Dynamic Event-Triggered Control under Input
and State Delays using Interval Observers

Frédéric Mazenc

Abstract—We prove global exponential stability esti-
mates for a class of nonlinear control systems that contain
uncertain time-varying input delays and uncertain state
delays. We use new dynamic event-triggered controls that
ensure that Zeno’s phenomenon does not occur. Our analy-
sis uses new synergies of interval observers and Halanay’s
inequality. We illustrate our approach in a marine robotic
dynamics that contains uncertain nonlinear terms.

Index Terms— Stabilization, event-triggered, delay

[. INTRODUCTION

YNAMIC event-triggered control is an alternative to

standard event-triggered controls (e.g., [1]) or tradi-
tional controls, where instead of changing control values at
times that are independent of the state, the times when the
control values change are determined by an interconnected
dynamic extension. This calls for finding (a) the control,
whose values only change at event triggering times and (b)
the dynamic extension, to choose triggering times. This differs
from static event triggers, where there is a supremum that is
used to determine the trigger times instead of using a dynamic
extension [2], [3]. Dynamic event-triggered control has been
shown to reduce the numbers of trigger times, as compared
with static event-triggers [2], [3]. However, by reducing the use
of scarce communication resources by only changing control
values when the system under consideration requires attention,
dynamic and static event-triggered controls have both inspired
significant theoretic research and applications [4]-[14].

One recent event-triggered approach combines interval ob-
servers with matrices of absolute values [2], [15]-[17]. These
techniques were shown to significantly reduce the average
numbers of trigger times on intervals of fixed length, and to
beneficially increase the lower bounds on the inter-execution
times (which are the differences between consecutive trigger
times) compared with traditional event-triggered controls like
[1] (and so ensure less triggering), when applied to an under-
water robotic model [2]. Interval observers yield component-
wise upper and lower bounds for unknown functions [18].

Interval observers appeared in several works, leading to
solutions of stabilization problems. However, we believe that
this letter is the first to apply this approach to dynamic event-
triggered control with unknown input delays and unknown
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nonlinearities, using dynamical extensions that construct the
control and new triggering rules which have not appeared
before. Compared with [2], [16], [19], this letter has several
key novel features. First, our dynamic extensions and trigger
rules use suprema of available state measurements, contrasting
with the linear cases of [2] which required a supremum of
an uncertainty bound. Second, the uncertainty in [2] was
restricted to being an added uncertainty on the right side of the
dynamics. Third, our novel use of Halanay’s inequality here
allows us to overcome the significant challenge of extending
the results [2], [16], [19] (which were confined to linear
systems) to the more challenging nonlinear systems presented
here, where there can also be uncertain coefficients in a linear
part of the system including unknown control gains, as well as
unknown state and input delays with known bounds. Fourth,
our work also contrasts significantly with delay-compensating
chain predictor approaches [16] which made the assumption
that the input delay was known and constant, which is not
assumed in this letter. This letter is strongly motivated by the
prevalence and potentially destabilizing influences of uncertain
coefficients, delays, and nonlinearities [6], which call for our
analysis of delayed event-triggered nonlinear systems.

We use standard notation, where R™ (resp., RP*?) is the
set of all vectors of real n-tuples (resp., p X ¢ matrices) and
the dimensions of our Euclidean spaces are arbitrary, unless
indicated otherwise. We set Zg = {0, 1,2, ...}, and ||-|| denotes
the Euclidean 2—norm, and || - [|s is the supremum in this
norm over sets S. For a matrix G = [g;;] € R™*®, we set
|G| = [|gi;l], so the entries of |G| are the absolute values of
the corresponding entries g;; of G, and then the supremum |-|g
over sets S is also defined entrywise. We let G denote the
matrix whose entries are max{0, g;;} and G~ = G* — G, so
|G| = Gt + G~ . For matrices D = [d;;] and E = [e;;] of the
same size, we write D < F (resp., D < F) provided d;; < e;;
(resp., d;; < e;;) for all ¢ and j. We adopt similar notation
for vectors. We call a matrix S positive (resp., nonnegative)
provided 0 < S (resp., 0 < S), where 0 is the zero matrix,
and [ is the identity matrix. For square matrices A, we let D 4
denote the diagonal matrix whose diagonal entries are those
of A, RaA = Da+ (A—Dy)" and Ny = (A — Dj)*" —
(A — Dy). For constants a > 0, we let Ci,(a) denote the
set of all absolutely continuous functions ¢ : [—a,0] — R™,
and x; is defined by x:(¢) = z(t + ¢) for all £ € [—a, 0], all
functions z, and all £ > O such that ¢ + ¢ is in the domain of
z. A real square matrix is called Metzler provided all of its
off-diagonal entries are nonnegative. We assume for simplicity
that the initial times of our solutions z(t) are ¢y = 0, and that
the initial functions are constant, so x(¢) = z(0) for all £ < 0.



