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Abstract

The simplified approach to the Bose gas was introduced by Lieb in 1963 to study the ground
state of systems of interacting Bosons. In a series of recent papers, it has been shown that
the simplified approach exceeds earlier expectations, and gives asymptotically accurate pre-
dictions at both low and high density. In the intermediate density regime, the qualitative
predictions of the simplified approach have also been found to agree very well with quantum
Monte Carlo computations. Until now, the simplified approach had only been formulated for
translation invariant systems, thus excluding external potentials, and non-periodic boundary
conditions. In this paper, we extend the formulation of the simplified approach to a wide
class of systems without translation invariance. This also allows us to study observables in
translation invariant systems whose computation requires the symmetry to be broken. Such
an observable is the momentum distribution, which counts the number of particles in excited
states of the Laplacian. In this paper, we show how to compute the momentum distribution
in the simplified approach, and show that, for the simple equation, our prediction matches
up with Bogolyubov’s prediction at low densities, for momenta extending up to the inverse
healing length.

Keywords Bose gas - Simplified approach to the Bose gas - Trapped Bosons

1 Introduction

The Bose gas is one of the simplest models in quantum statistical mechanics, and yet it has
arich and complex phenomenology. As such, it has garnered much attention from the math-
ematical physics community for over half a century. It consists of infinitely many identical
Bosons and is used to model a wide range of physical systems, from photons in black body
radiation to gasses of helium atoms. Whereas photons do not directly interact with each other,
helium atoms do, and such an interaction makes studying such systems very challenging. To
account for interactions between Bosons, Bogolyubov [5] introduced a widely used approx-
imation scheme that accurately predicts many observables [23] in the low density regime.
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Even though Bogolyubov theory is not mathematically rigorous, it has allowed mathematical
physicists to develop the necessary intuition to prove a wide variety of results about the Bose
gas, such as the low density expansion of the ground state energy of the Bose gas in the
thermodynamic limit [1, 13-16, 34], as well as many other results in scaling limits other than
the thermodynamic limit (see [17] for a review, as well as, among many others, [2—4, 6,7, 11,
12, 19,27, 28, 30-32]). In this note, we will focus on the ground state in the thermodynamic
limit.

In 1963, Lieb [24-26] introduced a new approximation scheme to compute properties
of the ground state of Bose gasses, called the simplified approach, which has recently been
found to yield surprisingly accurate results [8—10, 20]. Indeed, while Bogolyubov theory is
accurate at low densities, the simplified approach has been shown to yield asymptotically
accurate results at both low and high densities [8, 9] for interaction potentials that are of
positive type, as well as reproduce the qualitative behavior of the Bose gas at intermediate
densities [10]. In addition to providing a promising tool to study the Bose gas, the derivation
of the Simplified approach is different enough from Bogolyubov theory that it may give novel
insights into longstanding open problems about the Bose gas.

The original derivation of the Simplified approach [24] is quite general, and applies to any
translation invariant system (it even works for Coulomb [26] and hard-core [10] interactions).
In the present paper, we extend this derivation to systems that break translation invariance.
This allows us to formulate the simplified approach for systems with external potentials, and
with a large class of boundary conditions. In addition, it allows us to compute observables in
systems with translation invariance, but whose computation requires breaking the translation
invariance. We will discuss an example of such an observable: the momentum distribution.

The momentum distribution M (k) is the probability of finding a particle in the state ¢/**.
Bose gasses are widely expected to form a Bose—Einstein condensate, although this has
still not been proven (at least for continuum interacting gasses in the thermodynamic limit).
From a mathematical point of view, Bose—Einstein condensation is defined as follows: if
the Bose gas consists of N particles, the average number of particles in the constant state
(corresponding to k = 0 in e/%*) is of order N. The condensate fraction is defined as the
proportion of particles in the constant state. The momentum distribution is an extension of
the condensate fraction to a more general family of states. In particular, computing M (k) for
k # 0 amounts to counting particles that are not in the condensate. This quantity has been
used in the recent proof [15, 16] of the energy asymptotics of the Bose gas at low density.
A numerical computation of the prediction of the Simplified approach for M (k) has been
published in [22].

The main results in this paper fall into two categories. First, we will derive the simplified
approach without assuming translation invariance, see Theorem 1. To do so, we will make
the so-called “factorization assumption”, on the marginals of the ground state wavefunction,
see Assumption 1. This allows us to derive a simplified approach for a wide variety of
situations in which translation symmetry breaking is violated, such as in the presence of
external potentials. Second, we compute a prediction for the momentum distribution using
the simplified approach. The simplified approach does not allow us to compute the ground
state wavefunction directly, so to compute observables, such as the momentum distribution,
we use the Hellmann—Feynman technique and add an operator to the Hamiltonian. In the
case of the momentum distribution, this extra operator is a projector onto ¢’**, which breaks
the translation invariance of the ground state wavefunctions. In Theorem 2, we show how
to compute the momentum distribution in the simplified approach using the general result
of Theorem 1. In addition, we check that the prediction is credible, by comparing it to the
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prediction of Bogolyubov theory, and find that both approaches agree at low densities and
small k, see Theorem 3.

The result in this paper concerns the derivation of the Simplified approach for Bose
gasses without translation invariance. As of this writing, this derivation has not been done
in a mathematically rigorous. Doing so is an important open problem (as the predictions of
the simplified approach are expansive, even more so than Bogolyubov theory). However, the
derivation of the simplified approach in translation invariant settings has also not been derived
rigorously, and it would seem that the translation invariant situation will be easier to approach.
So justifying the simplified approach in the translation invariant setting may be a more
pressing task. That being said, the Simplified approach has proved to have strong predictive
power [10, 22], so the extension presented in this paper has the potential to yield interesting
physical predictions, as the translation-invariant approach has done (although, in all fairness,
the non-translation invariant Simplified approach is computationally more difficult than the
translation invariant one). In addition, the derivation of the simplified approach for the trapped
Bose gas may shine some light on an extension of Gross—Piatevskii theory beyond low density
regimes. Work in this direction is ongoing.

