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Statistical machine learning methods often face the challenge of limited
data available from the population of interest. One remedy is to leverage data
from auxiliary source populations, which share some conditional distribu-
tions or are linked in other ways with the target domain. Techniques leverag-
ing such dataset shift conditions are known as domain adaptation or transfer

learning. Despite extensive literature on dataset shift, limited works address
how to efficiently use the auxiliary populations to improve the accuracy of
risk evaluation for a given machine learning task in the target population.

In this paper, we study the general problem of efficiently estimating target
population risk under various dataset shift conditions, leveraging semipara-
metric efficiency theory. We consider a general class of dataset shift condi-
tions, which includes three popular conditions—covariate, label and concept
shift—as special cases. We allow for partially nonoverlapping support be-
tween the source and target populations. We develop efficient and multiply ro-
bust estimators along with a straightforward specification test of these dataset
shift conditions. We also derive efficiency bounds for two other dataset shift
conditions, posterior drift and location-scale shift. Simulation studies support
the efficiency gains due to leveraging plausible dataset shift conditions.

1. Introduction.

1.1. Background. A common challenge in statistical machine learning approaches to pre-
diction is that limited data is available from the population of interest, despite potentially large
amounts of data from similar populations. For instance, it may be of interest to predict HIV
treatment response in a community based on only a few observations. A large dataset from
another community in a previous HIV study may help improve the training of such a predic-
tion model. Another example is building a classification or diagnosis model based on medical
images for lung diseases (Christodoulidis et al. (2017)). A key task therein is to classify the
texture in the image, but the size of a labeled medical image sample is often limited due to the
high cost of data acquisition and labeling. It may be helpful to leverage large existing public
image datasets as supplemental data to train the classifier.

In these examples and others, it is desirable to use data from similar source populations
to supplement target population data, under plausible dataset shift conditions relating the
source and target populations (see, e.g., Storkey (2013), Shimodaira (2000), Sugiyama and
Kawanabe (2012)). Such methods are known as domain adaptation or transfer learning (see,
e.g., Kouw and Loog (2018), Pan and Yang (2010)).

A great deal of work has been devoted to leveraging or addressing various dataset shift con-
ditions. Polo et al. (2022) proposed testing for various forms of dataset shift. Among dataset
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shift types, popular conditions include covariate shift, where only the covariate distribution
changes, as well as label shift, where only the outcome distribution changes—also termed
choice-based sampling or endogenous stratified sampling in Manski and Lerman (1977),
prior probability shift in Storkey (2013), and target shift in Scott (2019), Zhang et al. (2013).
Another popular condition is concept shift, where the covariate or label distribution does
not change—also termed conditional shift in Zhang et al. (2013). See, for example, Kouw
and Loog (2018), Moreno-Torres et al. (2012), Schölkopf et al. (2012), for reviews of com-
mon dataset shift conditions. These three conditions—covariate, label, and concept shift—are
popular because they are interpretable, broadly applicable, and analytically tractable. There is
extensive literature on machine learning under these dataset shift conditions (e.g., Sugiyama,
Krauledat and Muller (2007), Lipton, Wang and Smola (2018), Pathak, Ma and Wainwright
(2022), Ma, Pathak and Wainwright (2023), among others).

Other conditions and methods have also been studied for more specific problems; exam-
ples include (generalized, penalized) linear models (Bastani (2021), Cai, Li and Liu (2022),
Chakrabortty and Cai (2018), Gu, Han and Duan (2022), Liu, Zhang and Cai (2020), Liu
et al. (2023), Tian and Feng (2022), Zhang, Brown and Cai (2019), Zhang et al. (2022), Zhou
et al. (2022)), binary classification (Cai and Wei (2021), Scott (2019)), graphical models (He
et al. (2022), Li, Cai and Li (2022)), and location-scale shifts (Zhang et al. (2013)), among
others.

For domain adaptation where a limited amount of fully observed data from the target
population is available, there may be multiple valid methods to incorporate source population
data. It is thus important to understand which ones efficiently extract information from data
in both source and target populations. However, the efficient use of source population data
to supplement the target population data has only been recently studied. Azriel et al. (2021),
Gronsbell et al. (2022), Yuval and Rosset (2023), Zhang, Chakrabortty and Bradic (2021),
Zhang and Bradic (2022) studied this problem for mean estimation and (generalized) linear
models, under concept shift (i.e., for semisupervised learning). Li and Luedtke (2023) studied
efficiency theory for data fusion with an emphasis on causal inference applications, a setting
related to ours with a somewhat different primary objective. Other related works in data
fusion include Angrist and Krueger (1992), Chatterjee et al. (2016), Chen and Chen (2000),
D’Orazio, Di Zio and Scanu (2006, 2010), Evans et al. (2021), Rässler (2012), Robins, Hsieh
and Newey (1995), among others. A study of domain adaptation with more general prediction
techniques under general dataset shift conditions is lacking.

1.2. Our contributions. In this paper, we study the general problem of efficient model-
agnostic risk estimation in a target population for data adaptation with fully observed data
from both source and target populations under various dataset shift conditions. We take the
perspective of modern semiparametric efficiency theory (see, e.g., Bolthausen, Perkins and
van der Vaart (2002), Pfanzagl (1985, 1990), van der Vaart (1998)), because many dataset
shift conditions can be formulated as restrictions on the observed data generating mechanism,
yielding a semiparametric model.

We estimate the risk due to its broad applicability and central role in training predictive
models and model selection (e.g., Vapnik (1992), Györfi et al. (2002), etc). Empirical risk
minimization (ERM) is a fundamental approach in statistics and machine learning, where the
goal is to minimize the empirical average of the loss—that is, the risk—over a set of candidate
models. Recent studies have highlighted the importance of accurate risk estimation for effec-
tive model selection in settings where the risk cannot be estimated nonparametrically due to
the presence of high-dimensional nuisance functions (e.g., van der Vaart, Dudoit and Laan
(2006), Brookhart and Van Der Laan (2006), Nie and Wager (2021), Foster and Syrgkanis
(2023), etc). Our risk estimators have the potential to be relevant and useful in such settings,
by enabling improved model selection through improved risk estimation.
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Likewise, the related goal of constructing prediction sets with guaranteed coverage (Vovk
(2013), Qiu, Dobriban and Tchetgen Tchetgen (2022), Yang, Kuchibhotla and Tchetgen Tch-
etgen (2022)) often depends on precise estimates of the coverage error probability of con-
structed prediction sets (Angelopoulos et al. (2021), Park et al. (2020, 2022), Yang, Kuchib-
hotla and Tchetgen Tchetgen (2022)).

After presenting the general problem setup in Section 2, we consider a general dataset
shift condition, which we call sequential conditionals (Condition DS.0† in Section 3), for
scenarios where target population data is available while the source and target populations
may have only partially overlapping support. This condition includes covariate, label and
concept shift as special cases. We consider data where an observation Z can be decomposed
into components (Z1, . . . ,ZK). Under this condition, some of the conditional distributions
Zk | (Z1, . . . ,Zk−1) are shared between the target and source populations, for k = 1, . . . ,K .
As our first main contribution, we propose a novel risk estimator that we formally show in
Theorem 1 to be semiparametrically efficient and multiply robust (Tchetgen Tchetgen (2009),
Vansteelandt, Rotnitzky and Robins (2007)) under this dataset shift condition.

In particular, we propose to obtain flexible estimators θ̂k of certain nuisance conditional
odds functions θk

∗ conditional on variables (Z1, . . . ,Zk), and estimators �̂k of conditional
mean loss functions �k

∗ by sequential regression of �̂k+1(Z1, . . . ,Zk+1) on (Z1, . . . ,Zk). We
show that our risk estimator is efficient given sufficient convergence rates of the product
of errors of (i) θ̂k for θk

∗ , and of (ii) �̂k for �k
∗. Moreover, when �̂k

v converges to a certain
limit function �k

∞, our estimator is 2K−1-robust. Specifically, it is consistent if for every
k = 1, . . . ,K − 1, θ̂k is consistent for θk

∗ or �̂k is consistent for the oracle regression uk

of �k
∞; but not necessarily both. The latter oracle regression is defined as the conditional

expectation of �k
∞ on (Z1, . . . ,Zk) under the true distribution.

Our choice of parametrization and the sequential construction of �̂k are key to multiple
robustness. Suppose instead that each true conditional mean loss function �k

∗ is instead pa-
rameterized directly—rather than sequentially—as the regression of the loss on the variables
(Z1, . . . ,Zk) in the target population, and accordingly construct �̂k by direct regression in the
target population. Then the resulting estimating equation-based estimator using the efficient
influence function is not guaranteed to be 2K−1-robust.

Based on this estimator, we further propose a straightforward specification test (Hausman
(1978)) of whether our efficient estimator converges to the risk of interest in probability,
which can be used to test the assumed sequential conditionals condition. In doing so, we
theoretically analyze the behavior of our proposed estimator when the sequential conditionals
condition fails. We analytically derive the bias due to the failure of sequential conditionals
and show that, in this case, our estimator may diverge arbitrarily as sample size increases if
the support of the source populations only partially overlaps with the target population. Under
the sequential conditionals condition, such a scenario for the supports is allowed, but does
not lead to this convergence issue. To obtain this result, we need a more careful analysis than
the standard analysis of Z-estimators (e.g., Section 3.3 in van der Vaart and Wellner (1996))
because of the inconsistency of our estimator without the sequential conditionals condition.

Next, we investigate the efficient risk estimation problem in more detail for concept shift
in the features and for covariate shift, in Sections 4 and 5, respectively. We characterize when
efficiency gains are large, develop simplified efficient and robust estimators, and study their
empirical performance in simulation studies. In particular, we show that our estimator is reg-
ular and asymptotically linear (RAL) even if the nuisance function is estimated inconsistently

under concept shift (Theorem 2). We also show a new impossibility result about such full
robustness for covariate or label shift under common parametrizations (Lemma 1).

We present additional new results in the Supplementary Material (Qiu, Tchetgen Tchetgen
and Dobriban (2024)). We present additional simulation results showcasing the efficiency
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gain from our proposed methods in model comparison and model training in Supplement S4.
We illustrate our proposed estimators in an HIV risk prediction example in Supplement S5.
In Supplement S6, we derive efficiency bounds for risk estimation under three other widely-
applicable dataset shift conditions, posterior drift (Scott (2019)) location-scale shift (Zhang
et al. (2013)), and invariant density ratio shape motivated by Tasche (2017). The proof of
these results requires delicate derivations involving tangent spaces and their orthogonal com-
plements, leading to intricate linear integral equations and, in some cases, a closed-form so-
lution for the efficient influence functions. In Supplement S7, we present additional results on
other widely-applicable dataset shift conditions, including the invariant density ratio condi-
tion (Tasche (2017)) and stronger versions of posterior drift (Scott (2019)) and location-scale
shift (Zhang et al. (2013)) conditions. In Supplement S8, we describe how our proposed risk
estimators can help construct prediction sets with marginal or training-set conditional va-
lidity. Proofs of all theoretical results can be found in Supplement S9. We implement our
proposed methods for covariate, label and concept shift in an R package available at https://
github.com/QIU-Hongxiang-David/RiskEstDShift.

