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Abstract: We announce a local version of a method for proving asymptotic stability based on
Halanay’s inequality. Our approach can be applied to nonlinear systems containing input and
state delays. It provides robustness estimates for dynamics that contain actuator uncertainty,
in the sense of input-to-state stability. Our numerical example illustrates how our method leads
to useful bounds on the allowable uncertainties and on the basin of attraction.
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1. INTRODUCTION

Hanalay’s inequality was introduced in the celebrated work
of Halanay (1966), and has since been generalized in multi-
ple ways that have played important roles in proofs of sta-
bility properties for significant classes of nonlinear systems
containing input and state delays. Notable contributions
have included works by Grifa and Pepe (2021), Mazenc
et al. (2022), Grifa and Pepe (2020), and Pepe (2022),
which cover continuous-time and discrete-time systems.
In its most basic form (as presented, e.g., in (Fridman,
2014, Lemma 4.2, p. 138)), Halanay’s inequality requires
finding nonnegative valued differentiable functions v and
constants a > 0, b € (0,a), and T' > 0 that satisfy

0(t) < —av(t) +b sup w(0) (1)

Le(t—T,t]

for all ¢ > T, and then concludes that v(¢) exponentially
converges to 0 as t — +o00. Generalizations include works
by Grifa and Pepe (2021); Ruan et al. (2020), where
instead of @ and b in (1) being constants, the a and b
are allowed to depend on the time variable ¢, including
situations where b(t) > a(t) for some choices of ¢, and these
works provide advantages of using Halanay’s inequality
approaches in stability analyses instead of using standard
Lyapunov function approaches. However, the preceding
works are only directly applicable to globally exponentially
stable systems. This is an obstacle, because nonlinear
systems are often only locally exponentially stable, and
in such situations, one cannot use global Halanay’s results
to prove global stability. In addition, to the best of the au-
thors’ knowledge, there is no general result in the literature
that ensures that a nonlinear delayed system (with input
or state constraints) whose linear approximation at the
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origin is exponentially stabilizable enjoys a locally expo-
nentially stability property. More generally, local stability
or stabilization of delayed systems is an under-studied
topic, which strongly motivates the present work.

Here we present our local version of the Halanay’s in-
equality based stability result for functions satisfying a
nonlinear differential inequality, in a local sense. We ap-
ply it to systems containing small bounded disturbances
that can represent actuator uncertainty, leading to our
proof of input-to-state-stability (or ISS) inequalities. The
results are amenable to nonlinear systems that contain
disturbances and delays, and provide estimates of corre-
sponding basins of attraction. We begin by stating and
proving our local Halanay’s inequality result in Section
2, which we use to prove a local exponential stabilization
theorem for systems with state feedback in Section 3. For
generality, we cover nonlinear systems with time-varying
and distributed delays, and we illustrate our findings in
Section 4 using a controlled version of van der Pol’s equa-
tion, whose structure precludes using earlier methods to
prove global stabilization results, but which are covered
by our local Halanay’s inequality approach. This provides
significantly new estimates for basins of attractions, and
sufficient conditions on bounds for the uncertainties for
our local stabilization estimates to hold. Here we include
summarized proofs; see Malisoff and Mazenc (2024) for
complete proofs of all of the results in this paper, and for
an extension for systems with outputs that is amenable to
systems with saturations.

We use standard notation which is simplified when no
confusion would arise. The dimensions of our Euclidean
spaces are arbitrary, unless we indicate otherwise, and
| - | is the usual Euclidean vector norm and also denotes
the corresponding matrix operator norm. Given matrices
A € R™™ and B € R™*"™, the notation A < B means
that B — A is nonnegative definite, and I is the identity
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matrix. When r is a time variable, we use the usual
notation g,(¢) = g(r + ¢) for functions g and all £ < 0
and r > 0 for which r + /£ is in the domain of g. We also
use the usual family of functions Ko, the usual definitions

of ISS from works by Khalil (2002); Sontag (2001), and
the controllability definitions from Sontag (1998).

2. LOCAL ISS HANALAY’S RESULTS

Let « : [0,+00) — [0,4+00) be a continuous, nonnegative
valued and nondecreasing function such that there are two
constants v, > 0 and a > 0 such that

a(ve) = a. (2)

Let ¢, > 0 and b > 0 be two constants. Let ¢ : [t,, +00) —
[0,4+00) be a nondecreasing function such that

C(t) < b, (3>

holds for all ¢ > t,. Let Ly > 0 be a given constant and
7 € (ty, +00) or 7 = 400. Throughout this section, we let
V i [te — Lo,7) — [0,+00) be a C! function such that

sup  V(m) < v, 4)

mE[t,—Lo,t]

and whose time derivative V is such that
V(t) < —(a+b)V ()

sup  V(m)+¢()

me[t—~Lo,t]

+ sup  V(m)

me[t—Lo,t]

holds for all ¢ € [t,, 7). We then use this technical result:

Lemma 1. The inequality V() < v, holds for all ¢t € [t, —
Eo, 7’).