[I. MAIN RESULT
A. Studied system

We consider the system

z(t) = (A+AA1)x(t) + (B + Ap(t))u(t —
+f(taxt)

where z is valued in R"”, the control u is valued in RP and
will be specified below, A € R™"*™ and B € R"*P are
known matrices, the piecewise continuous functions A4 :
[0,400) — R™™ and Ap : [0,400) — R"*P represent
model uncertainty, and f : [0,4+00) x Cin(h) — R™ for a
known value h > 0 represents unknown state delayed terms.
Our first assumption is as follows, where [¢|(_j ] is the
supremum of ¢ over the set S = [—h, 0] as defined in Section
I (but see Remark 3, for ways to relax our assumptions on f):

Assumption 1: There is a matrix K € RP*" such that, with

)

H = A+ BK, )

the matrix Ry + Np is Hurwitz. Also, 7(t) is piecewise
constant, and there are a known constant 7 > 0 and known
matrices A4 € R™"*™ and A € R™*P such that

0<7(t) <7, |Aa(t)| < A4, and |[Ag(t)| <A (3)

hold for all £ > 0. Finally, f is continuous in its first variable
t and locally Lipschitz in its second variable z;, and there is
a constant fy > 0 such that

If(t,d)| < foldli—n,0 4

holds for all ¢ > 0 and ¢ € Ci, (h). O
According to [20, Theorem 2.11, p. 38], Assumption 1
provides a vector V' > 0 and a real value ¢ > 0 such that

VT (Rg + Ng) < —cV'T, (5)

since Ry+Npy is Metzler and Hurwitz. We also use a matrix
T' > 0 in R™ ™ such that there is a constant r > 0 such that

—cVT +VTBK|l < -V, (6)
which holds when I' has small enough entries. We also use
Q(s) = e + [ els=™AdmBK. (7)

Since I' > 0 and Q(0) = I, there is a constant v > 0 such
that Q(¢) is nonsingular for each ¢ € [0, ] and such that

|IBK(Q7'(s) — I)| < |BK|T for all s € [0,].  (8)

We fix 7, ¢, 7, h, A, B, V, fo, T, K, A4, A, and v satisfying
the preceding requirements in the sequel, and then we set

R
Bt =

(14 [BEQ, , Jy [e4|ac) B, where

(I +7|BK|)(fol+Aa + Ap|K]) ©))

+7(|[BKA| + |(BK)?)).

We then fix a constant p, > 0 such that
VIR<p V' (10)

and then our last assumption is the following, which can be
viewed as a smallness condition on 7, A 4, Ap, or fy:

Assumption 2: The inequality

(1)

is satisfied. ]
Assumption 2 implies that for each constant 7' > v, there
is a unique constant R, > 0 such that

Px <T

R, (2T+27+h+v)

R, =r—p.e (12)

