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In this work we introduce a worldline-based fermion Monte Carlo algorithm for studying few body quantum

mechanics of self-interacting fermions in the Hamiltonian lattice formulation. Our motivation to construct the

method comes from our interest in studying renormalization of chiral nuclear effective-field theory with lattice

regularization. In particular we wish to apply our method to compute the lattice spacing dependence of local

lattice interactions as we take the continuum limit of the lattice theory. Our algorithm can compute matrix

elements of the operator exp(−βH ), where H is the lattice Hamiltonian and β is a free real parameter. These

elements help us compute deep bound states that are well separated from scattering states even at values of β

which are not very large. Computing these bound-state energies accurately can help us study renormalization

of the lattice theory. In addition to developing the algorithm, in this work we also introduce a finite-volume

renormalization scheme for the lattice Hamiltonian of the leading pionless effective-field theory and show how

it would work in the one- and two-body sectors.

DOI: 10.1103/PhysRevC.110.024002

I. INTRODUCTION

Fermion Monte Carlo methods have a long history [1] and

are known to be notoriously difficult to design due to the

fermion sign problem [2]. Over the years, several approaches

have been proposed to either circumvent or alleviate the chal-

lenges, and new ideas continue to emerge even today. In this

work, we refine the worldline approach [3,4] and show its

potential for solving a certain class of problems in few-body

nuclear physics. While these problems can perhaps also be

studied by other already well-known methods, we believe that

our method will be a useful addition to the literature and may

be refined in the future to solve new problems that may be

inaccessible to the existing methods, as we discuss below.

One of the most popular methods that is widely appli-

cable is the so-called constrained path Monte Carlo method

[5]. While this method suffers from systematic errors, recent

progress suggests that these errors can be controlled in many

cases and even eliminated in some parameter regimes. Re-

views of the method with several new applications can be

found in the recent literature [6–8]. Unfortunately, constrained

path methods are not easily extendable to all kinds of quantum

many-body problems. For example, when fermions interact

with gauge fields, constructing the constraint path algorithm is

difficult. In addition to traditional gauge theories, when chiral

symmetry is realized nonlinearly, pions interact with nucleons

*Contact author: sch27@duke.edu
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‡Contact author: richardt@uni-mainz.de

as gauge fields [9]. We believe our worldline algorithms can

be extended to such theories more easily.

There are of course well-known exact fermion Monte Carlo

methods that do not rely on the constrained path approx-

imation. These methods are based on integrating out the

fermions entirely since all problems can be formulated as

though fermions are freely moving in the background of some

bosonic fields like scalar, gauge, or auxiliary fields [10–14].

Reviews of these exact fermion Monte Carlo methods from

the perspective of various communities can also be found in

the recent literature [15–18]. Unfortunately, the exact fermion

Monte Carlo methods face their own difficulties when sign

problems remain unsolved. To solve the sign problems, some

type of pairing of fermion degrees of freedom must be man-

ifest in the formulation. New types of pairing continue to be

discovered, like the recent example where the physics of a

Dirac fermion was viewed as the paired physics of two Majo-

rana fermions [19–22]. However, many interesting problems

do not have any natural pairing mechanisms and hence suffer

from sign problems and are beyond the scope of these meth-

ods. Recent research has focused on new ideas for solving

the sign problems like the complex Langevin method [23] or

contour deformation methods [24]. Our method offers another

possible approach for few-body physics since we do not try to

solve the sign problem, but can still extract useful numbers.

In addition to sign problems, the exact fermion Monte

Carlo methods are also known to scale poorly with system

size, especially as one approaches critical points or continuum

limits. One of the bottlenecks here is the nonlocal nature of the

fermion determinant in the Boltzmann weight that is neces-

sary to solve sign problems. This quantity not only fluctuates

a lot near criticality but also introduces numerical instabilities
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[25]. Still, impressive large-scale calculations using parallel

supercomputers is the norm in fields like lattice QCD to-

day, when sign problems can be solved. Our approach is

qualitatively different since we do not have large fermion de-

terminants and hence are free of such numerical instabilities.

The reason for not having to deal with fermion determinants

is that we view fermions as hard-core bosons and have to only

sample their worldlines. We include the fermion permutation

sign into observables. Thus, while in principle our method can

suffer from sign problems, we show in this work that in the

few-body sector this sign problem is rather mild. We give an

heuristic argument for this below.

It is well known that bosonic Monte Carlo methods al-

lows one to study large system sizes accurately as long as

no sign problems are present [26]. This is also the reason

why constrained path methods are efficient, since they too

convert fermionic problems into bosonic problems, with the

caveat that the physics of the fermions must be captured

well within the constrained path framework. The method of

treating fermions as hard-core bosons was introduced long

ago as a possible fermion Monte Carlo method [3]. Since

then, our understanding of bosonic algorithms in the worldline

formulation has matured considerably with the discovery of

worm and loop algorithms [27–29]. Such algorithms can be

easily extended to hard-core bosons. We can also include

gauge fields rather easily [30]. Thus, the worldline fermion

Monte Carlo methods combines ideas from constrained path

methods (nodes when two identical fermions come together

are exactly implemented) with ideas of auxiliary field meth-

ods (free fermion worldlines can be summed into fermion

determinants). Furthermore, it is straightforward to couple

fermions with scalar and gauge fields if necessary. On the

other hand, tackling the fermion sign problem head on is nec-

essary. We note that the worldline approach we are exploring

has some connections to the pinhole algorithm that has been

recently proposed [31].

While our current work does not solve the fermion sign

problem, sometimes they can be solved in the worldline

approach. The first complete solution to the fermion sign

problem in the worldline formulation was discovered using

the idea of the meron-cluster algorithm [32]. Here spacetime

was split into loops such that the fermion determinant of

each loop turned out to be either zero (meron cluster) or

two (normal cluster). The fermion bag algorithm extended

this idea by splitting spacetime into more complex bags and

the fermion determinant in each bag turned out to be either

zero or positive [33]. When the fermion bag algorithms were

extended to Hamiltonian problems, a simplification was ob-

served at high temperatures [34]. Equivalently, a dilute system

of fermions would have a mild sign problem up to sufficiently

low temperatures so as to be able to access the low-energy

physics. Fermions only permute with other fermions within

some neighborhood [35]. This suggests that the study of few-

body physics on a large lattice would be a natural place to

explore new applications for the fermionic worldline methods

[4]. In this work we explore this possibility further.

One place where our proposed worldline fermion Monte

Carlo method could be useful is in understanding renor-

malization of nuclear effective-field theories [36–41] (see

Refs. [42–44] for recent reviews). For example, one could

understand the physics of few nucleons in a finite physical

volume by discretizing space on a lattice and taking the lattice

spacing to zero. These calculations naturally require stud-

ies on large lattices with a fixed number of particles which

means we are exploring ultradilute systems. In the presence

of contact interactions like in chiral nuclear effective-field

theories, the continuum limit of the lattice theory is usually ill

defined without a renormalization procedure. Addressing the

challenges one encounters in the various procedures of renor-

malization is an interesting field of research [45–47]. Recent

work even suggests that continuum limits may not even exist

in some cases since the theory may not have a well-defined

limit because the cutoff is removed [48]. Renormalization

of contact interactions in nonrelativistic field theory are also

interesting from other perspectives [49].

From a phenomenological perspective, lattice regulariza-

tion of chiral nuclear effective-field theory in the Lagrangian

approach on a spacetime lattice is very well developed and

has been used for ab initio calculations of a wide variety

of nuclei using a simple lattice model [50–75]. The results

are astoundingly consistent with experimental observations,

especially in light nuclei. However, most of these lattice cal-

culations are done at one or a few lattice spacings, without a

continuum extrapolation. Without such an extrapolation, one

can wonder if we have discovered an excellent model for

nuclear physics on the lattice or can we understand the results

within the framework of continuum effective-field theory. The

latter necessarily requires us to understand the lattice-spacing

dependence of the lattice results.

One recent example that drives home the above point is

the disagreement in the theoretical calculations of the 4He

monopole transition form factor between the more traditional

ab initio nuclear calculations [76,77] and the lattice calcula-

tions [78]; the former disagrees with the experimental data

by nearly one hundred percent while the latter reproduces

the data almost exactly. While the continuum calculations

employ sophisticated potentials from chiral nuclear effective-

field theory, the lattice calculations are performed with a

simple Wigner SU(4) invariant contact interaction at a single

lattice spacing. It would be interesting to understand if this ex-

cellent agreement of the lattice calculation with experiments

continues even in the continuum limit. Perhaps it can then

teach us the limitations of the current continuum calculations.

In this work we take a step in this direction by formulating

the leading-order pionless effective-field theory (EFTπ/) in

the worldline using a lattice discretization of the continuum

Hamiltonian. Our current goal is only to introduce the lattice

Hamiltonian and the corresponding Monte Carlo method. We

plan to carry out the full renormalization program of pionless

EFT in later presentations. One feature of our method is that

it does not rely on any special solution to the sign problem. It

only relies on being able to compute several matrix elements

of the operator exp(−βH ) accurately at some reasonable

value of β. As we explain in this paper, we can extract the

deeply bound well-separated energy eigenvalues of the lattice

Hamiltonian which we need to compute the renormalization

of the couplings. More generally, our method could have ap-

plications in other fields of physics like quantum chemistry or
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condensed-matter physics that involve repulsive interactions

among fermions and those that include scalar and gauge-field

interactions.

Our work is organized as follows: In Sec. II we introduce

our lattice model and explain how we can tune the lattice

parameters to reproduce a hypothetical continuum nuclear

physics model. In Sec. III we carry out the renormalization

program exactly in the one-body and two-body sectors since

the calculations can be done without resorting to Monte Carlo

calculations. With three or more nucleons, the required calcu-

lations become difficult and we need a method to compute

the lowest-energy eigenstate on the lattice. In Sec. IV we

introduce the transfer matrix and discuss how we can extract

the low-lying spectrum using it. We then introduce our Monte

Carlo method and algorithm in Sec. V and devote Sec. VI to

test our algorithm in various situations up to four particles.

We choose a 23 lattice to show that our method can reproduce

the exactly computable matrix elements and discuss how these

can help in computing the low-lying spectrum. In Sec. VII

we argue that our method easily extends to larger lattices in

the three-body and four-body sectors. There we also explain

some of the challenges we have to overcome when we explore

smaller lattice spacings. Finally, in Sec. VIII we present our

conclusions.

II. THE LATTICE MODEL

Our lattice model is constructed in the Fock-space formu-

lation using nucleon annihilation and creation operators Nr, f

and N
†
r, f

, where r is the lattice site on a periodic cubic spatial

lattice with L sites in each direction and f = 1, 2, 3, 4 are

the four flavors that label neutrons (n) and protons (p) with

spin-half components ↑ and ↓. In flavor suppressed notation

we can write

N†
r = (n†

r,↑ n
†
r,↓ p

†
r,↑ p

†
r,↓), Nr =

»

¼

¼

½

nr,↑
nr,↓
pr,↑
pr,↓

¾

¿

¿

À

. (1)

Our lattice Hamiltonian is a sum of two terms:

H = H0 + Hint, (2)

where H0 is the free lattice Hamiltonian that describes hop-

ping of nucleons on the lattice and is given by

H0 = ε
∑

r,α̂

(2N†
r Nr − N†

r Nr+α̂ − N
†
r+α̂Nr ), (3)

with α̂ representing the three lattice unit vectors in the positive

direction. The interactions among the nucleons are encoded in

the single site interaction term

Hint = εC
(1S0 )
0

∑

r,a

[

NT
r (P̄a)Nr

]†[

NT
r (P̄a)Nr

]

+ εC
(3S1 )
0

∑

r,a

[

NT
r (Pa)Nr

]†[

NT
r (Pa)Nr

]

+ εC3B

∑

r

{(p
†
r,↑ pr,↑ + p

†
r,↓ pr,↓)n†

r,↓n
†
r,↑nr,↑nr,↓

+ (n†
r,↑nr,↑ + n

†
r,↓nr,↓)p

†
r,↓ p

†
r,↑ pr,↑ pr,↓}. (4)

These are the three interaction couplings at leading order in

EFTπ/, written in a flavor-suppressed notation.

The operators P̄a, Pa, a = x, y, z are projections on the

spin-singlet-isospin-triplet sector and the spin-triplet-isospin-

singlet sectors and given by

P̄a =
1

2
√

2
τ 2τ aσ 2, Pa =

1

2
√

2
σ 2σ aτ 2, (5)

where τ a are the Pauli matrices on the isospin space and σ a

are the same matrices but act on the spin space.

