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Abstract
The simplified approach to the Bose gas was introduced by Lieb in 1963 to study the ground
state of systems of interacting Bosons. In a series of recent papers, it has been shown that
the simplified approach exceeds earlier expectations, and gives asymptotically accurate pre-
dictions at both low and high density. In the intermediate density regime, the qualitative
predictions of the simplified approach have also been found to agree very well with quantum
Monte Carlo computations. Until now, the simplified approach had only been formulated for
translation invariant systems, thus excluding external potentials, and non-periodic boundary
conditions. In this paper, we extend the formulation of the simplified approach to a wide
class of systems without translation invariance. This also allows us to study observables in
translation invariant systems whose computation requires the symmetry to be broken. Such
an observable is the momentum distribution, which counts the number of particles in excited
states of the Laplacian. In this paper, we show how to compute the momentum distribution
in the simplified approach, and show that, for the simple equation, our prediction matches
up with Bogolyubov’s prediction at low densities, for momenta extending up to the inverse
healing length.

Keywords Bose gas · Simplified approach to the Bose gas · Trapped Bosons

1 Introduction

The Bose gas is one of the simplest models in quantum statistical mechanics, and yet it has
a rich and complex phenomenology. As such, it has garnered much attention from the math-
ematical physics community for over half a century. It consists of infinitely many identical
Bosons and is used to model a wide range of physical systems, from photons in black body
radiation to gasses of helium atoms.Whereas photons do not directly interact with each other,
helium atoms do, and such an interaction makes studying such systems very challenging. To
account for interactions between Bosons, Bogolyubov [5] introduced a widely used approx-
imation scheme that accurately predicts many observables [23] in the low density regime.
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Even though Bogolyubov theory is not mathematically rigorous, it has allowed mathematical
physicists to develop the necessary intuition to prove a wide variety of results about the Bose
gas, such as the low density expansion of the ground state energy of the Bose gas in the
thermodynamic limit [1, 13–16, 34], as well as many other results in scaling limits other than
the thermodynamic limit (see [17] for a review, as well as, among many others, [2–4, 6, 7, 11,
12, 19, 27, 28, 30–32]). In this note, we will focus on the ground state in the thermodynamic
limit.

In 1963, Lieb [24–26] introduced a new approximation scheme to compute properties
of the ground state of Bose gasses, called the simplified approach, which has recently been
found to yield surprisingly accurate results [8–10, 20]. Indeed, while Bogolyubov theory is
accurate at low densities, the simplified approach has been shown to yield asymptotically
accurate results at both low and high densities [8, 9] for interaction potentials that are of
positive type, as well as reproduce the qualitative behavior of the Bose gas at intermediate
densities [10]. In addition to providing a promising tool to study the Bose gas, the derivation
of the Simplified approach is different enough fromBogolyubov theory that it may give novel
insights into longstanding open problems about the Bose gas.

The original derivation of the Simplified approach [24] is quite general, and applies to any
translation invariant system (it evenworks for Coulomb [26] and hard-core [10] interactions).
In the present paper, we extend this derivation to systems that break translation invariance.
This allows us to formulate the simplified approach for systems with external potentials, and
with a large class of boundary conditions. In addition, it allows us to compute observables in
systems with translation invariance, but whose computation requires breaking the translation
invariance. We will discuss an example of such an observable: the momentum distribution.

The momentum distributionM(k) is the probability of finding a particle in the state eikx .
Bose gasses are widely expected to form a Bose–Einstein condensate, although this has
still not been proven (at least for continuum interacting gasses in the thermodynamic limit).
From a mathematical point of view, Bose–Einstein condensation is defined as follows: if
the Bose gas consists of N particles, the average number of particles in the constant state
(corresponding to k = 0 in eikx ) is of order N . The condensate fraction is defined as the
proportion of particles in the constant state. The momentum distribution is an extension of
the condensate fraction to a more general family of states. In particular, computingM(k) for
k �= 0 amounts to counting particles that are not in the condensate. This quantity has been
used in the recent proof [15, 16] of the energy asymptotics of the Bose gas at low density.
A numerical computation of the prediction of the Simplified approach for M(k) has been
published in [22].

The main results in this paper fall into two categories. First, we will derive the simplified
approach without assuming translation invariance, see Theorem 1. To do so, we will make
the so-called “factorization assumption”, on the marginals of the ground state wavefunction,
see Assumption 1. This allows us to derive a simplified approach for a wide variety of
situations in which translation symmetry breaking is violated, such as in the presence of
external potentials. Second, we compute a prediction for the momentum distribution using
the simplified approach. The simplified approach does not allow us to compute the ground
state wavefunction directly, so to compute observables, such as the momentum distribution,
we use the Hellmann–Feynman technique and add an operator to the Hamiltonian. In the
case of the momentum distribution, this extra operator is a projector onto eikx , which breaks
the translation invariance of the ground state wavefunctions. In Theorem 2, we show how
to compute the momentum distribution in the simplified approach using the general result
of Theorem 1. In addition, we check that the prediction is credible, by comparing it to the
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prediction of Bogolyubov theory, and find that both approaches agree at low densities and
small k, see Theorem 3.

The result in this paper concerns the derivation of the Simplified approach for Bose
gasses without translation invariance. As of this writing, this derivation has not been done
in a mathematically rigorous. Doing so is an important open problem (as the predictions of
the simplified approach are expansive, even more so than Bogolyubov theory). However, the
derivation of the simplified approach in translation invariant settings has also not been derived
rigorously, and it would seem that the translation invariant situationwill be easier to approach.
So justifying the simplified approach in the translation invariant setting may be a more
pressing task. That being said, the Simplified approach has proved to have strong predictive
power [10, 22], so the extension presented in this paper has the potential to yield interesting
physical predictions, as the translation-invariant approach has done (although, in all fairness,
the non-translation invariant Simplified approach is computationally more difficult than the
translation invariant one). In addition, the derivation of the simplified approach for the trapped
Bose gasmay shine some light on an extension ofGross–Piatevskii theory beyond lowdensity
regimes. Work in this direction is ongoing.

Instead of providing a derivation of the simplified approach from the many-body Bose
gas (which is beyond reach at the moment), this paper aims to put the derivation of the
simplified approach in non-translation invariant settings on a firm footing, and make clear
what is rigorous, and what is an approximation.

The rest of the paper is structured as follows. In Sect. 2, we specify the model and state
the main results precisely. We then prove Theorem 1 in Sect. 3, Theorem 2 in Sect. 4.1, and
Theorem 3 in Sect. 4.2. The proofs are largely independent and can be read in any order.