We fix constants 7" > v and R, > 0 satisfying (12). Our R,
will be our exponential convergence rate in our application
of Halanay’s inequality (as stated in [21, Lemma 4.2]) in our
proof of our theorem, in which V; > 0 will denote the ith entry
of the positive vector V' from (5) for ¢ = 1,...n. Halanay’s
inequality is called for here to handle the delays, uncertainties
f, and unknown coefficients that were not present in [2].
Remark 1: As in [2, Remark 3.1], our Hurwitzness assump-
tion on Ry + Np is unrestrictive, because it can be satisfied
for all controllable pairs (A, B) after a change of coordinates.
Another key point is that f can be uncertain, as long as we
know constants h and f satisfying (4). See Section III, where
we illustrate how our assumptions allow significant uncertain
input and state delays, and large entries for the uncertainty
Ap, as compared with the entries of B, and so are not too
restrictive, and where we also illustrate a benefit of using the
new inequality in (8) instead of the inequality |2~!(s)—I| < T’
that was used in its place in [2], [16], and [19]. O

B. Event-Triggered Control

Fix a diagonal matrix D whose main diagonal entries are
all positive, which is a tuning matrix, and any positive vector
zg € R™. In terms of our fixed constant 1" > v, consider

2(t) = (A+Aa(t)z(t)
+(B+Ap(t)Ka(u(t) — () + f(t, 1)
2(t) = (R + Nm)z(t) — B*(t) + A(C(t, 21))
e(t) = a(t;) —x(t) for all t € [t;,t;41) (13)

tiv1 = sup{t € [t;,t; +T] : 2(t)
—DB*(t)+DA((t, x¢)) >0}
M(t) = t; forallt € [ti,ti+1)

with z(0) = zp and the function A defined by
MC(t 2y)) = |BKQ*1|[O7V] [1 |eAE0 ¢, z)de, (14)
and where
B*(t) = |BKe(t)| — |BK|T|x(t)| and
C(t,me) = TIBEA||2[ ()7 (o)
AT (BE)? [ u(t) 27— 18]
+ fol + |BK|T)|z|t—h—1—7
+ (I+7|BK]) (ZAH'ZB\KD |Z] p—2(747).4

(15)

and where ¢ty = 0. Our main result is then as follows:
Theorem 1: Let Assumptions 1-2 hold. Then, all solutions
x : [0,400) — R™ of (13) are such that for all ¢ > 0, we have

nmax{V;:1<i<n} _R,
[t < mmextiisizele=Ret (9]j2(0)]] + ||20l]) -

Also, t;4+1 —t; > v holds for all ¢ € Zy. O

(16)



The A in (14) collects the effects of f, A 4, and Apg, and 7.
The triggered mechanism (13) is reminiscent of those of [3],
except we adopt a positive systems approach. System (13) uses
the control u(t) = Kz (u(t) —7(t)) (where 7(t) represents the
delayed impact of triggering a new control value at time ((t)),
and whose trigger times ¢; are found recursively, as follows.
We solve the initial value problems given by the z and z
systems in (13) with the initial time 0 and initial states z(0)
and z(0) = zp, while monitoring the componentwise strict
inequality in the sup in (13) with ¢ = 0 (so we do not need
to compute the z values on [¢t;,¢;11) until the measurement
at time ¢; is obtained). If this strict inequality holds for all
t € [0,T], then ¢t; = T. Otherwise, this supremum is in [0, T)
and is our ¢;. We repeat this with ¢y = 0 replaced by ¢;, by
solving the x and z systems in (13) with the initial time ¢; and
the initial state z(¢1) obtained by solving the z system in (13)
on [0,t1]. This repeats for all ¢ € Zy, and gives a continuous
solution z(¢) for all ¢ > 0 and trigger time sequence {t;},
because our lower bound ¢;41 — t; > v for all ¢ implies that
the Zeno phenomenon does not occur (meaning, only finitely
many t;’s occur on each finite length time interval).

