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ABSTRACT. In density estimation, generative models are usually categorized
under unsupervised learning due to the lack of labeled data. These models
apply various indirect loss functions to refine neural network training, yet face
specific challenges. Issues like mode collapse and instability in generative ad-
versarial networks are notable, while normalizing flows are constrained by the
need to calculate the Jacobian matrix’s determinant, limiting network design.
While neural networks are well-suited for handling very high-dimensional data,
they can be overly complex for moderately high dimensions. Here, traditional
sparse polynomial approximation offers advantages by avoiding complex train-
ing requirements. This research employs a score-based diffusion model com-
bined with sparse grid interpolation to estimate the unknown density function.
The method involves generating labeled data pairs linking samples from the
standard Gaussian distribution to the target distribution using the diffusion
model. This model transports the Gaussian distribution to the target den-
sity through a backward stochastic differential equation, where a Monte Carlo
method approximates the score function at any point, facilitating function in-
terpolation for the transport model. A sparse grid interpolant can be built
based on the labeled data. We leverage the Tasmanian library [32] for building
this sparse-grid-based generative model. We demonstrate the performance of
our method using a set of multi-dimensional benchmark distributions.
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1. Introduction. The process of density estimation focuses on approximating a
dataset’s probability density function to uncover its fundamental structure. In this
context, generative machine learning models are designed to replicate the dataset’s
probability distribution, facilitating the creation of new data points that mimic the
original ones. Over recent years, several innovative approaches to generative model-
ing have been developed, such as Variational Auto-encoders (VAEs) [16], Generative
Adversarial Networks (GANs) [7,10], normalizing flows [17,22], and diffusion mod-
els [35]. These techniques have proved valuable across various domains, including
generating images, reducing noise in images [6,28], detecting anomalies [23,27], and
processing natural language [1,13]. The success of these modern generative models
hinges on their ability to harness the deep neural networks’ advanced features to
analyze and model the intricate patterns present in data, which may be of high
dimensionality.

In the realm of density estimation, generative models are primarily catego-
rized under unsupervised learning techniques due to the non-requirement of labeled
datasets. These models utilize various types of loss functions to optimize neural
network training. Notably, GANs use adversarial loss [10], normalizing flows em-
ploy maximum likelihood loss [17], and diffusion models implement score matching
losses [14,29, 34]. While these models have shown efficacy, unsupervised training
methods introduce specific challenges. Training issues in GANs, such as mode
collapse and instability [26], are well-documented. Likewise, normalizing flows are
limited by the need for calculating the determinant of the Jacobian matrix, affecting
the design of the networks. Notably, Continuous Normalizing Flows (CNF's) address
this challenge by utilizing neural Ordinary Differential Equations (ODEs) [8, 21].
However, CNF's increase computational demands and can exhibit numerical insta-
bility during the ODE integration. On another front, Monotone Triangular Trans-
port Maps (MTTMs) [4,24] provide a different approach by constructing inverse
triangular transport maps through monotonic functions. Despite their computa-
tional efficiency, MTTMs often lack the flexibility and expressiveness required for
managing complex, high-dimensional data, due to the sequential nature of their
transformations.

Alternatively, generating labeled data from the observational data can enable
supervised training of the model’s generative parts, such as the decoders in VAEs
or normalizing flows, helping to bypass many unsupervised training complications.
In our recent research documented in [2,3,18,19], we introduced a novel diffusion
model that obviates the need for traditional training, allowing the target generator
to benefit from supervised learning techniques. Supervised learning, despite its
advantages in stability and manageability, still requires meticulous adjustment of
various hyperparameters such as the learning rate, number of neurons and layers,
regularization strategies, and criteria for early stopping. While neural networks are
well-suited for handling very high-dimensional data, they can be overly complex
for moderately high dimensions. In such cases, the traditional sparse polynomial
approximation method offers substantial benefits, primarily because it bypasses the
complex training demands associated with neural network models.

In this work, we address the problem of estimating the unknown density function
using a score-based diffusion model combined with a sparse grid. The key idea is
to use the diffusion model to generate labeled data pairs between samples from
the standard Gaussian distribution and the unknown target distribution. Initially,
we create a sparse grid and corresponding basis functions, where the sparse grid
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serves as sparse samples of the standard Gaussian distribution. The score-based
diffusion model is then employed to transport the Gaussian distribution to the
target density function by solving the backward diffusion process in the form of
a stochastic differential equation (SDE). The score function in the backward SDE
stores all the information of the target data distribution. A training-free score
function estimation is obtained by using a mini-batch-based Monte Carlo method,
which directly approximates the score function at any spatial-temporal location in
solving the reverse-time SDE. In this process, labeled data can be generated, which
allows function interpolation to approximate the transport model. We utilize the
ORNL-developed library Tasmanian (https://github.com/0RNL/TASMANIAN) [32]
to build the sparse-grid-based generative model.