2 TheModel andMain Results

Consider N Bosons in a box of volume V denoted by ΩV := [−V
1
3 /2, V

1
3 /2]3, interacting

with each other via a pair potential v ∈ L1(Ω
2
V ) that is symmetric under exchanges of parti-

cles: v(x, y) ≡ v(y, x) and non-negative: v(x, y) � 0. TheHamiltonian acts on L2,sym(ΩN
V )

as

H := −1

2

N∑

i=1

Δi +
∑

1�i< j�N

v(xi , x j ) +
N∑

i=1

Pi (1)

where Δi ≡ ∂2xi is the Laplacian with respect to the position of the i-th particle and Pi is an
extra single-particle term of the following form: given a self-adjoint operator� on L2(ΩV ),

Pi := 1⊗i−1 ⊗ � ⊗ 1⊗N−i . (2)

� can be chosen to be any self-adjoint operator, as long asH is self-adjoint. For instance, if
we take� to be amultiplication operator by a function v0 � 0, then

∑
i Pi is the contribution

of the external potential v0. In particular, this potential could be taken to scale with the volume
of the box V , as in the Gross-Pitaevskii approach [18, 33]. Alternatively, v0 could be taken to
be a periodic external potential. Or � could be a projector onto eikx , which is what we will
do below to compute the momentum distribution. Because Pi acts on a single particle, it can
prevent H from being translation invariant (which is the case when � is the multiplication
operator by v0 > 0). But even if it does not, because the ground states can be degenerate
in the presence of Pi (see below), the translation invariance of the Hamiltonian does not
necessarily translate into the translation invariance of the ground states.
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Wemay impose any boundary condition on the box, as long as the Laplacian is self-adjoint.
We will consider the thermodynamic limit, in which N , V → ∞, such that

N

V
= ρ (3)

is fixed. We consider a ground state ψ0, which is an eigenfunction of H with the lowest
eigenvalue E0:

Hψ0 = E0ψ0. (4)

When the operator � is a multiplication operator by a function v0 � 0 (that is, when it
is a single-body potential), the ground state is unique, real, and non-negative (this follows
from the Perron–Frobenius theorem and the fact that v and v0 are non-negative, see e.g.
[21, Exercise E5]). In more general settings, this is not necessarily the case. In such a case,
the Simplified approach should be approximating the properties of one of the ground states,
but gives no control over which one it is: as will be apparent below, the derivation of the
Simplified approach does not depend on which eigenstate ψ0 is, just on the factorization
Assumption 1.

This is not to say that the Simplified approach applies to all eigenstates, or even to
all ground states. The crucial assumption in the simplified approach is the factorization
assumption 1. As we will discuss in more detail below, this is actually an approximation
rather than an assumption, since it can be shown that it cannot possibly hold exactly for any
wavefunction. As such, understanding which states best approximately satisfy the factoriza-
tion assumption is not an easy task. For this reason, we will remain agnostic so as to which
of the ground state is studied.

In order to take the thermodynamic limit, we will assume that v is uniformly integrable
in V :

|v(x, y)| � v̄(x, y),
∫

R3
dy v̄(x, y) � c (5)

where v̄ and c are independent of V . In addition, we assume that, for any f that is uniformly
integrable in V ,

∫
dx � f (x) � c. (6)

2.1 The Simplified ApproachWithout Translation Invariance

The crucial idea ofLieb’s construction [24] is to consider thewave functionψ0 as a probability
distribution, instead of the usual |ψ0|2. When � is the multiplication by v0 � 0, ψ0 � 0,
so ψ0, normalized by its L1 norm, is indeed a probability distribution. In other cases, the
probabilistic interpretation of ψ0 falls through, and the factorization assumption 1 can no
longer be interpreted in terms of statistical independence. We then define the i-th marginal
of ψ0 as

gi (x1, · · · , xi ) :=
∫ dxi+1

V . . .
dxN
V ψ0(x1, . . . , xN )

∫ dy1
V . . .

dyN
V ψ0(y1, . . . , yN )

(7)

that is

gi (x1, . . . , xi ) ≡ V i

∫
dxi+1 · · · dxN ψ0(x1, . . . , xN )∫
dy1 . . . dyN ψ0(y1, . . . , yN )

. (8)
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In particular, for i ∈ {2, . . . , N },
∫

dxi
V

gi (x1, . . . , xi ) = gi−1(x1, . . . , xi−1),

∫
dx

V
g1(x) = 1. (9)

Because of the symmetry ofψ0 under exchanges of particles, gi is symmetric under xi ↔ x j .
Remark: If the ground state is not unique, then there may be choices ofψ0 that are orthog-

onal to the constant wavefunction, that is, that integrate to 0:
∫
dy1 . . . dyN ψ0(y1, . . . , yN ) =

0. The derivation in this paper precludes such a possibility, as gi would be ill defined.
We will therefore assume that ψ0 has non-trivial overlap with the constant wavefunction:∫
dy1 . . . dyN ψ0(y1, . . . , yN ) �= 0 (which is certainly the case whenever the ground state is

non-negative).
We rewrite (4) as a family of equations for gi .
1. Integrating (4) with respect to x1, . . . , xN , we find that

E0 = G(2)
0 + F (1)

0 + B0 (10)

with

G(2)
0 : = N (N − 1)

2V 2

∫
dxdy v(x, y)g2(x, y) (11)

F (1)
0 : = N

V

∫
dx �g1(x) (12)

and B0 is a boundary term:

B0 = − N

2V

∫
dx Δg1(x). (13)

2. If, now, we integrate (4) with respect to x2, . . . , xN , we find

− Δ

2
g1(x) + �g1(x) + G(2)

1 (x) + G(3)
1 (x) + F (2)

1 (x) + B1(x) = E0g1(x) (14)

with

G(2)
1 (x) : = N − 1

V

∫
dy v(x, y)g2(x, y) (15)

G(3)
1 (x) : = (N − 1)(N − 2)

2V 2

∫
dydz v(y, z)g3(x, y, z) (16)

F (2)
1 (x) : = N − 1

V

∫
dy �yg2(x, y) (17)

in which we use the notation �y to indicate that � applies to y 	→ g2(x, y), and B1 is a
boundary term

B1(x) := −N − 1

2V

∫
dy Δyg2(x, y). (18)

3. If we integrate with respect to x3, . . . , xN , we find

−1

2
(Δx + Δy)g2(x, y) + v(x, y)g2(x, y) + (�y + �x )g2(x, y) +

+G(3)
2 (x, y) + G(4)

2 (x, y) + F (3)
2 (x, y) + B2(x, y) = E0g2(x, y) (19)
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where, here again, �y indicates that � applies to the y-degree of freedom, whereas �x

applies to x , with

G(3)
2 (x, y) : = N − 2

V

∫
dz (v(x, z) + v(y, z))g3(x, y, z) (20)

G(4)
2 (x, y) : = (N − 2)(N − 3)

2V 2

∫
dzdt v(z, t)g4(x, y, z, t) (21)

F (3)
2 (x, y) : = N − 2

V

∫
dz �zg3(x, y, z) (22)

and B2 is a boundary term

B2(x) := −N − 2

2V

∫
dz Δzg3(x, y, z). (23)

Inspired by [24], we will make the following approximation.