2. Problem setup. Let O be a prototypical data point consisting of the observed data
Z lying in a space Z and an integer indexing variable A in a finite set A containing zero.
The variable A indicates whether the data point comes from the target population (A = 0)
or a source population (A ∈ A \ {0}).1 The observed data (O1, . . . ,On) is an independent
and identically distributed (i.i.d.) sample from an unknown distribution P∗. We will use a
subscript ∗ to denote components of P∗ throughout this paper. Data Z is observed from both
the source and target populations, that is, for both A = 0 and A �= 0.

The estimand of interest is the risk, namely the average value of a given loss function
� : Z → R, in the target population:

(1) r∗ := R(P∗) := EP∗
[
�(Z) | A = 0

]
.

We often focus on the supervised setting where Z = (X,Y ), with X ∈ X being the covari-
ate or feature and Y ∈ Y being the outcome or label. In this case, our observed data are
i.i.d. triples (Xi, Yi,Ai) ∈ X × Y × A distributed according to P∗. Next, we provide two
examples of loss functions � below.

EXAMPLE 1 (Supervised learning/regression). Let f : X → Y ′ be a given predictor—
obtained, for example, from a separate training dataset—for some space Y ′ that can dif-
fer from Y . It may be of interest to estimate a measure of the accuracy of f . One
common measure is the mean squared error, which is induced by the squared error loss
�(x, y) = (y − f (x))2. For binary outcomes where Y = {0,1}, it is also common to con-
sider the risk induced by the cross-entropy loss, namely Bernoulli negative log-likelihood
�(x, y) = −y log{f (x)} − (1 − y) log{1 − f (x)}, when Y ′ is the unit interval (0,1) and f

outputs a predicted probability. Another common measure of risk is P∗(Y �= f (X) | A = 0),
measuring prediction inaccuracy. This is induced by the loss �(x, y) = 1(y �= f (x)) when
Y ′ = {0,1} and f outputs a predicted label.

EXAMPLE 2 (Prediction sets with coverage guarantees). It is often of interest to construct
prediction sets with a coverage guarantee. Two popular guarantees are marginal coverage and

1Throughout this paper, we emphasize certain aspects of the observed data-generating mechanism when em-
ploying the terms “domain” or “population.” For example, when a random sample is drawn from a superpopula-
tion and variables are measured differently for two subsamples, we may treat this data as two samples from two
different populations because of the different observed data-generating mechanisms.
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training-set conditional—or probably approximately correct (PAC)—coverage (Vovk (2013),
Park et al. (2020)). To achieve such coverage guarantees, one may estimate—or obtain a con-
fidence interval for—the coverage error of a given prediction set (Vovk (2013), Angelopoulos
et al. (2021), Yang, Kuchibhotla and Tchetgen Tchetgen (2022)). Let C : X → 2Y be a given
prediction set. With the indicator loss �(x, y) = 1(y /∈ C(x)), the associated risk is the cover-
age error probability P∗(Y /∈ C(X) | A = 0) of C in the target population.

REMARK 1 (Broader interpretation of risk estimation problem). Our results in this paper
apply to a broader range of problems beyond risk estimation, if those can be mapped to our
setup. The loss function � may be interpreted in a broad sense. We list a few examples below.
Moreover, the data point Z does not necessarily have to consist of a covariate vector X and
an outcome Y . If additional variables W related to Y are observed—for example, outcomes
other than Y —these can be leveraged for risk estimation, even if the prediction model only
uses the covariate X.

EXAMPLE 3 (Mean estimation). If the estimand of interest is the mean EP∗[Z | A = 0]
for Z ∈ R, we may take � to be the identity function.

EXAMPLE 4 (Quantile estimation). To estimate a quantile of Z | A = 0, we may consider
� ranging over the function class {z �→ 1(z ≤ t) : t ∈ R}.

EXAMPLE 5 (Model comparison). To compare the performance of two methods in the
target population, we may take � to be the difference between the loss of these two methods.
For example, with f (1) and f (2) denoting two given predictors, we may take � : (x, y) �→
(y − f (1)(x))2 − (y − f (2)(x))2 to be the loss difference.

EXAMPLE 6 (Estimating equation). Suppose that the estimand is the solution β∗ to an
estimating equation EP∗[�β(Z) | A = 0] = 0 in β , which includes linear regression, logistic
regression, and parametric regression models as special cases. We may consider � ranging
over the function class {z �→ �β(z)} indexed by β and r̂β an estimator of EP∗[�β(Z) | A =
0]. Let the estimator β̂ of β∗ be the solution to r̂β = 0 in β . Theorem 3.3.1 of van der Vaart
and Wellner (1996) implies that reducing the asymptotic variance (as n → ∞) of r̂ leads to a
reduced asymptotic variance of β̂ .

Without additional conditions2 on the true data distribution P∗—under a nonparametric
model—the source populations are noninformative about the target population because they
may differ arbitrarily. In this case, a viable estimator of r∗ is the nonparametric estimator,
the sample mean over the target population data:3

(2) r̂np :=
∑n

i=1 1(Ai = 0)�(Zi)∑n
i=1 1(Ai = 0)

.

For any scalars ρ ∈ (0,1) and r ∈ R, we define

(3) Dnp(ρ, r) : o = (z, a) �→ 1(a = 0)

ρ

{
�(z) − r

}
.

2We suppose that varP∗(�(X,Y ) | A = 0) < ∞, a very mild condition, throughout this paper.
3In this paper, we define 0/0 = 0.
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We denote ρ∗ := P∗(A = 0) ∈ (0,1), the true proportion of data from the target population.
It is not hard to show that Dnp is the influence function of r̂np; r̂np is asymptotically semi-

parametrically efficient under a nonparametric model and
√

n(r̂np − r∗)
d→ N(0, σ 2

∗,np) with

σ 2
∗,np := EP∗[Dnp(ρ∗, r∗)(O)2]; see Supplement S9.2.

The nonparametric estimator r̂np ignores data from the source population. If limited data
from the target population is available, namely P∗(A = 0) is small, this estimator might not
be accurate. This motivates using source population data and plausible conditions to obtain
more accurate estimators.

Notation and terminology. We next introduce some notation and terminology. We will
use the terms “covariate” and “feature” interchangeably, and similarly for “label” and “out-
come.” For any nonnegative integers M and N , we use [M : N] to denote the index set
{M,M + 1, . . . ,N} if M ≤ N and the empty index set otherwise; we use [M] as a shorthand
for [1 : M]. For any finite set S, we use |S| to denote its cardinality.

For a distribution P , we use P� and P�|	 to denote the marginal distribution of the random
variable � and the conditional distribution of � | 	, respectively, under P ; we use P∗,� and
P∗,�|	 to denote these distributions under P∗. We use P n to denote the empirical distribution
of a sample of size n from P . When splitting the sample into V > 0 folds, we use P n,v

and P
n,v
� to denote empirical distributions in fold v ∈ [V ]. All functions considered will be

measurable with respect to appropriate sigma-algebras, which will be kept implicit. For any
function f , any distribution P , we sometimes use Pf to denote

∫
f dP . For any p ∈ [1,∞],

we use ‖f ‖Lp(P ) to denote the Lp(P ) norm of f , namely (
∫

f (x)pP(dx))1/p . We also use
Lp(P ) to denote the space of all functions with a finite Lp(P ) norm, and use L

p
0 (P ) to

denote {f ∈ Lp(P ) :
∫

f dP = 0}. All asymptotic results are with respect to the sample size
n tending to infinity.

We finally review a few concepts and basic results that are central to semiparamet-
ric efficiency theory. More thorough introductions can be found in Bickel et al. (1993),
Bolthausen, Perkins and van der Vaart (2002), Pfanzagl (1985, 1990), van der Vaart (1998).
An estimator θ̂ of a parameter θ∗ = θ∗(P∗) is said to be asymptotically linear if θ̂ =
θ∗ + n−1 ∑n

i=1 IF(Oi) + op(n−1/2) for a function IF ∈ L2
0(P∗). This asymptotic linearity im-

plies that
√

n(θ̂ − θ∗)
d→ N(0,EP∗[IF(O)2]). The function IF is called the influence function

of θ̂ . Under a semiparametric model, there may be infinitely many influence functions, but
there exists a unique efficient influence function, which is the influence function of regular
asymptotically linear (RAL) estimators with the smallest asymptotic variance. Under a non-
parametric model, all RAL estimators of a parameter θ∗ share the same influence function,
which equals the efficient influence function.

3. Cross-fit estimation under a general dataset shift condition.

3.1. Statement of condition and efficiency bound. We consider the following general
dataset shift condition characterized by sequentially identical conditional distributions in-
troduced by Li and Luedtke (2023). Under this condition, some auxiliary source population
datasets are informative about one component of the target population. In this section, we
may use Q to denote the target population and allow data from Q not to be observed, namely
A might not contain index 0. We still use r∗ = EQ[�(Z)] to denote the target population
risk. We allow Z to be a general random variable rather than just (X,Y ) and allow more
than one source population to be present. Thus, let Z be decomposed into K ≥ 1 compo-
nents (Z1, . . . ,ZK). Define Z̄0 := ∅, Z̄k := (Z1, . . . ,Zk), and Zk−1 to be the support of
Z̄k−1 | A = 0 for k ∈ [K]. The condition is as follows.
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FIG. 1. Illustration of Condition DS.0† with K = 5. In each column, cells sharing the same color represent

the same conditional distribution, while cells with asterisks represent conditional distributions that may arbi-

trarily differ from the target population (A = 0). In this example, S1 = {1}, S2 = {2,3}, S3 = ∅, S4 = {3}, and

S5 = {1,3}.

CONDITION DS.0 (General sequential conditionals). For every k ∈ [K], there exists a
known nonempty subset S ′

k ⊂ A such that, (i) the distribution of Z̄k−1 under Q is dominated
by Z̄k−1 | A ∈ S ′

k under P∗, and (ii) for all a ∈ S ′
k , Zk | Z̄k−1 = z̄k−1, A = a is distributed

identically to Zk | Z̄k−1 = z̄k−1 under Q for Q-almost every z̄k−1 in the support Zk−1 of
Z̄k−1 under Q.

This condition states that conditionally on A ∈ S ′
k , Zk is independent of A given Z̄k−1.

Equivalently, it states that every conditional distribution Zk | Z̄k−1 (k ∈ [K]) under Q is equal
to that in the source populations with a ∈ S ′

k . One important special case is when data from
the target population is also observed and data from source populations are used to improve
efficiency, as stated in the following condition.

CONDITION DS.0† (Sequential conditionals). Condition DS.0 holds with 0 ∈ A and 0 ∈
S ′

k for every k.

The condition 0 ∈ S ′
k is purely a matter of notation since 0 is the index for the target pop-

ulation Q. The dominance of the distribution of Z̄k−1 under Q by the source population in
Condition DS.0(i) is automatically satisfied since 0 ∈ S ′

k . When working under this stronger
condition, we use Sk to denote S ′

k \ {0} for short. We show an example of this condition in
Figure 1. In particular, we allow for cases where no source population exists to supplement
learning some conditional distributions, that is, Sk may be empty for some k. We also al-
low irrelevant variables in some source populations to be missing; for example, in Figure 1,
(Z3,Z4,Z5) in the source population A = 2 may be missing as these variables are not as-
sumed to be informative about the target population.

According to the well-known review by Moreno-Torres et al. (2012), the following four
dataset shift conditions are among the most widely considered when one source population
is available, so that A= {0,1}. These conditions are all special cases of Condition DS.0†.