The rest of this paper is organized as follows. In Section 2, we briefly introduce
the density estimation problem under consideration. In Section 3, we provide a
comprehensive discussion of the score-based generative diffusion model and sparse
grid interpolation for density estimation. Finally in Section 4, we demonstrate the
performance of our method by applying it to a set of 1D datasets as well as a 5D
funnel example.

2. Problem setting. We consider the problem of how to generate an unlim-
ited number of samples from an unknown probability density function py (y) of
a d—dimensional random variable, denoted by

Y eR) Y ~py(y), (1)
given observational dataset

y:{y15y27"'7yK}CRd7 (2)

where yi, ~ py(y) for k = 1,2,--- , K are independent and identically distributed
samples from the target distribution. The main objective is to build a generator,
denoted by

Y = F(X), X e R%, (3)

that can map the d-dimensional standard Gaussian random variable X to the target
random variable Y. Once the generator F' is determined, unlimited samples of Y
can be drawn by evaluating F' at the samples of the standard Gaussian random
variable X.

The density estimation problem has been extensively studied in the machine
learning community using methods such as generative adversarial networks, auto-
encoders, normalization flow models, and diffusion generative models. However, due
to the lack of labeled data, the target generator is usually obtained by unsupervised
learning with indirect loss functions, which often leads to long-haul and unstable
training processes. In our previous work [11, 18, 36], we developed a training-free
diffusion model to generate labeled for the target generator F' in Eq. (3), such that
F can be trained with supervised learning. Even though supervised learning is
more stable and easier to handle than unsupervised learning, the training process
still needs to be fine-tuned by choosing appropriate hyper-parameters, e.g., learning
rate, the number of neurons, the number of layers, regularization terms, and early
stopping criteria. Neural network models may be a good choice for very high-
dimensional problems. When the dimension d is moderately high, the traditional
sparse polynomial approximation method has significant advantages over neural
network models because no sophisticated training process is needed. Thus, we will
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extend our previous work by replacing the neural network model with sparse grid
interpolation.

3. Methodology. This section includes the details of the proposed approach. We
will recall the standard score-based diffusion model with the training-free score
estimation scheme in Section 3.1, and the construction of sparse-grids interpolation
in 3.2.

3.1. The training-free score-based diffusion model. The key idea of the score-
based diffusion model [30] is to perturb the data distribution to a tractable reference
distribution by gradually adding random noise, and then iteratively denoise to con-
vert the reference distribution back to the target data distribution. These steps are
referred to as the forward process and the backward process, respectively. In this
study, we define the forward process using a forward stochastic differential equation
(SDE) for t € [0, 1]:

dZt = b(t)tht + O'(t)th with ZO =Y and Zl = )(7 (4)

where the initial state Zj is the target variable Y and the terminal state Z; is the
reference variable X. Here, W; is a standard d-dimensional Brownian motion, b(t)
and o (t) are the drift and diffusion coefficients, respectively. Specifically, we consider
the tractable reference variable X to follow the standard Gaussian distribution
N(0,1;). According to [12,30], by appropriately choosing the drift coefficient b(t)
and the diffusion coefficient o(t) in Eq. (4), we ensure that the terminal state
distribution is a standard Gaussian distribution p(Z;) = N(0,1;). In particular, we
define b(t) and o(t) as follows:

~ dlogay

ds? dlog «
b(t) = — and 02@):%4 dgt L2, (5)

where the oy and S; are given by:
a=1—t, 2=t for te[0,1]. (6)
The solution to the forward SDE in Eq. (4) is given by

Z, = Zyexp [ /0 t b(s)ds} + /O "exp { / t b(r)dr] o(s)dW.. (7)

Thus, for any fixed Zy = zp, the conditional probability density function pz,|z, (2¢|20)
follows the Gaussian distribution, i.e,

P2,120(2t]20) = P(a,20,821,) (2t]20), (8)

where ¢(mm,ﬂfl ,) 1s the probability density function of the Gaussian distribution
with mean a;zy and covariance matrix 321;. More importantly, when ¢ approaches
1, the conditional distribution pz, z,(2t|20) converges to the standard Gaussian
distribution. Hence, by using the forward SDE in Eq. (4), the target distribution
py (y) is transformed to the standard Gaussian distribution ¢(q 1,)(x).