Instead of providing a derivation of the simplified approach from the many-body Bose
gas (which is beyond reach at the moment), this paper aims to put the derivation of the
simplified approach in non-translation invariant settings on a firm footing, and make clear
what is rigorous, and what is an approximation.

The rest of the paper is structured as follows. In Sect. 2, we specify the model and state
the main results precisely. We then prove Theorem 1 in Sect. 3, Theorem 2 in Sect. 4.1, and
Theorem 3 in Sect. 4.2. The proofs are largely independent and can be read in any order.

2 The Model and Main Results

Consider N Bosons in a box of volume V denoted by 2y := [— V% /2, V% /213, interacting
with each other via a pair potential v € L; (.(2‘2,) that is symmetric under exchanges of parti-
cles: v(x, y) = v(y, x) and non-negative: v(x, y) > 0. The Hamiltonian acts on Lz,sym((){y)
as

1 -
H::_QZAH' Z U(xisxj)+ZPi )

i=1 1<i<j<N i=1

where A; = Bfl_ is the Laplacian with respect to the position of the i-th particle and P; is an
extra single-particle term of the following form: given a self-adjoint operator & on Ly (§2y),

P=1"@w 1%V )

@ can be chosen to be any self-adjoint operator, as long as H is self-adjoint. For instance, if
we take @ to be a multiplication operator by a function vg > 0, then ) ; P; is the contribution
of the external potential vg. In particular, this potential could be taken to scale with the volume
of the box V, as in the Gross-Pitaevskii approach [18, 33]. Alternatively, vg could be taken to
be a periodic external potential. Or @ could be a projector onto ¢'**, which is what we will
do below to compute the momentum distribution. Because P; acts on a single particle, it can
prevent H from being translation invariant (which is the case when @ is the multiplication
operator by vg > 0). But even if it does not, because the ground states can be degenerate
in the presence of P; (see below), the translation invariance of the Hamiltonian does not
necessarily translate into the translation invariance of the ground states.
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‘We may impose any boundary condition on the box, as long as the Laplacian is self-adjoint.
We will consider the thermodynamic limit, in which N, V — oo, such that

v 3)
V=P

is fixed. We consider a ground state 19, which is an eigenfunction of H with the lowest
eigenvalue Ey:

Hypo = Eovo. “

When the operator z is a multiplication operator by a function vy > O (that is, when it
is a single-body potential), the ground state is unique, real, and non-negative (this follows
from the Perron-Frobenius theorem and the fact that v and vy are non-negative, see e.g.
[21, Exercise E5]). In more general settings, this is not necessarily the case. In such a case,
the Simplified approach should be approximating the properties of one of the ground states,
but gives no control over which one it is: as will be apparent below, the derivation of the
Simplified approach does not depend on which eigenstate Vg is, just on the factorization
Assumption 1.

This is not to say that the Simplified approach applies to all eigenstates, or even to
all ground states. The crucial assumption in the simplified approach is the factorization
assumption 1. As we will discuss in more detail below, this is actually an approximation
rather than an assumption, since it can be shown that it cannot possibly hold exactly for any
wavefunction. As such, understanding which states best approximately satisfy the factoriza-
tion assumption is not an easy task. For this reason, we will remain agnostic so as to which
of the ground state is studied.

In order to take the thermodynamic limit, we will assume that v is uniformly integrable
inV:

(e, )] < 35, 9). /R dy 5(r.y) < ¢ )

where v and ¢ are independent of V. In addition, we assume that, for any f that is uniformly
integrable in V,

/dx o f(x) < c. (6)

2.1 The Simplified Approach Without Translation Invariance

The crucial idea of Lieb’s construction [24] is to consider the wave function g as a probability
distribution, instead of the usual |/|>. When @ is the multiplication by vy > 0, ¥ > 0,
so 1o, normalized by its L norm, is indeed a probability distribution. In other cases, the
probabilistic interpretation of ¥ falls through, and the factorization assumption 1 can no
longer be interpreted in terms of statistical independence. We then define the i-th marginal
of Yo as

dxjqy dxy v
e T Yoxn, e, XN)
gi(xr, L) = / d‘;l dyx @)
[5 SE Yon. ---w)

that is

fdx,'H ---de lflo(xl,...,xN)
[dyi...dyy Yo, ..., yN)

gilxt,...,x) =V 8)
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In particular, fori € {2, ..., N},

dx; dx
/ v gi(x1, .., X)) = gi—1 (X1, .., Xiz1), /7 gi(x) =1 9
Because of the symmetry of ¥ under exchanges of particles, g; is symmetric under x; < x;.

Remark: If the ground state is not unique, then there may be choices of 1/ that are orthog-
onal to the constant wavefunction, that is, that integrate to 0: f dyy...dynvo(y1, ..., yN) =
0. The derivation in this paper precludes such a possibility, as g; would be ill defined.
We will therefore assume that ¥/o has non-trivial overlap with the constant wavefunction:
f dyi...dyn Yvo(y1, ..., yn) # 0 (which is certainly the case whenever the ground state is
non-negative).

We rewrite (4) as a family of equations for g;.