CONDITION DS.1 (Concept shift in the features). X ⊥⊥ A.
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CONDITION DS.2 (Concept shift in the labels). Y ⊥⊥ A.

CONDITION DS.3 (Full-data covariate shift). Y ⊥⊥ A | X.

CONDITION DS.4 (Full-data label shift). X ⊥⊥ A | Y .

Condition DS.0† reduces to DS.1—concept shift in the features—by setting K = 2, A =
{0,1}, S1 = {1}, S2 = ∅, Z1 = X, and Z2 = Y . Indeed, Condition DS.0† for k = 1 states that
(Z1|A = 1) =d (Z1|A = 0), or equivalently that (X|A = 1) =d (X|A = 0), which means that
X ⊥⊥ A. Since S2 = ∅, Condition DS.0† for k = 2 does not impose additional constraints.
Similarly, Condition DS.0† reduces to DS.2—concept shift in the labels—with the above
choices but switching Z1 = Y and Z2 = X.

Condition DS.0† reduces to DS.3—full-data covariate shift—by setting K = 2, A = {0,1},
S1 = ∅, S2 = {1}, Z1 = X, and Z2 = Y . Indeed, since S1 = ∅, Condition DS.0† for k = 1
does not impose constraints. For k = 2, Condition DS.0† states that (Z2|Z1,A = 1) =d

(Z2|Z1,A = 0), or equivalently that (Y |X,A = 1) =d (Y |X,A = 0), which means that
Y ⊥⊥ A | X. Similarly, it reduces to DS.4—full-data label shift—with the above choices but
switching Z1 = Y and Z2 = X. We refer to Conditions DS.3 and DS.4 as full-data covariate
and label shift, respectively, to emphasize that we have full observations (X,Y,A) from the
target population. For brevity, we refer to them as covariate or label shift when no confusion
shall arise. Condition DS.0† also includes more sophisticated dataset shift conditions and we
provide a few examples in Supplement S1 for further examples.

Compared to Condition DS.0†, the more general condition DS.0 may also be applicable
to cases without observing data from the target population, for example, covariate shift with
unlabeled target population data and labeled source population data.

In our problem, a plug-in estimation approach could be to pool all data sets that share the
same conditional distributions for each k, namely A ∈ S ′

k , and estimating these distributions
nonparametrically. Then, the risk can be estimated by integrating the loss over the estimated
distribution. However, as it is well known, this approach can suffer from a large bias or may
limit the choice of distribution or density estimators, and typically requires a delicate case-
by-case analysis to establish its accuracy (e.g., McGrath and Mukherjee (2022), etc.).

We now describe and review results on efficiency, which characterize the smallest possible
asymptotic variance of a sequence of regular estimators under the dataset shift condition
DS.0. This will form the basis of our proposed estimator in the next section. We first introduce
a few definitions. For Condition DS.0, let λk−1

∗ denote the Radon-Nikodym derivative of the
distribution of Z̄k−1 under Q relative to that of Z̄k−1 | A ∈ S ′

k under P∗. For Condition DS.0†,
define the conditional probability of each population

�k,a
∗ : z̄k �→ P∗(A = a | Z̄k = z̄k) for k ∈ [0 : K − 1], a ∈ A,

and let πa
∗ := �0,a

∗ = P∗(A = a) denote the marginal probabilities of all populations (a ∈
A); thus, π0

∗ = ρ∗ for ρ∗ from Section 2. Define the conditional odds of relevant source
populations versus the target population: θk−1

∗ := ∑
a∈Sk

�k−1,a
∗ /�k−1,0

∗ for k ∈ [K]. Under
the stronger condition DS.0†, it follows from Bayes’ theorem that

(4) λk−1
∗ =

∑
a∈S ′

k
πa

∗

π0∗ (1 + θk−1
∗ )

.

For both Conditions DS.0 and DS.0†, we also define conditional means of the loss starting
with �K

∗ := � and letting recursively

�k
∗ : z̄k �→ EP∗

[
�k+1
∗ (Z̄k+1) | Z̄k = z̄k,A ∈ S ′

k+1
]

for z̄k ∈Zk, k ∈ [K − 1].(5)
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We allow �k
∗ to take any value outside Zk , for example, when the support of Z̄k | A ∈ S ′

k+1 is
larger than the support Zk of Z̄k | A = 0. Under Condition DS.0, �k

∗(z̄k) = EQ[�(Z) | Z̄k =
z̄k] for z̄k ∈ Zk . We discuss the consequences of the nonunique definition of �k

∗ without Con-
dition DS.0 in more detail in Section 3.4. Let �∗ := (�k

∗)
K−1
k=1 , λ∗ := (λk

∗)
K−1
k=1 , θ∗ := (θk

∗ )K−1
k=1 ,

and π∗ := (πa
∗ )a∈A be collections of true nuisances. For any given collections � = (�k)K−1

k=1 ,
λ := (λk)K−1

k=1 , θ = (θk)K−1
k=1 and π := (πa)a∈A of nuisances, a scalar r and �K := �, define

the pseudo-losses T̃ (�,λ,π) and T (�, θ,π) : O → R based on these nuisances, so that for
o = (z, a),4

T̃ (�,λ,π)(o) =
K∑

k=2

1(a ∈ S ′
k)∑

b∈S ′
k
πb

λk−1(z̄k−1)
[
�k(z̄k) − �k−1(z̄k−1)

]
+ 1(a ∈ S ′

1)∑
b∈S ′

1
πb

�1(z1),(6)

T (�, θ,π)(o) =
K∑

k=2

1(a ∈ S ′
k)

π0(1 + θk−1(z̄k−1))

{
�k(z̄k) − �k−1(z̄k−1)

}
+ 1(a ∈ S ′

1)

π0(1 + θ0)
�1(z1).(7)

The motivation for this transformation is similar to that for the unbiased transformation from
Rotnitzky, Faraggi and Schisterman (2006), Rubin and van der Laan (2007) and the pseudo-
outcome from Kennedy (2020). Further, given any scalar r , with θ0 := ∑

a∈S1
πa/π0, define

DGSC(�,λ,π, r) : o = (z, a) �→ T̃ (�,λ,π)(o) − 1(a ∈ S ′
1)∑

b∈S ′
1
πb

r,(8)

DSC(�, θ,π, r) : o = (z, a) �→ T (�, θ,π)(o) − 1(a ∈ S ′
1)

π0(1 + θ0)
r.(9)

A key result we will use is that the efficient influence function for estimating r∗ (i) equals
DGSC(�∗,λ∗,π∗, r∗) under Condition DS.0 and when λk

∗ are uniformly bounded away from
zero and infinity as a function of z̄k ∈ Zk for all k ∈ [0 : K − 1], and (ii) specializes to
DSC(�∗, θ∗,π∗, r∗) under Condition DS.0† and when θk

∗ are bounded functions for all k ∈ [0 :
K − 1]. This follows by Theorem 2 and Corollary 1 in Li and Luedtke (2023). Consequently,
the smallest possible asymptotic variance of a sequence of n1/2-scaled RAL estimators is

(10) σ 2
∗,GSC := EP∗

[
DGSC(�∗,λ∗,π∗, r∗)(O)2]

under Condition DS.0 and specializes to σ 2
∗,SC := EP∗[DSC(�∗, θ∗,π∗, r∗)(O)2] under Con-

dition DS.0†. Despite the possible nonunique definition of conditional mean loss �∗, both
DGSC(�∗,λ∗,π∗, r∗) and DSC(�∗, θ∗,π∗, r∗) are uniquely defined under Condition DS.0 and
DS.0†, respectively. Here, we have used the odds parametrization rather than the density ra-
tio or Radon-Nikodym derivative parametrization from Li and Luedtke (2023) for Condi-
tion DS.0† because the former is often more convenient for estimation.

3.2. Cross-fit risk estimator. We next present our proposed estimator along with the mo-
tivation. All estimators will implicitly depend on the sample size n, but we will sometimes
omit this dependence from notation for conciseness. We take as given a flexible regression
method K estimating conditional means and a flexible classifier C estimating conditional
odds—both taking outcome, covariates, and an index set for data points being used as inputs
in order. For example, K and C may be random forests, neural networks, gradient boosting,
or an ensemble learner. We also take as given a flexible density ratio estimator W , taking an

4If θk−1(z̄k−1) = ∞, we set 1/(1 + θk−1(z̄k−1)) to be zero. When θk−1 equals the truth θk−1
∗ , this case can

happen for z̄k−1 outside the support of Z̄k−1 | A = 0 but inside the support of Z̄k−1 | A ∈ Sk .
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Algorithm 1† Cross-fit estimator of r∗ = EP∗[�(Z) | A = 0] under Condition DS.0†

Require: Data {Oi = (Zi,Ai)}ni=1, relevant source population sets S ′
k (k ∈ [K]), number V

of folds, classifier C, regression estimator K
1: Randomly split data into V folds of approximately equal sizes. Denote the index set of

data points in fold v by Iv , and the index set of data points with A ∈ S ′
k by Jk for k ∈ [K].

2: for v ∈ [V ] do

3: For all k ∈ [K − 1], estimate θk
∗ using data out of fold v, by classifying A = 0 against

A ∈ Sk+1 via the classifier C with covariates Z̄k in the subsample with A ∈ S ′
k+1; that is,

set θ̂k
v := C(1(A �= 0), Z̄k, ([n] \ Iv) ∩ Jk+1) and θ̂v := (θ̂k

v )K−1
k=1 .

4: Set π̂a
v := |Iv|−1 ∑

i∈Iv
1(Ai = a) for all a ∈ A, π̂v := (π̂a

v )a∈A, θ̂0
v :=

∑
a∈S1

π̂a
v /π̂0

v , and �̂K
v to be �.

5: for k = K − 1, . . . ,1 do

6: Estimate �k
∗ using data out of fold v by regressing �̂k+1

v (Z̄k+1) on Z̄k in the sub-
sample with A ∈ S ′

k+1; that is, set �̂k
v := K(�̂k+1

v (Z̄k+1), Z̄k, ([n] \ Iv) ∩ Jk+1).

7: Set �̂v := (�̂k
v)

K−1
k=1 .

8: Compute an estimator of r∗ for fold v:

(11) r̂v := 1

|Iv|
∑

i∈Iv

T (̂�v, θ̂v, π̂v)(Oi)

9: Compute the cross-fit estimator combining estimators r̂v from all folds: r̂ :=
1
n

∑V
v=1 |Iv|r̂v .

index set for data points being used as input, which may be transformed from a classifier C
by Bayes’ theorem or based on kernel density estimators.

We take Condition DS.0† as an example to illustrate ideas behind our proposed estimator.
One approach to constructing an efficient estimator of r∗ is to solve the estimating equa-
tion

∑n
i=1 DSC(̂�, θ̂, π̂, r)(Oi) = 0 for r , where �̂ = �̂n, θ̂ = θ̂n and π̂ = π̂n are estimators

of nuisances �∗, θ∗ and π∗, respectively, and use the solution as the estimator. See Sec-
tion 7.1, Part III in Bolthausen, Perkins and van der Vaart (2002) for a more thorough in-
troduction to achieving efficiency by solving an estimating equation. We further use sample
splitting (Hajek (1962), Bickel (1982), Schick (1986), Chernozhukov et al. (2018)) to allow
for more flexible estimators, leading to our proposed estimator in Algorithm 1†. Splitting
the sample into a fixed number V of folds Iv (v ∈ [V ]) leads to the estimating equation∑

i∈Iv
DSC(̂�v, θ̂v, π̂v, r)(Oi) = 0 averaging over data in each every fold v, with preliminary

estimators (̂�v, θ̂v, π̂v) using data outside of the fold. The solution is given in (11). The corre-
sponding estimator for more general condition DS.0 is similar and described in Algorithm 1
in the Supplementary Material.