The forward SDE provides the “normalizing” transport, i.e., mapping the tar-
get distribution to the standard normal distribution. To build the generator F' in
Eq. (3), we also need the associated backward SDE running from ¢ = 1 to ¢t = 0.
Specifically, the backward SDE is defined by

dZ, = [b(t)Z, — o*(t)S(Zy,t)] dt + o(t)dB, with Zo =Y and Z; = X, (9)
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where By is the backward Brownian motion, and the score function S(z,t), defined
as the gradient of the log of the probability density function:

S(th) = VZ longt(Zt)7 (10)

is unknown. Traditional neural network approaches, such as denoising score match-
ing, and sliced score matching, are widely used to approximate the score function
S(zt,t). Once the score function is learned, unlimited samples of the target distri-
bution can be generated by simulating the backward SDE, starting with a final state
sample from the Gaussian distribution. Although these methods are effective, they
are computationally demanding due to several reasons. First, learning the score
function in an unsupervised manner requires the storage of a substantial number
of stochastic trajectories of the forward SDE as training data. Second, generating
a single sample of the target distribution involves solving the discretized backward
SDE over thousands of time steps.

To avoid learning the score function using neural networks, we use the direct
Monte Carlo estimator to approximate the closed-form expression of the score func-
tion [18]. Specifically, the score function defined in Eq. (10) can be reformulated
as

S(et) = Votog ([ vz Gelzaloz o
R

1 / 2 — Q20
= = Pz,120(2¢|120)P 27, (20)d2z0 (11
CE Ay T B ° 1D

2t — Ot 2
=/ — 2 024, 20)p20 (20)d20,
R4 5t

where the weight function w(z, o) is

_ Pz,12,(2t|20)
fRd Pz, | Zo (Zt |Z(I))pzo (Z(IJ)dZ(/)

w(z, 20) : and / w(zt, 20)Dz, (20)dzo = 1. (12)
Rd
In the implementation, we utilize the Monte Carlo estimator to approximate the
integrals over the initial state Zy in the reformulated score function in Eq. (11).
Specifically, the score function can be approximated by

N
~ Z— .
S(z,t) = Z —tT;yk"w(zt,ykn), (13)

i

where {yr. })_, is a mini-batch of the dataset ) in Eq. (2) with size N < K. The
weight function w(z, yg, ) is approximated by

n=1

. pZt\Zo(Zt|ykn)
W(2t, Yk, ) = =

(14)
Zm:l pZt|Z0 (zt |yk7n)

)

where pz,|z,(2¢|yr, ) is the Gaussian distribution given in Eq. (8). The size N of
the mini-batch can be adjusted to balance between computational efficiency and
estimation accuracy. This approach does not require any training process, e.g.,
stochastic gradient descent, to approximate the score function. However, solving
the backward SDEs is not useful for building the generator F' using sparse grid
interpolation, which will be addressed in the next subsection.
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3.2. The sparse-grid generative model. In this section, we describe the sparse
grid model we use for constructing the transport map F in Eq. (3). We are fol-
lowing the approach in [31] where we are using linear functions with local sup-
port and equidistant interpolation nodes. Higher order approximation can be con-
structed analogously. Starting with the one dimensional context, we take the do-
main [—a,a] and n interpolation nodes 1, z2, - x, € [—a,a] with corresponding
support Axy, Axs, - -+, Ax,. The linear basis functions are defined so that they are
equal to 1 at the interpolation nodes and 0 outside of the support, i.e.,

{ 1— L e — 2] < Az

Aa:i

vy Az (T) =
Gar00:(@) 0, |z — 2| > Ax;.

(15)
We adopt a hierarchical approach where we group the nodes into levels, so that at
level 1 we have 1 = 0 and Az; = a. On level 2 we add two mode nodes x5 and 3
so that each node is at an equal distance between x; and the edge of the domain,
i.e., wy/3 = +5, and the support is half of the support on the previous level, i.e.,
Azy/3 = 5. Following the same pattern, at one level of 3 we add 4 more points
interlaced between the existing set of points and the end points of the domain
3a a a 3a

1 2735:—1, 556:17 x7:Za

while the support is halved again Axy 567 = ¢. The pattern continues so that for
[ > 1 the total number of points is 2! — 1 and the support at the finest level is
Az = a27!. Fig. 1 shows the first 7 nodes and functions for linear, quadratic, and
cubic basis. For convenience, we label the basis with a single index so that

and we aim to construct an approximation to a target function.