1. Integrating (4) with respect to xi, ..., xy, we find that
Eo =Gy + Fy" + By (10)
with
N(N —1)
G(()z) L= T/dxdy U(X, y)GZ(xa y) (11)
V=N[4 12
0 =7y | dxma (12)

and By is a boundary term:

N
By = ~5v dx Agj(x). (13)
2. If, now, we integrate (4) with respect to xa, ..., xy, we find

A
~ Z000) + @) + 67w + 6@ + AP0 + Bi(x) = Eogi(x) (14)

with
GP ) : = NT_lfdy v(x, Y)g2(x, y) (15)
6P = T2 [avaz vo, 0ex, .2 (16)
FP ) : = N‘: 1 /dy @yg2(x, y) (17)

in which we use the notation @, to indicate that z applies to y — g2(x, y), and By is a
boundary term

N -1
Bi(x) = ——— | dy Aye(x, y). (18)

3. If we integrate with respect to x3, ..., xy, we find

1
_E(Ax + Ay)GZ(xa )’) + U(X, )’)gz(x, }’) + (wy + wx)gz(xv Y) +

+G9 (1) + G0, ) + B (x, y) + Ba(x, y) = Eoga(x, ) (19)
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where, here again, @ indicates that @ applies to the y-degree of freedom, whereas wy
applies to x, with

603 = 2 [ dz ) 4 0 Dm0 0)
N —-2)(N -3

G, y): = %/dzdt v(z, Daa(x, y,2.1) 1)

Ao =0 [ oy 22)

and B; is a boundary term

By(x) = —

/dZ Azg3(x, y,2). (23)
Inspired by [24], we will make the following approximation.

Assumption 1 (Factorization) We will approximate g; by functions g;, which satisfy the
following:

g2(x,y) = g1@g1 (1 — uz(x, y)) (24)
and fori = 3, 4,
gitr,...x)= [ Wi, x) (25)
1<j<I<i
with
Wi(x, y) = fi(0) i) — i (x, y)) (26)

in which, fori = 2,3,4 and j = 3,4, f; and u; are bounded independently of V, f; > 0,
and u; is uniformly integrable in V:

i (x, Y| < i (x, y), /dy ui(x,y) <ci 27
with ¢; independent of V. We further assume that, fori = 1,2,3, Vx, ..., xi_1,
lim fdxi Ay 8i(x1,...,x) =0 (28)
V—oo

in other words, these boundary terms vanish in the thermodynamic limit (these are indeed
boundary terms by the divergence theorem).

In other words, g; factorizes exactly as a product of pair terms W;. The f; in W; allow for W;
to be modulated by a slowly varying density, which is the main novelty of this paper compared
to [24]. The inequality (27) ensures that u; decays sufficiently fast on the microscopic scale.
Note that, by the symmetry under exchanges of particles, u; (x, y) = u;(y, x).

Note, in addition, that assumption (24) is less general than (25): we impose that, as x and y
are far from each other, g, converges to g;(x)g1(y). This is necessary: if we merely assumed
that g2(x,y) = fa(x) f2(y)(1 — uz(x, y)), we would not necessarily recover that fo = gi.
However, as we will show below, assumption 1 does imply that f3 = g; and f4 = g1 (up to
corrections in V ~! that are irrelevant).

Here, we use the term “assumption” because it leads to the simplified approach. However, it
is really an approximation rather than an assumption: this factorization will certainly not hold
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true exactly. At best, one might expect that the assumption holds approximately in the limit
of small and large p, and for distant points, as numerical evidence suggests in the translation
invariant case. In the present paper, we will not attempt a proof that this approximation is
accurate, and instead explore its consequences. Suffice it to say that this approximation is one
of statistical independence that is reminiscent of phenomena arising in statistical mechanics
when the density is low, that is, when the interparticle distances are large. In the current
state of the art, we do not have much in the way of an explanation for why this statistical
independence should hold (especially in cases where 1/ is not even non-negative); instead,
we have extensive evidence, both numerical [10] and analytical [8, 9], that this approximation
leads to very accurate predictions.

From this point on, we will make no further approximations, and derive the consequences
of assumption 1 in a mathematically rigorous way. This thus makes clear what is an approx-
imation, and what is not.

The equations of the Simplified approach are derived from Assumption 1, using the eigen-
value Eq. (4) along with

B =1 29

/ T = 29)
d

/ 7y 2205, y) = g1(x) (30)
d

/§g3<x,y,z)=gz(x,y) G1)
dz dt _ -
vV ga(x,y,2,1) = ga(x,y) (32)

(all of which hold for g;, by (9)) to compute u; and f;.

In the translation invariant case, the factorization assumption leads to an equation for g»
alone, as g is constant. When translation invariance is broken, g; is no longer constant, and
the simplified approach consists in two coupled equations for g1 and g».

Theorem 1 If g; satisfies Assumption 1, the Egs. (14) and (19) with g; replaced by g\ and
92 by g2, as well as (29)—(32), then g1 and u; satisfy the two coupled equations

A 1, - _ _
(—5 T @ — (@) +2E0) = (EGN+ 5 (A) —(A) - C(X))) g1(x)
+X1(x) =0 (33)

and

1 _ - _
<_§(Ax +A)) +v(x,y) —2pK (x, y) + p°Lix, y) + Ra(x, y))

g1(x)g1 (V) —uz(x,y)) + X2(x,y) =0 (34
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where

d d
(f) = / OO, (@)= / T a0 (35)
S(x,y) == v, (1 —ua(x, ), fikfo(x,y) = /dz 81(2) f1(x, 2) f2(z, y) (36)
E(x) == gfdy g1 (MNS(x,y), A) = p?Sxurkus(x, x) (37
C(x) = 2p2/dz g1(@Qu*S(x, 2) + Zp/dy @y (g1 (Mua(x, y)). (38)
K(x,y) = Sxuz(x,y) (39)
L(x,y) := Sxus¥us(x, y) — 2uz%(uz (u2%S))(x, y)

1 _
+5 / dzdt g1(2)g1(t)S(z, Hua(x, uz (x, Hua(y, uz(y, ) (40)

Ry(x,y) =2(E(x) + E(y) — 2(E) + (wx + &y — 2 (@)

1 - . - -
+5 (A) + A(y) = 2{A) = C(x) = C()) + 2pur% (u2(€ — (£))) (41)

+,0/dz @ (g1(D)uz(x, Duz(y, 2)) — purkus (@)

in which @y is the action of @ on the x-variable, and similarly for wy and

X, — 0 (42)

V—oo
pointwise. The prediction for the energy per particle is defined as
e =€)+ (m)+ 2o (43)
where Yo — 0as V — oc.
This theorem is proved in Sect. 3.