Proof. We prove this lemma by contradiction. Suppose that
there existed a t. € [t,. — Lo, 7) such that V(¢.) = v, and
V(t) < vy for all t € [ty — Lo, t.). Then (4) gives t. > ty,
and (2), (3), and (5) give
V(t.) < —(a+ b)v, + o (v,) vy + v,
= —avs + av, = 0.

(6)

From the inequality V(¢t.) < 0 and the continuity of V,
we can find a tq € (ts,t.) such that V(t4) > v,. This
contradicts the definition of ¢., so the lemma holds. O

Since a > 0 and b > 0, there is a unique A > 0 such that
A=a+b—ae*o, (7)

Using this A, we next state and prove:

Theorem 1. Let V satisfy the requirements of Lemma 1 in
the case where 7 = 4+00. Then

V()< sup  V(m)e 9 4 fst e!m=t¢(m)dm (8)
me[s—Lo,s]

holds for all ¢ > s and for all s > ¢,.

Proof. Since « is nondecreasing, Lemma 1 and (5) give

V(t) < ~(a+D)V(O) +ale) s Vim)+CH) (g

met—Lo,t]

for all ¢ > t,. From (2), we deduce that

V() < —(a+b)V(E)+a sup V(m)+ ()

me[t—ﬁo,t] (10)
holds for all ¢t > t,. Since a > 0 and b > 0, we can then
apply Lemma 3 in the appendix below, to conclude. [

Remark 1. The inequality (8) gives an ISS exponential
inequality, by upper bounding its right side integral term
by (1/b) supges4) [C(£)] for all t > s and all s > t,.

3. LOCAL EXPONENTIAL STABILIZATION RESULT

We use Theorem 1 to solve a local stabilization problem
for a class of nonlinear systems.

8.1 Studied system and preliminary result

Let h : [0,+00) — [0,400) be continuous function for
which there is a constant A > 0 such that 0 < h(t) < h for
all ¢ > 0. Let ¢ : [0,400) — R™ be a continuous function
that admits a constant A such that

o) <A (11)

for all ¢ > 0. Consider the system

&(t) = Az(t) + Bu(t — h(t)) + F(t,z) +0(t)  (12)
where x is valued in R™, the input v is valued in RP, and
F is alocally Lipschitz continuous function. In all of what
follows, we assume that the dynamics satisfy standard
forward completeness and existence and uniqueness prop-
erties of solutions. Let ty > 0. Consider initial functions
xo : [to—h,to] = R™, and we introduce three assumptions:

Assumption 1. The pair (4, B) is controllable.

Assumption 2. There is a continuous nondecreasing func-
tion p : [0, +00) — [0, 4+00) that is not identically equal to
zero such that

|F(t 0)] < [6(m)*p(|¢(m)]) (13)

sup
me[—h,0]

holds for all functions ¢ : [~h,0] — R™ and all ¢ > 0.

It is well known that Assumption 1 provides a matrix
K € RP*™ guch that the matrix H = A + BK is Hurwitz,
and so also a symmetric positive definite matrix P € R™*"
and constants ¢ > 0 and p > 0 such that

PH+H'P< —cP, <P, and |P|<p (14)
e.g., by first using the Pole-Shifting Theorem from Sontag
(1998) to find K, then solving the Riccati equation PH +
HTP = —] for P. We fix choices of p, K, P, and p satisfy-
ing the preceding requirements, and assume that BK # 0.
Our last assumption is the following smallness condition
on either h or A; see Section 4 for an example illustrating
how we can easily satisfy all of our assumptions:

Assumption 3. There is a real value s, > 0 such that

wo = (2JA[+2[BE|+1+2s,p(V5.))p  (15)
is such that the inequality
7 —A2
(e1eoh —1) 222 < s, (16)

is satisfied.
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In terms of the preceding notation and the function

W(x) = z' Pz, (17)

we start with a technical lemma, where Assumption 3
ensures that the (18) is satisfied when the initial function
is valued in a small enough neighborhood of the origin:
Lemma 2. Let (12) satisfy Assumptions 1-3. Consider (12)
in closed-loop with the feedback u(t—h(t)) = Kx(t—h(t)).
Let x be a solution of this system such that

7 7 —A2
sup W(x(m))e2'1“’0h + (e“"’oh - 1) % < 84.(18)

meE[to—h,to]

Then z is defined over [ty — h,to + 2h] and
W (w(m))e* 1o

sup  W(z(m)) <  sup
me[to—h,to+2h] me€[to—h,to] (19)
n (6241%5 _ 1) pA?
wo

is satisfied.