REMARK 2 (Estimation of marginal probabilities π∗). It is viable to replace the in-fold
estimator π̂v of π∗ with an out-of-fold estimator in Algorithm 1†. These two approaches have
the same theoretical properties that we will show next, and similar empirical performance.

We next present sufficient conditions for the asymptotic efficiency and multiple robustness
of the estimator r̂ . In the following analyses without assuming Condition DS.0, we assume
that nuisance estimators �̂v can be evaluated at any point in the space Z containing the ob-
servation, even if that point is outside the support under P∗. For illustration, we assume that,
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for each k ∈ [2 : K], ‖�̂k
v − �k

∞‖L2(νk)

p→ 0 for some function �k
∞, where νk denotes the dis-

tribution of Z̄k | A ∈ S ′
k under P 0. Define the oracle estimator hk−1

v of �k−1
∗ based on �̂k

v ,
evaluated under the true distribution P∗, as5

hk−1
v : z̄k−1 �→ EP∗

[
�̂k
v(Z̄k) | Z̄k−1 = z̄k−1,A ∈ S ′

k

]
,

and the product bias term Bk,v as
∑

a∈S ′
k
πa

∗∑
a∈S ′

k
π̂a

v

EP∗
[{

λ̂k−1
v (Z̄k−1) − λk−1

∗ (Z̄k−1)
}

×
{
hk−1

v (Z̄k−1) − �̂k−1
v (Z̄k−1)

}
| A ∈ S ′

k

]
(12)

+
{∑

a∈S ′
k
πa

∗∑
a∈S ′

k
π̂a

v

−
∑

a∈S ′
1
πa

∗∑
a∈S ′

1
π̂a

v

}
EQ

[
hk−1

v (Z̄k−1) − �̂k−1
v (Z̄k−1)

]

for Condition DS.0 and Algorithm 1, which reduces to
∑

a∈S ′
k
πa

∗∑
a∈S ′

k
π̂a

v

EP∗

[{ ∑
a∈S ′

k
π̂a

v

π̂0
v (1 + θ̂k−1

v (Z̄k−1))
−

∑
a∈S ′

k
πa

∗

π0∗ (1 + θk−1
∗ (Z̄k−1))

}

×
{
hk−1

v (Z̄k−1) − �̂k−1
v (Z̄k−1)

}
| A ∈ S ′

k

]
(13)

+
(∑

a∈S ′
k
πa

∗∑
a∈S ′

k
π̂a

v

−
∑

a∈S ′
1
πa

∗∑
a∈S ′

1
π̂a

v

)
EP∗

[
hk−1

v (Z̄k−1) − �̂k−1
v (Z̄k−1) | A = 0

]

for Condition DS.0† and Algorithm 1† when λ̂k−1
v is transformed from ˆ

θk−1
v and π̂v as in (4).

CONDITION ST.1. For every fold v ∈ [V ],
1. the following term is op(n−1/2) for Condition DS.0 and Algorithm 1, or for Condi-

tion DS.0† and Algorithm 1†:

(14)
K∑

k=2

Bk,v;

2. the following term is op(1) for Condition DS.0 and Algorithm 1, or for Condition DS.0†

and Algorithm 1†, respectively:
∥∥∥∥
( ∑

a∈S ′
1

π̂a
v

)
T̃ (̂�v, λ̂v, π̂v) −

( ∑

a∈S ′
1

πa
∗

)
T̃ (�∗,λ∗,π∗)

∥∥∥∥
L2(P∗)

(15)

or
∥∥∥∥
( ∑

a∈S ′
1

π̂a
v

)
T (̂�v, θ̂v, π̂v) −

( ∑

a∈S ′
1

πa
∗

)
T (�∗, θ∗,π∗)

∥∥∥∥
L2(P∗)

.(16)

In each part of the condition, the requirement for the more general condition DS.0 reduces
to that for the more restrictive condition DS.0† with λ̂k−1

v = ∑
a∈S ′

k
π̂a

v /{π̂0
v (1 + θ̂k−1

v )}. To

illustrate Condition ST.1, define the limiting oracle estimator uk−1 of �k−1
∗ based on �k

∞ as

uk−1 : z̄k−1 �→ EP∗
[
�k
∞(Z̄k) | Z̄k−1 = z̄k−1,A ∈ S ′

k

]
.

5In all expectations involving nuisance estimators such as (̂�v, θ̂v, π̂v), these estimators are treated as fixed
and the expectation integrates over the randomness in a data point O = (Z,A). For example, EP∗ [�̂1

v(Z1) | A =
0] =

∫
�̂1
v dμ where μ is the distribution of Z1 | A = 0 under P∗, and this expectation is itself random due to the

randomness in �̂1
v .
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By the definitions of hk−1
v and uk−1, we have that hk−1

v (Z̄k−1) − �̂k−1
v (Z̄k−1) equals

(17) EP∗
[
�̂k
v(Z̄k) − �k

∞(Z̄k) | Z̄k−1,A ∈ S ′
k

]
+ uk−1(Z̄k−1) − �̂k−1

v (Z̄k−1).

Thus, Condition ST.1 would hold if the nuisance estimator (̂�v, θ̂v) converge to the truth
(�∗, θ∗) sufficiently fast. Under Condition DS.0 or DS.0†, part 2 is a consistency condi-
tion that is often mild; we discuss the other case in Section 3.4. We next focus on part 1
and consider Condition DS.0† and Algorithm 1† first. The term in (14) is a drift term char-
acterizing the bias of the estimated pseudo-loss T (̂�v, θ̂v, π̂v) due to estimating nuisance
functions. Conditions requiring such terms to be op(n−1/2) are prevalent in the literature on
inference under nonparametric or semiparametric models and are often necessary to achieve
efficiency (see, e.g., Newey (1994), Chen and Pouzo (2015), Chernozhukov et al. (2017),
Van der Laan and Rose (2018)). Balakrishnan, Kennedy and Wasserman (2023) suggest
that such op(n−1/2) conditions might be necessary without additional assumptions such as
smoothness or sparsity on �∗ or θ∗. Since π̂a

v is root-n consistent for πa
∗ , the second term

in Bk is op(n−1/2) under the mild consistency condition that all �̂k−1
v are consistent for �k−1

∗
(k ∈ [2 : K]).

By Jensen’s inequality and the Cauchy-Schwarz inequality, we have that, for each k ∈ [2 :
K], the first term in Bk is op(n−1/2) if both �̂k−1

v − hk−1
v and 1/(1 + θ̂k−1

v ) − 1/(1 + θk−1
∗ )

converge to zero in probability at rates faster than n−1/4. We illustrate this rate requirement
for �̂k−1

v − hk−1
v . With �̂k−1

v estimated by highly adaptive lasso with squared error loss, if
hk−1

v has finite variation norm and �̂k
v is bounded, then �̂k−1

v −hk−1
v diminishes at a rate faster

than n−1/4 (Benkeser and van der Laan (2016), van der Laan (2017)). We formally present
more interpretable sufficient conditions for part 1 of Condition ST.1 along with some ex-
amples of regression methods in Supplement S3. We also allow one difference to converge
slower as long as the other converges fast enough to compensate. In principle, it is also pos-
sible to empirically check whether the magnitude of the term in (14) is sufficiently small
under certain conditions by using methods proposed by Liu, Mukherjee and Robins (2020,
2023). We do not pursue this direction in this paper as it is beyond the scope. For Condi-
tion DS.0 and Algorithm 1, sufficient conditions for part 1 of Condition ST.1 depend on how
the Radon-Nikodym derivatives λ∗ are estimated. If the estimators λ̂v are based on kernel
density estimators, part 1 would require strong smoothness conditions; on the other hand, if
it is based on a classifier as in (4), which is applicable for the special case of covariate shift
without labeled target population data, the discussion above still applies.

CONDITION ST.2. For each fold v ∈ [V ], Condition ST.1 holds with the op(n−1/2) in
part 1 replaced by op(1) and the op(1) in part 2 replaced by Op(1).

Condition ST.2 is much weaker than Condition ST.1. We illustrate this for Condition DS.0†

and Algorithm 1†. By (17) and the assumption that �̂k
v converges to �k

∞ in probability, Con-
dition ST.2 holds if, for each k ∈ [2 : K], either 1/(1 + θ̂k−1

v ) is consistent for 1/(1 + θk−1
∗ )

or �̂k−1
v is consistent for uk−1. Thus, for each fold v, there are 2K−1 possible ways for some

of nuisance function estimators θ̂k−1
v and �̂k−1

v (k ∈ [2 : K]) to be inconsistent while Con-
dition ST.2 still holds. The same multiple allowance of inconsistent estimation applies to
Condition DS.0 and Algorithm 1.

REMARK 3. Conditions ST.1 and ST.2 can hold even if the limit �k
∞ of the nuisance

function estimator �̂k
v does not exist. This case could happen if the support of Z̄k | A ∈ Sk

is larger than Zk . Our results allow for such cases; we introduced the limit �k
∞ to illustrate

Conditions ST.1 and ST.2.
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These two conditions are used in the next result on r̂ .

THEOREM 1. With nuisance estimators �̂v , λ̂v , θ̂v and π̂v in Algorithms 1† and the corre-

sponding algorithm for the more general condition from the Supplementary Material, define6

(18) �v :=
∑

a∈S ′
1
πa

∗∑
a∈S ′

1
π̂a

v

K∑

k=1

EP∗
[
hk−1

v (Z̄k−1) − �̂k
v(Z̄k) | A = 0

]

for every fold v ∈ [V ] and � := n−1 ∑V
v=1 |Iv|�v . The following finite-sample expansion of

r̂ holds: r̂ − � − r∗ equals

(19)

∑

v∈[V ]

|Iv|
n

∑
a∈S ′

1
π̂a

v

(
P n,v − P∗

){( ∑

a∈S ′
1

π̂a
v

)
T̃ (̂�v, λ̂v, π̂v) −

( ∑

a∈S ′
1

πa
∗

)
T̃ (�∗,λ∗,π∗)

}

+
∑

v∈[V ]

|Iv|
∑

a∈S ′
1
π̂a

v

n

K∑

k=2

Bk,v

+
∑

v∈[V ]

|Iv|
∑

a∈S ′
1
πa

∗
n

∑
a∈S ′

1
πa

v

(
P n,v − P∗

)
DGSC(�∗,λ∗,π∗, r∗).