Ty = — (16)

Xa Xs X X7 Xa Xs X X7 Xa Xs Xs X7

FIGURE 1. Semi-local polynomial points and basis functions, left
to right: linear, quadratic, and cubic functions.

Given a level [ and input-output pairs {(z1,71), (z2,%2) - (x7,77)} for J = 2! —
we can construct the approximation Fj(x) ~ F(x)

J
= ¢ (18)

Jj=1
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The interpolation coefficients are defined so that Fj(x) is an interpolant, i.e., Fj(z;) =
7;. Observe that by definition of the reduced support, for any indexes i and j with
i < j we have that ¢;(z;) = 0, while ¢;(z;) = 1. Therefore, ¢1(x) is the only basis
functions with support at z; and setting Fj(z1) = §1 we have

J
Fi(z,) = chd’j(fl) =c¢1(z1) =c1 =11 (19)

j=1

For i > 1 we can find the coefficients recursively
[ i—1
Fi(m:) =Y cidj(w) =i, =  a=0i— Y c;dx). (20)
j=1 j=1

The resulting system of equations has additional sparsity and many algorithms have
been studied in the literature [5,15] for efficiently computing {cy, ¢, - , ¢, }. In this
work, we use the ORNL developed Toolkit for Adaptive Stochastic Modeling and
Non-Intrusive Approximation (Tasmanian) [32] which is a highly efficient library
with support for multi-core CPUs and GPU accelerators from all major vendors
(Nvidia, AMD, and Intel), as well as easy to use bindings for multiple programming
languages including C++, Python, Matlab, and Fortran.

Extending the interpolation approach to a multidimensional context is challeng-
ing. The straightforward way to extend a one dimensional interpolation strategy
to arbitrary d dimensions is through tensoring on one dimensional rules. Follow-
ing common sparse grid notation [5,9, 15] we define d-dimensional multi-indexes
(i1,12,+ -+ ,1q) and define the multi-dimensional interpolant:

Ji J2 Ja

Fly o d)(@1,%2, 0 8a) = D> > oo )i (€1) 85, () -+ by (2a).-

Ji=1j2=1 Jja=1
(21)

The multidimensional interpolation points have the form (z;,,z,, - ,x;,) and
tensors of ¢;(x) basis functions satisfy similar properties to the one dimensional
ones. Thus, we can still apply a version to (20), where the ordering of the indexes
has to obey a multi-dimensional hierarchy. The Tasmanian library handles all the
necessary bookkeeping and details of the algorithms can be found in [31,33].

The choice of one dimensional levels (I1,ls, - ,14) is a key component of every
efficient sparse grid algorithm. In the single dimensional case (18) for any level [
we have J = 2! — 1. The approximation error of the linear interpolant is given
by [5,20,25]

max|F(x) — Fi(x)| < CAx}, (22)

where Az; = min; Az; = J%_l = 27" and C is a constant that depends on the

smoothness of F(x). Saying this in another way, our error is bounded by the
support of the excluded basis functions. In a one dimensional context, we select a
specific level L such that Az is sufficiently small.

In a multidimensional context, the error is related to the volume of the support,
i.e., the product of the single dimensional support Az;

max ) |F — F( 7ld)} S C (Axll A.]le R Al‘ld)g (23)

ly,l2,
(z1,22,,

Therefore, if our goal is to obtain an error of order 2% (for some L), then we need
to include in our approximation all basis functions that have a volume larger than
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2-L. Considering the combinations of (I1,ls,--- ,l4) that yield such basis, we can
substitute 27! for each Az; and obtain the inequality
27ho . g7l > o7l (24)

ie. 22:1 I, < L. A naive approach would be to assign the same value of L to all
levels (l1,12,- -+ ,1;) and that would guarantee that we have included all the neces-
sary basis function; however, this is wasteful as it will also include many superfluous
bases with much smaller support. The sparse grid approach uses (24) to select only
the minimum required set of basis functions to construct an interpolant with the
desired accuracy. We do this by defining the sparse set of basis functions

A = {(jl,j2,~~ ,Ja) : there are (I1,la, -+ ,1q) with jp < 2 _ 1 and Zlk < L}
k

(25)
and the sparse grid interpolant is given by

Fi(z) = > Clrgarja) i (T1)@ja (22) -+ b5, (Ta)- (26)

(J1,92,+2da) EAL

The Tasmanian library can find all the necessary basis functions for any user pro-
vided L and do all of the internal bookkeeping of the coefficients. However, for
Tasmanian to compute the coefficients we must first find all the input-output pairs
at all the sample points.