Proof. (Summary) Pick any maximal solution z(t) of this
closed-loop system from the lemma such that (18) holds.
Let [to — h,to + to) be the domain of definition of x(t).
Then 0 < to < +00 or ts = +00. The time derivative of
(17) along x(t) satisfies

W(t) < 2plz(t)] [|[Allz()] + |BK||x(t — h(t))|

+ SUD (i) \x(m)\%(lx(m)l)} + 2|2(t)[pA (20)

for all t € (to,to + teo), by (11), (13), and (14
from Assumption 2 is nondecreasing, (14) gives

W(t) < B(2JA] +2BK|+1) sup W (a(m))

me[t—h,t]
+ 2P SUp,eft—.¢) W3/2(z(m))

Xp (\/Sque[t—ﬁ,t] W(m(m))) + pA?

using the triangle inequality to upper bound the last
right term in (20) by 2|z(t)[pA < p|z(t)|? + pA2. Setting

). Since p

(21)

w(s) =p(2lA| + 2|BK| 4 1) s + 25%/%5p (\/s) then gives
W(t) <@ sup  W(xz(m)) | +pA? (22)
me(t—h,t]

for all t € (to,to + teo) and, by the definition of wy in
(15), we have (D(s) < wps for all s € [0,s.]. We now
apply Lemma 4 in the appendix below, with W(z(t)),
@, wo, P?A?, to, oo, 2.1h, SUp,, L s, W(x(m)) S, and
h as the choices of Z(t), ¥, Uy, A, t,, 7, ¢, Z, w and
T in the lemma, respectively. Assumption 3 ensures that
Assumption A.1 from the appendix below (which is needed
to apply Lemma 4 from the appendix) holds. Also, (A.6)
holds, since W (z(t)) < sup,,c,, 5., W(z(m)) for all t €
[to — h,to]. Then (18) ensures that (A.7) holds. Hence,
Lemma 4 implies that for all t € [to—h, to+min{te, 2.1h}),
we get

W(z(t)) < sup W(x(m))ell“"’ﬁ
me[to—h,to]_ , (23>
+ (ezmoh - 1) pA?,

Therefore, the finite escape time phenomenon does not
occur over [ty — h,to + 2h], 50 too > 2h. O

3.2 1SS result

Using the notation from Section 3.1, we use the function
B(m) = 2h|PBK|(|A| + |BK])

+2 (h|PBK| + |P|) m"?p (v/m) . (24)

We now add the following assumption, which can again be
regarded as a smallness condition on h, where the constant
¢ >0 is from (14):

Assumption 4. The bound 2h|PBK|(|A| + |BK|) < c/4

is satisfied.

It follows that there is a w, > 0 such that
Blw,) = §

and we fix a w, satisfying the preceding requirement in
the rest of this subsection. We also assume:

Assumption 5. The inequality
1(|PBK|?h* + |P|?)A% <

(25)

Cwy

(26)
holds.

Assumption 5 can be viewed as a smallness condition on
A. Let v > 0 be the constant such that

c c 2vh

We are ready to state and prove the following result:

Theorem 2. Let (12) satisfy Assumptions 1-5. Then, with
the notation from the preceding subsection, consider (12)
in closed-loop with u(t — h(t)) = Kxz(t — h(t)). Consider
any maximal solution z(t) of the closed-loop system such
that
sup W(x(m))e2'1“’°h + (62.1w0h _ 1) ﬂ
mE[to—h,to] wo (28)
< min{sy, wy}

holds. Then, for each s > to + h, and with the choice
H(m) = ABELL [ 5(r) P dr+ 225 sup [5(0)]2, (29

Le[h,m]

| dr+

the inequality
z(t)] <

psup [a(m) e [l sl
me[s—2h,s] )

~ 1ty (m)dm (30)

holds for all ¢t > s.