Remark 2: While more complicated than standard con-
trollers, (13) ensures robustness to unknown 7, A4, Ap, and
f while only updating u when a new control value is required.
By contrast, standard controllers do not offer these benefits.
Our proof of Theorem 1 will show that the theorem remains
true if we replace the suprema in (15) by upper bounds, e.g.,
|I|[M(t)_7)u(t)] + 01 (t) instead of |x|[u(t)—?,p(t)]7 and similarly
for the other suprema in (15), except we conclude exponential
input-to-state stability with respect to the added nonnegative
uncertainties ¢’s, instead of (16); this follows from generalized
Halanay’s inequalities with gain terms [22]. Hence, it suffices
to have upper estimates for the suprema. This can help make
our controllers easy to implement. O

C. Proof of Theorem 1

The proof has four parts. The first proves that the solution of
the z system in (13) satisfies z(¢) > 0 for all ¢ > 0. Since this
part is the same as the first part of the proof of [2, Theorem
1] except with the A from [2, Equation (8)] replaced by (14),
and with | BK|(|e(t)|—T|«(t)|) replaced by the function B* (%)
from (15) and 6 = 0, we omit the first part. In the second part,
we prove that ;417 —¢; > v holds for all ¢ € Zgy. In the third
part, we build our interval observer, to prove (16) in the fourth
part. While similar in structure to the proof of [2, Theorem 1],
our proof is significantly different, because we need to take
into account the f, 7, A4, and Ap from (1), which were not
allowed in [2] and which call for the significantly different
new analogs (14) of the A’s from [2, Equation (8)], and for
using Halanay’s inequality, which was also not required in [2].

Second Part: Ruling Out Zeno’s Phenomenon. We have

@(t) = (A+Aa(t)z(t) + BEz(u(t))
+ApKa(u(t) — 7(1))
+BK[z(u(t) — (1)) — 2(u(t)] + f(t, x)
= Aw(t)+BKz(u(t)—BK [') #(m)dm
+ [t ) +Aa(t)2(t) + ApKa(u(t) — (1))

A7)

and so also
#(t) = Aa(t) + BKa(u(t)) + p(t)
for all ¢ > 0, where

p(t) = —BKA[")

(18)

z(m)dm + fi(t, ;) + A1)

p(t)—7(t)
—(BE)? 1)) a(pu(m) = 7(m))dm,

Ab(t) = —BKf“t) » AA(m)a:(m)dm 19)
~BK [/} ”>AB< m) K (ju(m) 7 (m))dm

+Aa()z(t) + Ap(t)Kz(u(t) — (1)), and
it w) = f(to)—BE [') ) f(m,zp,)dm.

Fix an ¢ € Zy. We next argue by contradiction. Suppose,
for the sake of obtaining a contradiction, that ¢,,; — ¢; < v.
By applying the method of variation of parameters to (18), we
get

x(t) = )+ [ At p(
for all ¢ € [t;,t;11), where 2 is defined in (7). Hence, since
tir1 —t; < v, we would be able to use Q71(t — ;) to solve
for z(t;) in (20) and use our choice e(t) = z(t;) — z(t) from
(13) to get a formula for e(t), then left multiply the result by
BK and then apply | - | to both sides of the result, to get

Q(t — ;) m)dm (20)

|BKe(t)| = |BK[Q(t —t;)* — I]a(t)

— BKQ(t —t;)" f eA=m) p(m)dm| @b

for all ¢ € [t;,¢;4+1), so our choice of B* from (15) gives

BX(t) < [[BE(Q(t—t:)"" )I*IBKIF]IJ:( )l
HBEQ(E — ;) [ A p(m)dm|  (22)
< [BEQ(t—t;)7" [} el dm|

for all ¢t € [t;,t;1+1), where the first inequality followed by
applying the triangle inequality to the right side of (21) and
then subtracting |BK|T|z(t)| from both sides of the result,
and the second inequality followed from (8), using s =t — ;.

Using (22) to lower bound the second right side term in our
z formula in (13), we get

(Ra + Nu)z(t) + AC(, z1))
—|BKQ(t —t;)"" f eAl= m)p(m)dm|

2(t) > 23)

for all ¢ € [t;,t;41). We can also use our choices of p and A
in (19) and (14) and the triangle inequality to obtain

_|BKQ (t—t) [ et p(m)dm]| + A(C(t, z))
|BKQ t t ft e {BKAIM((ZL) T(m) (S)ds
HBEP i) alals) = 7())ds] dm| o4

HBIR gy 16 A6zt
—|BKQ(t —t;) fti e (m, x,,) + A¥(m)]dm|

for all ¢ € [t;,t;11), where f% was defined in (19). Also,

n(m)

O o 20105 = 7() s < Ty -2r— ) 25)



holds for all m > 0, since pu(m) > s > p(s) > u(s) —7(s) >
s—T —7 > u(m) — 27 — T holds for all s € [u(m) —
7(m), u(m)], which follows because of our choice of y in
(13) and because of (3) from Assumption 1.