The parameter ε absorbs the energy scale so that the param-

eters C
(1S0 )
0 , C

(3S1 )
0 , and C3B are dimensionless constants. Let us

now explain how we fix these four parameters to connect the

lattice physics with continuum physics. We first assume that

our model on a cubical lattice with L sites in each direction

describes a continuum physical system in a periodic cubical

box of physical length Lphys. This implies that the lattice

spacing a is given by a = Lphys/L and the continuum limit is

reached when L becomes large. Next, in order to fix the four

free parameters ε, C
(1S0 )
0 , C

(3S1 )
0 , and C3B in Eq. (2), we find

four energy levels of physical states in the continuum periodic

cubical box of physical length Lphys and match them with the

corresponding energies obtained from the lattice Hamiltonian

H for each given lattice size L. The four free energy levels we

choose are the lowest nonzero energy of a single free nucleon

of mass Mphys in a periodic cubical box of length Lphys, which

is given by

E
(N )
1 =

4π2 h̄2

2mN L2
phys

, (6)

the lowest-energy state in the dineutron channel with Sz = 0

(n†
↑n

†
↓), which we label as E

(nn)
0 , the lowest-energy state in the

deuteron channel with Sz = 0 (n†
↑n

†
↓), which we label as E

(nn)
0 ,

the triplet deuteron ground state with Sz = 1 (p
†
↑n

†
↑), which

we label as E
(pn)
0 , and the spin half triton ground state with

Sz = 1/2 (which is a superposition of p
†
↑n

†
↑n

†
↓ and p

†
↓n

†
↑n

†
↑),

which we label as E
(pnn)
0 . While these energies cannot be de-

termined experimentally, they can be determined using lattice

QCD. For example, in Ref. [80], lattice QCD calculations

were performed in a periodic box of Lphys = 3.4 fm with

a very heavy pion mass (mπ = 806 MeV), so that pionless

EFT should be a good approximation of the theory.1 The

nucleon mass was calculated to be mN = 1634 MeV. Sub-

stituting this into Eq. (6) we obtain E
(N )
1 = 40.56 MeV. The

ground-state energy in the dineutron channel was found to be

E
(nn)
0 = −17.8 MeV. The deuteron ground state had an energy

of E
(pd )
0 = −25.4 MeV, and the spin half triton ground turned

out to have an energy of E
(pnn)
0 = −65.6 MeV. Note that the

negative sign implies binding, which can be an artifact of the

finite volumes and the large pion mass used in the simulations.

1A similar approach was adopted in Ref. [81] to use lattice QCD

data to predict the binding energies of other nuclei, and Refs. [79,82–

85] have performed similar calculations in order to use the EFT to

extrapolate finite-volume results to infinite volume.
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TABLE I. Physical parameters we use to fix our four lattice

parameters in a hypothetical world with mN = 1634 MeV and mπ =
806 MeV. We take these values from Ref. [79], which were obtained

from lattice QCD calculations performed in Ref. [80].

Lphys 3.4 fm

Mphys 1634 MeV

E
(N )
1 40.56 MeV

E
(nn)
0 −17.8 MeV

E
(pn)

0 −25.4 MeV

E
(pnn)

0 −65.6 MeV

These physical parameters are summarized in Table I, and we

use them to fix our four lattice parameters in this work.

III. RENORMALIZATION

In our work we take a very simple definition of renormal-

ization based on its application in quantum mechanics [86].

We define it as the existence of the continuum limit of a lattice

theory when the lattice parameters are tuned as a function of

the lattice spacing a while keeping a few low-energy levels

fixed. In this section we study the renormalization of our

lattice theory in the one- and two-particle sectors where we

can perform calculations without the need for a Monte Carlo

method.

Focusing on the one-particle sector we can fix ε by com-

puting the lowest nonzero energy of a single free nucleon in a

periodic cubical box. In the continuum this was computed in

Eq. (6). On the lattice it is given by

E
(N )
1,lat = 2ε(a)[1 − cos(2π/L)]. (7)

By matching E
(N )
1,latt = E

(N )
1 we determine

ε(a) =
1

[1 − cos(2πa/Lphys)]

π2h̄2

mN L2
phys

. (8)

Notice that ε(a) has dimensions of energy and sets the energy

scale as a function of the lattice spacing.

We can similarly determine the renormalization of two-

particle couplings C
(1S0 )
0 (a), C

(3S1 )
0 (a) if we can compute the

lowest energy levels on a finite lattice in the dineutron and

deuteron channels and match those energies to the physical

values given in Table I. Both these calculations require us

to consider the generic lattice Hamiltonian of the form H =
H0 + Hint where, considering the dineutron channel, we can

redefine H0 and Hint for this calculation as

H0 = ε(a)
∑

r,α,σ

2n†
r,σ nr,σ − (n†

r,σ nr+α̂,σ + n
†
r+α̂,σ nr,σ ), (9)

Hint = ε(a)C(a)
∑

r

n
†
r,↑n

†
r,↓nr,↓nr,↑. (10)

Note we have already computed ε(a) in Eq. (8) and the cou-

pling C(a) = C
(1S0 )
0 (a). For the deuteron calculation we simply

replace nr,↓ with pr,↑ and set C(a) = C
(3S1 )
0 (a). Hence the

calculation will be the same for both channels except when

the matching to the bound-state energy is performed at the

end using Table I.

We can reduce the two-body problem into a one-body

problem by defining the complete set of two-particle states

as

|q, δ〉 =
1

√
L3

∑

r

n
†
r,↑n

†
r+δ,↓ei(2π/L)q·r|0〉, (11)

where we have labeled the states with the center-of-mass

momentum q and the relative coordinate δ both of which

are integer vectors. These states satisfy the orthonormality

relation 〈q, δ|q′, δ′〉 = δq,q′ , δδ,δ′ . It is then easy to verify that

∑

r

n†
r,σ nr,σ |q, δ〉 = 2|q, δ〉, (12)

∑

r

n
†
r,↓nr+α̂,↓|q, δ〉 = |q, δ − α̂〉, (13)

∑

r

n
†
r+α̂,↓nr,↓|q, δ〉 = |q, δ + α̂〉, (14)

∑

r

n
†
r,↑nr+α̂,↑|q, δ〉 = ei(2π/L)qα |q, δ + α̂〉, (15)

∑

r

n
†
r+α̂,↑nr,↑|q, δ〉 = e−i(2π/L)qα |q, δ − α̂〉. (16)

Using these results we can show that

H |q, δ〉 = ε(a)C(a)δδ,0|q, δ〉

+ ε(a)
∑

α

(4|q, δ〉 − zα|q, δ + α̂〉 − z∗
α|q, δ − α̂〉), (17)

where zα (q) = (1 + ei(2π/L)qα ). As expected, the Hamiltonian

is block diagonal for every value of q.

To compute C(a) we have to equate the ground-state en-

ergy obtained from Eq. (17) when q = 0 to the fixed physical

value E in a cubical box with side Lphys as we vary the lattice

spacing a = Lphys/L. Since the ground state will appear in the

FIG. 1. The plot of E
(2N )
0,lat /E

(N )
1,lat as a function of the lattice spacing

a for different values of C. The solid and dot-dashed horizontal

lines are physical values from Table I for the dineutron and deuteron

channels, respectively. For each fixed a, the value of C(a) is the one

that matches the horizontal line.
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TABLE II. The values of ε, C
(1S0 )

0 , and C
(1S0 )

0 as a function of a

for the hypothetical physical system with physical parameters given

in Table I.

L a (fm) ε (MeV) C
(1S0 )

0 C
(3S1 )

0

2 1.70 10.14 −7.373 −9.044

4 0.85 20.28 −9.374 −10.221

6 0.5667 40.56 −9.006 −9.502

8 0.4250 69.23 −8.742 −9.085

16 0.2125 266.4 −8.318 −8.468

24 0.1417 595.11 −8.178 −8.273

48 0.0708 2370.26 −8.043 −8.088

96 0.0354 9470.87 −7.978 −8.000

192 0.0177 37 873.36 −7.945 −7.956

384 0.0089 151 483.28 −7.929 −7.935

768 0.0045 605 922.99 −7.921 −7.924

sector with q = 0 in Eq. (17), we can focus on that sector. We

have used exact diagonalization to compute the ground-state

energy, which we refer to as E
(2N )
0,lat , for L � 24 and various

values of C. Our results are shown in Fig. 1.

In a theory with a contact interaction, we can compute the

spectrum in the two-body channel using a different method

which allows us to access much larger lattice sizes. To under-

stand how, we simplify the notation by defining |δ〉 ≡ |q =
0, δ〉. In this notation we can write

H0|δ〉 = 2ε(a)
∑

α

(2|δ〉 − |δ + α̂〉 − 2|δ − α̂〉), (18)

Hint|δ〉 = ε(a)C(a)δδ,0|δ〉. (19)

Consider the matrix G(E , a) = (E − H )−1 with H given by

Eq. (17). For a fixed value of a, the poles of G(E , a) as a

function of E are at the eigenvalues of H . For the contact

interaction in our problem we can derive the identity

(E − H )−1 = (E − H0)−1 + 2ε(a)G(E , a)

× (E − H0)−1|δ = 0〉〈δ = 0|(E − H0)−1,

(20)

where we define G(E , a) = [(2/C(a)] − Ilat(E , a)−1 and

Ilat(a, E ) = 2ε(a)〈δ = 0|(E − H0)−1|δ = 0〉. (21)

Note that the pole at the lowest physical bound state is now

transformed to the pole in G(E , a), which implies that

C(a) = 2/Ilat(E , a). (22)

In the expression above, E is the physical energy from Table I

that is being matched. For the dineutron channel we choose

E = −17.8 MeV while for the deuteron channel we choose

E = −25.4 MeV to obtain C
(1S0 )
0 (a) and C

(3S1 )
0 (a), respectively.

We can evaluate Ilat using the eigenstates of H0 which we

denote as

|n〉 =
1

L3/2

∑

δ

ei(2π/L)n·δ|δ〉, (23)

where n is the integer vector with components nα =
0, 1, 2 . . . , L − 1. It is easy to verify that the corresponding

eigenvalues are 2εEp where

En = 2
∑

α

[1 − cos (2πnα/L)]. (24)

Substituting we get

Ilat(a, E ) =
1

L3

∑

n

1

[E/2ε(a)] − En

, (25)

which can be numerically computed easily even for large

lattice sizes. Combining this along with Eq. (22) we can find

the C
(1S0 )
0 (a) and C

(3S1 )
0 (a) for large lattice sizes. In Table II we

tabulate these values for a variety of lattice sizes and plot them

in Fig. 2 for lattice sizes up to L = 768. We have verified that

these results match those obtained using exact diagonalization

up to L � 24.

We can compute Ilat(a, E ) for small values of a by replac-

ing 2ε(a) ≈ h̄2/mN a2 and replacing L = Lphys/a in Eq. (24).

It is easy to verify that

I0 = lim
a→0

Ilat(a, E ) = −
∫

p∈BZ

d3p

(2π )3

1

Ep

, (26)

where the sum over n is replaced by the integral over the con-

tinuous vector p = 2πn/L as L becomes large. The domain of

FIG. 2. The plot of C
(1S0 )

0 (a) (left plot) and C
(3S1 )

0 (a) (right plot) as a function of a, for the physical parameters given in Table I. The lattice

sizes used in the calculations include L = 2, 3, . . . , 11, 12, 24, 48, 96, 192, 384, and 768. The solid lines are given by Eq. (29) (left) and

Eq. (30) (right).
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FIG. 3. The plot of excited energy states E
(nn)

k /E
(N )
1 (in the dineutron channel, left plot) and E

(np)

k /E
(N )
1 (in the deuteron channel, right

plot) for the lowest three excited states k = 1, 2, 3 as a function of the lattice spacing. In the continuum limit we find E
(nn)
1 /E

(1)
1 = 0.524 . . .

(nondegenerate), E
(nn)
2 /E

(1)
1 = 2 (fivefold degenerate), and E

(nn)
3 /E

(1)
1 = 2.701 . . . (nondegenerate), E

(np)

1 /E
(1)
1 = 0.397 . . . (nondegenerate),

E
(np)

2 /E
(1)
1 = 2 (fivefold degenerate), and E

(np)

3 /E
(1)
1 = 2.645 . . . (nondegenerate).

integration over p is over the Brillouin zone (BZ) 0 � pα <

2π . We have defined Ep = 2(3 − cos p1 − cos p2 − cos p3).

Up to a factor of two, Eq. (26) is the well-known Watson triple

integral (e.g., see Ref. [87]) and we get

I0 = −
1

2

√
3 − 1

96π3

[

	

(

1

24

)

	

(

11

24

)]2

= −0.252 731 . . . . (27)

Since I0 is independent of E we get

lim
a→0

C
(1S0 )
0 = lim

a→0
C

(3S1 )
0 = 2/I0 = −7.913 55 . . . . (28)

It is possible to argue that C = −7.913 55 . . . is the fixed point

of a renormalization-group flow in the two-particle channel

and is referred to in the literature as the unitary limit [58,88].

The physics of energy scales that are introduced by the inter-

action strength is in fact buried in the higher-order terms.

In principle we should be able to expand Ilat(a, E ) in

powers of a. Instead of finding analytic expressions for the

expansion coefficients and computing them, here we obtain

them by fitting our data given in Table II to the form Eq. (22).

We obtain

Ilat

(

a, E
(nn)
0

)

= I0 + 0.053 148a

+0.022 572a2 − 0.035 412a3 + · · · , (29)

Ilat

(

a, E
(np)
0

)

= I0 + 0.076 060a

+0.013 132a2 − 0.027 610a3 + · · · . (30)

These curves are plotted as blue curves in Fig. 2.

Before ending this section, we briefly discuss the contin-

uum limit of the lattice theory and the idea of renormalizabil-

ity of the continuum theory. By construction, the lattice theory

has a continuum limit in which the energies that were used

to define the lattice parameters will be correctly reproduced.

But what about the remaining energy levels in the box? These

will be predictions to check. We can easily verify that, in the

one-particle sector, all other lattice energy eigenvalues not

only have a finite limit as a → 0, they also match the con-

tinuum energies of free particles in a box. In the two-particle

sector, things are more complicated. We can use Eq. (22) to

compute higher energy eigenvalues once C(a) is known, by

finding other solutions to the equation as we vary E . However,

this procedure only gives us the energies that are affected by

the interaction, since the poles of G(E , a) miss the poles of

G(E , a) that remain unaffected. Combining this information

with exact diagonalization on small lattices, we have found the

first, the second, and the third excited energies in the dineutron

and deuteron channels as a function of lattice spacings. The

ratios of these energies with respect to EN
1 are plotted in Fig. 3.

