7.4 Error Recovery for Multi-Cores
	7.5 Exception and Interrupt

	8 Evaluation and Analysis
	8.1 Run-time Overhead Analysis
	8.2 Impact of VeriPipe's Optimizations
	8.3 Effect of Region Stitching
	8.4 Dynamic Instruction Increase
	8.5 Region Characteristics
	8.6 Sensitivity Analysis
	8.7 Power and Area Overheads

	9 Other Related Work
	10 Conclusion
	Acknowledgments
	References