Moreover, if for all n, k, v,

1. Pr(‖λ̂k−1
v − λk−1

∗ ‖L2(P∗) > an,k,v) ≤ cn,k,v and Pr(‖�̂k−1
v − hk−1

v ‖L2(P∗) > bn,k,v) ≤
dn,k,v for some positive numbers an,k,v , bn,k,v , cn,k,v and dn,k,v ,

2. λ̂k−1
v are bounded for all k and v, and

3. EP∗ |DGSC(�∗,λ∗,π∗, r∗)(O)|3 < ∞,

then for any ε > 0, there exist quantities C1,C2 > 0 that may only depend on ε, P∗ and the

bound on λ̂k−1
v only such that, for any t > C1

∑
v∈[V ]

∑K
k=2(an,k,vbn,k,v + an,k,v + bn,k,v +

n−1), the following finite-sample confidence guarantee holds: Pr(|r̂ − � − r∗| > t) is at most

2�

(
−

√
n
t − C1

∑
v∈[V ]

∑K
k=2(an,k,vbn,k,v + n−1/2(an,k,v + bn,k,v) + n−1)

σ∗,GSC

)

+ C2√
n

+
∑

v∈[V ]

K∑

k=2

(cn,k,v + dn,k,v) + ε,

(20)

where σ∗,GSC is defined in (10) and � denotes the cumulative distribution function of the

standard normal distribution.

1. Efficiency: Under Condition ST.1, with r̂ in Line 9 of Algorithm 1, and DGSC in (8),

(21) r̂ − � = r∗ + 1

n

n∑

i=1

DGSC(�∗,λ∗,π∗, r∗)(Oi) + op

(
n−1/2)

.

For r̂ in Line 9 of Algorithm 1†, with DSC in (9), this specializes to

(22) r̂ − � = r∗ + 1

n

n∑

i=1

DSC(�∗, θ∗,π∗, r∗)(Oi) + op

(
n−1/2)

.

2. Multiply robust consistency: Under Condition ST.2, r̂ − �
p→ r∗ as n → ∞.

6The denominator
∑

a∈S ′
1
π̂a

v is nonzero with probability tending to one exponentially.
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Additionally under Condition DS.0, � = 0 and thus r̂ is RAL and efficient under Condi-

tion ST.1 and is consistent for r∗ under Condition ST.2.

We have dropped the dependence of �v and � on the sample size n, the nuisance esti-
mators (̂�v, λ̂v, θ̂v, π̂v) and the true distribution P∗ from the notation for conciseness. To il-
lustrate the finite-sample confidence guarantee, suppose that ‖λ̂k−1

v − λk−1
∗ ‖L2(P∗) = Op(an)

and ‖�̂k−1
v − hk−1

v ‖L2(P∗) = Op(bn). Such convergence rates have been established for many
flexible regression or classification methods. For example, for Condition DS.0†, with d de-
noting the dimension of ZK−1 and highly adaptive lasso used to obtain �̂v and θ̂v , one
has an = bn = n−1/4−1/{8(d+1)} (Benkeser and van der Laan (2016)) if the nuisance func-
tions have bounded variation norm. See Supplement S3 for more examples. Then, taking
cn = dn = ε/{2V (K − 1)}, the finite-sample guarantee becomes

Pr
(
|r̂ − � − r∗| > t

)
≤ 2�

(
−

√
n
t − C1(anbn + n−1/2(an + bn) + n−1)

σ∗,GSC

)
+ C2√

n
+ 2ε

for a different absolute constant C1. Thus, when the highly adaptive lasso is used, the above
bound equals 2�(−[√nt −C1n

−1/{4(d+1)}]/σ∗,GSC)+C2/
√

n+2ε. This leads to a nontrivial
probability bound for any t > C1n

−1/2−1/{4(d+1)} such as t ∝ n−1/2. Under Conditions DS.0†

and ST.1, statistical inference about r∗ can be performed based on r̂ and a consistent estimator
of its influence function DSC(�∗, θ∗,π∗, r∗); here, a consistent estimator of the asymptotic
variance of r̂ is 1

n

∑
v∈[V ]

∑
i∈Iv

DSC(̂�v, θ̂v, π̂v, r̂v)(Oi)
2. Inference about r∗ under the more

general condition DS.0 can be conducted similarly. The results in Theorem 1 under Condi-
tion DS.0 or DS.0† can be shown using standard approaches to analyzing Z-estimators (see,
e.g., Section 3.3 in van der Vaart and Wellner (1996)). However, to study the behavior of our
estimator r̂ without Condition DS.0, we need to carefully study the expansion of the mean of
the estimating function DGSC to identify the bias term � due to failure of Condition DS.0.
The proof of Theorem 1 can be found in Supplement S9.3.

We also have the following immediate corollary of Theorem 1 for model comparison and
model selection. Let �(1) and �(2) be two given losses. For example, for each j ∈ {1,2},
�(j) may be the squared error loss z = (x, y) �→ (y − f (j)(x))2 for a given predictor f (j).
With superscript (1) and (2) denoting quantities or functions corresponding to these two
predictors, the contrast of their risk r

(1)
∗ −r

(2)
∗ informs the difference between the two models’

performance. It is natural to select the model with the smaller estimated risk.

COROLLARY 1. Under Condition DS.0, r̂(1) − r̂(2) equals

r(1)
∗ − r(2)

∗ + 1

n

n∑

i=1

{
DGSC

(
�
(1)
∗ ,λ∗,π∗, r

(1)
∗

)
(Oi)−DGSC

(
�
(2)
∗ ,λ∗,π∗, r

(2)
∗

)
(Oi)

}
+op

(
n−1/2)

if Condition ST.1 holds for both losses, and r̂(1) − r̂(2) p→ r
(1)
∗ − r

(2)
∗ if Condition ST.2 holds

for both losses. Moreover, if r
(1)
∗ − r

(2)
∗ = −C/

√
n for a constant C > 0 and Condition ST.1

holds for both losses, then the probability for the estimated sign of r
(1)
∗ − r

(2)
∗ to be cor-

rect Pr(r̂(1) < r̂(2)) → �(C/χ) (as n → ∞) where χ := (EP [{DGSC(�(1)
∗ ,λ∗,π∗, r

(1)
∗ )(O)−

DGSC(�(2)
∗ ,λ∗,π∗, r

(2)
∗ )(O)}2])1/2 is the asymptotic standard deviation of the estimator

r̂(1) − r̂(2).

The nuisances λ∗ and π∗ are invariant with respect to the loss and so need not be estimated
twice for the two losses. Under Condition ST.1, inference about the risk contrast r

(1)
∗ − r

(2)
∗

can be conducted based on r̂(1) − r̂(2) and a consistent estimator of its asymptotic variance,
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1
n

∑
v∈[V ]

∑
i∈Iv

{DGSC(�(1)
∗ ,λ∗,π∗, r

(1)
∗ )(Oi) − DGSC(�(2)

∗ ,λ∗,π∗, r
(2)
∗ )(Oi)}2. In the above

example of model comparison, rejection of the null hypothesis r
(1)
∗ − r

(2)
∗ = 0 indicates a

significant difference between the two predictors’ performance in the target population; oth-
erwise, the two predictors might perform similarly.

In the example of selecting the model with a smaller risk based on the estimated sign
of risk difference r

(1)
∗ − r

(2)
∗ , consider the case where the true risk difference is small even

in relatively large samples, namely the asymptotic regime where r
(1)
∗ − r

(2)
∗ = −C/

√
n for

a constant C as in Corollary 1. Without loss of generality, let C > 0. If the risk differ-
ence is estimated with the nonparametric estimator, then the asymptotic probability of es-
timating the correct sign is asymptotically �(C/χnp) where χnp := (EP [{Dnp(ρ, r

(1)
∗ )(O) −

Dnp(ρ, r
(2)
∗ )(O)}2])1/2 is the asymptotic standard deviation of the nonparametric estima-

tor. Because our proposed estimator is asymptotically efficient, χ2
np ≥ χ2 and our proposed

estimator results in a greater probability of selecting the better-performing model than us-
ing the nonparametric estimator. Similarly, consider J + 1 risks r

(1)
∗ , . . . , r

(J+1)
∗ such that

r
(1)
∗ − r

(j)
∗ = −Cj−1/

√
n (Cj−1 > 0, j = 2, . . . , J + 1). Suppose that the asymptotic co-

variance matrices of (r̂(1) − r̂(2), . . . , r̂(1) − r̂(J+1)) and (r̂
(1)
np − r̂

(2)
np , . . . , r̂

(1)
np − r̂

(J+1)
np ) are

� and �np, respectively. Then the asymptotic probabilities of estimating the correct small-
est risk based on these estimators are Pr(NJ (0,�) < (C1, . . . ,CJ )) and Pr(NJ (0,�np) <

(C1, . . . ,CJ )), respectively, where NJ denotes the J -dimensional normal distribution, and
the events in these probabilities mean that a J -dimensional normal random vector is less than
the vector (C1, . . . ,CJ ) entrywise; the former asymptotic probability is greater than or equal
to the latter because � � �np.

3.3. Discussion on estimation of conditional mean loss function. In contrast to our ap-
proach in Algorithm 1†, a direct regression method for estimating nuisance functions �∗ is to
regress �(Z) on covariates in the subsample with A = 0, since �k

∗(z̄k) = EQ[�(Z) | Z̄k = z̄k]
for z̄k ∈ Zk under Condition DS.0. Direct regression aims to estimate nuisance functions �k

∗
rather than hk

∗, and can also achieve efficiency under Condition DS.0† when all nuisance
functions are estimated consistently at sufficient rates to satisfy Condition ST.1.

However, our sequential regression approach is advantageous in achieving multiple ro-
bustness under less stringent conditions on nuisance function estimators. We illustrate this
advantage for Condition DS.0† and Algorithm 1† as an example. Note that Bk from (13) ap-
pearing in the sum (14) involves the difference between the nuisance estimator �̂k−1

v and the
oracle estimator hk−1

v , which depends on the nuisance estimator �̂k
v in the previous step. Each

nuisance function estimator �̂k
v (except those with indices k = K and k = 2) appears in both

Bk and Bk−1 in (14).
In the direct regression method, we might wish to achieve 2K−1-robustness in the sense

that the final risk estimator is consistent for r∗ if, for each k ∈ [K − 1], either �̂k
v or θ̂k

v is

consistent. Consider a fixed index j ∈ [K − 1]. If all nuisance estimators in �̂v except �̂
j
v

are consistent, then neither of h
j
v − �̂

j
v and h

j−1
v − �̂

j−1
v would converge to zero. If θ̂

j
v is

consistent but θ̂
j−1
v is not, then, in general, (14) would not converge to zero, and thus the risk

estimator is inconsistent. In other words, the above approach might not achieve the desired
2K−1-robustness property.

In contrast, our sequential regression approach directly aims to estimate the oracle regres-
sion functions hk

v and the estimator �̂k
v inherits the potential bias in �̂k+1

v . For example, if

all differences hk
v − �̂k

v except h
j
v − �̂

j
v converge to zero, in order to make (14) small, it is

indeed sufficient for 1/(1 + θ̂
j
v ) to be consistent for 1/(1 + θ

j
∗ ). It seems that such a multiple

robustness property could only hold for the direct regression method under stringent or even
implausible conditions on the nuisance function estimators �̂k

v .
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3.4. Consequences of the failure of Condition DS.0. In this section, we focus on Condi-
tion DS.0† and Algorithm 1† for illustration. All results apply to the more general condition
DS.0 unless otherwise stated. We first show the intriguing fact that, when Condition DS.0
fails, the conditional mean loss �k

∗ might not be uniquely defined even in Zk . The reason
is that the supports of Z̄k | A = a may be potentially mismatched across Q and a ∈ S ′

k for

k ∈ [K], and moreover that for j > k, �
j
∗ may not be uniquely defined.