Again we notice that the lattice theory has a well-defined

continuum limit. However, as far as we know it is unclear if

the continuum theory that we obtain from our lattice approach

is the same as the one that can be obtained by other continuum

regularization methods.

Beyond the two-body sector, things quickly get compli-

cated and one of the goals of this work is to explore a

new worldline method that can address the question of lat-

tice renormalization in the higher particle number sector.

Renormalization in the three-body sector has been stud-

ied extensively in the last two decades by other continuum

regularization methods. It is widely accepted that the three-

nucleon system in the spin-doublet channel requires a single

three-body contact interaction with no derivatives for com-

plete renormalization at leading order [38–40]. This is the

reason we introduce C3B(a) in the lattice Hamiltonian. By

studying the renormalization of this parameter and the con-

tinuum limit in the three-body sector we plan to verify the

widely accepted view point in a later presentation. How-

ever, we should mention the recent results which seem to

suggest that a single three-body contact interaction only pro-

vides a partial renormalization of the theory [45–48,89]. What

about the four-particle sector? Do we need new parameters

to obtain a sensible continuum limit of the lattice theory?

This is an active area of research [90–92], and our lattice

approach could help address some of these more difficult

questions.

The continuum theory one obtains at the end is defined

as renormalizable if that theory is “universal,” by which we

mean other regularization and renormalization schemes also
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give us the same theory. In our approach, the lattice provides

the regularization, and the physical parameters that we use to

fix the theory are a renormalization scheme. Then the limit

a → 0 provides the continuum theory. If that theory is renor-

malizable, then we should be able to obtain the same theory

via other regularizations and/or renormalization schemes. If

one needs an infinite set of tuning parameters to obtain the

same continuum theory, one usually considers the theory to

be nonrenormalizable. While the idea of renormalizability is

well developed for relativistic quantum field theories, it is still

an active area of research in the case of few-body physics.

We already know that there is an infinite class of nonlocal

potential models in the continuum. This means that there is

an infinite class of continuum models with local interactions.

The challenge would be to classify these interactions and find

continuum models in each class. An interesting question is

whether EFTπ/ with nonderivative contact interactions is one

such well-defined renormalizable continuum theory. If it ex-

ists, it would describe a first approximation to nuclear physics

in regimes where pions are heavy and can be integrated out.

IV. TRANSFER MATRIX ELEMENTS

In principle it is possible to extract the low-energy spec-

trum of any Hamiltonian H reliably if we can accurately

compute all matrix elements of the transfer matrix T (β ) =
e−βH in an appropriately chosen k-dimensional subspace at

two well-chosen values of β. Let Tk (β1) and Tk (β2) be these

two k × k submatrices of T (β ). Then, as β1 and β2 increase,

the eigenvalues of the k × k matrix,

Ek =
1

(β2 − β1)
ln{[Tk (β2)]−1Tk (β1)}, (31)

give a good approximation of the lowest k dominant eigenval-

ues of H whose eigenstates have nonzero overlap with the k

chosen basis states. Ideally, the chosen subspace should have

a large overlap with these eigenstates for the method to work

well.

This idea of using transfer-matrix elements to compute the

low-energy spectrum of a Hamiltonian is well known and

has been applied in lattice QCD calculations to extract ex-

cited hadron spectra [93–96]. Unfortunately, the method only

works reliably if the energy eigenvalues are not very close

to each other and if the matrix elements can be calculated

with sufficient accuracy. If these cannot be guaranteed the

method can fail and give wrong results. On the other hand,

the failure can be tracked by increasing the accuracy if the

matrix element calculations and by increasing β. However

it is important to note that such difficulties are inherent in

all numerical approaches that try to compute closely spaced

energy eigenvalues.

In this work we ignore these complications and focus on

constructing a worldline Monte Carlo method to compute

matrix elements between a few multiparticle basis states in

simple situations where the energy eigenvalues are well sep-

arated. The applicability to more realistic problems will be

explored in the future and may require further innovation

and refinement of our algorithm. The basis states we work

with are constructed using linear combinations of free lattice

momentum eigenstates whose wave functions are real. We

demonstrate that we can accurately compute the low-energy

spectrum of the leading order pionless EFT Hamiltonian in-

troduced in Eq. (2) using our method on small lattices.

Let us now develop a notation to describe our multiparticle

states. We first construct a complete basis of single nucleon

states using the creation operators with quantum numbers

q = (qx, qy, qz ) where qx, qy, qz = 0, 1, 2, . . . , L − 1, using

the relation

Ñ†
q,a =

1

L3/2

∑

r

u(q, r)N†
q,a, (32)

where u(q, r) are a complete basis of real position space wave

functions as defined below. But before we define them, we

divide q into three sets S1, S2, and S3 based on the follow-

ing criteria: Set S1 consists of q such that sin(2πqx/L) = 0,

sin(2πqy/L) = 0, and sin(2πqy/L) = 0 [note that for these

values of q, sin(2πq · r/L) = 0], in set S2 we include those

values of q such that sin(2πqx/L) > 1 or sin(2πqx/L) = 0

and sin(2πqy/L) > 0 or sin(2πqx/L) = 0 and sin(2πqy/L) =
0 and sin(2πqz/L) > 0, in set S3 all the remaining value of q

are placed. The wave functions u(q, r) depend on which set q

belongs to and are defined as

u(q, r) =

⎧

⎪

«

⎪

¬

cos(2πq · r/L), q ∈ S1√
2 cos(2πq · r/L), q ∈ S2√
2 sin(2πq · r/L), q ∈ S3.

(33)

Note that u(q, r)/L3/2 are essentially linear combination of

plane waves that give us real wave functions so that we can

avoid complex numbers in our calculations.

The nucleon operators Ñ†
q,a can now be used to construct

normalized multiparticle states. We always define the basis

states by creating spin-up neutrons first, followed by spin-

down neutrons, and then by spin-up protons, and finally by

spin-down protons. Within each nucleon flavor sector we

order all possible q’s and create them in that order. With

this ordering in mind we assign the ith nucleon the quantum

number (qi, fi ) where i labels the order of creation. Now

we consider a state with n1 spin-up neutrons, n2 spin-down

neutrons, n3 spin-up protons, and n4 spin-down protons so that

n = n1 + n2 + n3 + n4. This state is represented by

|{q}〉 =
(

Ñ
†
qn, fn

Ñ
†
qn−1, fn−1

· · · Ñ
†
q2, f2

Ñ
†
q1, f1

)

|0〉. (34)

where {q} = {(q1, f1), (q2, f2), . . . , (qn, fn)} has all the nec-

essary information defined implicitly.

Using the notation developed above, the matrix elements

we compute in this work can be defined as

M{q̄};{q} = 〈{q̄}|e−βH |{q}〉. (35)

Our Hamiltonian allows for spin-up neutrons to be flipped to

spin-down neutrons while at the same time flipping spin-down

protons to spin-up protons and vice versa. This means that,

while n1 and n2 can individually change between the initial

and final states, nn = n1 + n2 (the total number of neutrons)

will remain the same. Similarly, while n3 and n4 can change

individually, np = n3 + n4 (the total number of protons) re-

mains the same. Furthermore, the total spin in the z direction
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given by n1 − n2 + n3 − n4 is the same between the initial and

final states.

Since our Monte Carlo method to compute Eq. (35) works

by sampling worldline configurations of hard-core bosons in

position space, we introduce a complete set of position eigen-

states of the nucleons

|{r}〉 =
(

N
†
rn, fn

N
†
rn−1, fn−1

· · · N
†
r2 f2

N
†
r1, f1

)

|0〉, (36)

where, in the same spirit as Eq. (34), we create spin-up neu-

trons first, followed by spin-down neutrons, then by spin-up

protons, and finally by spin-down protons. Within each nu-

cleon flavor sector we order the rs and create them in that

order. With this ordering in mind we assign the ith nucleon the

quantum number (ri, fi ) where i labels the order of creation.

The information about the number of nucleons of each flavor

and their positions are thus implicit in |{r}〉.
In the notation developed above we can then write

M{q̄};{q} =
∑

{r̄},{r}

〈{q̄}|{r̄}〉〈{r̄}|e−βH |{r}〉〈{r}|{q}〉, (37)

where the positions of identical particles and their permuta-

tions are only counted once in the sum. Note that for a given

set of {q} and {r} we can show

〈{r}|{q}〉 =
∏

a

1

L3n/2
Da({q}, {r}), (38)

where Da({q}, {r}) is the Slater determinant of an na × na

matrix for the nucleon flavor a given by

Da({q}, {r}) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u
(

q
(a)
1 , r

(a)
1

)

. . . u
(

q
(a)
1 , r(a)

na

)

u
(

q
(a)
2 , r

(a)
1

)

. . . u
(

q
(a)
2 , r(a)

na

)

. . . . .

. . . . .

. . . . .

u
(

q(a)
na

, r
(a)
1

)

. . . u
(

q(a)
na

, r(a)
na

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (39)

The same is true for 〈{r̄}|{q̄}〉, where {q} and {r} are replaced

by q̄ and r̄, respectively. Since our choice of wave functions

u(q, r) are real, 〈{q̄}|{r̄}〉 = 〈{r̄}|{q̄}〉.
The factor 〈{r̄}|e−βH |{r}〉 is the imaginary time evolution

of the position eigenstates of nucleons under the influence

of the lattice Hamiltonian H . It is well known that such a

time evolution can be written as a sum over worldline con-

figurations [
] of hardcore bosons, where in addition to local

weights coming from fermion hopping terms, the Pauli prin-

ciple can be taken into account through a permutation sign for

each configuration [3]. This means we can write

〈{r̄}|e−βH |{r}〉 =
∑

[
;{r̄},{r}]

γ ([
; {r̄}, {r}])ω([
; {r̄}, {r}]),

(40)

where [
; {r̄}, {r}] represents the worldline configuration of

four species of bosons (one for each nucleon flavor) starting

at the positions {r} and ending at the positions {r̄}. The Boltz-

mann weight ω([
; {r̄}, {r}]) is the magnitude of the weight

of the configuration, while γ ([
; {r̄}, {r}]) is the sign factor

coming from the product of signs of local matrix elements

and the fermion permutation sign. A simple way to determine

γ ([
; {r̄}, {r}]) is to use the worldlines to find the order in

which the nucleons are created at the end of the time evolution

and use this ordering to determine the ordering in {r̄}. In

such a case γ ([
; {r̄}, {r}]) = 1, unless fermions of one flavor

transform into the fermions of another flavor. With our model

this can indeed occur when the neutron and proton spins flip.

Then one has to reorder the nucleon creation operators before

computing the matrix element. This can make γ ([
; {r̄}, {r}])
negative. If we substitute Eqs. (38) and (40) into Eq. (37) we

obtain

M{q̄};{q} =
∑

{r},{r̄}

∑

[
;{r̄},{r}]

O(q̄, q; [
, {r̄}, {r}])

×
(nn)!(np)!

L3n
ω([
; {r̄}, {r}]), (41)

where

O(q̄, q; [
, {r̄}, {r}])

=
γ ([
; {r̄}, {r}])

(nn)!(np)!

∏

a

Da({q̄}, {r̄})Da({q}, {r}). (42)

The extra factors of (nn)! and (np)! have been introduced for

later convenience when we construct the Monte Carlo method.

They help in implementing detailed balance more naturally.

In our discussion below we make the notation a bit simpler,

by defining worldline configurations as simply [
] and assume

that {r} and {r̄} are implicitly defined by the worldlines, since

each worldline starts on a proton or a neutron with a particular

spin and keeps track of the particle’s position and spin as it

travels in imaginary time. Note that along the worldline the

spin of the nucleon could flip depending on the interaction the

particle encounters. With this simplification, we can replace

O(q̄, q; [
, {r̄}, {r}]) by O({q̄}, {q}; [
]) with the understand-

ing that, if they are not compatible with the initial and final

states |{q}〉 and |{q̄}〉, respectively, O({q̄}, {q}; [
]) = 0. We

can also replace ω([
; {r̄}, {r}]) with just ω([
]) since it does

not depend on {q} and {q̄}. With these changes we rewrite

Eq. (41) as

M{q̄};{q} =
′

∑

[
]

O({q̄}, {q}; [
])
(nn)!(np)!

L3n
ω([
]). (43)

The prime symbol in the sum reminds us that we only al-

low configurations as long as nn and np are less than some

maximum value that we are free to set. Since the observable

O(q̄, q; [
]) is nonzero only in the particular sector of interest,

the maximum value we choose does not affect the answer as

long as the sector of interest is within the allowed sum. We

also allow the trivial sector with no particles and denote that

configuration as [0] and set ω([0]) = 1. In the next section we

design a Monte Carlo method to compute the matrix elements

M{q̄};{q}.

V. THE MONTE CARLO METHOD

To construct a Monte Carlo method to compute Eq. (43)

we define a partition function for worldline configurations as

Z =
′

∑

[
]

(nn)!(np)!

L3n
ω([
]), (44)
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where we have just dropped the factor O({q̄}, {q}; [
]) in

Eq. (43). Our goal is to design a Monte Carlo (MC) method to

generate the worldline configurations [
] based on the weights

given in Eq. (44), and then use it to compute averages of two

observables

〈O({q̄}, {q}; [
])〉 =
1

Z
M{q̄};{q}, (45)

and

Z0 = 〈δ[
],[0]〉 =
1

Z
, (46)

which is the fraction of the trivial configurations in the ensem-

ble. Using these two quantities we can compute

M{q̄};{q} =
〈O({q̄}, {q}; [
])〉

〈δ[
],[0]〉
. (47)

Clearly, our approach will fail if 〈δ[
],[0]〉 cannot be determined

accurately. This is indeed a bottleneck for the algorithm we

discuss in this paper, especially if we wish to study a large

number of particles. In the few-body sector we seem to be

able to compute 〈δ[
],[0]〉 accurately. Variants of our algorithm

which can potentially overcome the bottlenecks also exist, but

we have not explored them here since we consider this work

as only the first of a series of presentations of the subject.