Proof. (Summary) We consider a trajectory x(t) of the
closed-loop system satisfying the conditions of Theorem
2. Let [tg — h,too) be the largest domain of definition of
z. By Lemma 2, z(t) is defined over [ty — h,to + 2h], and
(19) holds for all ¢ € [to — h,to + 2h)]. Then necessarily,
teo > to + 2h. From the deﬁnltlon of H= A+ BK, we
deduce that
= BE [y

z(t) = Hx(t)

for all t € [ty + h,tso), since the integral in (31) is x(t) —
x(t — h(t)). According to (14), the time derivative of W
along (31) satisfies the following for all ¢ € [tg + h, too):

W(t) < —eW(a(t)) — 20(t) PBK [}, &(
+22(t) T PF(t,2¢) + 22(t) T PS(t)

(m)dm + F(t,x¢) + 6(¢) (31)

m)dm (32)
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Since to, > 2h, it follows that with the choice H(m) =
|Az(m) + BKx(m — h(m)) + F(m, xm) + 6(m)|, we have

W(t) < —cW(x(t) + 20a(t)|[PBK]| [}, ) H(m)dm
+2x(t) T PF(t, x¢) + 22(t) T P(t)

g (33)

forallt € [to+h, t). Consequently, from our upper bound
h on h, Assumption 2, and (14), we deduce that

W (t) < —cW (z(t)) + 2h|PBK||A| es[llgl ) W (z(m))
W ((m)

+2h|PBK||BK| sup_

me([t—2h,t]

t
HUPBE|a(0)1f, ) sup () *p((a(r)dm(34)
rem—h,m
supﬁ

|2 (m) [ p(|(m)])
me[t—h,t]

2/ PBE][2(t)| [} ) 8(m) | dm-+ 21 Pl|(0)[|5(1)

+2[z(8)[| P

for all t € [ty + h,ts). Since p is nondecreasing, we get

W(t) < 2h|PBK|(JA|+|BK|) sup W(x(m))

me[t—2h,t]
sup

o v/ W(a:(m))) dm

+2h|PBK|p (
W (@(m))*'? + 2| P||z(1)]|5(2))|

X sup
me[t—2h,t]
+2|P| sup
me[t—2h,t]

W (a(m))*/?

xp| sup W (z(m))

me[t—2h,t]
t
+2|PBK||z(t)| ftih(t) [6(m)| dm — W (z(t))

for all t € [to+h,ts). We next use the triangle inequality,
Jensen’s inequality, and (14). to get
t
2|PBK]||z(t)] ftfh(t) [0(m)|dm
c 7ot
< §W(x(t)) + 2|PBK[*h [,_, ;) [6(m)[Pdm
and 2|Pl|z(t)||6(t)] < §W (x(1)) + £|P*|6(1) .

(36)

It follows from (35) that
W(t) < —§W(x(t)) + 4 PBKh [/, 16(m)]* dm

+2h|PBK|(|A| + |BK|) sup W (z(m))
B me[t—2h,t]
+2 (R|PBK|+|P|)  sup  W(x(m))*? (37)
me[t—2h,t]

xp ( . \/W(:v(m))> + 2|P?[6(t)]?

holds for all ¢ € [tg + h,ts,). Therefore, we have
W(t) < —£W(x(t))

43 (38)

sup
me[t—2h,t]

W (z(m))

sup
me[t—2h,t]

W (x(m))+ (1)

for all ¢ € [ty + h,ts), where B was defined in (24) and
3s(t) = APBKh [, ) 16(m)* dm + 2|P2[5(£)|2. (39)

Note that (11) and (26) give

[0:()] < == (40)

for all ¢ > h. Then let us recall that (19) holds, by (28).
Consequently (28) ensures that

sup W(x(m)) < wy (41)
meE[to—h,to+2h]
We can now apply Theorem 1 with A = v, and with
V(t)=W(z(t)), a=b=c/4, a=p,
C(t) = sup [8,(0)], Lo=2h, v, = w,, T =te, (42)

L€[h,t]

and t, = to + h. Then (25) ensures that (2) is satisfied.
Then (40)-(41) imply (3)-(4). Using Lemma 1, we can
prove that the finite escape time phenomenon does not
occur, SO te, = 400, and Theorem 1 gives