Consider the following simple example with K = 3. Suppose that the support of Z̄2 | A ∈
S ′

3 is one point {(0,0)}, while the supports of Z̄2 | A ∈ S ′
2 and Z̄2 | A ∈ S ′

1 are both two points
{(0,0), (0,1)}. Suppose that Z2 = {(0,0)} and therefore Z1 = {0}. Then, �2

∗ is nonuniquely
defined at (0,1). This nonunique definition is allowed for under Condition DS.0†. However,
since �1

∗(Z̄1) = EP∗[�2
∗(Z̄2) | Z̄1,A ∈ S ′

2], when Condition DS.0† fails, the value of �1
∗ at

0 ∈ Z1 depends on the value of �2
∗ at (0,1), which is not uniquely defined. In other words, �1

∗
is nonuniquely defined even in the support Z1 of Z̄1 | A = 0.

We note that this dependence of �1
∗ on �2

∗(z̄2) for z̄2 = (0,1) /∈ Z2 is excluded under Condi-
tion DS.0†: (0,1) cannot be in the support of Z̄2 | A ∈ S ′

2 by the assumption that Z̄2 | Z1 = z1,
A = 0 and Z̄2 | Z1 = z1, A ∈ S ′

2 are identically distributed for z1 ∈ Z1. This nonunique defi-
nition might also be reflected in the corresponding nuisance estimator �̂v : �̂k

v might be (unin-
tentionally) extrapolated to outside the support of Z̄k | A ∈ S ′

k in order to obtain the estimator
�̂k−1
v in Line 6, Algorithm 1†. This support issue might go undetected in the estimation pro-

cedure. The oracle estimator hk−1
v would also depend on how �̂k

v is extrapolated.
Nevertheless, without Condition DS.0, our results in Section 3.2 remain valid as long as

Condition ST.1 or ST.2 holds for one version of the collection of true conditional mean loss
functions �∗. For example, part 2 of Condition ST.1 would require the consistency of �̂v for
some version of �∗, and DSC(�∗, θ∗,π∗, r∗) in (22) would depend on the particular adopted
version of �∗. The appropriate choice of �∗ often depends on the asymptotic behavior of the
nuisance estimator �̂v , which might heavily depend on the particular choice of the regression
technique used in the sequential regression (Line 6, Algorithm 1†).

The choice of regression techniques can further affect the bias term � when Condi-
tion DS.0† fails. Because of the potential extrapolation when evaluating and estimating �̂v ,
the bias term � can have drastically different behavior for different estimators �̂v , even if
these estimators are all consistent for some �∗ when restricted to Zk . Consequently, � might
not have a probabilistic limit, and so the estimator r̂ can diverge.

We illustrate the behavior of � in the following example of concept shift in the features
(DS.1), a special case of Condition DS.0†. Under the setup of this condition,

�v ≈ EP∗
[
EP∗

[
�(X,Y ) | X,A = 0

]]
− r∗ +EP∗

[
�̂1
v(X)

]
−EP∗

[
�̂1
v(X) | A = 0

]

where we have dropped the estimation error of order Op(n−1/2) in estimating πa
∗ with π̂a

v

in this approximation. If Condition DS.1 in fact does not hold and the difference B between
the support of X | A = 1 and that of X | A = 0 is nonempty, the asymptotic behavior of the
third term EP∗[�̂1

v(X)] would depend on how the estimator �̂1
v behaves asymptotically in B,

even if this estimator is known to be consistent for x �→ EP∗[�(X,Y ) | X = x,A = 0] when
restricted to the support of X | A = 0. If �̂1

v diverges in the region B as n → ∞, our estimator
r̂v can diverge. This phenomenon is fundamental and cannot be resolved by, for example,
using an assumption lean approach (Vansteelandt and Dukes (2022)) because it mirrors the
ill-defined nuisance functions �k

∗ at z̄k /∈ Zk (k ∈ [K − 1]).
In practice, mismatched supports and extrapolation of the estimator �̂v caused by failure

of Condition DS.0 might be detected from extreme values or even numerical errors when
evaluating �̂k

v at sample points, but such detection is not guaranteed. When target population
data is observed, the above analysis of our estimator r̂—which leverages the dataset shift
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condition DS.0† to gain efficiency— motivates the following result that leads to a test of
whether r̂ is consistent for r∗.

COROLLARY 2 (Testing root-n consistency of r̂). Under Conditions DS.0† and ST.1,√
n(r̂ − r̂np) is asymptotically distributed as a normal distribution with mean zero and vari-

ance EP∗[{DSC(�∗, θ∗,π∗, r∗)(O) − Dnp(�∗, r∗)(O)}2] = σ 2
∗,np − σ 2

∗,SC, as n → ∞.

This corollary is implied by Theorem 1 and the orthogonality between DSC(�∗, θ∗,π∗, r∗)
-Dnp(�∗, r∗) and DSC(�∗, θ∗,π∗, r∗) under Condition DS.0†. This result might not hold
for the more general condition DS.0 due to potential lack of a nonparametric estimator
r̂np. A specification test (Hausman (1978)) of the dataset shift condition DS.0† can be con-
structed based on the two estimators r̂np and r̂ along with their respective standard errors SE1

and SE2. Under Condition ST.1 and the null hypothesis Condition DS.0†, the test statistic7

(r̂ − r̂np)/{(SE2
1 − SE2

2)
1/2} is approximately distributed as N(0,1) in large samples; in con-

trast, if Condition DS.0† does not hold, r̂ is generally inconsistent for r∗ and thus the test
statistic diverges as n → ∞.

The aforementioned test of Condition DS.0† may be underpowered because only one loss
function � is considered. For example, it is possible to construct a scenario where Condi-
tion DS.0† fails, while the loss function � and the nuisance function estimators �̂v are chosen
such that � = op(n−1/2). In this case, the asymptotic power of the aforementioned test is no
greater than the asymptotic type I error rate. A somewhat contrived construction is to set �̂v

as one version of the true conditional mean loss �∗ and choose P∗ such that EP∗[�k
∗(Z̄k) |

Z̄k−1,A = 0] = �k−1
∗ (Z̄k−1) holds. This implies that � = 0, while Condition DS.0† can

fail, for example, due to the heteroskedasticity of the residuals �k
∗(Z̄k) − �k−1

∗ (Z̄k−1). Such
phenomena have also been found in specification tests for generalized method of moments
(Newey (1985)). More powerful tests of conditional independence that do not suffer from the
above phenomenon have been proposed in other settings (see, e.g., Doran et al. (2014), Hu
and Lei (2023), Shah and Peters (2020), Zhang et al. (2011), etc.).

However, since r̂ might still be root-n consistent for r∗ even if Condition DS.0† does not
hold, the above test should be interpreted as a test of the null hypothesis that r̂ is root-n
consistent for r∗, a weaker null hypothesis than conditional independence (Condition DS.0†).
Nevertheless, this weaker null hypothesis is meaningful when the risk r∗ is the estimand of
interest.

REMARK 4. It is possible to adopt our proposed estimator when the relevant source pop-
ulations Sk in Condition DS.0 or DS.0† are not known a priori but can be selected based
on data. In this case, the user can split the data into two folds, use fold 1 to select Sk , and
finally compute our estimator on fold 2. We leave a more thorough study of such approaches
to future work.

For the following Sections 4 and 5, we focus on risk estimation under one of the four
popular dataset shift conditions DS.1–DS.4. The special structures of these conditions will
be further exploited in the estimation procedure, leading to additional simplifications, more
flexibility in estimation, and potentially more robustness. For example, for Conditions DS.1
and DS.2, K = 2 and S2 is known to be empty, and we will show that estimators with bet-
ter robustness properties than part 2 of Theorem 1 can be constructed; for Conditions DS.3

7It is viable to use a variant statistic with the denominator replaced by an asymptotic variance estimator based
on the influence function DSC(�∗, θ∗,π∗, r∗) − Dnp(�∗, r∗).
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and DS.4, K = 2 and S1 is known to be empty, and the estimation procedure described in
Algorithm 1† can be simplified.

Conditions DS.1 and DS.2 are identical up to switching the roles of X and Y ; the same
holds for the other two conditions DS.3 and DS.4. Therefore, we study Conditions DS.1 and
DS.3 in the main body and present results for Conditions DS.2 and DS.4 in Supplement S2.

3.5. More general dataset shift condition. Li, Gilbert and Luedtke (2023) considered a
condition more general than DS.0. In addition to Condition DS.0, for each k ∈ [K], their
setting also allows for a population index subset Vk ⊂ A such that, for each a ∈ Vk , and all
zk , z̄k−1,

dPZk |Z̄k−1,A=a/dQZk |Z̄k−1
(zk | z̄k−1) ∝ wk,a(z̄k;βk,a)

for some unknown finite-dimensional parameter βk,a and a known tilting function wk,a . This
allows for dataset shift up to unknown finite-dimensional parameters. For instance, this in-
cludes the following cases:

1. Example 1. Covariate shift up to exponential tilting. We can consider a generalization
of Condition DS.3, where the density of Y | X = x, A = 1 is proportional to the density of
Y | X = x, A = 0 multiplied by w(x, y;β) = exp([x, y]�β), for all x, y.

2. Example 2. Covariate shift with truncation. Another generalization of Condition DS.3
allows Y in the source data to be truncated (Jewell (1985), Bickel et al. (1993), Bhattacharya,
Chernoff and Yang (2007)); for example, Y is only observed when it is above an unknown
threshold β . In this case, the density of Y | X = x, A = 1 is proportional to the density of
Y | X = x, A = 0 multiplied by w(x, y;β) = 1(y ≥ β), for all x, y.

3. Example 3. Covariate shift with clipping. Suppose that Y is integer-valued, such as a
count variable. Condition DS.3 can be generalized to allow Y in the source data to be clipped
at a threshold B; that is, if the true outcome is above B , the observed Y equals B . In this case,
the density (with respect to the counting measure) of Y | X = x, A = 1 is proportional to the
density of Y | X = x, A = 0 multiplied by w(x, y;β) = 1(y < B) + 1(y = B) exp(β) for an
unknown normalizing parameter β , for all x, y.

Concept shift and label shift can be extended similarly; and these constructions also clearly
apply to more the general sequential conditionals setting. For this more general condition with
unknown finite-dimensional parameters, Li, Gilbert and Luedtke (2023) derived influence
functions that have smaller variances those not using the source data from Vk .

Let D∗ be such an influence function with a reduced variance. Similarly to the cross-fitting
strategy in Algorithm 1†, for each fold v ∈ [V ], let D̂v denote an estimator of D∗ based on
data out of fold v, which involves an estimator �̂1

v of �1
∗. With data split into V folds and P n,v

denoting the empirical distribution of data in fold v (v ∈ [V ]), consider a cross-fit one-step
estimator

n−1
∑

v∈[V ]
|Iv|

{
P

n,v

Z1|A∈S ′
1
�̂1
v + P n,vD̂v

}
.

If all nuisance functions are estimated well in the sense that ‖D̂v − D∗‖L2(P0)
= op(1)

and Rv := P
n,v

Z1|A∈S ′
1
�̂1
v − r∗ + P∗D̂v = op(n−1/2) for all v ∈ [V ], then the one-step estimator

P
n,v

Z1|A∈S ′
1
�̂1
v + P n,vD̂v for fold v equals

r∗ + P n,vD∗ +
(
P n,v − P∗

)
(D̂v − D∗) + Rv = r∗ + P n,vD∗ + op

(
n−1/2)

.