Let us now discuss a worm-type algorithm to generate

configurations [
] distributed according to Eq. (44). We begin

with Eq. (40) but replace the nucleons with hardcore bosons.

We can then argue that

〈{r̄}|e−βH |{r}〉b =
′

∑

[
;{r̄},{r}]

ω([
; {r̄}, {r}]), (48)

where the subscript b is a reminder that the nucleons are being

treated as hardcore bosons and the prime symbol means the

same as the one we discussed below Eq. (43). We introduce a

finite lattice spacing in time at and approximate

e−βH ≈
(

e−at H0 e−at Hint e−at H0 · · · e−at Hint e−at H0
)

, (49)

where we have introduced Lt − 1 factors of e−at Hint e−at H0 and

one final factor of e−at H0 at the end to make the operator on

the right-hand side Hermitian. Here we assume at Lt = β and

to obtain the matrix elements accurately we need to take the

limit at → 0 and Lt → ∞ while keeping β fixed. In this work

we fix at = 0.001/ε or at = 0.0005/ε in our calculations.

In a few cases we also study extrapolation to small at to

demonstrate that our answers agree with exact calculations.

From the point of effective-field theories, finite at errors can

also be treated as a renormalization of the Hamiltonian and

may not play an important role as long as the symmetries of

the theory are maintained and we are in the scaling regime. If

smaller values of at are necessary, they can be reached with

further computational cost.

Within the approximation introduced above we can com-

pute the matrix elements 〈{r̄}|e−βH |{r}〉b by inserting a

complete basis of nucleon occupation number states after

every time evolution operator e−at Hint e−at H0 . We label each of

these states with a Euclidean time index t = 1, 2, . . . , Lt − 1.

The initial and final states are assumed to be at t = 0 and

atexp(- H0)

a texp(- H )int

t=0

t=1

t=9

t=8

t=2

t=3

t=4

t=7

t=6

t=5

= p = p = n = n

= p  n = p  n = p  n 

= p = p = n

= p  n = p  n = p 

FIG. 4. Illustration of a worldline configuration consisting of five
nucleons moving on a spacetime lattice with Lt = 9 time slices. The
circles represent neutrons while squares represent protons. The two
different spins are shown with different fillings. The time evolution
operator e−at H0 acts between time slices and e−at Hint acts on a single
time slice. The latter does not change the configuration when the
matrix elements are diagonal but can change sign when off-diagonal
matrix elements are encountered. An illustration of the latter is
shown in the t = 4 time slice.

t = Lt , respectively. Due to particle-number conservation ev-
ery nonzero matrix element obtained with a given choice of
the basis states defines worldlines of particles [
] moving
on a spacetime lattice. An illustration of such a configura-
tion in one spatial dimension is shown in Fig. 4. The state
on each spacetime lattice site is given by one of sixteen
possible states as defined in Table III, where we have also
introduced new creation operators for multiparticle states for
later convenience. To find the Boltzmann weight ω([
]) for
each configuration we need to compute the matrix elements
of e−at H0 and e−at Hint in the occupation number basis using H0

and Hint as defined in Eqs. (3) and (4). When particles hop due
to H0, we make a further approximation and define

e−at H0 ≈
∏

r

[

(1 − 6atεN†
r Nr )

+ atε
∑

α̂

(N†
r+α̂Nr + N

†
r−α̂Nr )

]

, (50)

where we assume nucleons can only hop to the nearest-
neighbor sites or remain on the same site after each time step.
A useful feature of this approximation is that the weight of
a nucleon hop to the neighboring site is given by ωh = atε

while the weight to remain on the same site is ωt = (1 − 6ωh).
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TABLE III. The table shows our notation for the sixteen-
dimensional local Hilbert space on each lattice site. It can either be
the Fock vacuum state, one of four one particle states, one of six two-
particle states, one of four three-particle states or the four-particle
state. We define two-, three-, and four-particle states through creation
operators defined above.

0-particle state (Fock vacuum): |0〉

1-particle states

N†
r,1|0〉 ≡ n†

r,↑|0〉 N†
r,2|0〉 ≡ n†

r,↓|0〉
N†

r,4|0〉 ≡ p†
r,↓|0〉 N†

r,3|0〉 ≡ p†
r,↑|0〉

2-particle states

I†
r,+|0〉 ≡ p†

r,↓ p†
r,↑|0〉 I†

r,−|0〉 ≡ n†
r,↓n†

r,↑|0〉
d†

r,+|0〉 ≡ p†
r,↑n†

r,↑|0〉 d†
r,−|0〉 ≡ p†

r,↓n†
r,↓|0〉

D†
r,1|0〉 ≡ p†

r,↓n†
r,↑|0〉 D†

r,2|0〉 ≡ p†
r,↑n†

r,↓|0〉
3-particle states

t†
r,+|0〉 ≡ p†

r,↑n†
r,↓n†

r,↑|0〉 t†
r,−|0〉 ≡ p†

r,↓n†
r,↓n†

r,↑|0〉
3He†

r,+|0〉 ≡ p†
r,↓ p†

r,↑n†
r,↑|0〉 3He†

r,−|0〉 ≡ p†
r,↓ p†

r,↑n†
r,↓|0〉

4-particle sector

H |0〉 ≡ p†
r,↓ p†

r,↑n†
r,↓n†

r,↑|0〉

When at is small these weights can be used as probabilities
during the worm update.

In contrast with H0, the interaction term Hint is a single-site
operator which has both a diagonal part and an off-diagonal
part. To make this explicit we write

e−at Hint =
∏

r

e−at [Hd
int (r)+Ho

int (r)]. (51)

To identify Hd
int(r) and Ho

int(r) explicitly we substitute P̄a and
Pa, defined in Eq. (5), into Eq. (4). The nucleon bilinear terms
that are spin singlets and isospin triplets are given by

NT
r P̄1Nr =

1
√

2
(−pr,↑ pr,↓ + nr,↑nr,↓), (52)

NT
r P̄2Nr = −

i
√

2
(pr,↑ pr,↓ + nr,↑nr,↓), (53)

NT
r P̄3Nr =

1
√

2
(nr,↑ pr,↓ − nr,↓ pr,↑), (54)

while those that are spin-triplets and isospin-singlets are given
by

NT
r P1Nr =

1
√

2
(nr,↑ pr,↑ − nr,↓ pr,↓), (55)

NT
r P2Nr =

i
√

2
(nr,↑ pr,↑ + nr,↓ pr,↓), (56)

NT
r P3Nr = −

1
√

2
(nr,↑ pr,↓ + nr,↓ pr,↑). (57)

Using these we can identify the diagonal interaction term to
be

Hd
int(r) = ε

{

C
(1S0 )
0 (I†

r,+Ir,+ + I
†
r,−Ir,−)

+ C
(3S1 )
0 (d†

r,+dr,+ + d
†
r,−dr,−)

+ C3B[(t†
r,+tr,+ + t

†
r,−tr,−)

+ (3He
†
r,+

3Her,+ + 3He
†
r,−

3Her,−)]

+ 1
2

(

C
(3S1 )
0 + C

(1S0 )
0

)

(D†
r,1Dr,1 + D

†
r,2Dr,2)

}

. (58)

while the off-diagonal term is given by

Ho
int(r) =

ε

2

(

C
(3S1 )
0 − C

(1S0 )
0

)(

D
†
r,1Dr,2 + D

†
r,2Dr,1

)

. (59)

We can now compute the matrix elements of Tint(r) =
e−at (Hd

int (r)+Ho
int (r)), between the sixteen states shown in Ta-

ble III. The nonzero matrix elements are given in Table IV.
Notice that there are only two nonzero off-diagonal matrix
elements with weights ω1 which will be negative if C

(3S1 )
0 >

C
(1S0 )
0 . These negative signs will be ignored during the worm

update and but taken into account through γ ([
; {r̄}, {r}]).
Thus, every worldline configuration [
] can be assigned a
unique Boltzmann weight ω([
]).

We use two types of worm algorithms to update the world-
line configurations. The first is the particle-number algorithm
(PNA) and the second is the spin-flip algorithm (SFA). In the
PNA we propose to add or remove a nucleon of a random
spin. When both neutrons and protons are present, we perform
two PNA algorithms, one for protons (PNA-p) and one for
neutrons (PNA-n) sequentially. This algorithm can change the
number of nucleons and their worldlines. In our algorithm,
the PNA cannot create or remove off-diagonal interactions
that appear with weight ω1 in Table III. To overcome this
limitation we introduce the second update, the SFA, in which
the worldlines of the nucleons are frozen and but their spins
are flipped. The SFA can create and remove off-diagonal
interactions. If ω1 = 0 the SFA is not necessary but may still
help in reducing autocorrelation times.

The PNA starts by either adding a nucleon of a random
spin on a random spatial site chosen on the time slice t = 0
or by removing an existing nucleon of either spin on the time
slice t = Lt . This natural first step introduces the extra weight
(nn)!(np)!/L3n that we introduced in Eq. (41). We allow parti-
cles to be added until a maximum number is reached beyond
which the algorithm forbids any new additions. Once the al-
gorithm begins, it allows the particle worldlines to either grow
or shrink like a worm whose tail is always on the t = 0 slice
but the head is allowed to move. Each local move satisfies
detailed balance using the well-established procedures [4]. If
the growth proposal is rejected then the worm begins to shrink
and vice versa. The update can end in three possible ways: (1)
by either adding a new particle worldline, (2) by removing
an existing particle worldline, or (3) by keeping the number
of particles the same but possibly changing the worldline.
During the growth step, when the worm head at lattice site
(r, t ) moves to one of the six neighboring sites (r ± α̂, t + 1),
it does so with probability ωh. With the remaining probability
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TABLE IV. The nonzero matrix elements of the local interaction transfer matrix Tint (r) = e−at [Hd
int (r)+Ho

int (r)] between states with at least two
particles. In addition to these, the other nonzero matrix elements are 〈0|Tint (r)|0〉 = 〈0|Nr,aTint (r)N†

r,a|0〉 = 1.

ω1 = 〈0|Dr,2Tint (r)D†
r,1|0〉 = 〈0|Dr,1Tint (r)D†

r,2|0〉 = e−at ε(C
(3S1 )
0 +C

(1S0 )
0 )/2 sinh[atε(C (1S0 )

0 − C
(3S1 )
0 )/2]

ω2 = 〈0|Dr,1Tint (r)D†
r,1|0〉 = 〈0|Dr,2Tint (r)D†

r,2|0〉 = e−at ε(C
(3S1 )
0 +C

(1S0 )
0 )/2 cosh[atε(C (1S0 )

0 − C
(3S1 )
0 )/2]

ω3 = 〈0|Ir,+Tint (r)I†
r,+|0〉 = 〈0|Ir,−Tint (r)I†

r,−|0〉 = e−at εC
(1S0 )
0

ω4 = 〈0|dr,+Tint (r)d†
r,+|0〉 = 〈0|dr,−Tint (r)d†

r,−|0〉 = e−at εC
(3S1 )
0

ω5 = 〈0|tr,+Tint (r)t†
r,+|0〉 = 〈0|tr,−Tint(r)t†

r,−|0〉 = e−at ε[C3B+3(C
(3S1 )
0 +C

(1S0 )
0 )/2]

ω6 = 〈0|Her,+Tint(r)He†
r,+|0〉 = 〈0|Her,−Tint (r)He†

r,−|0〉 = e−at ε[C3B+3(C
(3S1 )
0 +C

(1S0 )
0 )/2]

ω7 = 〈0|HrTint (r)H†
r |0〉 = e−at ε[4C3B+3(C

(3S1 )
0 +C

(1S0 )
0 )]

ωt = 1 − 6ωh the site worm head moves to (r, t + 1). Since
these weights are also weights of the local worldlines these
local growth steps satisfy detailed balance and are always
accepted. Similarly, during the shrink step when the worm
head at lattice site (r, t ) moves to the unique site (r′, t − 1)
connected by the worldline, it does so always and still satisfies
detailed balance. Thus, unless the worm head encounters an-
other particle, the forward or backward motion moves without
an accept-reject, which makes it very efficient to create free
particles far from each other.

When the worm head encounters another particle, then the
interactions given in Table III play a role in determining if
the worm head moves forward or backwards. Here we use an
accept-reject step based on the ratio of the interaction weights
after and before the worm move. These weights of course
depend on all the other particles that exist at the location of the
head. There are again three possible scenarios: First, if the site
contained an off-diagonal configuration with weight ω1 before
the worm head reached the site, the worm is forbidden to enter
it and so the worm move always bounces (i.e., if the worm
was growing it would begin to shrink and vice versa). Second,
if the worm head encounters another identical nucleon of the
same spin as it grows, then the head and the tail are switched
to the worldline of the other identical nucleon and the worm
begins to shrink. Finally, if the worm encounters the site with
one of the allowed diagonal interactions with weights ωi,
i = 2, 3, . . . , 7 given in Table III, then it creates another of
these diagonal interactions when the new nucleon is created
on the site. If ωI and ωF are the initial and final interaction
weights, a Metropolis accept-reject step is performed based
on the ratio (ωF /ωI ) to either continue with the worm move
or perform a bounce.