Let us compare this to the equation for u in the Simplified approach in the translation
invariant case [10, (5)], [20, (3.15)]:

— Aux) = (1 = u(@) (v06) = 20K () + p* L)) (44)
K:=uxS, SO :=—-u(vQ) (45)
L:=usxu%xS—2ux@u=S))+ % / dydz u(y)u(z — x)u(@u(y —x)Siz —y). (46)

We will prove that these follow from Theorem 1:

Corollary 1 (Translation invariant case) In the translation invariant case v(x, y) = v(x — y)
and @ = 0 with periodic boundary conditions, if (33)—(34) has a unique translation invariant
solution, then (34) reduces to (44) in the thermodynamic limit.

The idea of the proof is quite straightforward. Equation (34) is very similar to (44), but
for the addition of the extra term R,. An inspection of (41) shows that the terms in R,
are mostly of the form f — (f), which vanish in the translation invariant case, and terms
involving @, which is set to 0 in the translation invariant case. The only remaining extra
term is C(x) 4+ C(y), which we will show vanishes in the translation invariant case due to
the identity (30).
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Theorem 1 is quite general, and can be used to study a trapped Bose gas, in which there is
an external potential vy. In this case, & is a multiplication operator by vg. A natural approach
is to scale vy with the volume: vy(x) = DoV 3)c) in such a way that the size of the trap
grows as V — o0, thus ensuring a finite local density in the thermodynamic limit. Following
the ideas of Gross and Pitaevskii [18, 33], we would then expect to find that (33) and (34)
decouple, and that (34) reduces to the translation invariant Eq. (44), with a density that is
modulated over the trap. However, the presence of Ry in (34)and C in (33) breaks this picture.
Further investigation of this question is warranted.

2.2 The Momentum Distribution

The momentum distribution for the Bose gas is defined as

N
. 1
MEED k) = =3 ol Pi l9o) (47)

i=1

where ¢ is the ground state of the Hamiltonian

N
1
_EZAH_ Z v(x; — xj) (48)
i=1 1<i<j<N
and
wf = e|eikx><eikx|f = et / dy e ™ f(y) (49)

and P; is defined as in (2):

Py (xi, ..., xN) =ee"""f/dyy RV Xy, X1 Vis Xit 1 - XN). (50)

Equivalently,

d Ey
M(Exact) = — —~
® de N

(S

e=0
where Ej is the ground-state energy in (4) for the Hamiltonian (48). Using the simplified
approach, we do not have access to the ground state wavefunction, so we cannot compute
M using (47). Instead, we use the Hellmann-Feynman theorem, which consists in adding
>"; Pi to the Hamiltonian. However, doing so does not ensure the uniqueness of the ground
state, and thus, we are not guaranteed that the wavefunction 1 is translation invariant. This
is why Theorem 1 is needed to compute the momentum distribution within the framework of
the Simplified approach. (A similar computation was done in [10], but, there, the derivation
of the momentum distribution for the Simplified approach was taken for granted.)

By Theorem 1, and, in particular, (43), we obtain a natural definition of the prediction of
the Simplified approach for the momentum distribution:

a
Mk = 2= () + (@ )le=o - (52)

Theorem 2 (Momentum distribution) Under the assumptions of Theorem 1, using periodic
boundary conditions, if v is translation invariant and w = 0, and if (33) and (34) have
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solutions that are twice differentiable in €, uniformly in V, then, if k # 0,

M(k) = i B/dx (I —ux))v(x) (53)
de 2 =0
where
— Au(x) = (1 — u(x)v(x) — 2pK (x) + p*L(x) + € F (x) (54

where K and L are those of the translation invariant Simplified approach (45) and (46) and
F(x) := —2u(—k) cos(kx). (55)

We thus compute the momentum distribution. To check that our prediction is plausible, we
compare it to the Bogolyubov prediction, which can easily be derived from [29, Appendix A]:

) n
M (Bogolyubov) 3y _i <] _ k—i—2pv(k)) (56)

2p V4 + 4k2pi (k)

(this can be obtained by differentiating [29, (A.26)] with respect to € (k), which returns the
number of particles in the state ¢'**, which we divide by p to obtain the momentum distri-
bution). Actually, following the ideas of [23], we replace v by a so-called “pseudopotential”,
which consists in replacing v by a Dirac delta function, while preserving the scattering length:

v(k) = 4ma (57)

where the scattering length a is defined in [29, Appendix C]. Thus,

2
M(Bogolyubov)(k) - _ 1 <1 _ k—|—871pa) . (58)

20 Vk* +16mk2pa

We prove that, for the simple equation, as p — 0, the prediction for the momentum
distribution coincides with Bogolyubov’s, for |k| < ./pa. The length scale 1/,/pa is called
the healing length, and is the distance at which pairs of particles correlate [15]. It is reasonable
to expect the Bogolyubov approximation to break down beyond this length scale.