With P n denoting the empirical distribution of the entire data, the cross-fit one-step estimator
equals r∗ +P nD∗ + op(n−1/2), that is, it is asymptotically normal with a reduced asymptotic

variance compared to the nonparametric estimator. We leave studying multiple robustness
for future work.
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4. Concept shift in the features.

4.1. Efficiency bound. We first present the efficient influence function for the risk r∗
under concept shift in the features, where X ⊥⊥ A (DS.1). To do so, define E∗ : x �→
EP∗[�(X,Y ) | X = x,A = 0], the conditional risk function in the target population. Recall
that ρ∗ denotes P∗(A = 0). For scalars ρ ∈ (0,1), r ∈ R, and a function E : X → R, define

(23) DXcon(ρ,E, r) : o = (x, y, a) �→ 1 − a

ρ

{
�(x, y) − E(x)

}
+ E(x) − r.

We next present the efficient influence function, which is implied by the efficiency bound
under Condition DS.0† from (9), along with the efficiency gain of an efficient estimator.

COROLLARY 3. Under Condition DS.1, the efficient influence function for the risk r∗
from (1) is DXcon(ρ∗,E∗, r∗) with DXcon from (23). Thus, the smallest possible normalized

limiting variance of a sequence of RAL estimators is σ 2
∗,Xcon := EP∗[DXcon(ρ∗,E∗, r∗)(O)2].

COROLLARY 4. Under conditions of Corollary 3, the relative efficiency gain from using

an efficient estimator is

1 −
σ 2

∗,Xcon

σ 2∗,np
= (1 − ρ∗)EP∗[(E∗(X) − r∗)2]

EP∗[EP∗[{�(X,Y ) − E∗(X)}2 | A = 0,X]] +EP∗[{E∗(X) − r∗}2] .

Since E∗(X) = EP∗[�(X,Y ) | X,A = 0], conditioning on A = 0 throughout, recall the
tower rule decomposition of the variance of loss �(X,Y ):

EP∗
[{

�(X,Y ) − r∗
}2]

= EP∗
[
EP∗

[{
�(X,Y ) − E∗(X)

}2 | X
]]

︸ ︷︷ ︸
variability not just due to X

+EP∗
[{
E∗(X) − r∗

}2]
︸ ︷︷ ︸
variability due to X alone

.

By Corollary 4, more relative efficiency gain is achieved for estimating the true risk r∗ at a
data-generating distribution P∗ with the following properties:

1. The proportion ρ∗ of target population data is small.
2. In the target population, the proportion of variance of �(X,Y ) due to X alone is large

compared to that not just due to X but rather also due to Y .

REMARK 5. We illustrate the second property in an example with squared error loss
�(x, y) = (y − f (x))2 for a given predictor f . We consider the target population and condi-
tion on A = 0 throughout. Let μ∗ : x �→ EP∗[Y | X = x] be the oracle predictor and suppose
that Y = μ∗(X) + ε for independent noise ε ⊥⊥ X. In this case, the variance of �(X,Y ) not
due to X is determined by the random noise ε, while that due to X is determined by the
bias f − μ∗. Therefore, the proportion of variance of �(X,Y ) not due to X would be large if
the given predictor f is far from the oracle predictor μ∗ heterogeneously. In a related paper,
Azriel et al. (2021) showed that, for linear regression under semisupervised learning, namely
concept shift in the features, there is efficiency gain only if the linear model is misspecified.
Our observation is an extension to more general risk estimation problems.

4.2. Cross-fit risk estimator. In this section, we present our proposed estimator of the
risk r∗, along with its theoretical properties. This estimator is described in Algorithm 2. This
algorithm is the special case of Algorithm 1† with simplifications implied by Condition DS.1.

We next present the efficiency of the estimator r̂Xcon, along with its fully robust asymptotic
linearity: r̂Xcon is asymptotically linear even if the nuisance function E∗ is estimated incon-
sistently. This robustness property is stronger and more desirable than that stated in part 2 of
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Algorithm 2 Cross-fit estimator of risk r∗ under Condition DS.1, concept shift in the features
Require: Data {Oi = (Zi,Ai)}ni=1, number V of folds, regression estimation method for E∗

1: Randomly split all data (from both populations) into V folds. Let Iv be the indices of
data points in fold v.

2: for v ∈ [V ] do Estimate E∗ by Ê−v using data out of fold v.
3: for v ∈ [V ] do � (Obtain an estimating-equation-based estimator for fold v)
4: With ρ̂v := |Iv|−1 ∑

i∈Iv
1(Ai = 0), set

(24) r̂v
Xcon := 1

|Iv|
∑

i∈Iv

{
1(Ai = 0)

ρ̂v

[
�(Xi, Yi) − Ê−v(Xi)

]
+ Ê−v(Xi)

}
.

5: Obtain the cross-fit estimator: r̂Xcon := 1
n

∑V
v=1 |Iv|r̂v

Xcon.

Theorem 1, a multiply robust consistency. Moreover, the efficiency of r̂Xcon only relies on the
consistency of the nuisance estimator Ê−v with no requirement on its convergence rate. This
condition is also weaker than Condition ST.1, which is required by part 1 of Theorem 1. The
proof of this result can be found in Supplement S9.4.

THEOREM 2 (Efficiency and fully robust asymptotic linearity of r̂Xcon). Suppose that

there exists a function E∞ ∈ L2(P∗) such that maxv∈[V ] ‖Ê−v − E∞‖L2(P∗) = op(1). Under

Condition DS.1, the sequence of estimators r̂Xcon in Line 5 of Algorithm 2 is RAL: with r∗
from (1) and DXcon from (23), r̂Xcon equals

r∗ + 1

n

n∑

i=1

{
DXcon(ρ∗,E∞, r∗)(Oi) + EP∗[E∞(X)] − r∗

ρ∗
(1 − Ai − ρ∗)

}
+B,(25)

where

B :=
∑

v∈[V ]

|Iv|
n

{
ρ̂v − ρ∗

ρ̂v
P∗

(
Ê−v − E∞

)

+
(
P n,v − P∗

){
DXcon

(
ρ̂−v, Ê−v, r̂v

Xcon
)
− DXcon(ρ∗,E∞, r∗)

}}
= op

(
n−1/2)

.

Moreover, if E∗ is estimated consistently, namely E∞ = E∗, then r̂Xcon is efficient:

(26) r̂Xcon = r∗ + 1

n

n∑

i=1

DXcon(ρ∗,E∗, r∗)(Oi) + op

(
n−1/2)

.

REMARK 6 (Estimation of ρ∗). It is possible to replace the in-fold estimator ρ̂v of ρ∗ with
an out-of-fold estimator in Algorithm 2. Unlike Algorithm 1†, this would lead to a different
influence function when the nuisance function E∗ is estimated inconsistently in Theorem 2.
In this case, the influence function of r̂Xcon from Theorem 2 cannot be used to construct
asymptotically valid confidence intervals if E∗ is estimated inconsistently.

REMARK 7 (A semiparametric perspective on prediction-powered inference). Our pro-
posed estimator is distantly related to the work of Angelopoulos et al. (2023). Angelopoulos
et al. (2023) studied the estimation of and inferences about a risk minimizer with the aid of
an arbitrary predictor under concept shift (Condition DS.1). Their proposed risk estimator is
essentially a special variant of Algorithm 2 without cross-fitting and with a fixed given esti-
mator of E∗. Theorem 2 provides another perspective on why their proposed method is valid
for an arbitrary given nuisance estimator of the true conditional mean risk E∗ and improves
efficiency when the given estimator is close to the truth E∗.
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4.3. Simulation. We illustrate Theorem 2 and Corollary 4 in a simulation study. We con-
sider the application of estimating the mean squared error (MSE) of a given predictor f that
predicts the outcome Y given input covariate X; that is, we take �(x, y) = (y − f (x))2. We
consider five scenarios:

(A) The predictor f is identical to the oracle predictor and the additive noise is ho-
moskedastic. According to Corollary 4 and Remark 5, there should be no efficiency gain
from using our proposed estimator r̂Xcon compared to the nonparametric estimator r̂np.

(B) The predictor f is a good linear approximation to the oracle predictor. This scenario
may occur if the given predictor is fairly close to the truth.

(C) The predictor f substantially differs from the oracle predictor. This scenario may
occur if the given predictor has poor predictive power, possibly because of inaccurate tuning
or using inappropriate domain knowledge in the training process.

(D) The predictor f substantially differs from the oracle predictor and the outcome Y is
deterministic given X. According to Corollary 4, there is a large efficiency gain from using
our proposed estimator r̂Xcon compared to the nonparametric estimator r̂np.

(E) Condition DS.1 does not hold.

Scenarios A and D are extreme cases designed for sanity checks, while Scenarios B and C are
intermediate and more realistic. Scenario E is a relatively realistic case where the assumed
dataset shift condition fails and is designed to check the robustness against assuming the
wrong dataset shift condition.

More specifically, the data is generated as follows. We first generate the covariate X =
(X1,X2,X3) from a trivariate normal distribution with mean zero and identity covariance
matrix. For Scenarios A–D, where Condition DS.1 holds, we generate the population indi-
cator A from Bernoulli(0.9) independent of X. In other words, ρ∗ = 10% of data points
are from the target population and the other 90% of data points are from the source pop-
ulation. The label in the source population, namely with A = 1, is treated as missing as it
is not assumed to contain any information about the target population. The label Y in the
target population, namely with A = 0, is generated depending on the scenario as follows:
(A) Y | X = x, A = 0 ∼ N(μ∗(x),52); (B) & (C): Y | X = x, A = 0 ∼ N(μ∗(x),1); (D):
Y = μ∗(X), where

(27) μ∗(x) = x1 + x2 + x3 + 0.4x1x3 − 0.5x2x3 + sin(x1 + x3).

We set different predictors f for these scenarios:

(A) f is the truth μ∗;
(B) f is a linear function close to the best linear approximation to μ∗ in L2(P∗)-sense:

f (x) = 1.4x1 + x2 + 1.4x3;
(C) f substantially differs from μ∗: f (x) = −1 − 3x1 + 0.5x3;
(D) f substantially differs from μ∗: f (x) = x1.

For Scenario E, where Condition DS.1 does not hold, we include dependence of A on X by
generating A as

A | X = x ∼ Bernoulli
(
expit

{
cos(x1 + x2x3) + 2x2

1x2
2 + 3|x1x3| + |x2|(0.5 − x3)

})
.

The resulting proportion ρ∗ of target population data is around 10%, similar to the other sce-
narios. The outcome Y is generated in the same way as Scenarios B and C. We set the fixed
predictor f to be the same as in Scenario B.