The PNA is not ergodic by itself when ω1 �= 0 and it
must be supplemented with the SFA, which can again be
of two types based on how the algorithm begins. The first
type of algorithm (SFA-1) begins on a nucleon at the t = 0
or t = Lt time slices. For this type of algorithm the worm
update also ends at one of these time slices. In particular
it can begin at t = 0 and end at t = Lt or vice versa. The
second type of algorithm (SFA-2) begins with a nucleon at an
arbitrary site (r, t ) where 0 < t < Lt . In this case the worm
is always a loop algorithm. This is because the worm always
bounces at t = 0 or t = Lt . Construction of SFA algorithms
are based on local detailed balance, and their procedures are
well established [28]. Combining PNA and SFA we can con-

struct an algorithm that creates worldline configurations [
]
distributed according to the partition function (44). For each
configuration, computing the observables given in Eqs. (45)
and (46) are straightforward. From these two we can compute
the transfer-matrix element using Eq. (47).

VI. TESTING THE ALGORITHM

In this section we test our MC algorithm by comparing
results obtained by it with results obtained using exact diago-
nalization on the L = 2 lattice. We fix our lattice parameters
using the physical parameters given in Table I. For example,
substituting L = 2 in Eq. (8), we obtain

ε = π2h̄2
/(

2mN L2
phys

)

= 10.14 MeV, (60)

where we have approximated 1 fm = (197 MeV)−1 in nat-
ural units. Using the above value of ε, we impose that the
exact diagonalization must give us E

(nn)
0 = −1.755ε, E

(pn)
0 =

−2.505ε, and E
(pnn)
0 = −6.469ε. This fixes C

(1S0 )
0 = −7.373,

C
(3S1 )
0 = −9.044, and C3B = 5.109. We summarize these pa-

rameters in Table V.
Since our current implementation of the Monte Carlo

method works at a nonzero at , there is always a systematic
error associated with that. While we can in principle eliminate
it by extrapolating at to zero, for this first study we try to min-
imize that error by working at a small value of at . We provide
some evidence that the finite temporal lattice spacing errors
can be eliminated through extrapolations when necessary.

For convenience in defining the initial and final states of
the matrix elements we compute, we introduce eight single
nucleon quantum numbers q as defined in Sec. V. We label
them ki = (kx,i, ky,i, kz,i ), i = 1, 2, . . . , 8 and define them in
Table VI. Multinucleon states |{q}〉 are defined by simply
choosing each nucleon in one of these eight states in an order
as discussed in Sec. V. In the sections below we discuss

TABLE V. Lattice parameters for the physical parameters given
in Table I.

L a (fm) ε (MeV) C
(1S0 )
0 C

(3S1 )
0 C3B

2 1.70 10.14 −7.373 −9.044 5.109
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TABLE VI. Eight different quantum numbers q as defined in
Sec. V.

k1 = (0, 0, 0) k2 = (1, 0, 0) k3 = (0, 1, 0) k4 = (0, 0, 1)
k5 = (1, 1, 0) k6 = (1, 0, 1) k7 = (0, 1, 1) k8 = (1, 1, 1)

our results starting with free particles and then the dineutron,
deuteron, triton and helium sectors.

A. Free particles

While the physics of free fermions is trivial from an an-
alytic perspective, to obtain the same results using a Monte
Carlo sampling of hard-core worldlines in position space is
difficult, since it involves cancellations due to fermion per-
mutation signs [3]. For example, to accurately compute the
ground-state energy of several free fermions using the usual
formula

EF = lim
β→∞

Tr
(

H0e−βH0
)

Tr(e−βH0 )
, (61)

where the right-hand side is computed using a Monte Carlo
method that samples position space fermion worldlines, as we
plan to do, is known to be extremely difficult. This difficulty
can be circumvented in our approach since we can compute
the diagonal matrix elements

M{q};{q} = 〈{q}|e−βH0 |{q}〉 = e−βEF , (62)

where |{q}〉 is the eigenstate of H0 and EF is the corresponding
eigenvalue. For example, the ground-state energy with N free
nucleons is given by the Fermi energy

EF = 2ε

N
∑

i=1

∑

α

[1 − cos (2πkα,i/L)], (63)

where the state with {q} = {k1, k2, . . . , kN } containing N nu-
cleons of the same flavor is the ground state on a 23 lattice.
Although computing the matrix element in Eq. (62) at large
values of β will continue to be difficult with our method,
we can compute it efficiently at small β and since EF =
−ln(e−βEF )/β is valid for all values of β we can accurately
determine E f . We argue below that a similar method can also
work in the interacting case at least for few-body physics in a
box.

In Table VII we compare the exact results with those ob-
tained using our Monte Carlo method at β = 0.1/ε with the
choice at = 0.001/ε and Lt = 100. Note that, as the particle
number increases, we have to work harder even at a fixed value
of β since EF increases and the signal degrades. However, in
this case we can reduce β if necessary to get a better signal.
Although the temperature is very high in these calculations,
knowing the exact eigenstate solves the sign problem. While
this is not surprising, it proves that the physics of a degen-
erate Fermi gas can emerge by sampling hard-core boson
worldlines. Since adding interactions is straightforward in this
framework, it would be interesting to explore if the method
can continue to be useful in cases where the solution to the

TABLE VII. We compare the exact results for the ground-state
matrix elements given in Eq. (62) with those obtained with our Monte
Carlo method. We use β = 0.1/ε, obtained using at = 0.001/ε and
Lt = 100, for these calculations.

N EF /ε e−βEF MC

2 4 0.67032... 0.6699(4)
3 8 0.44932... 0.4491(4)
4 12 0.30119... 0.2999(4)
5 20 0.13533... 0.1347(5)
6 28 0.06081... 0.0604(3)
7 36 0.02732... 0.0268(3)
8 48 0.00822... 0.0081(3)

sign problem is difficult. We postpone such a study to later
presentations.

B. The dineutron channel

Next we test our algorithm in the dineutron channel. For
this we construct the 5 × 5 transfer matrix T5(β ) with matrix
elements

Mi j (β ) = 〈ψi|e−βH |ψ j〉, (64)

where the five dineutron states we choose are defined as

|ψi〉 = Ñ
†
ki,2

Ñ
†
ki,1

|0〉, i = 1, 2, 3, 4, 5 (65)

at β = 0.4/ε and 0.5/ε. The choice of β is somewhat ar-
bitrary, but we are guided by the ability to extract the
ground-state energy reliably by minimizing the contamination
from higher excited states while at the same time keeping it
sufficiently small to make sure we can compute the matrix el-
ements accurately. In Table VIII we tabulate the exact answers
and the corresponding values obtained using our Monte Carlo
method for at = 0.0005/ε.

While our MC results are close to the exact results,
they seem to be systematically lower by about 3σ–4σ in
many cases. For example the exact matrix element M11 =
1.799597 . . . is about 3σ away from the MC result of
1.7978(8). While this is of course statistically possible in a few
rare cases, many more matrix elements show a similar trend.
Since the only source of error in our calculations is due to
the finite value of at , we performed a small at extrapolation to
make sure we can eliminate it if needed. In Fig. 5 we show our
MC results at several values of at along with a linear fit that
helps extrapolate our data to at = 0. After the extrapolation
we get M11 = 1.7994(6), which is closer to the exact result.

We can use the matrix elements in Table VIII to construct
T5(β1 = 0.4/ε) and T5(β2 = 0.5/ε) and then using Eq. (31)
we can evaluate the five eigenvalues of the matrix E5. We
can then compare it with the lowest five exact energy eigen-
values of H that have a dominant overlap with that of the
five-dimensional subspace that we are projecting out through
T5(β ). In Table IX we show these results. The first column
shows the exact eigenvalues of H that contribute to the ma-
trix elements. The next four columns give eigenvalues of E5

assuming that we can compute the matrix elements T5(β1 =
0.4/ε) and T5(β2 = 0.5/ε) at various levels of accuracy after
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TABLE VIII. Comparison of dineutron matrix elements defined
in Eq. (64) between exact diagonalization results and worldline MC
results. The MC calculations are done at at = 0.0005/ε. Since the
matrix is symmetric, we only give the fifteen independent elements.
Several matrix elements are identical due to rotational symmetry. In
the Monte Carlo calculations we do not compute them independently.

Mi j (β = 0.4/ε) Mi j (β = 0.5/ε)

(i, j) Exact MC Exact MC

(1,1) 1.799597... 1.7978(8) 2.135911... 2.1352(11)
(1,2) 0.296652... 0.2949(5) 0.367658... 0.3659(6)
(1,3) 0.296652... 0.2949(5) 0.367658... 0.3659(6)
(1,4) 0.296652... 0.2949(5) 0.367658... 0.3659(6)
(1,5) 0.169404... 0.1678(5) 0.205997... 0.2044(6)
(2,2) 0.123554... 0.1222(4) 0.104679... 0.1041(7)
(2,3) 0.082792... 0.0820(5) 0.086363... 0.0853(6)
(2,4) 0.082792... 0.0820(5) 0.086363... 0.0853(6)
(2,5) 0.042156... 0.0420(4) 0.044335... 0.0441(6)
(3,3) 0.123554... 0.1222(4) 0.104679... 0.1041(7)
(3,4) 0.082792... 0.0820(5) 0.086363... 0.0853(6)
(3,5) 0.042156... 0.0420(4) 0.044335... 0.0441(6)
(4,4) 0.123554... 0.1222(4) 0.104679... 0.1041(7)
(4,5) 0.042156... 0.0420(4) 0.044335... 0.0441(6)
(5,5) 0.022624... 0.0224(5) 0.023111... 0.0225(6)

extrapolating to at = 0. The column labeled “Exact” assumes
double precision accuracy of the matrix elements, while the
other three columns labeled “10−p” assume the elements are
evaluated accurately up to p decimal numbers. The last col-
umn marked “MC” uses the numbers for the matrix elements
given in Table VIII without at extrapolation. The central value
and error are estimated based by a stochastic method which
involves randomly adding or subtracting one-sigma errors to
the central values. The five columns under E5 give a sense of

0 0.002 0.004 0.006 0.008

1.76

1.77

1.78

1.79

1.8

M11

at

FIG. 5. A demonstration that the systematic deviation of the MC
result for M11 in the dineutron channel at β = 0.4/ε in Table VIII
as compared with the exact result is due to finite at errors. The solid
line is a linear fit to the data. The data shown at at = 0 indicate the
exact result M11 = 1.799 597 and the fit gives us M = 1.7994(6).

TABLE IX. Comparison of the lowest five dominant eigenvalues
of H that contribute to the dineutron matrix elements in Table VIII
with the eigenvalues of E5 defined in Eq. (31). The first column gives
the eigenvalues of H , while the second column gives the eigenvalues
of E5 for β1 = 0.4/ε and β2 = 0.5/ε using the exact matrix elements.
The third column shows the results of the second column, assuming
the matrix elements are determined up to an accuracy of 10−3 in
a hypothetical Monte Carlo calculation. All numbers shown are in
units of ε.

E5

H Exact 10−2 10−3 10−4 MC

−1.7552 . . . −1.7550. . . −1.79 −1.753 −1.7549 −1.764(1)
4.8967... 4.9024... 0.00 5.031 4.9023 5.07(2)
8.0000... 8.0000... 13.86 7.691 8.0178 7.61(3)
8.0000... 8.0000... 13.86 7.691 8.0178 7.61(3)
14.064... 14.9075... 15.445 14.4461

Monte Carlo errors that can come from both finite at errors
and statistical errors. Based on the results of the extrapola-
tion in Fig. 5 if we can assume that in a hypothetical MC
calculation with at extrapolations we can compute all matrix
elements with an accuracy of 10−3, from Table IX we see that
the energy levels can be extracted reasonably well. In this
example, since the various energy levels are well separated,
this is not surprising.

C. The deuteron channel

We now repeat the above calculations in the deuteron
channel. We focus on the five states similar to the dineuteron
channel, except that the spin-down neutron is replaced by a
spin-up proton. Thus, the five states now take the form

|ψi〉 = Ñ
†
ki,3

Ñ
†
ki,1

|0〉, i = 1, 2, 3, 4, 5. (66)

We again compute the corresponding 5 × 5 matrix defined
in Eq. (64) at β1 = 0.4/ε and β2 = 0.5/ε assuming at =
0.0005/ε. Our results for the matrix elements are tabulated
in Table X in the same format as in the dineutron case.

Using the exact matrix elements in Table X we can again
construct T5(β = 0.4/ε) and T5(β = 0.5/ε) and the matrix
E5 using Eq. (31). We again compare the lowest five exact
energy eigenvalues of H that have a dominant overlap with
the five-dimensional subspace with the five eigenvalues of
E5. The results of this comparison are shown in Table XI.
In this comparison we again assume the matrix elements of
T5(β = 0.4/ε) and T5(β = 0.5/ε) are obtained with various
precisions as explained during the discussion of the results in
Table IX. We again notice that the accuracy with which the
matrix elements are computed greatly affects the extracted
eigenvalues. We observe that if we can extract the matrix
elements with a precision of 10−3 the lowest two energies can
be extracted with about two percent errors. However, notice
that the energies are well separated.
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TABLE X. Comparison of deuteron matrix elements between
exact diagonalization results and worldline MC calculations with
at = 0.0005/ε. Only the independent elements of a symmetric ma-
trix are shown and rotational symmetry is assumed.