Also, it follows from (15) and (24) that, with the choice

fi= I+ |BKT) (fol +A4+Ap|K]),  (26)

we have
—|BEQ(t —t;)" [} et~ p(m
> - |BEKQ(—t) [ A BEAS)

p(m)—r(m)”
+(BK) f:(g;n (o) T((8) — T(S))dS} dm)|
¢

+HBEQ™ o S, e | [FIBE Al e =)
H(BE)?[7l2 ()27 1,00 L

—|BEQ(t —t;)* [} At (fE(m, 2) + AF(m
+|BKQ 0, ft_u|€ (t= e)|fg|$|[é—h—2T—27,é]d£

for all ¢t € [t;,t;41). Since t;11 —t; < v, it follows from (25),
(27), and our formulas for f* and fg in (19) and (26) that

[ A plm)dim| + A(C(t )

C(t, @)
x(s)ds

)dm| + A(

27)

dm|

(t—t)
>0 (28)
for all ¢ € [t;,t;+1), by using the nonnegative right side terms
of (27) to dominate the other right side terms of (27). Hence,
(23) gives 2(t) > (Ry + Nu)z(t) > Dyz(t) for all ¢ €
[ti, ti+1), where the second inequality followed because of the
nonnegative valuedness of z from the first part of the proof.
Therefore, with the choice g = min{e*‘di“’ 1 <i<n},
where d; is the ith main diagonal entry of the diagonal matrix
Dy, we can apply a variation of parameters argument to obtain

z(t) > eDH(t—t’i)z(ti) > gz(t;) for all t € [t;,ti11).  (29)

Since D > 0 is nonnegative, we can left multiply (22) by
—|BK]| and use (29) and our B* from (15) to conclude that

z(t) — DB*(t)
+D|BKQ(t —t;)* f eAt=m)p(m)dm| > gz(t;)
holds for all ¢ € [t;,t;41). From (28) and (30), it follows that
z(t) = DB*(t) + DA(C(t, 21)) = gz(ts) €2

for all ¢ € [t;,t;41). Since e(t;+1) = 0, and since = and z are
continuous, it follows that (31) holds for all ¢ € [t;, t;41].

Therefore, by the positive valuedness of z(t) from the first
part of the proof, we get

z(t) — DB*(t) + DA(((t,2¢)) > 0

(30)

(32)

for all [t;,t;11]. Since e(t) is right continuous, this gives an
€0 > 0 such that (32) holds for all ¢ € [t;, ;11 + €o]. By (13),
we have t; 11 = sup{t > t; : 2(t) — DB*(t) + DA(C(t, x¢)) >
0}, which follows because we supposed that t;11 —t; < v <
T. This is a contradiction, so t;+1 —t; > v for all ¢ € Zj.
Third Part: Interval Observer. Observe that (18) gives
#(t) = Hz(t) + BKe(t) 4+ p(t) for all ¢ > 0, by (2) and
(13). It follows that the x dynamics in (13) can be written as

#(t) = (Ru — Ng)x(t) + BKe(t) + p(t)  (33)

for all £ > 0. This motivates our use of the interval observer

#(t) = Ryalt) - Npa(t) + (BKe) 4907 0

i(t) = Ruz(t) — NaT(t) — (BKe(t))” — p(t)~
with the initial state Z(0) = |2(0)| and z(0) = —|x(0)|. Since
{ f,g gg ] (35)

is Metzler, we can consider the dynamics for the pairs (T —
z,xz —z) and (T, —z), to conclude from our choices of Z(0)
and z(0) that Z(t) > 0, z(t) < 0, and z(t) < x(t) < Z(t)
hold for all £ > 0, e.g., by [23, Lemma 1]. Hence,