Stepping away from the multi-index notation (we leave that to the software), we
need outputs for a set of sparse grid points {x1,x2,...,z } that are not the same
as the input-output pairs {Z;,Zs,...,Zx} and {y1,¥2,...,yx}, where & follows
standard Gaussian and y’s are from the dataset ) in Eq. (2). Even though the
backward SDE can be solved using the scheme in Section 3.1, the backward SDE
cannot provide the desired input-output pairs. To address this issue, we instead
solve the corresponding backward ODE, also known as the probability low ODE,
ie.,

1
dZ; = |b(t)Z; — 50—2@)5(2“15) dt with Zy =Y and Z; = X, (27)

whose trajectories share the same marginal probability density functions as the
backward SDE in Eq. (9). The backward ODE defines a much smoother function
relationship between the initial state and the terminal state than that defined by
the backward SDE, such that we can solve the ODE to help generate the input-
output pairs {(z1,71), (x2,%2) - - - (x5, 7s)} needed by the sparse grid interpolant in
Eq. (18).

Specifically, we generate J sparse grid points {x1,z2,...,2;} using the proce-
dure above and observe that those are equidistant and do not follow the standard
Gaussian distribution. Nevertheless, for j = 1,...,J, we solve the backward ODE
in Eq. (27) from ¢t =1 to t = 0 and collect the state Zy|x;, where the score function
is computed using Eq. (13), Eq. (14), and the dataset Y = {y1,...,yx} in Eq. (2).
The generated input-output pairs are denoted by

D .= {(l‘j,gj)tgj:ZO|l‘j, for j:L...,J}, (28)

where g; is obtained by solving the ODE in Eq. (27). We note that the g;’s in D
may not belong to ) and that J could be arbitrarily large. After obtaining D we
can use it to interpolate the transport map F(y) in Eq. (3) using spare grids.
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Algorithm 1: Pseudo-algorithm for constructing the sparse-grid-based
generative model

1: Input: the observation data Y, the diffusion coefficient o(t), the drift coefficient
b(t);
2: Output: sparse-grid generative model F(x);

3: Generate sparse grid points {z1,...,2;} using Tasmanian;

4: for j=1,...,J

5: Solve the ODE in Eq. (27) with the score function estimated by Eq. (13)
and Eq. (14);

6: Define a pair of labeled data (z;,%;) where z; = Z; and §; = Zp in Eq. (27);
7: end

8: Interpolate the transport map y = F(z) using dataset D.

4. Numerical experiments.

4.1. 1D example: Gaussian mixture model (GMM). We consider the prob-
ability density function defined by

1 m
py(y) = EZN(ZJ;M, %), (29)
i=1
where m = 2 is the number of Gaussian modes, u = [—1, 1] denotes the mean values

of the two modes, and ¥; are the covariance matrices. We consider two scenarios.
The first is connected modes with 3; = 0.3I and the second is well-separated modes
with »; = 0.051.

For the connected modes, the size of the training data in Eq. (2) is 600,000.
We use sparse grids with levels of {3,4,5,6} to interpolate the labeled data gen-
erated by solving the backward ODE in Eq. (27), which corresponds to grid size
{15,31, 63,127}, respectively. The density approximation is displayed in Fig. 2.
The KL divergence between the exact PDF and approximated PDF can be seen
in Fig. 3. We can observe that as the level of the sparse grid increases, the inter-
polation becomes more accurate. Furthermore, Fig. 4 presents the KL divergence
and log KL divergence between true PDF and estimated PDF with sample sizes
of {6000, 60000,600000}. We can observe that larger training data improves the
quality of density estimation.

For GMM with well-separated modes, we use 2,000,000 samples for the training
set in Eq. 2. We use sparse grids with levels of {3,4,---,9} to interpolate the la-
beled data generated by solving the backward ODE in Eq. 27, which corresponds
to grid size {15,31,---,1023}, respectively. The probability density function ap-
proximation is displayed in Fig. 5. The KL divergence between the exact PDF and
approximated PDF can be seen in Fig. 6. One can observe that as the level of the
sparse grid increases, the interpolation becomes more accurate.