Mi j (β = 0.4/ε) Mi j (β = 0.5/ε)

(i, j) Exact MC Exact MC

(1,1) 2.239217... 2.2348(9) 2.856016... 2.8504(13)
(1,2) 0.488407... 0.4860(6) 0.651407... 0.6480(8)
(1,3) 0.488407... 0.4860(6) 0.651407... 0.6480(8)
(1,4) 0.488407... 0.4860(6) 0.651407... 0.6480(8)
(1,5) 0.286565... 0.2849(6) 0.375937... 0.3725(7)
(2,2) 0.196787... 0.1947(6) 0.202076... 0.2001(8)
(2,3) 0.156025... 0.1546(6) 0.183761... 0.1816(8)
(2,4) 0.156025... 0.1546(6) 0.183761... 0.1816(8)
(2,5) 0.084723... 0.0835(6) 0.100467... 0.0989(8)
(3,3) 0.196787... 0.1947(6) 0.202076... 0.2001(8)
(3,4) 0.156025... 0.1546(6) 0.183761... 0.1816(8)
(3,5) 0.084723... 0.0835(6) 0.100467... 0.0989(8)
(4,4) 0.196787... 0.1947(6) 0.202076... 0.2001(8)
(4,5) 0.084723... 0.0835(6) 0.100467... 0.0989(8)
(5,5) 0.047091... 0.0470(7) 0.055331... 0.0548(7)

D. The triton channel

In the triton channel we focus on the five basis states
defined as

|ψ1〉 = Ñ
†
k2,3

Ñ
†
k2,2

Ñ
†
k1,1

|0〉,

|ψ2〉 = Ñ
†
k5,3

Ñ
†
k3,2

Ñ
†
k2,1

|0〉,

|ψ3〉 = Ñ
†
k5,3

Ñ
†
k5,2

Ñ
†
k1,1

|0〉,

|ψ4〉 = Ñ
†
k8,3

Ñ
†
k8,2

Ñ
†
k1,1

|0〉,

|ψ5〉 = Ñ
†
k8,3

Ñ
†
k4,2

Ñ
†
k5,1

|0〉, (67)

and, as before, compute the 5 × 5 matrix defined in Eq. (64).
Here we choose states that are not related by rotations in
order to learn how the lack of symmetries affects our ability
to extract the low-energy spectrum. Since the higher energy
levels are more closely packed in the triton case we choose
slightly higher values of β. We choose β = 1.0/ε and β =
1.1/ε. The Monte Carlo results are also obtained at a slightly

TABLE XI. Comparison of the lowest five dominant eigenvalues
of H that contribute to the matrix elements in Table X with the
eigenvalues of E5 defined in Eq. (31). All numbers shown are in units
of ε. The meanings of the three columns are the same as Table IX.

E5

H Exact 10−2 10−3 10−4 MC

−2.5053 . . . −2.5050. . . −2.51 −2.506 −2.5051 −2.5046(4)
4.2971... 4.3028... 2.69 4.211 4.2890 4.223(41)
8.0000... 8.0000... 6.93 8.232 8.0178 7.511(11)
8.0000... 8.0000... 6.93 8.232 8.0178 7.511(11)
13.817... 14.6926... 8.30 13.482 15.5810 11.17(75)

TABLE XII. Comparison of triton matrix elements between ex-
act diagonalization results and worldline MC calculations with at =
0.001/ε. Only the independent elements of a symmetric matrix are
shown. Since rotational symmetry does not help here, the matrix
elements are all different.

Mi j (β = 1.0/ε) Mi j (β = 1.1/ε)

(i, j) Exact MC Exact MC

(1,1) 21.963 67... 21.54(19) 41.844 79... 40.90(47)
(1,2) 8.064 98... 7.72(03) 15.357 80... 14.65(20)
(1,3) 11.4549... 11.05(10) 21.854 45... 20.95(23)
(1,4) 7.506 81... 7.10(09) 14.326 38... 13.90(19)
(1,5) 4.541 60... 4.30(06) 8.651 13... 8.20(13)
(2,2) 2.982 05... 2.84(08) 5.657 21... 5.69(18)
(2,3) 4.202 47... 4.08(10) 8.015 11... 7.55(20)
(2,4) 2.751 82... 2.61(07) 5.251 75... 5.11(17)
(2,5) 1.676 77... 1.53(06) 3.184 42... 3.02(12)
(3,3) 5.985 51... 5.71(09) 11.424 62... 10.73(21)
(3,4) 3.924 03... 3.71(07) 7.490 92... 6.96(17)
(3,5) 2.367 77... 2.18(06) 4.516 19... 4.11(12)
(4,4) 2.572 95... 2.46(08) 4.912 09... 4.81(15)
(4,5) 1.550 78... 1.44(07) 2.959 48... 2.78(12)
(5,5) 0.944 73... 0.95(06) 1.794 01... 1.59(11)

higher temporal lattice spacing of at = 0.001/ε. In Table XII
we tabulate our results for the matrix elements following the
same format as Tables VIII and X. We again notice that the
Monte Carlo results are close to the exact answers but clearly
systematically off due to at errors. We also notice larger fluc-
tuations in the Monte Carlo data, which means we need more
statistics to obtain accurate values of the matrix elements.
The matrix elements we compute are an order of magnitude
larger than those in the two-body sector, essentially due to the
larger triton binding energy and the higher value of β used in
the calculations. Reducing the errors by a factor of ten with
respect to what is shown in Table XII is in principle feasible.

The finite at errors of the matrix elements can again be
eliminated using an extrapolation to small at . To demonstrate
this we have computed the matrix element M1,2 at several
values of at . Our results for the extrapolation are plotted in
Fig. 6. While the exact answer is M11 = 8.064 98 the fit of
our data gives us M = 8.034(38). Assuming we can compute
all the matrix elements with this accuracy, how well can we
extract the dominant eigenvalues of H from E5 as we did for
the dineutron and deuteron cases. Our results are tabulated in
Table XIII. We again notice several new features. First, we
notice that with accuracy of 10−2 we get a spurious energy
level with an anomalously large binding energy of −15.08ε.
This bound state disappears when the precision is increased
to 10−3. Even at that precision, one of the eigenvalues of
eE5 turns out to be negative. Finally, although the lowest two
energy eigenvalues of H are well separated, the exact energies
of the higher states are more closely packed.

Where did the deeply bound spurious state appear from? To
address this puzzle let us look at E2, where we form the trans-
fer matrices using |ψ1〉 and |ψ2〉, and on E3 by including the
additional state |ψ3〉. The results from these smaller subspaces
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FIG. 6. A demonstration that the deviation of the MC result for
M12 at β = 1.0/ε using at = 0.001/ε as compared with the exact
result, shown in Table XII, is due to finite at errors. We show data at
several values of at and fit it to a linear function of at (solid line). The
data shown at at = 0 indicate the exact result M12 = 8.064 98 . . .

and the fit gives us M = 8.05(2).

are shown in the lower rows of Table XIII. We notice that the
deeply bound state has disappeared in E2, while it appears
in E3 at a different value when the precision is reduced to
10−1. However, in all the cases the lowest stable bound-state
eigenvalue is approximately −6.5(1), which agrees with the

TABLE XIII. Comparison of the lowest-five dominant eigen-
values of H that contribute to the triton matrix elements with the
eigenvalues of E5 assuming the matrix elements in Table XII are
known at various levels of accuracy. All numbers shown are in units
of ε. We notice that the energy eigenvalues of E5 are highly sensitive
to the accuracy with which matrix elements are computed. In some
cases, when the accuracy is low, the eigenvalues of eE5 become
negative. These are shown as dashes in the table.

E5

H Exact 10−1 10−2 10−4 MC

−6.4692 . . . −6.4681. . . 6.1 −15.08 −6.4674 −6.321(49)
−1.0711. . . −1.0340. . . 22.3 −6.55 −0.9972
1.7049... 2.4491... 331.5 −1.53 2.4680
2.3679... 2.6395... 5.74 1.9510
2.3679... 5.1663... 7.0213

E3

H Exact 10−1 10−2 10−4 MC

−6.4692. . . −6.4665. . . −10.8 −6.45 −6.4665 −6.542(69)
−1.0711. . . −0.8537. . . −6.4 2.23 −0.8501
1.7049... 2.6144... −5.0 7.61 2.7679

E2

H Exact 10−1 10−2 10−4 MC

−6.4692. . . −6.4664. . . −6.4 −6.45 −6.4465 −6.385(11)
−1.0711. . . −0.0016. . . −3.9 0.27 0.0244

TABLE XIV. Comparison of matrix elements in the helium
channel between exact diagonalization results and worldline MC
calculations with at = 0.001/ε. Only the independent elements of
a symmetric matrix are shown. Since rotational symmetry does not
help, all the independent matrix elements are all different.

Mi j (β = 0.8/ε) Mi j (β = 0.9/ε)

(i, j) Exact MC Exact MC

(1,1) 202.4837... 193.4(14) 623.5825... 596(5)
(1,2) 59.6957... 56.3(05) 185.2066... 182(2)
(1,3) 97.8796... 93.3(07) 303.7617... 289(3)
(1,4) 61.2623... 58.2(02) 190.2936... 179(2)
(1,5) 27.4097... 26.1(3) 85.2486... 77.3(12)
(2,2) 18.5980... 17.7(03) 56.5716... 53.2(12)
(2,3) 28.9417... 27.0(04) 90.2168... 85.6(16)
(2,4) 18.0076... 17.3(03) 56.3303... 54.5(11)
(2,5) 8.3833... 7.8(03) 25.8156... 25.0(10)
(3,3) 47.9952... 44.9(05) 148.9880 140(02)
(3,4) 30.0876... 28.3(03) 93.4354... 87.3(14)
(3,5) 13.3538... 12.4(04) 41.6357... 38.6(14)
(4,4) 18.8981... 17.5(03) 58.6521... 55.2(12)
(4,5) 8.3464... 7.4(03) 26.0566... 24.6(9)
(5,5) 3.9308... 4.0(03) 11.9996... 11.5(9)

exact eigenvalue of H . Thus, we learn that, without sufficient
accuracy, we can in principle obtain spurious energy levels
in the spectrum of Ek . But by varying k and increasing the
precision we can identify the stable physical eigenvalues.

E. The helium channel

We next consider calculations in the four-body channel by
focusing on the five basis states defined as

|ψ1〉 = Ñ
†
k2,4

Ñ
†
k1,3

Ñ
†
k2,2

Ñ
†
k1,1

|0〉,

|ψ2〉 = Ñ
†
k5,4

Ñ
†
k1,3

Ñ
†
k3,2

Ñ
†
k2,1

|0〉,

|ψ3〉 = Ñ
†
k5,4

Ñ
†
k1,3

Ñ
†
k5,2

Ñ
†
k1,1

|0〉,

|ψ4〉 = Ñ
†
k8,4

Ñ
†
k1,3

Ñ
†
k8,2

Ñ
†
k1,1

|0〉,

|ψ5〉 = Ñ
†
k8,4

Ñ
†
k1,3

Ñ
†
k4,2

Ñ
†
k5,1

|0〉. (68)

We again compute the 5 × 5 matrix defined in Eq. (64) at
β = 0.8/ε and 0.9/ε with at = 0.001/ε and compare with
results from the exact diagonalization. The results are shown
in Table XIV. Again the matrix elements computed using the
Monte Carlo method are close to the exact values but remain
systematically off due to finite at errors. In Fig. 7 we show
how these errors can be removed by performing extrapolations
using the example of M14. Since the data at various values of
at show some curvature, the extrapolation involves a quadratic
function in at . The extrapolated result is again in excellent
agreement with the exact result. A linear extrapolation gives a
large χ2 per degree of freedom (DOF).

We can again extract the lowest five energy levels from
E5 and compare them with the exact eigenvalues of H . Our
results are tabulated in Table XV where the various columns
have the same meaning as already discussed in the two- and
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FIG. 7. The systematic deviation of the MC result for M14 at
β = 0.8 in Table XIV as compared with the exact result is shown to
be due to finite at errors. The solid line is a quadratic fit to the data.
The star symbol shown at at = 0 indicates the exact result M14 =
61.2623 . . . and the fit gives us M = 61.1(2). A linear fit has a bad
χ 2 per degree of freedom (DOF).

three-body channels. An important difference from the pre-
vious cases is that there are several closely packed bound
states. This clearly affects our ability to extract the higher-
energy states. Since the lowest energy is deeply bound, it can
be extracted reliably. As in the triton case, if we are only
interested in the lowest energy state even if E2 is sufficient.
The lowest energy is given by EHe

0 = −11.3ε = −114.6 MeV

TABLE XV. Comparison of the lowest five dominant eigenvalues
of H that contribute to the helium matrix elements with the eigen-
values of E5 assuming the matrix elements are known at various
levels of accuracy. There are several higher eigenvalues of H (like
−3.9971 . . . and −3.9354 . . .) which also have large overlap with
some of the chosen states, but are not shown here.

E5

H Exact 10−1 10−2 10−3 MC

−11.3836 . . . −11.3450. . . −11.3 −11.34 −11.345 −11.441(34)
−6.2516 . . . −5.8384. . . −5.4 −5.93 −5.827
−4.3515 . . . −3.8719. . . −3.5 −3.72 −3.953
−4.3515 . . . −3.0434. . . 6.2 −2.73 −3.026
−4.0528 . . . −0.6487. . . 5.17 −1.028

E3

H Exact 10−1 10−2 10−4 MC

−11.3836 . . . −11.3346. . . −11.3 −11.33 −11.3347 −11.398(6)
−6.2516 . . . −5.3802. . . −5.1 −5.29 −5.3789
−4.3515 . . . −3.1589. . . −3.5 −3.20 −3.1592

E2

H Exact 10−1 10−2 10−4 MC

−11.3836 . . . −11.2678. . . −11.3 −11.27 −11.2679 −11.451(5)
−6.2516 . . . −4.4689... −4.7 −4.45 −4.4682

which agrees well with the previous lattice QCD result in the
hypothetical physical system we are studying [79].