W(z(t)) < [Suph ]W(x(m))e*’y(tfs)
me([s—2h,s 43
FEEM O

£€[0,m]

when t > s > tg + h where ~ is the constant defined in
(27), and where the sup was needed in (42) and in the
integrand in (43) because Theorem 1 requires its function
¢ to be nondecreasing. Hence, (14) gives

z(®)> <p  sup  |z(m)|Pe 1)
me[s—2h,s]
44
+fst ec(m —1)/4 sup |0;(€)|dm (44)
£€[h,m]
when t > s >ty + h. This allows us to conclude. O
4. ILLUSTRATION OF THEOREM 2
Consider the controlled van der Pol equation
i'l(t) = x2(t) (45)
Bo(t) = —x1(t) + (1 — 23)xg + u(t — h(t))

for constants ¢ > 0 and a continuous delay h(t); see,
e.g., (Khalil, 2002, Section 13.2) for simpler cases with
no delays. The dynamics represent oscillations in vacuum
tube circuits, and provide a fundamental equation for
nonlinear oscillation. The system has the form (12) with

a= 58] m= (1) 70 = )

and § = 0. Using the computer program Mathematica
(2015), we can check that Assumption 1-2 hold with
A =0, K =[-1.25,-2], p(s) = es, and

4.09112 0.722222
P= {0.722222 1.17951 } (47)
when ¢ = 0.01, where P was found by first solving for
a positive definite symmetric matrix P; € R2*? such that
P H+HT P, = —TI holds with H = A+BK, then choosing
¢ =0.75 in order to satisfy cP; < I, and then multiplying
Py by 3.25 to satisfy the requirement that P > I with the
choice P = 3.25P;. Also, since A = 0, Assumptions 3 and
5 hold for any s, > 0. We can then also use Mathematica
to compute the basin of attraction from Theorem 2. For
instance, when the delay h is the zero function, we can
check that we can satisfy the requirements of Theorem 2
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with w, = s, = 2.20049 and all initial functions that are
bounded by 0.718677. If we instead use the delay bound
h = 0.008 and keep all other values the same as before,
then the basin of attraction consists of all initial functions
whose norms are bounded by 0.137212. This illustrates
the trade-off that increasing the bound h on the allowable
input delays h(t) can reduce the basin of attraction.

5. CONCLUSION

We provided a local version of Halanay’s inequality to
prove local asymptotic stability for nonlinear systems that
contain state or input delays and uncertainties. Our new
results are significant, because of the well-known benefits
of using global versions of Halanay’s inequality to prove
global asymptotic stability for systems with unknown de-
lays, and because many significant systems are only locally
asymptotically stable and so are beyond the scope of global
versions of Halanay’s inequality. Another significant ben-
efit of our work is that we allow the dynamics to contain
unknown nonlinearities that violate the standard linear
growth conditions and that can contain distributed delays.
We illustrated how our methods provide new estimates for
basins of attraction for a controlled van der Pol equation.

KEY LEMMAS

We first provide a key lemma from Malisoff and Mazenc
(2024) that we used in our proof of Theorem 1; see Malisoff
and Mazenc (2024) for the proof of the lemma. First let
t, > 0 and £y > 0 be given constants. Consider a C*
function V' : [ty — Lo, +00) — [0,+00), a nonnegative
valued nondecreasing continuous function ¢, and constants
a > 0 and b > 0 such that

V()< —(a+b)V(t)+a V(m)+¢(t) (A1)

sup
melft—Lo,t]

for all ¢ > ¢,. Let A > 0 be the constant in (7). We can
then prove the following:

Lemma 3. The inequality

V(t) <  sup  V(m)e M) 4 fst b m=H¢(m)dm (A.2)

me[s—Lo,s]
holds for all £ > s and all s > ¢,.

We used the next lemma in the proof of Lemma 2. We use
constants ' > 0, ¢ > 0, Vg >0, w >0, 7 >0, A >0
and t, > 0 and a continuous, nondecreasing function
U : [0, +00) — [0, 400) such that

U(l) < Wyl (A.3)

for all £ € [0,w]. Let Z : [ty — T,tq + 7) — [0,+00) be a
nonnegative valued function of class C'' such that

mwg@< (A.4)

sup Z(€)> +A

Le(t—T,t]

for all ¢t € [tq,t, + 7). We use the following assumption:
Assumption A.1. The inequality

(e¥oa —1) \1% <w (A.5)

is satisfied.

In the following lemma, the existence of values Z > 0 such
that (A.7) is satisfied follows from (A.5):

Lemma 4. Let Assumption A.1 hold. Let Z be such that

Z(0) < Zfor all L € [t, — T, t,] (A.6)
where Z € R is such that
Ze¥o1 4 (e¥o1 — 1) \I,AO <w. (A.7)
Then
Z(t) < Zevol 4 (Vo1 —1) & (A.8)

holds for all ¢t € [t, — T, t, + min{7, ¢}).
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