We consider the following three estimators: np: the nonparametric estimator r̂np in (2);
Xconshift: our estimator r̂Xcon from Line 5 of Algorithm 2 with a consistent estimator of
E∗; Xconshift,mis.E: r̂Xcon with an inconsistent estimator of E∗. To estimate nuisance
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FIG. 2. (a) Sampling distribution of the scaled difference between MSE estimators and the true MSE in the

four scenarios under concept shift in the features. The point stands for the empirical average in Monte Carlo

simulations. (b) Monte Carlo estimate of the scaled mean squared error of the estimators.

functions consistently, we use Super Learner (van der Laan, Polley and Hubbard (2007))
whose library consists of generalized linear model, generalized additive model (Hastie and
Tibshirani (1990)), generalized linear model with lasso penalty (Hastie, Buja and Tibshi-
rani (1995), Tibshirani (1996)), and gradient boosting (Mason et al. (1999), Friedman (2001,
2002), Chen and Guestrin (2016)) with various combinations of tuning parameters. This li-
brary contains highly flexible machine learning methods and is likely to yield consistent es-
timators of the nuisance function. Super Learner is an ensemble learner that performs almost
as well as the best learner in the library. To estimate nuisance functions inconsistently, we
take the estimator as a fixed function that differs from the truth for the two extreme scenarios
(A and D) for a sanity check, and drop gradient boosting from the above library for the other
two relatively realistic scenarios (B and C). Since neither of generalized linear model (with
or without lasso penalty) and generalized additive model is capable of capturing interactions,
dropping gradient boosting would yield inconsistent estimators of the nuisance function E∗.
We consider sample sizes n ∈ {500,1000,2000} and run 200 Monte Carlo experiments for
each combination of the sample size and the scenario.

Figure 2 presents the sampling distribution of the scaled difference between the three es-
timators of the MSE and the true MSE. When Condition DS.1 holds, all three estimators
appear close to normal and centered around the truth, demonstrating Theorem 2. The vari-
ance of Xconshift is much smaller than that of np in both Scenarios C and D for sample
sizes 1000 and 2000, indicating a large efficiency gain; in the other two scenarios, the vari-
ance of these two estimators is comparable. These results are consistent with Corollary 4 and
Remark 5. When Condition DS.1 does not hold (Scenario E), our proposed estimator appears
consistent, indicating that r̂Xcon might be robust against moderate failures of the concept shift
condition DS.1.
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5. Full-data covariate shift.

5.1. Efficiency bound. Let g∗ : x �→ P∗(A = 0 | X = x) be the propensity score function
for the target population and L∗ : x �→ EP∗[�(X,Y ) | X = x] be the conditional risk function.
Under Condition DS.3, L∗(x) = EP∗[�(X,Y ) | X = x,A = 0] = EP∗[�(X,Y ) | X = x,A =
1]. For scalars ρ ∈ (0,1), r ∈ R and functions g,L : X →R, define

(28) Dcov(ρ, g,L, r) : o = (x, y, a) �→ g(x)

ρ

{
�(x, y) −L(x)

}
+ 1 − a

ρ

{
L(x) − r

}
.

We have the following efficient influence function—implied by the efficiency bound under
Condition DS.0† from (9)—as well as the associated relative efficiency gain.

COROLLARY 5. Under Condition DS.3, if g∗ is bounded away from zero for almost

every x in the support of X | A = 0, the efficient influence function for the risk r∗ is

Dcov(ρ∗, g∗,L∗, r∗). Thus, the smallest possible limiting normalized asymptotic variance for

a sequence of RAL estimators is σ 2
∗,cov := EP∗[Dcov (ρ∗, g∗, L∗, r∗)(O)2].

COROLLARY 6. Under conditions of Corollary 5, the relative efficiency gain from using

an efficient estimator is

1 −
σ 2

∗,cov

σ 2∗,np
= E[g∗(X)(1 − g∗(X))EP∗[{�(X,Y ) −L∗(X)}2 | X]]

EP∗[g∗(X)EP∗[{�(X,Y ) −L∗(X)}2 | X]] +EP∗[g∗(X){L∗(X) − r∗}2] .

By Corollary 6, more efficiency gain is achieved for P∗ when the following hold:

1. The propensity score g∗ is close to zero. If the covariate distribution in the source
population covers that in the target population, then the proportion of source data is large.

2. The proportion of variance of �(X,Y ) not due to X is large compared to that due to X.

The second property is the opposite of the implication of Corollary 4 under concept shift in
the features. Therefore, in the illustrating example in Remark 5, the efficiency gain under
covariate shift would be large if the given predictor f is close to the oracle predictor μ∗.

5.2. Cross-fit risk estimator. We propose to use a cross-fit estimator based on estimating
equations, as described in Algorithm 3. This algorithm is the special case of Algorithm 1†

with simplifications implied by Condition DS.3.

Algorithm 3 Cross-fit estimator of risk r∗ under full-data covariate shift condition DS.3
Require: Data {Oi = (Zi,Ai)}ni=1, number V of folds, classifier to estimate g∗, regression

estimation method for L∗
1: Randomly split all data (from both populations) into V folds. Let Iv be the indices of for

fold v.
2: for v ∈ [V ] do Estimate (g∗,L∗) by (ĝ−v, L̂−v) using data out of fold v.
3: for v ∈ [V ] do � (Obtain an estimating-equation-based estimator for fold v)
4: With ρ̂v := 1

|Iv |
∑

i∈Iv
1(Ai = 0), set

(29) r̂v
cov := 1

ρ̂v|Iv|
∑

i∈Iv

{
ĝ−v(Xi)

[
�(Xi, Yi) − L̂−v(Xi)

]
+ 1(Ai = 0)L̂−v(Xi)

}
.

5: Obtain the cross-fit estimator: r̂cov := 1
n

∑V
v=1 |Iv|r̂v

cov.
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Compared to our proposed estimator r̂Xcon for concept shift, the estimator r̂cov involves two
nuisance functions rather than one. As we will show next, in contrast to r̂Xcon, the efficiency
of r̂cov is based on sufficiently fast convergence rates—rather than consistency alone—of the
nuisance function estimators, similarly to Theorem 1.

CONDITION ST.3 (Sufficient rate of convergence for nuisance estimators). It holds that

max
v∈[V ]

∣∣∣∣
∫ (

ĝ−v − g∗
)(
L̂−v −L∗

)
dP∗

∣∣∣∣ = op

(
n−1/2)

,

max
v∈[V ]

∥∥ĝ−v − g∗
∥∥
L2(P∗) = op(1), max

v∈[V ]

∥∥L̂−v −L∗
∥∥
L2(P∗) = op(1).

This condition implies Condition ST.1 under Condition DS.3; but is perhaps a bit more
interpretable. This leads to the efficiency of r̂cov, whose proof has the same spirit as part 1 of
Theorem 1.

COROLLARY 7 (Efficiency of r̂cov). Under Condition DS.3, with r∗ from (1) and Dcov
from (28), the estimator r̂cov in Line 5 of Algorithm 3 has the following finite-sample expan-

sion:

r̂cov − r∗ =
∑

v∈[V ]

|Iv|ρ∗
nρ̂v

(
P n,v − P∗

)
Dcov(ρ∗, g∗,L∗, r∗)

+
∑

v∈[V ]

|Iv|
nρ̂v

(
P n,v − P∗

){
ĝ−v(

� − L̂−v)
− g∗(� −L∗)

}

−
∑

v∈[V ]

|Iv|
n

P∗
(
ĝ−v − g∗

)(
L̂−v −L∗

)
.

Additionally, under Condition ST.3, r̂cov is regular and efficient:

r̂cov = r∗ + 1

n

n∑

i=1

Dcov(ρ∗, g∗,L∗, r∗)(Oi) + op

(
n−1/2)

.

Therefore, with σ 2
∗,cov from (5),

√
n(r̂cov − r∗)

d→ N(0, σ 2
∗,cov).

Another difference between r̂cov and r̂Xcon is that r̂cov is doubly robust consistent, as im-
plied by part 2 of Theorem 1, but not fully robust asymptotically linear. The doubly robust
consistency of r̂cov relies on the following condition that corresponds to Condition ST.2 for
sequential conditionals and is weaker than Condition ST.3. The comparison between these
conditions is similar to that between Conditions ST.1 and ST.2.

CONDITION ST.4 (Consistent estimation of one nuisance function). It holds that

max
v∈[V ]

∣∣∣∣
∫ (

ĝ−v − g∗
)(
L̂−v −L∗

)
dP∗

∣∣∣∣ = op(1),

max
v∈[V ]

∥∥ĝ−v − g∗
∥∥
L2(P∗) = Op(1), max

v∈[V ]

∥∥L̂−v −L∗
∥∥
L2(P∗) = Op(1).

We obtain the doubly robust consistency for r̂cov, a corollary of part 2 of Theorem 1.

COROLLARY 8 (Double robustness of r̂cov). Under Conditions DS.3 and ST.3, with r∗
from (1), the sequence of estimators r̂cov from Line 5 of Algorithm 3 is consistent for r∗.
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The differences between the asymptotic properties of r̂Xcon and r̂cov are due to the differ-
ences between the dataset shift conditions. Covariate shift DS.3 is independence conditional
on covariates, while concept shift DS.1 is marginal independence. One aspect in which they
differ is that conditional independence is often more difficult to test than marginal indepen-
dence (Shah and Peters (2020)).

When covariate shift DS.3 holds, compared to the nonparametric estimator r̂np, our pro-
posed estimator r̂cov has advantages and limitations. In terms of efficiency, r̂cov may achieve
efficiency gains when both nuisance functions are estimated consistently. In terms of ro-
bustness, r̂np does not require estimating any nuisance function and is therefore fully robust
asymptotically linear; in contrast, r̂cov is only doubly robust consistent but not fully robust.
A natural question is whether there exists a regular estimator that is fully robust asymptot-
ically linear and also attains the efficiency bound under reasonable conditions, similarly to
r̂Xcon under concept shift. Unfortunately, as the following result shows, such estimators do
not exist under the common parametrizations (PX,PA|X,PY |X) and (PA,PX|A,PY |X) of the
distribution P .

LEMMA 1. Suppose that the covariate shift condition DS.3 holds, but no further as-

sumptions on P∗ are made. Under the parametrization (PX,PA|X,PY |X) of a distribution P ,
suppose that for all P∗, IF(P∗,X , PA|X , PY |X , r∗) is an influence function for estimating r∗ at

P∗, for arbitrary (PA|X,PY |X). Then, we have that

IF(P∗,X,PA|X,PY |X, r∗) = Dnp(ρ∗, r∗).

A similar result holds under the parametrization (PA,PX|A,PY |X) of P .

Therefore, if a regular estimator of r∗ is fully robust asymptotically linear under either of
the above parametrizations, that is, its influence function satisfies the assumptions for IF in
either case of Lemma 1, then its influence function must be Dnp(ρ∗, r∗) and cannot attain
the efficiency bound. Since full-data covariate shift (DS.3) under the second parametrization
in the above lemma is a special case of Condition DS.0† under the common parametrization
(PA,PZ1|A, . . . ,PZK |Z̄K−1,A

) of distributions P (Li and Luedtke (2023)), we also conclude
that there is generally no regular and fully robust asymptotically linear estimator of r∗ that
can attain the efficiency bound for Condition DS.0† under this parametrization.

We ran a simulation similar to that in Section 4.3. The results, which are presented in Sup-
plement S4.1, demonstrate our theoretical results about the efficiency gains and the asymp-
totic behavior of our proposed estimator r̂cov.

6. Discussion. We have developed a general framework for risk estimation under dataset
shift. It will be important to understand how our methods can applied in problems such as
model training. Due to space limitation, we defer a more detailed discussion to the Supple-
mentary Material.
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SUPPLEMENTARY MATERIAL

Supplementary Material to “Efficient and multiply robust risk estimation under gen-

eral forms of dataset shift” (DOI: 10.1214/24-AOS2422SUPP; .pdf). Additional new results
and proofs of theoretical results.
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