4.2. 2D example: Banana distribution. We consider the following probability
density function:

py (y) x exp {—10 (yf — y2)2 — (yz - i) } . (30)
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Order 1 Order 2 Order 3

-2 0 2 -2 0 2 -2 0 2
—— True PDF [ Estimated hist

FiGURE 2. Comparison of the true PDF and estimated histogram
for 1D GMM with two connected modes. From left to right: local
polynomial grids with polynomial orders {1,2,3}. From top to
bottom: local polynomial grids with levels {3,4,6}. The red line
represents the exact PDF. The grey histogram is based on the
samples generated by the sparse-grid generative model F'.
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KL Divergence

Log KL Divergence

©
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Level
—e— Order 1 —e— Order 2 —e— Order 3

Ficure 3. KL divergence and log KL divergence between true
PDF and estimated PDF with orders {1, 2, 3} and sparse grid levels
{3,4,5,6} for the 1D GMM with connected modes.

In this example, we have 2,000,000 samples for the training dataset in Eq. (2). We
use sparse grids with levels of {3,4,--- ,9} to interpolate the labeled data generated
by solving the backward ODE, which corresponds to grid size {49,129, .- ,9217},
respectively. Fig. 7 shows the sparse grid in 2D. After we obtain the interpolation
using the sparse grid, we generate 2,000,000 new samples by pushing the Gaussian
samples into the interpolation function. The probability density function approx-
imation of the generated new samples is displayed in Fig. 9. The KL divergence
between the exact PDF and approximated PDF can be seen in Fig. 10. One can
observe that as the level of the sparse grid increases, the interpolation becomes
more accurate.
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FIGURE 4. KL divergence and log KL divergence between true
PDF and estimated PDF with orders {1,2,3} and training data
sample sizes {6000, 60000, 600000} for the 1D GMM with connected

modes.

Order 1 Order 2 Order 3

-2 -1 0 1 2-2 -1 0 1 2-2 -1 0 1 2

—— True PDF [ Estimated hist

FiGure 5. Comparison of the true PDF and estimated histogram
for 1D well-separated GMM. From left to right: local polynomial
grids with orders {1,2,3}. From top to bottom: local polynomial
grids with levels {3,4,9}. The red line represents the exact PDF.
The grey histogram is the approximated PDF by local polynomial
grids.

4.3. 5D example: Funnel distribution. We consider the following probability
density function:

5
py () = Ny 0,0 [ [V (w33 0,e), (31)

i=2
where n = 1. In this example, we have 50,000,000 samples in the training set in
Eq. (2). Due to the computation complexity. We use sparse grids with levels of
{2,3,4} to interpolate the labeled data, which corresponds to grid size {71,351,
1471}, respectively. For each level, 2,000,000 new samples are generated by the
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FicUre 8. Comparison of the banana distribution using a scatter
plot of the exact density function and samples obtained by the
sparse grid generative model F' of order 1 with levels {3,4,9}.

corresponding sparse grid generative model F. The approximated PDF based on
the generated new samples is displayed in Fig. 11. The KL divergence between the
exact PDF and approximated PDF can be seen in Fig. 12. One can observe that
as the level of the sparse grid increases, the interpolation becomes more accurate.

5. Conclusions. This work has successfully demonstrated a novel approach to
density estimation using a diffusion-based sparse-grid generative model. The inte-
gration of score-based diffusion modeling with sparse grid interpolation presents an
advancement in generative modeling, particularly in scenarios where labeled data is
scarce. Our method circumvents the complexities and limitations associated with
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traditional neural network training by utilizing a training-free scheme that directly
approximates the score function. The application of the Tasmanian library has en-
abled the construction of an efficient and accurate model capable of handling multi-
dimensional data distributions. The numerical experiments conducted on various
datasets, ranging from simple 1D Gaussian mixtures to complex 5D distributions,
have showcased the model’s ability to generate high-quality approximations of the
target distributions, improving with the refinement of the sparse grid levels. This
approach not only enhances computational efficiency but also provides a robust
framework for further exploration and application in more diverse and challenging
domains. The promising results affirm the potential of integrating machine learn-
ing techniques with traditional numerical methods, setting a precedent for future
research in generative modeling and density estimation.
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