The momentum distribution for the simple equation, following the prescription detailed
in [8-10, 20], is defined as

A (simpleq) k) = i [

de 2 (59)

/dx (1 —ux))v(x)

e=0
where [8, (1.1)—(1.2)]

— Au(x) = (1 —u(x))v(x) — deu + 2peu s u + €F(x), e:= g/dx (1 —u(x)v(x) (60)

where F was defined in (55).

Theorem 3 Assume that v is translation and rotation invariant (v(x, y) = v(|Jx — y|)), and
consider periodic boundary conditions. We rescale k:

k
K=57 (61)

we have, for all k € R3,
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. 1 241
lim pMEMPIED (3 /o) — fim pAqBogolyubov) o oy - L KL ) 6y
e—0 e—0 2 /(KZ T ])2 —1

The rotation invariance of v is presumably not necessary. However, the proof of this
theorem is based on [9], where rotational symmetry was assumed for convenience.

3 The Simplified Approach Without Translation Invariance, Proof of
Theorem 1

3.1 Factorization

We will first compute f; and u; fori = 3,4 in Assumption 1.

3.1.1 Factorization of g3

Lemma 1 Assumption 1 withi = 2, 3 and (29)—(31) imply that

3(x, ¥, 2) = 1)1 (Me1@ (1 —u3(x, ) — u3(x, )1 —u3(y, )1+ O(V ") (63)

with
u3(x, y) 1 =uz(x,y) + W (64)
w3(x, y) = (1 —ua(x, y))/dz g1(Dua(x, Dua(y, 7). (65)
Proof Using (31) in (25),
g2(x1,x2) = W3(x1,x2)/ d—y Ws3(x1, x3) W3 (x2, x3). (66)
1. We first expand to order V1. By (27),
/ dvsz(Z)us(x,Z) =0 (67)
50, by (26),
g2(x, ) = fF0) F 00 = u3(x, y)) (/ d—vz @+ 0<v*1)) : (68)
By (24),

d
g g (M —uz(x, ) = ) MU —us(x, y)) (/ 7‘7’ @)+ 0<V‘1)> :
(69)

We take f dvy on both sides of this equation. However, by (30),

d
gl(x)/ Vy g1 —u2(x, y)) = g1(x) (70)
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so, by (29),

fdy g1(ua(x, y) =0. (71)

Combining this with (67), we find
2 dy ., ? -1
g1(x) = fy(x) /7f3 (y))) +0(V7) (72)

and, integrating once more implies that | dvy f32(y) =1+ 0(V~"). Therefore,

@) =g+ 0wy (73)
and
uz(x, y) = up(x, y)(1+ 0(V=h). (74)

2. We push the expansion to order V ~2: (66) is
d

g, y) = [0 - u3(x,y))/ sz%(z)(l —u3(x,2) —uz(y. 2) +uz(x, Duz(y. 2). (75)
By (73)—(74) and (24),

2 2 dz ,

S35 5 —uz(x, y)) 7]”3 (@) =g1(x)g1 (Y —uz(x, y))
dz _
-(1 +/7 (81(2)(ua(x, 2) + ua(y, z) — ua(x, )uz(y, 2))) + OV 2)). (76)
Therefore, by (71),

2 2 dz .,
S50 (A —us(x, y))/ 7.}‘3 (@) = g1(x) g1 ()1 — ua(x, y))

dz _
: (1 - / Vgl(z)uz(x, Dua(y,z) + OV 2)) . (77)
Now, let us apply f %- to both sides of the equation. Note that, by (27),
d dz _
/ 7y g1(Mua(x, y) f J 81@uax, Jua(y, ) = OV ), (78)

Furthermore, by (71),

dy dy dz
/* g1(Yuz(x,y) =0, fv gl(y)/ v g1(@ua(x, DJuz(y,z) =0 (79)

\%
and by (73) and (74),
f dvy S Gus(x,y) = / dvy gi(Mu2(x, y) + 0V H =0V, (80)
We are thus left with
f3(x) ( / dvy f32(y)>2 =211+ 0(V7?). 81)
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Taking | dvx-, we thus find that

3
( / d%ff(x)) =1+0(V7? (82)
and
) =g+ 0V, (83)
Therefore,
1
1—us(x,y) = (1 —uz(x,y)) (1 - V/dz g1(@ua(x, Duz(y, 2) + 0(V‘2)> . (84)

[m}

3.1.2 Factorization of g4

Lemma 2 Assumption 1 and (29)—(32) imply that

84 (x1, x2, x3, x2) = g1(x1)81(x2)81(x3)81 (x4) (H(l —ug(x;, xj))) +ov=2) (85
i<j
with

2w,
ua(x. y) = ur(x, y) + W (86)

where w3 is the same as in Lemma 1.

Proof Using (32) in (25),

dx3dxy
2

v Wy (x1, x3) Wa(x1, x4) Wa(x2, x3) Wa(x2, x4) Wa(x3, x4).  (87)

g2(x1,x2) = W4(X1sX2)/
1. We expand to order V~'. By (27),
dz 3 -1
/7f4 @Duax,z) =0V ) (88)
so by (26),
3 3 dzdt 5 | 3 -1
82(x,y) = fi () ff (M1 —ualx, y)) (f Wf“ @f7 @)+ oW )) .89

By (24),

d 2
g1(x)g1(y)<1—uz(x,y»=f2<x>f3<y>(1—u4(x,y>><(/ vsz(z)> +0(v—1)>. (90)

Applying f dv‘ to both sides of the equation, using (71) and (88),
3
_ 3 dy 3 —1
g1(x) = fa(x) v L) o). oD
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Integrating once more, we have f dvyff(z) =14+ 0WV1and

fi) =a@a+ow). (92)
Therefore,
us(x,y) = ur(x, y)(1 + O(V™1h). (93)

2. We push the expansion to order V ~2: by (27),

dzdt o dzdt iy
/V2 us(x, Jua(y, 1) = O(V™"7), /V2 us(x, 2ug(z, 1) = 0(V"")  (94)

dZdt 2
7“4()6’ Dug(x, 1) = 0(V™7) (95)
SO
dzd
0y = BEORMA —us ) ( / SRR
dzd.