VII. CHALLENGES ON LARGER LATTICES

Our Monte Carlo method continues to work well on larger
lattices as long as βε is fixed, which makes sense if we wish to
study our lattice theory at a fixed lattice spacing but on larger
physical volumes. However, if we wish to hold the physical
volume fixed and approach the continuum limit, we need to
renormalize our theory and change ε according to Table II as
we make our lattice sizes larger. Since ε is the lattice cutoff
energy scale, we observe that it grows as we approach the
continuum limit. On the other hand we need to fix the scale
β to some physical value to be able to extract the low-energy
physics. This means we need to explore larger values of βε.
As expected, in this limit our algorithm encounters new chal-
lenges and needs some further refinement. We discuss these
issues in this section.

First, we wish to give some sense of how our algorithm
behaves at larger lattices. To do this we change C

(1S0 )
0 and

C
(3S1 )
0 according to the values given in Table II as we go to

larger lattices so as to keep the lattice spacing fixed. Ideally
we would have liked to change C3B with the lattice spacing,
but this is beyond the scope of what we could study in our
current work, since it requires a lot of systematic Monte Carlo
work or analytic work in the three-body sector on the lattice.
We postpone this study to a future presentation. Here we fix
C3B = 5.109, which was the result at L = 2. Thus, our results
for triton and helium that we discuss below for larger lattices,
must be viewed as an exploration of how our algorithm per-
forms.

In Table XVI we tabulate the matrix elements in the triton
channel in the same five-dimensional subspace that we intro-
duced in Sec. VI, but now on larger lattices of L = 4, 8, and
16. As mentioned above we fix C3B = 5.109 while changing
C

(1S0 )
0 and C

(3S1 )
0 change according to Table II. We again choose

β = 1.0/ε and β = 1.1/ε so as to learn how the Monte Carlo
algorithm performs as the lattice size increases. In Table XVI
we notice several matrix elements are close to zero, but there
also a few that are not small and can be determined well. It is
important to recognize that the matrix element Mi j between
the states |ψi〉 and |ψ j〉 can be small for two reasons: (1) the
overlap 〈Ek|ψi〉 or 〈Ek|ψ j〉 with the energy eigenstates |Ek〉 in
the low-energy subspace is small, (2) all Boltzmann weights
e−βEk in the low-energy subspace are small. If there is a bound
state the latter cannot be small unless the former is small.

Using the data in Table XVI for L = 4 we find evidence of
at least two bound states. One is comparatively more stable
and has a value of roughly E

nnp

0 /ε ≈ −7.15(2), while the
other is unstable and can fluctuate between −4.07(5) and
−8.68(1) depending on the matrix elements chosen to ana-
lyze it. Substituting ε = 20.28 MeV at L = 4 from Table II
we see that the triton bound state we find is E

nnp

0 ≈ −145
MeV compared with −65.6 MeV from Table I. This strong
binding suggests that C3B needs to be more positive to in-
crease repulsion. The presence of multiple bound states could
also be related to the well-known Efimov effect [88,97,98].
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TABLE XVI. Matrix elements in the triton channel on larger lattices.

Mi j (L = 4) Mi j (L = 8) Mi j (L = 16)

(i, j) (β = 1.0/ε) (β = 1.1/ε) (β = 1.0/ε) (β = 1.1/ε) (β = 1.0/ε) (β = 1.1/ε)

(1,1) 11.00(15) 22.49(35) 0.452(2) 0.459(3) 0.7577(4) 0.7383(4)
(1,2) 0.004(03) 0.008(5) 0.019(1) 0.0331(14) 0.0001(2) 0.0005(3)
(1,3) 0.751(20) 1.818(62) 0.0326(7) 0.0471(11) 0.0034(2) 0.0036(3)
(1,4) 3.695(49) 8.09(16) 0.0325(7) 0.0503(11) 0.0016(3) 0.0021(3)
(1,5) 0.281(13) 0.769(34) 0.0001(4) 0.0000(5) 0.0003(3) 0.0002(3)
(2,2) 0.007(2) 0.003(4) 0.0187(13) 0.0271(21) 0.1435(3) 0.1183(3)
(2,3) −0.022(38) −0.03(11) 0.0066(8) 0.0138(12) 0.0010(2) 0.0010(3)
(2,4) −0.004(27) 0.008(85) 0.0008(4) 0.0012(7) −0.0001(2) 0.0002(2)
(2,5) 0.013(25) −0.055(61) −0.0001(3) −0.0002(4) 0.0001(3) −0.0001(3)
(3,3) 10.66(13) 23.02(32) 0.0121(6) 0.0179(11) 0.088(3) 0.0690(3)
(3,4) −0.003(3) 0.003(6) 0.0079(9) 0.0139(13) 0.0009(3) 0.0009(3)
(3,5) 3.25(16) 9.1(6) 0.0136(7) 0.0186(9) 0.0005(2) 0.0006(3)
(4,4) 4.215(67) 8.85(18) 0.4533(18) 0.4636(27) 0.0005(3) 0.0009(3)
(4,5) 2.894(61) 6.39(18) −0.0001(4) 0.0003(5) 0.0001(3) 0.0000(3)
(5,5) 3.755(87) 8.16(25) 0.0036(4) 0.0036(5) 0.0009(3) 0.0004(3)

When we use L = 8 and L = 16 notice that the large nonzero
diagonal matrix elements like M11 and M44 do not seem to
change much between β = 1.0/ε and 1.1/ε, suggesting that
the matrix elements are not yet sensitive to the bound states.
Indeed we find that the bound state extracted from the data are
very unstable implying that we need to explore larger values
of βε. While this will require more computing resources, our
algorithm will continue to work as we explain below.

To study renormalization of the lattice theory we need
to explore physics at the same physical volume but smaller
lattice spacing. In this case the larger lattices help reduce
the lattice spacing through renormalization. As explained ear-
lier, ε increases according to the values given in Table II.
On the other hand, in order to explore the same low-energy
subspace, we need to hold β fixed in physical units, which
means βε will need to grow. While we postpone a systematic
study of this situation to a later presentation, here we explain
some of the challenges we will encounter in such a study. To
understand how our algorithm performs when βε increases,
in Table XVII we tabulate M11, defined in Sec. VI while
discussing the helium channel, as a function of βε. For these
calculations we fix L = 8, C

(1S0 )
0 = −8.742, C

(3S1 )
0 = −9.085.

While C3B must also change, for the present study we still

TABLE XVII. The helium matrix element M11 on an L = 8 lat-
tice as a function of β. The errors are obtained using the same number
of Monte Carlo updates. We notice that the error has increased by a
factor of 60 when β increases from 0.8/ε to 2.0/ε.

β M11 % error

0.8/ε 0.5991(09) 0.15
0.9/ε 0.6300(19) 0.30
1.2/ε 1.918(27) 1.4
1.5/ε 32.52(65) 2.0
1.8/ε 846(34) 4.1
2.0/ε 8816(801) 9.1

choose C3B = 5.109. We notice that the errors in our calcula-
tion with the same number of Monte Carlo sweeps increases
by about 60-fold when we go from β = 0.8/ε to β = 2.0/ε.
Let us understand this increase.

There are two reasons why statistical errors can increase
as we increase βε. Note that the matrix element is computed
using Eq. (47), which involves the ratio of two Monte Carlo
observables: the numerator given by 〈O({q̄}, {q}; [
])〉 and
the denominator given by 〈δ[
],[0]〉. The fluctuations in the
numerator 〈O({q̄}, {q}; [
])〉 can come from two sources. First
we need to generate a worldline with the correct number of
nucleons and spins in the initial and the final states. Let us
refer to these as the number or N-fluctuations. In addition to
these fluctuations, the numerator, as defined in Eq. (42), con-
tains the fermion permutation signs along with determinantal
factors that can fluctuate. Let us refer to these as S-fluctuations
since it is related to the sign problem. In contrast, the de-
nominator 〈δ[
],[0]〉 only contains N-fluctuations and is free of
S-fluctuations.

In our algorithm we currently sample all quantum number
sectors up to a maximum particle number without special
reweighting techniques. This means, the algorithm can get
stuck in nucleon number sectors that contain deep bound
states. This increases the N-fluctuations in both the numerator
and the denominator as βε increases. As an illustration of this
problem, in Fig. 8 we plot the Monte Carlo fluctuations of the
numerator and the denominator in the calculation of M11 for
L = 8 in the helium channel. We notice large fluctuations and
autocorrelation times in both the numerator and the denomi-
nator at β = 2.0/ε as compared with β = 0.8/ε. While there
should in principle be S-fluctuations hidden in the numerator
at both values of β, they seem to be almost absent, suggesting
that the sign problem is mild. These results suggest that the
main challenge for going to larger values of βε is to tame the
N-fluctuations. We are currently investigating a refinement of
our algorithm, which does not require us to sample all nucleon
number sectors to compute the low-energy spectrum.
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FIG. 8. Monte Carlo fluctuations in the calculation of M11 in the helium channel based on Eq. (47). The top graphs show the fluctuations
of the numerator at β = 0.8/ε (left) and β = 2.0/ε (right), while the bottom graph shows the fluctuations of the denominators for the same
values of β.

Clearly the N-fluctuations will also increase when the num-
ber of particles increase. Our current algorithm samples all
particle number sectors and waits for these specific sectors
to emerge during the sampling process. When the particle
numbers are small this is not a problem, but as the particle
numbers increase it will become exponentially difficult to
efficiently sample both the numerator and the denominator of
Eq. (42). In this case one can build particle numbers in steps.
Assume ZN is the partition function in the N-particle sector.
Although ZN/Z0 scales exponentially, we can compute it as a
product using the relation

ZN

Z0
=

Z1

Z0

Z2

Z1
· · ·

ZN

ZN−1
. (69)

This approach has been used in the past to compute expo-
nentially small quantities [99]. As we approach larger values
βε we also expect S-fluctuations to increase when the particle
numbers are large. How far can we push our approach would
ultimately depend on the physics of the problem.

VIII. CONCLUSIONS

In this paper we have introduced a fermionic Monte
Carlo method for quantum-mechanical systems which treats
fermions as hard-core bosons and absorbs sign problems into
observables. This approach does not solve the sign problem
but can be used for computing the transfer-matrix elements
exp(−βH ) at values of β that help us extract the lowest
bound states with a small number of particles. The method
is expected to encounter problems when β or the number of
particles become large.

Our Monte Carlo method allows the particle numbers to
change, which is an efficient way to create uncorrelated par-
ticle worldlines. In fact the algorithm which we explored in

this work samples all particle-number sectors from zero to a
fixed maximum number. While, this was not a bottleneck in
our work, we do note that it would be important to explore
variants of our algorithm that focuses on a fixed particle num-
ber of interest. If this can be accomplished efficiently, it would
help in reducing the statistical errors sooner. We are currently
exploring such algorithms.

One of the applications of our method we have explored
in this work is to pionless nuclear effective-field theory. We
explored a simple Hamiltonian lattice regularization of the
leading-order theory and discussed a scheme to renormalize
the lattice parameters as we change the lattice spacing. Taking
a hypothetical nuclear system we computed the lattice param-
eters in the one- and two-body sectors for all lattice spacings.
The three-body coupling was only determined for the small-
est lattice using exact diagonalization methods. Using these
lattice parameters we showed that we can recover exact lattice
results using our algorithm on the smallest lattice size with up
to four particles. We also showed that the method scales well
on large system sizes as long as β is not very large.

Sign problems in Fermi systems are known to be noto-
riously difficult even on small system sizes. The fact that
we could extract the matrix elements accurately we believe
indicates the potential of our method. We believe we can
make refinements to our approach to study renormalizability
of nuclear effective-field theories, which as far as we know
is an open problem when more particles are introduced. For
example, renormalizability in the four-body sector is currently
an exciting area of research where we believe our method
could help [90–92].

Another feature of our Monte Carlo method, which we did
not discuss much in this work, is that it treats all types of
interactions on an equal footing. In particular the sign problem
affects both attractive and repulsive interactions equally. We
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believe it may be worthwhile to explore models with severe
sign problems to see how our algorithm performs in these
more difficult situations.

ACKNOWLEDGMENTS

We thank R. P. Springer, X. Lin, and Sonia Bacca for
helpful discussions. This work is supported in part by the U.S.

Department of Energy, Office of Science, Nuclear Physics
program under Award No. DE-FG02-05ER41368. This work
was supported in part by the Deutsche Forschungsgemein-
schaft (DFG) through the Cluster of Excellence “Precision
Physics, Fundamental Interactions, and Structure of Matter”
(PRISMA+ EXC 2118/1) funded by the DFG within the
German Excellence Strategy (Project ID 390831469).

[1] D. Ceperley, G. V. Chester, and M. H. Kalos, Monte Carlo
simulation of a many-fermion study, Phys. Rev. B 16, 3081
(1977).

[2] M. Troyer and U.-J. Wiese, Computational complexity and
fundamental limitations to fermionic quantum Monte Carlo
simulations, Phys. Rev. Lett. 94, 170201 (2005).

[3] U. J. Wiese, Bosonization and cluster updating of lattice
fermions, Phys. Lett. B 311, 235 (1993).

[4] H. Singh and S. Chandrasekharan, Few-body physics on a
spacetime lattice in the worldline approach, Phys. Rev. D 99,
074511 (2019).

[5] S. Zhang, J. Carlson, and J. E. Gubernatis, A constrained path
Monte Carlo method for fermion ground states, Phys. Rev. B
55, 7464 (1997).

[6] S. Zhang, Auxiliary-field quantum Monte Carlo for correlated
electron systems, in Emergent Phenomena in Correlated Matter,
edited by E. Pavarini, E. Koch, and U. Schollwöck (Verlag des
Forschungszentrum Jülich, 2013).