Assumption 1 (Factorization) We will approximate gi by functions gi , which satisfy the
following:

g2(x, y) = g1(x)g1(y)(1 − u2(x, y)) (24)

and for i = 3, 4,

gi (x1, . . . , xi ) =
∏

1� j<l�i

Wi (x j , xl) (25)

with

Wi (x, y) = fi (x) fi (y)(1 − ui (x, y)) (26)

in which, for i = 2, 3, 4 and j = 3, 4, f j and ui are bounded independently of V , fi � 0,
and ui is uniformly integrable in V :

|ui (x, y)| � ūi (x, y),
∫

dy ūi (x, y) � ci (27)

with ci independent of V . We further assume that, for i = 1, 2, 3, ∀x1, . . . , xi−1,

lim
V→∞

∫
dxi Δxi gi (x1, . . . , xi ) = 0 (28)

in other words, these boundary terms vanish in the thermodynamic limit (these are indeed
boundary terms by the divergence theorem).

In otherwords, gi factorizes exactly as a product of pair termsWi . The fi inWi allow forWi

to bemodulated by a slowly varying density, which is themain novelty of this paper compared
to [24]. The inequality (27) ensures that ui decays sufficiently fast on the microscopic scale.
Note that, by the symmetry under exchanges of particles, ui (x, y) ≡ ui (y, x).

Note, in addition, that assumption (24) is less general than (25): we impose that, as x and y
are far from each other, g2 converges to g1(x)g1(y). This is necessary: if we merely assumed
that g2(x, y) = f2(x) f2(y)(1 − u2(x, y)), we would not necessarily recover that f2 = g1.
However, as we will show below, assumption 1 does imply that f3 = g1 and f4 = g1 (up to
corrections in V−1 that are irrelevant).

Here,we use the term“assumption” because it leads to the simplified approach.However, it
is really an approximation rather than an assumption: this factorization will certainly not hold
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true exactly. At best, one might expect that the assumption holds approximately in the limit
of small and large ρ, and for distant points, as numerical evidence suggests in the translation
invariant case. In the present paper, we will not attempt a proof that this approximation is
accurate, and instead explore its consequences. Suffice it to say that this approximation is one
of statistical independence that is reminiscent of phenomena arising in statistical mechanics
when the density is low, that is, when the interparticle distances are large. In the current
state of the art, we do not have much in the way of an explanation for why this statistical
independence should hold (especially in cases where ψ0 is not even non-negative); instead,
we have extensive evidence, both numerical [10] and analytical [8, 9], that this approximation
leads to very accurate predictions.

From this point on, we will make no further approximations, and derive the consequences
of assumption 1 in a mathematically rigorous way. This thus makes clear what is an approx-
imation, and what is not.

The equations of the Simplified approach are derived fromAssumption 1, using the eigen-
value Eq. (4) along with

∫
dx

V
g1(x) = 1 (29)

∫
dy

V
g2(x, y) = g1(x) (30)

∫
dz

V
g3(x, y, z) = g2(x, y) (31)

∫
dz

V

dt

V
g4(x, y, z, t) = g2(x, y) (32)

(all of which hold for gi , by (9)) to compute ui and fi .
In the translation invariant case, the factorization assumption leads to an equation for g2

alone, as g1 is constant. When translation invariance is broken, g1 is no longer constant, and
the simplified approach consists in two coupled equations for g1 and g2.

Theorem 1 If gi satisfies Assumption 1, the Eqs. (14) and (19) with g1 replaced by g1 and
g2 by g2, as well as (29)–(32), then g1 and u2 satisfy the two coupled equations

(
−Δ

2
+ (� − 〈� 〉) + 2 (E(x) − 〈E(y)〉) + 1

2

(
Ā(x) − 〈

Ā
〉 − C̄(x)

))
g1(x)

+Σ1(x) = 0 (33)

and

(
−1

2
(Δx + Δy) + v(x, y) − 2ρ K̄ (x, y) + ρ2 L̄(x, y) + R̄2(x, y)

)

·g1(x)g1(y)(1 − u2(x, y)) + Σ2(x, y) = 0 (34)
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where

〈 f 〉 :=
∫

dy

V
g1(y) f (y), 〈� 〉 ≡

∫
dy

V
� g1(y) (35)

S̄(x, y) := v(x, y)(1 − u2(x, y)), f1∗̄ f2(x, y) :=
∫

dz g1(z) f1(x, z) f2(z, y) (36)

E(x) := ρ

2

∫
dy g1(y)S̄(x, y), Ā(x) := ρ2 S̄∗̄u2∗̄u2(x, x) (37)

C̄(x) := 2ρ2
∫

dz g1(z)u2∗̄S̄(x, z) + 2ρ
∫

dy �y(g1(y)u2(x, y)). (38)

K̄ (x, y) := S̄∗̄u2(x, y) (39)

L̄(x, y) := S̄∗̄u2∗̄u2(x, y) − 2u2∗̄(u2(u2∗̄S̄))(x, y)

+1

2

∫
dzdt g1(z)g1(t)S̄(z, t)u2(x, z)u2(x, t)u2(y, z)u2(y, t) (40)

R̄2(x, y) = 2 (E(x) + E(y) − 2 〈E〉) + (
�x + �y − 2 〈� 〉)

+1

2

(
Ā(x) + Ā(y) − 2

〈
Ā
〉 − C̄(x) − C̄(y)

) + 2ρu2∗̄ (u2(E − 〈E〉)) (41)

+ρ

∫
dz �z(g1(z)u2(x, z)u2(y, z)) − ρu2∗̄u2 〈� 〉

in which �x is the action of � on the x-variable, and similarly for �y and

Σi −→
V→∞ 0 (42)

pointwise. The prediction for the energy per particle is defined as

e := 〈E〉 + 〈� 〉 + Σ0 (43)

where Σ0 → 0 as V → ∞.

This theorem is proved in Sect. 3.
Let us compare this to the equation for u in the Simplified approach in the translation

invariant case [10, (5)], [20, (3.15)]:

− Δu(x) = (1 − u(x))
(
v(x) − 2ρK (x) + ρ2L(x)

)
(44)

K : = u ∗ S, S(y) := (1 − u(y))v(y) (45)

L : = u ∗ u ∗ S − 2u ∗ (u(u ∗ S)) + 1

2

∫
dydz u(y)u(z − x)u(z)u(y − x)S(z − y). (46)

We will prove that these follow from Theorem 1:

Corollary 1 (Translation invariant case) In the translation invariant case v(x, y) ≡ v(x − y)
and� = 0with periodic boundary conditions, if (33)–(34) has a unique translation invariant
solution, then (34) reduces to (44) in the thermodynamic limit.