+ V—ztgmz)gl (0)(=2u4(x, 2) — 2us(y. 2) — ug(z, 1) + 2ua(x, Dua(y. 2)) + 0(v—2)> . (96)

By (92), (93), and (24)
d 2
£ 00 = ug(x, y) (f 71 ff(z)) = 1 g1 (1 —ua(x, )
dzd
~<1 +/é—2’ 8181 (N Quz(x, 2) + 2uz(y, 2) +uz(z, 1) = 2un(x, Duz(y, 2)) + 0(v—2)>. o7

By (71),
3 3 dz 3 ?
£ L = ualx ) / e
d
— g1 a1 — ur(x, y) (1—2 / Vzgl(z)uz(x,z)uz(y,zw0<v—2>>. (98)

We apply f dvy- to both sides of the equation. By (78)-(80), we find

d 3
fi) ( f %ff(x)) =g1(x)(1+0(V2)). (99)
Taking | dvx we find that
fax) =1+ 0V (100)
and
f43(X) =gi(x)(1+0(V72)). (1o1)
Therefore,
2
1—ug(x, y) = (1 —uz(x, y)) (1 -y /dz g1@ua(x, Dua(y, 2) + 0(v—2)> . (102)
O
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3.2 Consequences of the Factorization

proof of Theorem 1 We rewrite (10), (14) and (19) using Lemmas 1 and 2.
1. We start with (10): by (5) and (24),

N(N 1)
GP =" / dxdy v(x, y)g1(x)g1 () —ua(x, y) + 0(V"H  (103)
SO
N(N —-1)
By = 205 [ avdy v g g1 0001 = )
+%/dx @g1(x) 4+ By+ 0. (104)

2. We now turn to (14): by (5) and (24),

2 _E _ -2
Gy (x)—vgl(x) dy v(x, y)g1(»)d —uz(x, ¥)) + 0(V™) (105)

and by Lemma 1,
2

N
GV x) = gi(x) (—

72 /dydz v(y, D81(N&1(A — ua(x, Y1 — uz(x, 2))

3N
(I'—u3(y,2)) — W/dydz v(y, 281(Mg1 @)1 —uz(y, 2)) + O(V_l))
(106)

(we used (64) to write uz = up + O(V_] ); this works fine for u3(x, y) and u3(x, z) because
the integrals over y and z are controlled by v(y, z)ws(x, y) and v(y, z)w3(x, z) using (5)
and (27); in the first term, it does not work for u3(y, z), as v(y, z)w3(y, z) can only control
one of the integrals, and not both; the second term has an extra V1 that lets us replace u3
by u2) and by (27) and (6),

N 1
FP 00 = g1(0) (7 /dy (1)1~ w0 ) — /dy g1y + 0<V“)> . (107)

The first term in G (13) is of order V:

2
2 /dydz v(y, 2)g1(»g1@) (1 —uz(x, )1 —uz(x, 2))(1 —u3(y, z))
2
=52 /dydz v(y, 2)81(neg1 (@) (1 —uz(y, 2))

2

~3v3 /dydz v(y, 2)g1(Mg1@w3(y, 2) +

2
tov2 fdydz v(y, 2)81(g1 (@) (1 —uz(y, 2))(—ua(x, y)
—u(x, 2) + ua(x, Vua(x, 2)) + OV (108)

in which the only term of order V is the first one, and is equal to the first term of order V
in Ey, and thus cancels out. There is a similar cancellation between the second term of order
Vin F{*) and Eo. All in all,
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A - _ - -
(—5 +@+ 67w+ 6P+ B @)+ Bo - Bo> 10+ Bi) = g1 00V (109)

with, recalling p := N/V,

~(2
GP) =0 / dy v(x, y)g1(»(1 — ua(x, y)) (110)
and using (65),
=(3) p [ dydz
G () :=75f v v(y, 2)81(Mg1 (@)1 —uz(y, 2)) 3+p/dt g1(Muz(y, Hua(z, 1) ) +
2
+"7/dydzv(y,zml(y)gl(z)(l —up (v, D) (—ua (x, ¥) —up (x, 2) + ua (x, Yuz(x,2))  (111)
_ d
P00 = —pfdy @y (81 (y)uz(x,y»—fvy @81 (112)
_ dxd
Eo :=§f T ()81 (810D~ 2. ) (113)

Rewriting this using (35)—(38), we find (33) with
T1(x) := Bi(x) — Bogi(x) + O(V™"). (114)

3. Finally, we rewrite (19): by (5) and Lemma 1,

N
65 .y = a1 @ —ua(x.y)

(/ dz (v(x,2) + v(y, 2)g1(@ A —uz(x, 2)(1 —uz(y, 2)) + O(Vfl)) (115)
and by Lemma 2,

2

COPN N
Gy (x,y) =g1(x)g1(y) m(lfuzx(x,y))

/dzdl v(z,1)81(2)81 (M) (1 — ug(z, ) (x, y, z, 1)

SN
—ﬁ(l —up(x, y))[dzdt v(z, g1 (2)g1 (M1 —ux(z, 1) + O(V_l)) (116)