[7] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla,
K. E. Schmidt, and R. B. Wiringa, Quantum Monte Carlo meth-
ods for nuclear physics, Rev. Mod. Phys. 87, 1067 (2015).

[8] R. Curry, J. Dissanayake, S. Gandolfi, and A. Gezerlis, Aux-
iliary field quantum Monte Carlo for nuclear physics on the
lattice, Philos. Trans. R. Soc. A 382, 20230127 (2024).

[9] S. Chandrasekharan, M. Pepe, F. D. Steffen, and U. J. Wiese,
Nonlinear realization of chiral symmetry on the lattice, J. High
Energy Phys. 12 (2003) 035.

[10] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Monte Carlo
calculations of coupled boson-fermion systems. I, Phys. Rev. D
24, 2278 (1981).

[11] R. T. Scalettar, D. J. Scalapino, and R. L. Sugar, New algorithm
for the numerical simulation of fermions, Phys. Rev. B 34, 7911
(1986).

[12] R. T. Scalettar, D. J. Scalapino, R. L. Sugar, and D. Toussaint,
Hybrid molecular-dynamics algorithm for the numerical sim-
ulation of many-electron systems, Phys. Rev. B 36, 8632
(1987).

[13] S. Duane, A. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid
Monte Carlo, Phys. Lett. B 195, 216 (1987).

[14] S. Sorella, S. Baroni, R. Car, and M. Parrinello, A novel
technique for the simulation of interacting fermion systems,
Europhys. Lett. 8, 663 (1989).

[15] A. D. Kennedy, Algorithms for lattice QCD with dynamical
fermions, Nucl. Phys. B, Proc. Suppl. 140, 190 (2005).

[16] F. Assaad and H. Evertz, World-line and determinantal quan-
tum Monte Carlo methods for spins, phonons and electrons, in
Computational Many-Particle Physics, edited by H. Fehske, R.
Schneider, and A. Weiße (Springer, Berlin, Heidelberg, 2008),
pp. 277–356.

[17] D. Lee, Lattice simulations for few- and many-body systems,
Prog. Part. Nucl. Phys. 63, 117 (2009).

[18] J. E. Drut and A. N. Nicholson, Lattice methods for strongly
interacting many-body systems, J. Phys. G 40, 043101
(2013).

[19] E. F. Huffman and S. Chandrasekharan, Solution to sign prob-
lems in half-filled spin-polarized electronic systems, Phys. Rev.
B 89, 111101(R) (2014).

[20] Z.-X. Li, Y.-F. Jiang, and H. Yao, Solving the fermion sign
problem in quantum Monte Carlo simulations by Majorana
representation, Phys. Rev. B 91, 241117(R) (2015).

[21] Z.-X. Li, Y.-F. Jiang, and H. Yao, Majorana-time-reversal
symmetries: A fundamental principle for sign-problem-free
quantum Monte Carlo simulations, Phys. Rev. Lett. 117,
267002 (2016).

[22] Z. C. Wei, C. Wu, Y. Li, S. Zhang, and T. Xiang, Ma-
jorana positivity and the fermion sign problem of quantum
Monte Carlo simulations, Phys. Rev. Lett. 116, 250601
(2016).

[23] C. E. Berger, L. Rammelmüller, A. C. Loheac, F. Ehmann, J.
Braun, and J. E. Drut, Complex Langevin and other approaches
to the sign problem in quantum many-body physics, Phys. Rep.
892, 1 (2021).

[24] A. Alexandru, G. Basar, P. F. Bedaque, and N. C. Warrington,
Complex paths around the sign problem, Rev. Mod. Phys. 94,
015006 (2022).

[25] F. F. Assaad, M. Bercx, F. Goth, A. Götz, J. S. Hofmann, E.
Huffman, Z. Liu, F. Parisen Toldin, J. S. E. Portela, and J.
Schwab, The ALF (Algorithms for Lattice Fermions) project re-
lease 2.4. Documentation for the auxiliary-field quantum Monte
Carlo code, SciPost Phys. Codeb. 2022, 1 (2022).

[26] D. M. Ceperley, Path integrals in the theory of condensed he-
lium, Rev. Mod. Phys. 67, 279 (1995).

[27] N. Prokof’ev and B. Svistunov, Worm algorithms for classical
statistical models, Phys. Rev. Lett. 87, 160601 (2001).

[28] O. F. Syljuåsen and A. W. Sandvik, Quantum Monte Carlo with
directed loops, Phys. Rev. E 66, 046701 (2002).

[29] D. H. Adams and S. Chandrasekharan, Chiral limit of strongly
coupled lattice gauge theories, Nucl. Phys. B 662, 220 (2003).

[30] J. Frank, E. Huffman, and S. Chandrasekharan, Emergence of
Gauss’ law in a Z2 lattice gauge theory in 1 + 1 dimensions,
Phys. Lett. B 806, 135484 (2020).

[31] S. Elhatisari, E. Epelbaum, H. Krebs, T. A. Lähde, D. Lee,
N. Li, B.-N. Lu, Ulf-G. Meißner, and G. Rupak, Ab initio

calculations of the isotopic dependence of nuclear clustering,
Phys. Rev. Lett. 119, 222505 (2017).

[32] S. Chandrasekharan and U.-J. Wiese, Meron-cluster solution of
fermion sign problems, Phys. Rev. Lett. 83, 3116 (1999).

[33] S. Chandrasekharan, Fermion bag approach to lattice field the-
ories, Phys. Rev. D 82, 025007 (2010).

[34] E. Huffman and S. Chandrasekharan, Fermion-bag inspired
Hamiltonian lattice field theory for fermionic quantum critical-
ity, Phys. Rev. D 101, 074501 (2020).

024002-19



CHANDRASEKHARAN, NGUYEN, AND RICHARDSON PHYSICAL REVIEW C 110, 024002 (2024)

[35] D. Lee, Permutation zones and the fermion sign problem,
arXiv:cond-mat/0202283.

[36] D. B. Kaplan, M. J. Savage, and M. B. Wise, A new expansion
for nucleon-nucleon interactions, Phys. Lett. B 424, 390 (1998).

[37] D. B. Kaplan, M. J. Savage, and M. B. Wise, Nucleon - nucleon
scattering from effective field theory, Nucl. Phys. B 478, 629
(1996).

[38] P. F. Bedaque, H. W. Hammer, and U. van Kolck, Renormal-
ization of the three-body system with short range interactions,
Phys. Rev. Lett. 82, 463 (1999).

[39] P. F. Bedaque, H. W. Hammer, and U. van Kolck, The three
boson system with short range interactions, Nucl. Phys. A 646,
444 (1999).

[40] P. F. Bedaque, H. W. Hammer, and U. van Kolck, Effective
theory of the triton, Nucl. Phys. A 676, 357 (2000).

[41] S. R. Beane, P. F. Bedaque, A. Parreño, and M. J. Savage, Two
nucleons on a lattice, Phys. Lett. B 585, 106 (2004).

[42] E. Epelbaum, H.-W. Hammer, and Ulf.-G. Meißner, Modern
theory of nuclear forces, Rev. Mod. Phys. 81, 1773 (2009).

[43] H. W. Hammer, S. König, and U. van Kolck, Nuclear effec-
tive field theory: status and perspectives, Rev. Mod. Phys. 92,
025004 (2020).

[44] E. Epelbaum, H. Krebs, and P. Reinert, High-precision nuclear
forces from chiral EFT: State-of-the-art, challenges and out-
look, Front. Phys. 8, 98 (2020).

[45] E. Epelbaum, J. Gegelia, U.-G. Meißner, and D.-L. Yao,
Renormalization of the three-boson system with short-range
interactions revisited, Eur. Phys. J. A 53, 98 (2017).

[46] E. Epelbaum, A. M. Gasparyan, J. Gegelia, and U.-G. Meißner,
How (not) to renormalize integral equations with singular po-
tentials in effective field theory, Eur. Phys. J. A 54, 186 (2018).

[47] E. Epelbaum, A. M. Gasparyan, J. Gegelia, U.-G. Meißner,
and X. L. Ren, How to renormalize integral equations with
singular potentials in effective field theory, Eur. Phys. J. A 56,
152 (2020).

[48] A. M. Gasparyan and E. Epelbaum, “Renormalization-group-
invariant effective field theory” for few-nucleon systems is
cutoff dependent, Phys. Rev. C 107, 034001 (2023).

[49] C. Körber, E. Berkowitz, and T. Luu, Renormalization of a
contact interaction on a lattice, arXiv:1912.04425.

[50] D. Lee and T. Schäfer, Neutron matter on the lattice with pion-
less effective field theory, Phys. Rev. C 72, 024006 (2005).

[51] D. Lee, B. Borasoy, and T. Schäfer, Nuclear lattice simulations
with chiral effective field theory, Phys. Rev. C 70, 014007
(2004).

[52] B. Borasoy, H. Krebs, D. Lee, and U. G. Meißner, The triton
and three-nucleon force in nuclear lattice simulations, Nucl.
Phys. A 768, 179 (2006).

[53] B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner,
Lattice simulations for light nuclei: chiral effective field theory
at leading order, Eur. Phys. J. A 31, 105 (2007).

[54] B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner,
Chiral effective field theory on the lattice at next-to-leading
order, Eur. Phys. J. A 35, 343 (2008).

[55] B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner,
Dilute neutron matter on the lattice at next-to-leading order in
chiral effective field theory, Eur. Phys. J. A 35, 357 (2008).

[56] B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, and U.-G.
Meißner, Two-particle scattering on the lattice: Phase shifts,
spin-orbit coupling, and mixing angles, Eur. Phys. J. A 34, 185
(2007).

[57] D. Lee and T. Schäfer, Cold dilute neutron matter on the lattice.
I. Lattice virial coefficients and large scattering lengths, Phys.
Rev. C 73, 015201 (2006).

[58] D. Lee and T. Schäfer, Cold dilute neutron matter on the lattice.
II. Results in the unitary limit, Phys. Rev. C 73, 015202 (2006).

[59] D. Lee, The ground state energy at unitarity, Phys. Rev. C 78,
024001 (2008).

[60] D. Lee, Recent progress in nuclear lattice simulations, Front.
Phys. 8, 174 (2020).

[61] D. Lee, Chiral effective field theory after thirty years: nuclear
lattice simulations, Few-Body Syst. 62, 115 (2021).

[62] E. Epelbaum, H. Krebs, D. Lee, and Ulf.-G. Meißner, Lattice
effective field theory calculations for A = 3, 4, 6, 12 nuclei,
Phys. Rev. Lett. 104, 142501 (2010).

[63] E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Lattice
calculations for A = 3, 4, 6, 12 nuclei using chiral effective field
theory, Eur. Phys. J. A 45, 335 (2010).

[64] E. Epelbaum, H. Krebs, D. Lee, and Ulf.-G. Meißner, Ab Initio

calculation of the Hoyle state, Phys. Rev. Lett. 106, 192501
(2011).

[65] E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Ground
state energy of dilute neutron matter at next-to-leading order
in lattice chiral effective field theory, Eur. Phys. J. A 40, 199
(2009).

[66] T. A. Lähde, T. Luu, D. Lee, U.-G. Meißner, E. Epelbaum,
H. Krebs, and G. Rupak, Nuclear lattice simulations using
symmetry-sign extrapolation, Eur. Phys. J. A 51, 92 (2015).

[67] N. Klein, D. Lee, W. Liu, and U.-G. Meißner, Regularization
methods for nuclear lattice effective field theory, Phys. Lett. B
747, 511 (2015).

[68] N. Klein, D. Lee, and U.-G. Meißner, Lattice improvement in
lattice effective field theory, Eur. Phys. J. A 54, 233 (2018).

[69] N. Klein, S. Elhatisari, T. A. Lähde, D. Lee, and U.-G. Meißner,
The Tjon band in nuclear lattice effective field theory, Eur. Phys.
J. A 54, 121 (2018).

[70] J. M. Alarcón, D. Du, N. Klein, T. A. Lähde, D. Lee, N. Li,
B.-N. Lu, T. Luu, and U.-G. Meißner, Neutron-proton scattering
at next-to-next-to-leading order in nuclear lattice effective field
theory, Eur. Phys. J. A 53, 83 (2017).

[71] N. Li, S. Elhatisari, E. Epelbaum, D. Lee, B.-N. Lu, and Ulf.-G.
Meißner, Neutron-proton scattering with lattice chiral effective
field theory at next-to-next-to-next-to-leading order, Phys. Rev.
C 98, 044002 (2018).

[72] B.-N. Lu, N. Li, S. Elhatisari, D. Lee, E. Epelbaum, and U.-G.
Meißner, Essential elements for nuclear binding, Phys. Lett. B
797, 134863 (2019).

[73] B.-N. Lu, N. Li, S. Elhatisari, D. Lee, J. E. Drut, T. A. Lähde,
E. Epelbaum, and Ulf.-G. Meißner, Ab initio nuclear thermody-
namics, Phys. Rev. Lett. 125, 192502 (2020).

[74] B.-N. Lu, N. Li, S. Elhatisari, Y.-Z. Ma, D. Lee, and Ulf.-G.
Meißner, Perturbative quantum Monte Carlo method for nuclear
physics, Phys. Rev. Lett. 128, 242501 (2022).

[75] S. Elhatisari et al., Wave function matching for the quantum
many-body problem, Nature (London) 630, 59 (2024).

[76] S. Bacca, N. Barnea, W. Leidemann, and G. Orlandini,
Isoscalar monopole resonance of the alpha particle: A prism
to nuclear Hamiltonians, Phys. Rev. Lett. 110, 042503
(2013).

[77] S. Kegel, P. Achenbach, S. Bacca, N. Barnea, J. Beričič, D.
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