The idea of the proof is quite straightforward. Equation (34) is very similar to (44), but
for the addition of the extra term R̄2. An inspection of (41) shows that the terms in R̄2

are mostly of the form f − 〈 f 〉, which vanish in the translation invariant case, and terms
involving � , which is set to 0 in the translation invariant case. The only remaining extra
term is C̄(x) + C̄(y), which we will show vanishes in the translation invariant case due to
the identity (30).
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Theorem 1 is quite general, and can be used to study a trapped Bose gas, in which there is
an external potential v0. In this case,� is a multiplication operator by v0. A natural approach
is to scale v0 with the volume: v0(x) = v̄0(V−1/3x) in such a way that the size of the trap
grows as V → ∞, thus ensuring a finite local density in the thermodynamic limit. Following
the ideas of Gross and Pitaevskii [18, 33], we would then expect to find that (33) and (34)
decouple, and that (34) reduces to the translation invariant Eq. (44), with a density that is
modulated over the trap. However, the presence of R̄2 in (34) and C̄ in (33) breaks this picture.
Further investigation of this question is warranted.

2.2 TheMomentumDistribution

The momentum distribution for the Bose gas is defined as

M(Exact)(k) := 1

N

N∑

i=1

〈ϕ0| Pi |ϕ0〉 (47)

where ϕ0 is the ground state of the Hamiltonian

− 1

2

N∑

i=1

Δi +
∑

1�i< j�N

v(xi − x j ) (48)

and

� f := ε|eikx 〉〈eikx | f ≡ εeikx
∫

dy e−iky f (y) (49)

and Pi is defined as in (2):

Piψ(x1, . . . , xN ) = εeikxi
∫

dyy e
ikyi ψ(x1, . . . , xi−1, yi , xi+1, . . . , xN ). (50)

Equivalently,

M(Exact)(k) = ∂

∂ε

E0

N

∣∣∣∣
ε=0

(51)

where E0 is the ground-state energy in (4) for the Hamiltonian (48). Using the simplified
approach, we do not have access to the ground state wavefunction, so we cannot compute
M using (47). Instead, we use the Hellmann-Feynman theorem, which consists in adding∑

i Pi to the Hamiltonian. However, doing so does not ensure the uniqueness of the ground
state, and thus, we are not guaranteed that the wavefunction ψ0 is translation invariant. This
is why Theorem 1 is needed to compute the momentum distribution within the framework of
the Simplified approach. (A similar computation was done in [10], but, there, the derivation
of the momentum distribution for the Simplified approach was taken for granted.)

By Theorem 1, and, in particular, (43), we obtain a natural definition of the prediction of
the Simplified approach for the momentum distribution:

M(k) := ∂

∂ε
(〈E〉 + 〈� 〉)|ε=0 . (52)

Theorem 2 (Momentum distribution) Under the assumptions of Theorem 1, using periodic
boundary conditions, if v is translation invariant and � = 0, and if (33) and (34) have

123



88 Page 10 of 24 I. Jauslin

solutions that are twice differentiable in ε, uniformly in V , then, if k �= 0,

M(k) = ∂

∂ε

ρ

2

∫
dx (1 − u(x))v(x)

∣∣∣∣
ε=0

(53)

where

− Δu(x) = (1 − u(x))v(x) − 2ρK (x) + ρ2L(x) + εF(x) (54)

where K and L are those of the translation invariant Simplified approach (45) and (46) and

F(x) := −2û(−k) cos(kx). (55)

We thus compute themomentum distribution. To check that our prediction is plausible, we
compare it to theBogolyubov prediction, which can easily be derived from [29,AppendixA]:

M(Bogolyubov)(k) = − 1

2ρ

(
1 − k2 + 2ρv̂(k)√

k4 + 4k2ρv̂(k)

)
(56)

(this can be obtained by differentiating [29, (A.26)] with respect to ε(k), which returns the
number of particles in the state eikx , which we divide by ρ to obtain the momentum distri-
bution). Actually, following the ideas of [23], we replace v̂ by a so-called “pseudopotential”,
which consists in replacing v by aDirac delta function,while preserving the scattering length:

v̂(k) = 4πa (57)

where the scattering length a is defined in [29, Appendix C]. Thus,

M(Bogolyubov)(k) = − 1

2ρ

(
1 − k2 + 8πρa√

k4 + 16πk2ρa

)
. (58)

We prove that, for the simple equation, as ρ → 0, the prediction for the momentum
distribution coincides with Bogolyubov’s, for |k| � √

ρa. The length scale 1/
√

ρa is called
the healing length, and is the distance at which pairs of particles correlate [15]. It is reasonable
to expect the Bogolyubov approximation to break down beyond this length scale.

The momentum distribution for the simple equation, following the prescription detailed
in [8–10, 20], is defined as

M(simpleq)(k) = ∂

∂ε

ρ

2

∫
dx (1 − u(x))v(x)

∣∣∣∣
ε=0

(59)

where [8, (1.1)–(1.2)]

− Δu(x) = (1 − u(x))v(x) − 4eu + 2ρeu ∗ u + εF(x), e := ρ

2

∫
dx (1 − u(x))v(x) (60)

where F was defined in (55).

Theorem 3 Assume that v is translation and rotation invariant (v(x, y) ≡ v(|x − y|)), and
consider periodic boundary conditions. We rescale k:

κ := k

2
√
e

(61)

we have, for all κ ∈ R
3,
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lim
e→0

ρM(simpleq)(2
√
eκ) = lim

e→0
ρM(Bogolyubov)(2

√
eκ) = − 1

2

(
1 − κ2 + 1√

(κ2 + 1)2 − 1

)
. (62)

The rotation invariance of v is presumably not necessary. However, the proof of this
theorem is based on [9], where rotational symmetry was assumed for convenience.

3 The Simplified ApproachWithout Translation Invariance, Proof of
Theorem 1

3.1 Factorization

We will first compute fi and ui for i = 3, 4 in Assumption 1.

3.1.1 Factorization of g3

Lemma 1 Assumption 1 with i = 2, 3 and (29)–(31) imply that

g3(x, y, z) = g1(x)g1(y)g1(z)(1 − u3(x, y))(1 − u3(x, z))(1 − u3(y, z))(1 + O(V−2)) (63)

with

u3(x, y) : = u2(x, y) + w3(x, y)

V
(64)

w3(x, y) : = (1 − u2(x, y))
∫

dz g1(z)u2(x, z)u2(y, z). (65)

Proof Using (31) in (25),

g2(x1, x2) = W3(x1, x2)
∫

dx3
V

W3(x1, x3)W3(x2, x3). (66)

1. We first expand to order V−1. By (27),
∫

dz

V
f 23 (z)u3(x, z) = O(V−1) (67)

so, by (26),

g2(x, y) = f 23 (x) f 23 (y)(1 − u3(x, y))

(∫
dz

V
f 23 (z) + O(V−1)

)
. (68)

By (24),

g1(x)g1(y)(1 − u2(x, y)) = f 23 (x) f 23 (y)(1 − u3(x, y))

(∫
dz

V
f 23 (z) + O(V−1)

)
.