(1) < z(t) — z(t) (36)

for all ¢ > 0.
Fourth Part: Stability Analysis. We use the linear Lyapunov
function U(Z, z,z) = V' (Z — x + z). Then, since (34) gives
T(t) — () = (Ru+ Nu)@(t) - z(t))
+[BKe(t)| + [p(t)]
for all ¢ > 0, we conclude from (5), (15), and (36) that the
time derivative of U along trajectories of (33) and (13) satisfies
Ut) < —eVT(@({t)—z(t)+VT|BKe(t)|—cV T 2(t)
Vo) + VIt 20)) = VT BX(t)
< —eVT(@() — z(t) + 2() + VIAC(L,24))
+VT|BE[L|a(t)| + V' |p(t)]
< —eVT(E(t) — 2(t) + 2(8) + VIAC(L, 20))
+VTBK|D(z(t) — z(t) + V' |p(t)]
for all ¢ > 0. From (15), (19), and (25), we deduce that

Ut) < —eVT(@(t) —z(t) + 2(8) + VA (t 20))

+VTBK[L(2(t) — 2(t) + VT ((tx4)
(—cVT + VTIBK|D)(Z(t) — z(t) + 2(t))
+V Tt 2) + VI, 1))

—rU(T(t), z(t), 2(t)) + VT (C(t, )
+VT)‘(C(t7$t))

(37)

(38)

IA

(39)

IN

for all t > 0, where the second inequality followed because z
is nonnegative valued, and the last inequality used (6) and the
fact that T — z and 2 are nonnegative valued. Also, since (13)
gives u(m) € [m — T,m] for all m > 0, we observe that

C(tae) < FIBK Al juiey—r ey + fol2lji—n—2r—o7.0
+7|(BK)?||]jt—2r-27.4

B! |z| [t—2(T+7)—h,t]

(40)

IN

for all ¢ > 0, by our choices of fg and B? in (26) and (9).
Using (40) and our choice of A in (14), we deduce that
A(C(E, )
< |BKQ_1|[07V] f:_u ‘eA(t_é)|Bﬁ|x|[e72(T+?)—h,qd€ 41)
< |BKQ?1|[07V] Jo e dBH x| —a(ri7)—n—v,ndl

for all ¢ > 0. By using (40) and (41) to upper bound the

last two terms in (39) and recalling our choice of R in
), we get U(t) < —rU(Z(t),z(t),2(t)) + V' R|T — z +



z|[t,2(T+?),h,l,)t] for all ¢ > 0, where we also used (36) and
the nonnegative valuedness of z(¢). Hence,

U(t) < —rU@(t),z(t), 2(t))

+ P« sup
SE—2(T+T)—h—uv,t]

U(x(s),z(s), 2(s))  (42)
holds for all ¢ > 0, by our condition (10) on p,.

It follows from our choice (12) of R, and from applying
Halanay’s inequality (e.g., from [21, Section 4.1.2]) that
UE(t),z(t),2(t)) < U@(0),z(0),20)e” Bt holds for all
t > 0. This exponential decay estimate implies that

1<i<n 1<i<n

min Vilz,(t)| < max V; 3 (7;(0) —2;(0)+205)e™ " (43)
j=1

forall t > 0 and ¢ € {1,...,n}, where zp; > 0 is the jth
component of 2y, and where we used (36) and the positive
valuedness of z to get the lower bound in (43). Hence, by the
Cauchy-Schwarz inequality and our choices of Z(0) and z(0),

x{V;:1<:i< _
o (t)] < VAo = 19]2(0) 4 2o[e Pt

(44)

holds for all ¢ > 0 and ¢ € {1,...,n}. The conclusion (16)
follows by squaring both sides of (44), then summing the result
over £, then taking square roots of both sides of the result.
Remark 3: 1If, instead of (4), we require a continuous non-
decreasing function F : [0, +00) — [0, 400) such that

|t @) < F(Il—n,0)|ol -0 45)

holds for all ¢ > 0 and ¢ € Ci,(h), then we can prove a
local analog of Theorem 1, which applies for suitable positive
vectors zg € R™ and constants og > 0, and all initial states
2(0) such that ||z(0)|| < op. This is done by setting

x{V;:1<i<
B, = "HEEEST (200 + ||0l)

