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The field of computational molecular sciences (CMSs) has made innumerable contributions to the
understanding of the molecular phenomena that underlie and control chemical processes, which is
manifested in a large number of community software projects and codes. The CMS community is now
poised to take the next transformative steps of better training in modern software design and engi-
neering methods and tools, increasing interoperability through more systematic adoption of agreed
upon standards and accepted best-practices, overcoming unnecessary redundancy in software effort
along with greater reproducibility, and increasing the deployment of new software onto hardware plat-
forms from in-house clusters to mid-range computing systems through to modern supercomputers.
This in turn will have future impact on the software that will be created to address grand chal-
lenge science that we illustrate here: the formulation of diverse catalysts, descriptions of long-range
charge and excitation transfer, and development of structural ensembles for intrinsically disordered
proteins. © 2018 Author(s). All article content, except where otherwise noted, is licensed under
a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5052551

I. INTRODUCTION

Computational molecular science (CMS) is a core sci-
ence area that underpins a broad spectrum of disciplines,
including chemistry and biochemistry, catalysis, materials sci-
ence, nanoscience, energy and environmental science, and
geosciences. The CMS community has achieved fantastic suc-
cess over its long history by creating computational models
and algorithms that are now used by hundreds of thousands
of scientists worldwide, via dozens of academic and indus-
trial software packages stemming from decades of human
effort. Their translation and deployment have resulted in inno-
vative products coming from the chemical, pharmaceutical,

a)Author to whom correspondence should be addressed: thg@berkeley.edu

information technologies, and advanced engineering indus-
tries that have and hopefully will continue to make lives
better.

These scientific breakthroughs have been made possi-
ble by the evolution of dozens of CMS community codes—
some with lifetimes reaching back to the earliest days of
computing—which include both open-source and commercial
packages. One of the strengths and at the same time one of
the challenges of the CMS field is the multitude of differ-
ent software packages used and the data that are generated
from it. There are some key benefits to having such a robust
software ecosystem. Multiple code bases ensure the agility of
the developments and facilitate the testing of new ideas and
paradigms, which are constantly emerging in this vibrant and
rapidly developing field. Different packages exemplify differ-
ent software design philosophies, and a healthy competition

0021-9606/2018/149(18)/180901/11 149, 180901-1 © Author(s) 2018
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between them allows the best of breed to emerge. Further-
more, there can be specific methodological and software niches
served by different packages.

However, this also leads to the lack of algorithmic inter-
operability between codes, in which the current standard is to
duplicate the most standard algorithms in each software plat-
form, which can be inefficient, prone to translational errors,
and suppresses innovation for new methodology. When the
format of source data changes or is different from code to
code, the warehouse, data repository, or software interface
must be updated to read that source or it will not function
properly. We are currently experiencing porting and scalability
bottlenecks of community codes on traditional high perfor-
mance computing (HPC) platforms, multicore clusters, and
Graphics processing unit (GPUs). The bulk of the needed
software modifications to address these issues involves low-
level translation and integration tasks which typically require
the full attention of domain experts. Together this has led to
tremendous challenges regarding the sustainability, mainte-
nance, adaptability, and extensibility of these early software
investments.

In 2016, the National Science Foundation (NSF) selected
the CMS community for the establishment of a Scientific Soft-
ware Innovation Institute, which we have coined the Molec-
ular Sciences Software Institute (MolSSI). The purpose of
the MolSSI1 is to serve as a long-term hub of excellence
in software infrastructure and technologies to actively enable
software development in the CMS community, by developing a
culture of modern software engineering practices. The MolSSI
aims to reach these goals by engaging the CMS community in
multiple ways.

First, the MolSSI has formulated an interdisciplinary team
of software scientists2 who are developing software frame-
works, interacting with community code developers, collab-
orating with partners in cyberinfrastructure, forming mutu-
ally productive coalitions with industry, government labs, and
international efforts, and ultimately serving as future CMS
experts and leaders. In addition, MolSSI supports and mentors
a cohort of software fellows3 of graduate students and post-
doctoral scholars actively developing code infrastructure in
CMS research groups across the U.S. MolSSI is guided by an
internal Board of Directors4 and an external Science and Soft-
ware Advisory Board5 comprising a diverse group of leaders
in the field, who both work together with the software sci-
entists and fellows to establish the key software priorities for
MolSSI.

Furthermore, the MolSSI continues to sponsor multiple
software workshops for the purpose of understanding the dif-
ferent needs of the diverse CMS community through capturing
requirements and active development of use cases. In addition,
MolSSI has encouraged the organization of a community-
driven Molecular Sciences Consortium6 to develop standards
for code and data sharing. MolSSI is also actively develop-
ing and providing summer schools7 and an on-line job search
forum8 for developing a diverse and broadly trained work-
force for the future generation of CMS activities. In total, the
MolSSI endeavors to fundamentally and dramatically improve
molecular science software development to benefit the CMS
community.

As a result, this new software infrastructure and support
will create opportunities for new levels of scientific questions
to be asked and answered. In this perspective, we discuss
the software challenges for three illustrative grand challenge
science areas: catalyst design, long-range charge transfer
and excitation transfer, and intrinsically disorder proteins.
We show that the theoretical, methodological, and algo-
rithmic advances that provide the scientific approaches to
these problems—i.e., what individual research groups excel
at and where all of the true innovation will come from—
will be the underlying engines for the software projects that
MolSSI can address in these grand challenge scientific use
cases.