(69)

We take
∫ dy

V · on both sides of this equation. However, by (30),

g1(x)
∫

dy

V
g1(y)(1 − u2(x, y)) = g1(x) (70)
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so, by (29),
∫

dy g1(y)u2(x, y) = 0. (71)

Combining this with (67), we find

g1(x) = f 23 (x)

((∫
dy

V
f 23 (y))

)2

+ O(V−1)

)
(72)

and, integrating once more implies that
∫ dy

V f 23 (y) = 1 + O(V−1). Therefore,

f 23 (x) = g1(x)(1 + O(V−1)) (73)

and

u3(x, y) = u2(x, y)(1 + O(V−1)). (74)

2. We push the expansion to order V−2: (66) is

g2(x, y) = f 23 (x) f 23 (y)(1 − u3(x, y))
∫

dz

V
f 23 (z) (1 − u3(x, z) − u3(y, z) + u3(x, z)u3(y, z)) . (75)

By (73)–(74) and (24),

f 23 (x) f 23 (y)(1 − u3(x, y))
∫

dz

V
f 23 (z) = g1(x)g1(y)(1 − u2(x, y))

·
(
1 +

∫
dz

V
(g1(z)(u2(x, z) + u2(y, z) − u2(x, z)u2(y, z))) + O(V−2)

)
. (76)

Therefore, by (71),

f 23 (x) f 23 (y)(1 − u3(x, y))
∫

dz

V
f 23 (z) = g1(x)g1(y)(1 − u2(x, y))

·
(
1 −

∫
dz

V
g1(z)u2(x, z)u2(y, z) + O(V−2)

)
. (77)

Now, let us apply
∫ dy

V · to both sides of the equation. Note that, by (27),
∫

dy

V
g1(y)u2(x, y)

∫
dz

V
g1(z)u2(x, z)u2(y, z) = O(V−2). (78)

Furthermore, by (71),
∫

dy

V
g1(y)u2(x, y) = 0,

∫
dy

V
g1(y)

∫
dz

V
g1(z)u2(x, z)u2(y, z) = 0 (79)

and by (73) and (74),
∫

dy

V
f 23 (y)u3(x, y) =

∫
dy

V
g1(y)u2(x, y) + O(V−2) = O(V−2). (80)

We are thus left with

f 23 (x)

(∫
dy

V
f 23 (y)

)2

= g1(x)(1 + O(V−2)). (81)
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Taking
∫ dx

V ·, we thus find that
(∫

dx

V
f 23 (x)

)3

= 1 + O(V−2) (82)

and

f 23 (x) = g1(x)(1 + O(V−2)). (83)

Therefore,

1 − u3(x, y) = (1 − u2(x, y))

(
1 − 1

V

∫
dz g1(z)u2(x, z)u2(y, z) + O(V−2)

)
. (84)

��

3.1.2 Factorization of g4

Lemma 2 Assumption 1 and (29)–(32) imply that

g4(x1, x2, x3, x2) = g1(x1)g1(x2)g1(x3)g1(x4)

⎛

⎝
∏

i< j

(1 − u4(xi , x j ))

⎞

⎠ (1 + O(V−2)) (85)

with

u4(x, y) := u2(x, y) + 2w3(x, y)

V
(86)

where w3 is the same as in Lemma 1.

Proof Using (32) in (25),

g2(x1, x2) = W4(x1, x2)
∫

dx3dx4
V 2 W4(x1, x3)W4(x1, x4)W4(x2, x3)W4(x2, x4)W4(x3, x4). (87)

1. We expand to order V−1. By (27),
∫

dz

V
f 34 (z)u4(x, z) = O(V−1) (88)

so by (26),

g2(x, y) = f 34 (x) f 34 (y)(1 − u4(x, y))

(∫
dzdt

V 2 f 34 (z) f 34 (t) + O(V−1)

)
. (89)

By (24),

g1(x)g1(y)(1 − u2(x, y)) = f 34 (x) f 34 (y)(1 − u4(x, y))

((∫
dz

V
f 34 (z)

)2
+ O(V−1)

)
. (90)

Applying
∫ dy

V · to both sides of the equation, using (71) and (88),

g1(x) = f4(x)
3

((∫
dy

V
f 34 (y)

)3

+ O(V−1)

)
. (91)
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Integrating once more, we have
∫ dy

V f 34 (z) = 1 + O(V−1) and

f 34 (x) = g1(x)(1 + O(V−1)). (92)

Therefore,

u4(x, y) = u2(x, y)(1 + O(V−1)). (93)

2. We push the expansion to order V−2: by (27),
∫

dzdt

V 2 u4(x, z)u4(y, t) = O(V−2),

∫
dzdt

V 2 u4(x, z)u4(z, t) = O(V−2) (94)
∫

dzdt

V 2 u4(x, z)u4(x, t) = O(V−2) (95)

so

g2(x, y) = f 34 (x) f 34 (y)(1 − u4(x, y))

(∫
dzdt

V 2
f 34 (z) f 34 (t)

+
∫

dzdt

V 2
g1(z)g1(t)(−2u4(x, z) − 2u4(y, z) − u4(z, t) + 2u4(x, z)u4(y, z)) + O(V−2)

)
. (96)

By (92), (93), and (24)

f 34 (x) f 34 (x)(1 − u4(x, y))

(∫
dz

V
f 34 (z)

)2
= g1(x)g1(y)(1 − u2(x, y))

·
(
1 +

∫
dzdt

V 2 g1(z)g1(t)(2u2(x, z) + 2u2(y, z) + u2(z, t) − 2u2(x, z)u2(y, z)) + O(V−2)

)
. (97)

By (71),

f 34 (x) f 34 (y)(1 − u4(x, y))

(∫
dz

V
f 34 (z)

)2

= g1(x)g1(y)(1 − u2(x, y))

(
1 − 2

∫
dz

V
g1(z)u2(x, z)u2(y, z) + O(V−2)

)
. (98)

We apply
∫ dy

V · to both sides of the equation. By (78)-(80), we find

f 34 (x)

(∫
dy

V
f 34 (z)

)3

= g1(x)(1 + O(V−2)). (99)

Taking
∫ dx

V ·, we find that
f4(x) = 1 + O(V−2) (100)

and

f 34 (x) = g1(x)(1 + O(V−2)). (101)

Therefore,

1 − u4(x, y) = (1 − u2(x, y))