(46)

and then replacing f, by F(B,) in the formulas for B* and ¢
in (9) and (15). With this replacement, we can then apply the
proof of Theorem 1 from above on the interval [0, ¢], for each
t > 0 such that ||z(¢)|] < B, for all £ € [0,¢], to conclude
that (16) holds for all ¢ € [0,7), where T, = sup{t > 0 :
[lz(£)|| < B, forall £ € [0,t]}. One can then show that
T, = 400, by arguing by contradiction, as follows.

First, note that T, > 0, because (46) gives ||z(0)|| <o <
B, and because x is continuous. On the other hand, if T, <
~+00, then the continuity of x(¢) implies that ||x(T%)|| = B,
so evaluating (16) at ¢ = T, gives the contradiction B, =
||x(T.)|| < e~ BT~ B, < B,. This contradiction implies that
T, = 400, so (16) holds for all ¢ > 0. Our condition (45)
allows cases where the dynamics can exhibit quadratic (or
higher order) growth, instead of the linear growth in the state
from (4). O

[1l. ILLUSTRATIONS
A. Marine Robotic Example

We first study a dynamics for the control of the depth
and pitch degrees-of-freedom of an autonomous underwater
vehicle from [2], [15], [17], whose linearization was used in
[15], [17] to represent the dynamics of the BlueROV2 vehicle,
which is commonly used in environmental surveys. Following

[15], [17], we assume that the vehicle has a Doppler Velocity
Logger (or DVL) for estimating the velocity of the vehicle.
The DVL experiences bottom lock, making it impractical to
continuously change the control values and also producing
input delays. Hence, we illustrate benefits of our new event-
triggered approach, which are beyond the capabilities of [2],
[17] or other event-triggered studies that did not allow nonlin-
earities with unknown delays or did not quantify the effects
of uncertain coefficient matrices. This strongly motivates our
more complicated control and trigger rule from Theorem 1.

Using [24, Equation (9.28)], and assuming that the vehicle
is neutrally buoyant, the vehicle dynamics become

(m — X)W (t) — (may + Z4)q(t) — Zyw(t)

47
+falt,we, q) — (mMU(t) + Zq)‘](t) = Zyuz

(mxy + My (£)w(t) + (Iyy — My)g(t) — Myw(t)
+fo(t, we, qr) + (mng — My)q(t) — Mg = M, unr

whose parameters were experimentally computed in [24],
where f,(t, ws,q:) and fp(t,we, q;) represent nonlinear and
delayed effects. As in [17], we assume that the surge nominal
velocity is U = 0.1m/s. The states are the depth velocity w
and the pitch velocity ¢, and the controls uz and u s are the
force and moment to produce motion.

With the parameter values and controller from [24], the
system (47)-(48) takes the form (1) from Theorem 1 with

—0.387 0 0.038
A{ 0 —1.8} andB[ 15 } 49)

which are the A and B in [15]. Choosing K =
[—0.977852, —0.097546799] as in the linearized case in [2]
gives the eigenvalues —1.94988 and —0.420595 for

—0.424158 —0.00370678
—1.46678 —1.94632

(48)

H=A+BK = { } (50)
which satisfies Assumption 1. We then applied Theorem 1 in
three scenarios: (i) fo = 0, with 7 > 0 and v as large as
possible, (ii) 7 = 0, with fy chosen as large as possible while
still satisfying our assumptions with v = 0.12, and (iii) fy =
7 =0, Ay € R" " being the zero matrix, and Ap € R"*P
having all its entries equaling a largest possible common value
0. such that we can satisfy our assumptions with v = 0.25.