O, y,z,0) =1 —up(x, ) —ua(x, 1) (A —uz(y, 2)(A —u2(y, 1) (117)

and by (27) and (6),
F(x,y) = g1(0)g1(y) (%(1 —u3(x. y)) / dz (1) (1 — uz(x, )1 — uz(y. 2)))
—é(l - uz(x,y»/dz wgi(2) + 0(v—1>>. (118)
The first term in G5 is of order V: by (86),
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N2
Sz d 7u4(x,.v))fdzdt v(z, )81 ()81 () (1 — ua(z, NI(x, y, 2, y)
N2
= Sva =) [ dadt v g @a O - 10 0)
N2
— g w3, y)fdzdt v(z,)81(2)81 (M1 —ua(z, 1))
N2
_W(l —uz(x,y))fdzdt v(z,1)g1(2)g1(Hw3(z, 1)
N2 —1
+oyz —uz(x,y»/dzdzu(z, Ng1 @1 O —ua(z,0) (M(x,y, 20 —H+ow™hH  (119)

in which the only term of order V is the first one, and is equal to the term of order V in
Eo, and thus cancels out. There is a similar cancellation between the term of order V in F2(3)

and Eg. All in all,
1 _ _ _ _
(—me + Ay + oY) + o F oy + G () + 68 (x,y) + B (x, y) + Eo — Bo)
4108101 — w2 (x. ) + Ba(x. y) = g1(0)g1 () OV (120)

with
GP(x,y) = p/dz (v(x, 2) + v(y, )1 @ — ua(x, )1 —uz(y,2)) (121

and by (65),

60wy i= =2 (5 + prdr 21U (. Nua(y. r))
dzdt
/ v v(z,1)g1(2)g1 (1 —up(z, 1)—
5 [ dzdi (122)
—p / v(z,1)g1 (g1 — uz(z,t))/dr g1 (Nua(z, Nuy(t, r)+

1%
2
+2 /dzdz vz Dg1 1O — uz . 1) (Tx, . 2.0 — 1)

P,y = pfdz w2 (g1 () (~un(x, 2) — up(y, 2) + uz(x, Duz(y, 2)))
d
- (2+pfdrg1<r>u2(x,r>uz<y,r>)/VZ @81 (123)
_ dxdy
Eq =§f T g1 (081 ()1~ . ). (124)

4. Expanding out IT, see (117), we find (34) with

_ _ _ d _
Rﬂ%y%=p/dzmQW?@w%+M»@—Zfi;&UWOJO

2
+2 <S'>T<u2>T<u2(x,x) + Skuskus (v, y) — 2/ dt 81 (D) SxurFuy (t, z))
2 v (125)

_ d _
+p? / dzdt g1(2)g1 (Dua(x, Duz(y, 2) <S(z,r>— / V’gl(r)S(z,n)
—p2 / dr g1(t)(Skus (x, 1) + Skup (v, 1) + ﬁ2(3)(x, y) + @y + @y

and
(126)

Zr(x,y) i= Ba(x, y) — Bog1(x)g1 () (1 — ua(x, ) + OV

Using (37) and (38), (125) becomes (41).
@ Springer
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5. Finally, (43) follows from (10) with

Zo:=Bo+O0(Vh. (127)

O

3.3 Sanity Check, Proof of Corollary 1

Proof of Corollary 1 Assuming the translation invariance of the solution, g (x) is constant.

By (29),
g1(x) =1.

Furthermore, w = 0. We then have
S(x,y)=Skx—y), Kx,y)=Kx—y), Lx,y)=Lx-y)
(see (45) and (46)). Furthermore,

em=em = =2 [arsm
A(x) = A(y) = (A) = pS % u % u(0)
C(x) = Ca(y) =207 f dz u(z) / dt S(t)
which vanishes by (30). Thus,
Ra(x,y) =0.

We conclude by taking the thermodynamic limit.

4 The Momentum Distribution

4.1 Computation of the Momentum Distribution, Proof of Theorem 2

Proof of Theorem 2 We use Theorem 1 with @ as in (49). Note that, by (49),
/ dxwf(x)=0

which trivially satisfies (6).
1. We change variables in (34) to

and find

1 — - _
(‘ZAE — A +v(@) —20KE+ 5.5 - D HPPLE+ S E - F R+ 5.5 - %))

1E+581E -5 —urE+ 5.6 5) =2

In addition, by (43),
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déd d
€=g/%éﬂ(f%r%)gl(éf%)U(I)(l*M2(§+%,$*%))+/7xw81(x)+21- (137)

We expand in powers of €:

g =1+eg 0 +0@). mE+56-5H=ul O +eaus € +5.6 -5 +0E)(138)

in which we used the fact that, at e = 0, g1 (x)|c=0 = 1, see (128). In particular, the terms of
order 0 in € are independent of &. Note, in addition, that, by (29),

dx
/ v ¢V =o. (139)

2. The trick of this proof is to take the average with respect to & on both sides of (136).
Since we take periodic boundary conditions, the Ag term drops out. We will only focus on the
first order contribution in €, and, as was mentioned above, terms of order O are independent
of £&. Thus, the average over & will always apply to a single term, either gfl) or uél). By (29),

the terms involving g%l) have zero average. We can therefore replace gfl) by 1. (The previous
argument does not apply to the terms in which A; acts on gy, but these terms have a vanishing
average as well because of the periodic boundary conditions.) In particular, by (30) and (24),

/ % I-uE+5.6-5=1 (140)

SO
d
f—f ueE+$e-5H=0 (141)

and thus, we can replace u, with ug)) . Thus, using the translation invariant computation
detailed in Sect. 3.3, we find that the average of (136) is

(—A+ () = 2pK©@) + P2 L)1 = u(2) + €F(0) + O(€®) + T2 =0 (142)

where K and L are defined in (45) and (46) and F comes from the contribution to R, of @,
see (41):

d
F() = et / 7;: (wx +w, —2(w) +pfdz wz(ugo)(é + % - z)uéo)(é — % —2))