(
1 − 2

V

∫
dz g1(z)u2(x, z)u2(y, z) + O(V−2)

)
. (102)

��
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3.2 Consequences of the Factorization

proof of Theorem 1 We rewrite (10), (14) and (19) using Lemmas 1 and 2.
1. We start with (10): by (5) and (24),

G(2)
0 = N (N − 1)

2V 2

∫
dxdy v(x, y)g1(x)g1(y)(1 − u2(x, y)) + O(V−1) (103)

so

E0 = N (N − 1)

2V 2

∫
dxdy v(x, y)g1(x)g1(y)(1 − u2(x, y))

+ N

V

∫
dx � g1(x) + B0 + O(V−1). (104)

2. We now turn to (14): by (5) and (24),

G(2)
1 (x) = N

V
g1(x)

(∫
dy v(x, y)g1(y)(1 − u2(x, y)) + O(V−2)

)
(105)

and by Lemma 1,

G(3)
1 (x) = g1(x)

(
N 2

2V 2

∫
dydz v(y, z)g1(y)g1(z)(1 − u2(x, y))(1 − u2(x, z))

(1 − u3(y, z)) − 3N

2V 2

∫
dydz v(y, z)g1(y)g1(z)(1 − u2(y, z)) + O(V−1)

)

(106)

(we used (64) to write u3 = u2 + O(V−1); this works fine for u3(x, y) and u3(x, z) because
the integrals over y and z are controlled by v(y, z)w3(x, y) and v(y, z)w3(x, z) using (5)
and (27); in the first term, it does not work for u3(y, z), as v(y, z)w3(y, z) can only control
one of the integrals, and not both; the second term has an extra V−1 that lets us replace u3
by u2) and by (27) and (6),

F(2)
1 (x) = g1(x)

(
N

V

∫
dy �y(g1(y)(1 − u2(x, y))) − 1

V

∫
dy � g1(y) + O(V−1)

)
. (107)

The first term in G(3)
1 is of order V :

N2

2V 2

∫
dydz v(y, z)g1(y)g1(z)(1 − u2(x, y))(1 − u2(x, z))(1 − u3(y, z))

= N2

2V 2

∫
dydz v(y, z)g1(y)g1(z)(1 − u2(y, z))

− N2

2V 3

∫
dydz v(y, z)g1(y)g1(z)w3(y, z) +

+ N2

2V 2

∫
dydz v(y, z)g1(y)g1(z)(1 − u2(y, z))(−u2(x, y)

−u2(x, z) + u2(x, y)u2(x, z)) + O(V−1) (108)

in which the only term of order V is the first one, and is equal to the first term of order V
in E0, and thus cancels out. There is a similar cancellation between the second term of order
V in F (2)

1 and E0. All in all,
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(
−Δ

2
+ � + Ḡ(2)

1 (x) + Ḡ(3)
1 (x) + F̄(2)

1 (x) + Ē0 − B0

)
g1(x) + B1(x) = g1(x)O(V−1) (109)

with, recalling ρ := N/V ,

Ḡ(2)
1 (x) := ρ

∫
dy v(x, y)g1(y)(1 − u2(x, y)) (110)

and using (65),

Ḡ(3)
1 (x) := − ρ

2

∫
dydz

V
v(y, z)g1(y)g1(z)(1 − u2(y, z))

(
3 + ρ

∫
dt g1(t)u2(y, t)u2(z, t)

)
+

+ ρ2

2

∫
dydz v(y, z)g1(y)g1(z)(1 − u2(y, z))(−u2(x, y) − u2(x, z) + u2(x, y)u2(x, z)) (111)

F̄(2)
1 (x) := −ρ

∫
dy �y (g1(y)u2(x, y)) −

∫
dy

V
� g1(y) (112)

Ē0 := ρ

2

∫
dxdy

V
v(x, y)g1(x)g1(y)(1 − u2(x, y)). (113)

Rewriting this using (35)–(38), we find (33) with

Σ1(x) := B1(x) − B0g1(x) + O(V−1). (114)

3. Finally, we rewrite (19): by (5) and Lemma 1,

G(3)
2 (x, y) = N

V
g1(x)g1(y)(1 − u2(x, y))

·
(∫

dz (v(x, z) + v(y, z))g1(z)(1 − u2(x, z))(1 − u2(y, z)) + O(V−1)

)
(115)

and by Lemma 2,

G(4)
2 (x, y) = g1(x)g1(y)

(
N2

2V 2 (1 − u4(x, y))

∫
dzdt v(z, t)g1(z)g1(t)(1 − u4(z, t))
(x, y, z, t)

− 5N

2V 2 (1 − u2(x, y))
∫

dzdt v(z, t)g1(z)g1(t)(1 − u2(z, t)) + O(V−1)

)
(116)


(x, y, z, t) := (1 − u2(x, z))(1 − u2(x, t))(1 − u2(y, z))(1 − u2(y, t)) (117)

and by (27) and (6),

F (3)
2 (x, y) = g1(x)g1(y)

(
N

V
(1 − u3(x, y))

∫
dz �z(g1(z)(1 − u2(x, z))(1 − u2(y, z)))

− 2

V
(1 − u2(x, y))

∫
dz � g1(z) + O(V−1)

)
. (118)

The first term in G(4)
2 is of order V : by (86),
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N2

2V 2
(1 − u4(x, y))

∫
dzdt v(z, t)g1(z)g1(t)(1 − u4(z, t))
(x, y, z, y)

= N2

2V 2
(1 − u2(x, y))

∫
dzdt v(z, t)g1(z)g1(t)(1 − u2(z, t))

− N2

V 3
w3(x, y)

∫
dzdt v(z, t)g1(z)g1(y)(1 − u2(z, t))

− N2

V 3
(1 − u2(x, y))

∫
dzdt v(z, t)g1(z)g1(t)w3(z, t)

+ N2

2V 2
(1 − u2(x, y))

∫
dzdt v(z, t)g1(z)g1(t)(1 − u2(z, t)) (
(x, y, z, t) − 1) + O(V−1) (119)

in which the only term of order V is the first one, and is equal to the term of order V in
E0, and thus cancels out. There is a similar cancellation between the term of order V in F (3)

2
and E0. All in all,

(
− 1

2
(Δx + Δy) + v(x, y) + �x + �y + Ḡ(3)

2 (x, y) + Ḡ(4)
2 (x, y) + F̄(3)

2 (x, y) + Ē0 − B0

)

·g1(x)g1(y)(1 − u2(x, y)) + B2(x, y) = g1(x)g1(y)O(V−1) (120)

with

Ḡ(3)
2 (x, y) := ρ

∫
dz (v(x, z) + v(y, z))g1(z)(1 − u2(x, z))(1 − u2(y, z)) (121)

and by (65),

Ḡ(4)
2 (x, y) := − ρ

2

(
5 + 2ρ

∫
dr g1(r)u2(x, r)u2(y, r)