Scenario (i). To satisfy the requirements from Section II-A
with fo = 0, we first chose V = [2,0.2] T, ¢ = 0.22, r = 0.06,
ps = 0.05, fo =0, 7 =0.15, Ay =0, Ag =0, and

0.5 0.012
r= [ 0.6 0.7 } S
Then we used a bisection method in Mathematica to find that
the largest value of the lower bound v for the inter-execution
times that satisfies the assumptions of Theorem 1 (up to the
second decimal place) was v = 0.26.

Scenario (ii). Next, we applied Theorem 1 with 7 = 0, and
with the growth rate fo = 0.05 and h = 1.5, which allowed
f = [fl, fQ]T with f1 (t, It) =0.05 sm(x(t—15)) and fQ =0.
In this case, the assumptions of Theorem 1 were satisfied with
the parameter values from Scenario (i) above, except with v
reduced from 0.26 to 0.15, r increased from 0.06 to 0.065,



and p, increased from 0.05 to 0.06. We increased r and p.
and reduced v, because the assumptions of Theorem 1 were
not satisfied with fy = 0.05 with the r, p,, and v values that
we used in the fy = 0 case above. This illustrates a trade-off
that we observed in numerical experiments, where allowing
the uncertain nonlinearity f required smaller lower bounds v
on the inter-execution times, as compared to cases where the
uncertainty was instead in the unknown input delay 7.
Scenario (iii). Consider the case where fo =7 = 0, A4 is
the zero matrix, and both entries of Ap € R?*! equaling some
value §, > 0. With the choice v = 0.25, p, = 0.0625, and all
other parameters chosen the same as in Scenario (ii), we then
found that the largest possible d, that satisfied the requirements
of Theorem 1 in this scenario was J, = 0.06, which is larger
than the first entry of B in (49). Hence, our work covers
significant cases such as Ap(t) = [0.06sin(¢),0]" where
some components of Ap can have larger suprema than the
corresponding components of the unperturbed coefficient B.

B. Robustness Example

To compare Theorem 1 from Section II-B above with the
simpler static event-triggered interval observer control result
from [19] which also allowed added uncertainty on A, we
revisit the example from [19, Section 6.2], which had A =
[ai;] € R?*? having the entries a11 = 1, ajp = 1/2, as; =
3/2,and age =0, f=0,7=0, Ag =0, Ay = [§;;] having
the form 511 = 51, 512 = 52/2, 521 = 1‘563, and (522 = 0,
K = [-4/3,-1/3], and B = [1,1]". In [19], the maximum
allowable lower bound v on the inter-execution times was v =
0.02 if the time-varying uncertainties J;; were each bounded
by 0.01. This was based on choosing all entries of I' € R?*?
to be 0.045 in the requirement |2~ 1(s) — I| < T for all s €
[0,7]. By contrast, here we used the Mathematica program
to show that we can satisfy the requirements of Theorem 1
above with the preceding choices, except with each entry of
I being 0.04455, V = [1,1]T, ¢ = 1/6, r = 0.18, p, =
0.017, the same bound on the d;; as in [19, Section 6.2], and
v = 0.15. This 7-fold increase in v (from v = 0.02 in [19] to
v = 0.15 here) is significant, and can be attributed to our new
condition (8), our new dynamic event-triggered control, and
our novel use of Halanay’s inequality, and we found similar
benefits under uncertain nonlinearities f or input delays 7.

IV. CONCLUSION

We advanced the state-of-the-art for dynamic event-
triggered control under unknown input delays, uncertain co-
efficients, and unknown nonlinearities. Key novel features
included (i) our relaxed requirement on v and new trigger
rules, using suprema of available state measurements over
suitable intervals, (ii) our use of Halanay’s inequality to handle
unknown delays and uncertainties, and (iii) our ability to
approximate the suprema that arise from our novel trigger
rules using a variant of Halanay’s inequality with gain terms.
Our applications illustrated a tradeoff, where nonlinearites can
reduce the lower bound on the inter-execution times, compared
to significantly larger lower bounds on the inter-execution
times occurring in other scenarios where the nonlinearity is

not present, but where input delays or uncertain control gains
occur. We aim to provide extensions for systems with outputs.
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