—p / dz o€+ 5 —2) — ,O/dz wouy) (& — § - z)> (1= u (). (143)

Similarly, (137) is

e= g/d; v —uy’ (@) + / dvx @g1(x) + 1 + 0(eD). (144)
3. Furthermore, by (49),
/ dzw.f(z) =0 (145)
for any integrable £, so
F<;)=e—]/§ (@x +wy) (1 = ud(©)) (146)
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and
e=2 [dc v - )+ 5+ 0@, (147)
Now,
- = [dze -y (148)
SO
o @) :eeik(SJr%)de [ik<z+<s—%)>f(z) — colkt /dz K () = ok Pk, (149)
Similarly,
@y f(§) = ee K f(—k). (150)
Thus
F(¢) = 2cos(kg)(3(k) — iy (—k)). (151)

Since k # 0, the é function drops out. We conclude the proof by combining (142), (147)
and (151) and taking the thermodynamic limit.

4.2 The Simple Equation and Bogolyubov Theory, Proof of Theorem 3

Proof of Theorem 3 1. We differentiate (60) with respect to € and take ¢ = 0:
(—A+v+4de+4depux)ocu = —40ceu + 20.epu xu + F. (152)
Let
Re = (—A+v+4e(l — pux))~! (153)

(this operator was introduced and studied in detail in [9]). We apply K, to both sides and take
a scalar product with —pv/2 and find

O0ce = paee/dx v(x)Re Qu(x) — pu * u(x)) — g/dx V()R F(x) (154)

and so, using (59),
& [dx v(x)RF(x)

(simpleq) _ —
M (k) = dee = 1—p [dx v(x)ReQu(x) — pu * u(x)) (155)
and, by (55),
(simpleq) /1 (k) [ dx v(x)Re cos(kx)
M B = P T dx v R Qu(x) — pu () (156)
Note that
dk . p [ dx v(x)Reu(x)
(simpleq) _
(27‘[)3M ®=1z p [ dx v(x)RQu(x) — pu * u(x)) (157

which is the expression for the uncondensed fraction for the simple equation [10, (38)].
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2.By [9, (5.8), (5.27)],
MOImPled) oy — (ﬁ(k) / dx v(x)R, cos(k(x))) (1+ O(pe™ ). (158)

Furthermore, by the resolvent identity,

Recos(kx) = £ — Re(vE), & 1= De(cos(kx)) = (—A + de(1 — pux))~" cos(kx) (159)

in terms of which, using the self-adjointness of £,

MEmPID (1) — o (k) ( / dx v(x)&(x) — / dx ﬁev(x)<v(x)s<x>>). (160)

3. Now, taking the Fourier transform,

2o = gy 208k —q) + 8%k +q)
= /dx ) = T i de(l — pi)) ey
and so
B dg . _» B v (k)
/dx v(x)E(x) = f 2n)3 V(@) (q) = K2+ de(l — pi(h) (162)
and thus
A . ii(k)
pu(k)/dx v(x)E = ,ov(k)k2 el —pik) (163)
We recall [8, (4.25)]:
K2 \/ k2 2
pi(k) = —+1— (*-i-l) — S(k) (164)
4e 4de
and, by [8, (4.24)],
$(0) = 1. (165)
Therefore, if we rescale
k =24/ex (166)
we find
N 2 ) 2 _
pﬁ(k)/dx e = LOCHIZVEEFDT Ty, (167)
e st
4. Now,
igx _ 1 1 ~
/dxeq v(x)E(x) = Em dp v(q — p)(S(k — p) + 8k + p)) (168)
SO
: 10(g —k)+0(qg +k)
iqx i
/dx e v(x)E(x) = 3K+ de(l = pith) | (169)
Therefore,
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1 1
2 k2 + de(1 — pir(k))

d —
[ dx seveorwe) = [ o Rk - + 3G+ (170)

which, using the g — —g symmetry, is

_ 1 g —— ..
/dx Rev(x)(v§) = K2t de(l — pih) / 20y Rev(q)v(k + q) (171)
that is,
pﬁ(k)/dx Rev(x)(vE) = pi(k) dx e7* g, v(x)v(x) 172)
¢ k2 + de(1 — pii(k)) ¢

in which we rescale
k =24/ ex (173)
so, by (164)-(165),

K2+1=V&2+1)2-1
de/ (kK2 + 12 —1

Therefore, by dominated convergence (using the argument above [9, (5.23)] and the fact that
R, 1s positivity preserving), and by [9, (5.23)-(5.24)],

kK24+1—/(k2+12 -1
de/(k24+1)2 -1

5. Inserting (167) and (175) into (160), we find

mak’+1-=J02+1)2 -1

pﬁ(k)/dx Rev(x)(vE) = (14 0(1)) / dx e_iz\/;”v(x).@ev(x). (174)

(—4ma + 0(0)) + o(e™ ). (175)

pﬁ(k)/dx Rev(x)(vE) =

M(simpleq)(k) — + O(e_]), (176)
e 2+ 12 -1
Finally, we recall [8, (1.23)]:
e =2mpa(l + O(/p)) (177)
SO
. 12 +1-J/w2+ 12 -1
M(Slmp]eq)(k) _ 1K + 4D —|—0(eil). (178)
2 (K2 + 1)2 —1
6. Finally, by (58)
4e 2
M Bogolyubov) (5 /oy — b 1— Srpa 1 (179)
2
2 et + 25k
so by (177),
1 k241
M(B°g°ly”bov)(2ﬁk) - <1 — 7) . (180)
2p Vick £ 2«2

This, together with (178), implies (62).
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