)

∫
dzdt

V
v(z, t)g1(z)g1(t)(1 − u2(z, t))−

−ρ2
∫

dzdt

V
v(z, t)g1(z)g1(t)(1 − u2(z, t))

∫
dr g1(r)u2(z, r)u2(t, r)+

+ ρ2

2

∫
dzdt v(z, t)g1(z)g1(t)(1 − u2(z, t)) (
(x, y, z, t) − 1)

(122)

F̄(3)
2 (x, y) := ρ

∫
dz �z (g1(z)(−u2(x, z) − u2(y, z) + u2(x, z)u2(y, z)))

−
(
2 + ρ

∫
dr g1(r)u2(x, r)u2(y, r)

)∫
dz

V
� g1(z) (123)

Ē0 = ρ

2

∫
dxdy

V
v(x, y)g1(x)g1(y)(1 − u2(x, y)). (124)

4. Expanding out 
, see (117), we find (34) with

R̄2(x, y) := ρ

∫
dz g1(z)

(
S̄(x, z) + S̄(y, z) − 2

∫
dt

V
g1(t)S̄(t, z)

)

+ρ2

2

(
S̄∗̄u2∗̄u2(x, x) + S̄∗̄u2∗̄u2(y, y) − 2

∫
dt

V
g1(t)S̄∗̄u2∗̄u2(t, t)

)

+ρ2
∫

dzdt g1(z)g1(t)u2(x, z)u2(y, z)

(
S̄(z, t) −

∫
dr

V
g1(r)S̄(z, r)

)

−ρ2
∫

dt g1(t)(S̄∗̄u2(x, t) + S̄∗̄u2(y, t)) + F̄(3)
2 (x, y) + �x + �y

(125)

and

Σ2(x, y) := B2(x, y) − B0g1(x)g1(y)(1 − u2(x, y)) + O(V−1). (126)

Using (37) and (38), (125) becomes (41).
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5. Finally, (43) follows from (10) with

Σ0 := B0 + O(V−1). (127)

��

3.3 Sanity Check, Proof of Corollary 1

Proof of Corollary 1 Assuming the translation invariance of the solution, g1(x) is constant.
By (29),

g1(x) = 1. (128)

Furthermore, � ≡ 0. We then have

S̄(x, y) = S(x − y), K̄ (x, y) = K (x − y), L̄(x, y) = L(x − y) (129)

(see (45) and (46)). Furthermore,

E(x) ≡ E(y) ≡ 〈E〉 = ρ

2

∫
dy S(y) (130)

Ā(x) ≡ Ā(y) ≡ 〈
Ā
〉 = ρ2S ∗ u ∗ u(0) (131)

C̄(x) ≡ C̄2(y) = 2ρ2
∫

dz u(z)
∫

dt S(t) (132)

which vanishes by (30). Thus,

R̄2(x, y) ≡ 0. (133)

We conclude by taking the thermodynamic limit.

4 TheMomentumDistribution

4.1 Computation of theMomentumDistribution, Proof of Theorem 2

Proof of Theorem 2 We use Theorem 1 with � as in (49). Note that, by (49),
∫

dx � f (x) = 0 (134)

which trivially satisfies (6).
1. We change variables in (34) to

ξ = x + y

2
, ζ = x − y (135)

and find

(
− 1

4
Δξ − Δζ + v(ζ ) − 2ρ K̄ (ξ + ζ

2 , ξ − ζ
2 ) + ρ2 L̄(ξ + ζ

2 , ξ − ζ
2 ) + R̄2(ξ + ζ

2 , ξ − ζ
2 )

)

·g1(ξ + ζ
2 )g1(ξ − ζ

2 )(1 − u2(ξ + ζ
2 , ξ − ζ

2 )) = −Σ2. (136)

In addition, by (43),
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e = ρ

2

∫
dξdζ

V
g1(ξ + ζ

2 )g1(ξ − ζ
2 )v(ζ )(1 − u2(ξ + ζ

2 , ξ − ζ
2 )) +

∫
dx

V
� g1(x) + Σ1. (137)

We expand in powers of ε:

g1(x) = 1 + εg(1)
1 (x) + O(ε2), u2(ξ + ζ

2 , ξ − ζ
2 ) = u(0)

2 (ζ ) + εu(1)
2 (ξ + ζ

2 , ξ − ζ
2 ) + O(ε2)(138)

in which we used the fact that, at ε = 0, g1(x)|ε=0 = 1, see (128). In particular, the terms of
order 0 in ε are independent of ξ . Note, in addition, that, by (29),

∫
dx

V
g(1)
1 (x) = 0. (139)

2. The trick of this proof is to take the average with respect to ξ on both sides of (136).
Since we take periodic boundary conditions, theΔξ term drops out.Wewill only focus on the
first order contribution in ε, and, as was mentioned above, terms of order 0 are independent
of ξ . Thus, the average over ξ will always apply to a single term, either g(1)

1 or u(1)
2 . By (29),

the terms involving g(1)
1 have zero average. We can therefore replace g(1)

1 by 1. (The previous
argument does not apply to the terms in whichΔζ acts on g1, but these terms have a vanishing
average as well because of the periodic boundary conditions.) In particular, by (30) and (24),

∫
dξ

V
(1 − u(1)

2 (ξ + ζ
2 , ξ − ζ

2 )) = 1 (140)

so
∫

dξ

V
u(1)
2 (ξ + ζ

2 , ξ − ζ
2 ) = 0 (141)

and thus, we can replace u2 with u(0)
2 . Thus, using the translation invariant computation

detailed in Sect. 3.3, we find that the average of (136) is

(−Δ + v(ζ ) − 2ρK (ζ ) + ρ2L(ζ ))(1 − u(0)
2 (ζ )) + εF(ζ ) + O(ε2) + Σ2 = 0 (142)

where K and L are defined in (45) and (46) and F comes from the contribution to R̄2 of � ,
see (41):

F(ζ ) := ε−1
∫

dξ

V

(
�x + �y − 2 〈� 〉 + ρ

∫
dz �z(u

(0)
2 (ξ + ζ

2 − z)u(0)
2 (ξ − ζ

2 − z))

−ρ

∫
dz �zu

(0)
2 (ξ + ζ

2 − z) − ρ

∫
dz �zu

(0)
2 (ξ − ζ

2 − z)

)
(1 − u(0)

2 (ζ )). (143)

Similarly, (137) is

e = ρ

2

∫
dζ v(ζ )(1 − u(0)

2 (ζ )) +
∫

dx

V
� g1(x) + Σ1 + O(ε2). (144)

3. Furthermore, by (49),
∫

dz �z f (z) = 0 (145)

for any integrable f , so

F(ζ ) = ε−1
∫

dξ

V

(
�x + �y

)
(1 − u(0)

2 (ζ )) (146)

123



88 Page 20 of 24 I. Jauslin

and

e = ρ

2

∫
dζ v(ζ )(1 − u(0)

2 (ζ )) + Σ1 + O(ε2). (147)

Now,

�x f (x − y) = eikx
∫

dz e−ikz f (z − y) (148)

so

�x f (ζ ) = εeik(ξ+ ζ
2 )

∫
dz e−ik(z+(ξ− ζ

2 )) f (z) = εeikζ
∫

dz e−ikz f (z) = εeikζ f̂ (−k). (149)

Similarly,

�y f (ζ ) = εe−ikζ f̂ (−k). (150)

Thus

F(ζ ) = 2 cos(kζ )(δ(k) − û(0)
2 (−k)). (151)

Since k �= 0, the δ function drops out. We conclude the proof by combining (142), (147)
and (151) and taking the thermodynamic limit.

4.2 The Simple Equation and Bogolyubov Theory, Proof of Theorem 3

Proof of Theorem 3 1. We differentiate (60) with respect to ε and take ε = 0:

(−Δ + v + 4e + 4eρu∗)∂εu = −4∂εeu + 2∂εeρu ∗ u + F . (152)

Let

Ke := (−Δ + v + 4e(1 − ρu∗))−1 (153)

(this operator was introduced and studied in detail in [9]). We apply Ke to both sides and take
a scalar product with −ρv/2 and find

∂εe = ρ∂εe
∫

dx v(x)Ke(2u(x) − ρu ∗ u(x)) − ρ

2

∫
dx v(x)KeF(x) (154)

and so, using (59),

M(simpleq)(k) = ∂εe = −
ρ
2

∫
dx v(x)KeF(x)

1 − ρ
∫
dx v(x)Ke(2u(x) − ρu ∗ u(x))

(155)

and, by (55),

M(simpleq)(k) = ρ
û(k)

∫
dx v(x)Ke cos(kx)

1 − ρ
∫
dx v(x)Ke(2u(x) − ρu ∗ u(x))

. (156)

Note that
∫

dk

(2π)3
M(simpleq)(k) = ρ

∫
dx v(x)Keu(x)

1 − ρ
∫
dx v(x)Ke(2u(x) − ρu ∗ u(x))

(157)

which is the expression for the uncondensed fraction for the simple equation [10, (38)].
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2. By [9, (5.8), (5.27)],

M(simpleq)(k) = ρ

(
û(k)

∫
dx v(x)Ke cos(k(x))

)
(1 + O(ρe− 1

2 )). (158)

Furthermore, by the resolvent identity,

Ke cos(kx) = ξ − Ke(vξ), ξ := Ye(cos(kx)) := (−Δ + 4e(1 − ρu∗))−1 cos(kx) (159)

in terms of which, using the self-adjointness of Ke,

M(simpleq)(k) = ρû(k)

(∫
dx v(x)ξ(x) −

∫
dx Kev(x)(v(x)ξ(x))

)
. (160)

3. Now, taking the Fourier transform,

ξ̂ (q) ≡
∫

dx eikxξ(x) = (2π)3

2

δ(k − q) + δ(k + q)

q2 + 4e(1 − ρû(q))
(161)

and so
∫

dx v(x)ξ(x) =
∫

dq

(2π)3
v̂(q)ξ̂ (q) = v̂(k)

k2 + 4e(1 − ρû(k))
(162)

and thus

ρû(k)
∫

dx v(x)ξ = ρv̂(k)
û(k)

k2 + 4e(1 − ρû(k))
. (163)

We recall [8, (4.25)]:

ρû(k) = k2

4e
+ 1 −

√(
k2

4e
+ 1

)2

− Ŝ(k) (164)

and, by [8, (4.24)],

Ŝ(0) = 1. (165)

Therefore, if we rescale

k = 2
√
eκ (166)

we find

ρû(k)
∫

dx v(x)ξ = v̂(0)

4e

κ2 + 1 − √
(κ2 + 1)2 − 1√

(κ2 + 1)2 − 1
+ o(e−1). (167)

4. Now,

∫
dx eiqxv(x)ξ(x) = 1

2

1

k2 + 4e(1 − ρû(k))

∫
dp v̂(q − p)(δ(k − p) + δ(k + p)) (168)

so
∫

dx eiqxv(x)ξ(x) = 1

2

v̂(q − k) + v̂(q + k)

k2 + 4e(1 − ρû(k))
. (169)

Therefore,
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∫
dx Kev(x)(vξ) = 1

2

1

k2 + 4e(1 − ρû(k))

∫
dq

(2π)3
K̂ev(q)(v̂(k − q) + v̂(k + q)) (170)

which, using the q 	→ −q symmetry, is
∫

dx Kev(x)(vξ) = 1

k2 + 4e(1 − ρû(k))

∫
dq

(2π)3
K̂ev(q)v̂(k + q) (171)

that is,

ρû(k)
∫

dx Kev(x)(vξ) = ρû(k)

k2 + 4e(1 − ρû(k))

∫
dx e−ikxKev(x)v(x) (172)

in which we rescale

k = 2
√
eκ (173)

so, by (164)-(165),

ρû(k)
∫

dx Kev(x)(vξ) = κ2 + 1 −
√

(κ2 + 1)2 − 1

4e
√

(κ2 + 1)2 − 1
(1 + o(1))

∫
dx e−i2

√
eκxv(x)Kev(x). (174)

Therefore, by dominated convergence (using the argument above [9, (5.23)] and the fact that
Ke is positivity preserving), and by [9, (5.23)-(5.24)],

ρû(k)
∫

dx Kev(x)(vξ) = κ2 + 1 − √
(κ2 + 1)2 − 1

4e
√

(κ2 + 1)2 − 1
(−4πa + v̂(0)) + o(e−1). (175)

5. Inserting (167) and (175) into (160), we find

M(simpleq)(k) = πa

e

κ2 + 1 − √
(κ2 + 1)2 − 1√

(κ2 + 1)2 − 1
+ o(e−1). (176)

Finally, we recall [8, (1.23)]:

e = 2πρa(1 + O(
√

ρ)) (177)

so

M(simpleq)(k) = 1

2

κ2 + 1 − √
(κ2 + 1)2 − 1√

(κ2 + 1)2 − 1
+ o(e−1). (178)

6. Finally, by (58)

M(Bogolyubov)(2
√
eκ) = − 1

2ρ

⎛

⎝1 −
4e

8πρa κ2 + 1
√

e2

4π2ρ2a2
κ4 + e

πρa κ2

⎞

⎠ (179)

so by (177),

M(Bogolyubov)(2
√
eκ) = − 1

2ρ

(
1 − κ2 + 1√

κ4 + 2κ2

)
. (180)

This, together with (178), implies (62).
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