II. CATALYST DESIGN

Effective catalysts decrease the energy consumption of
reactions, improve the control and selectivity of undesirable
by-products, and reduce the production of waste components.9

Such species are at the heart of the worldwide chemical and
biochemical product industry such as petroleum10,11 and phar-
maceuticals.12 Existing and emerging technologies related to
energy applications,13–15 new synthetic routes for polymers16

and drugs,17 biomass conversion to light alkanes and alco-
hols,18 and the development of designed enzymes19,20 all hinge
on a deeper understanding of catalytic mechanisms.

The goal of designing new catalysts is to ensure that
they are highly active and selective with high turnover rates,
while maintaining thermochemical stability such that the cata-
lyst survives many reactions, thereby decreasing the industrial
cost.21 The modeling requirements to achieve this goal are
to describe active sites with atomic precision and to accu-
rately incorporate the multiscale, multiphase environments in
which they operate.22–24 This requirement of multi-physics
complexity introduces significant scientific and computational
challenges. For example, single site catalysts25 are often
affected by the electronic or physical structure in which they
embedded—such as the enzyme scaffold,26 the shape-selective
effects on catalysis in porous zeolites,27 or for driven cataly-
sis at the electrocatalytic interface28—significantly changing
the catalytic behavior due to the full system. Multiple catalytic
sites29 can have cooperative or destructive effects that can dras-
tically change the product distributions and the overall activity
of the reactive sites. In addition, solvent and non-equilibrium
effects can also have huge effects on the stability and dynamics
of the catalytic process.30,31

To illustrate, mesoporous silicon nanoparticles (MSNs)
can be functionalized with many different active groups, have
varying pore sizes, be utilized with different solvents, have
variable catalytic active site concentrations, and therefore have
designable ranges of chemical reactivity. It has been found that
the relative rates of catalyzed aldol reactions in these MSNs
can be inverted by 2 orders of magnitude by changing the
solvent from hexane to water, showing that solvent cannot be
ignored in these reactions.32 The major differences suggested
by the computational analysis found that solvent polarity and
acidity were critically important features for understanding
the changes in reaction rates.32 Simulations on a portion of
the MSN channel also showed that the curvature of the MSN
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plays a significant role in the reaction mechanism that is not
captured by simpler cluster models.33 Spatially coarse-grained
stochastic models and kinetic Monte Carlo simulations have
recently been used to examine the diffusion processes coupled
with the catalytic activity34 and were able to explain the 20-
fold enhancement found for a relative small increase in pore
sizes.

An additional computational catalysis challenge is the
first-principles modeling of a complete electrochemical
device. The ultimate goal of whole device modeling in elec-
trochemistry is to simulate the partial current densities for
individual products as a function of catalyst composition, elec-
trolyte composition (including pH), membrane composition,
and applied voltage. Computational modeling of the various
physical phenomena that must be considered is given in Fig. 1
for CO2 reduction, in which Singh and co-workers proposed
the integration of three levels of theory and computation that
are needed to calculate the overall performance of the cell.35

The first requirement is a continuum model for the species
transport and reaction in a 1-D electrochemical cell; a microki-
netic model is needed to describe the rates at which each
product is formed to feed up to the continuum model; and

finally Kohn-Sham (KS) Density Functional Theory (DFT)36

is used to characterize intermediates and reaction barriers,
which are supplied to the microkinetic model.

Although these studies show the power of theory and
simulations to understand and quantify complex catalytic pro-
cesses, there are still many scientific challenges to catalysis
modeling that are limited by algorithmic and software bot-
tlenecks. By definition, quantum mechanical (QM) methods
are required to reproduce the reactive part of the system
and are needed to provide the necessary accuracy to pre-
dict reaction barriers and thermochemistry. However, these
methods are often too computationally expensive to describe
the rest of the environment for the reaction (solvent, solid
catalyst support, enzyme scaffolds, complexes, etc.). Fur-
thermore, while KS-DFT36 has become a standard bearer
for QM modeling, especially using the dispersion corrected,
generalized gradient approximation,37 there is often a need
for higher rung DFT functionals38 as well as wavefunction
methods for strongly correlated systems39 that can make the
computations even more difficult. The integration of high-
end with lower-fidelity methods via quantum embedding40

and quantum mechanics/molecular mechanics (QM/MM)

FIG. 1. Whole device model for elec-
trocatalysis. (a) Continuum transport
model for a 1-D electrochemical cell,
illustrated for CO2 reduction. (b)
Microkinetic model showing elemen-
tary processes for CO2RR and HER
over Ag(110). (c) KS-DFT to supply the
microkinetic model with relevant sta-
tionary points on the free energy sur-
face such as intermediates and reac-
tion barriers. Reprinted with permission
from Singh et al., Phys. Chem. Chem.
Phys. 17, 18924–18936 (2015). Copy-
right 2015 Royal Society of Chemistry.
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methods,41,42 and resolving the continuum to molecular reso-
lution to describe statistical fluctuations are necessary. Effi-
cient classical43 and semiclassical44 ab initio dynamics on
one or more potential energy surfaces,45 and methods for
improving the sampling of complex high-dimensional energy
landscapes for extended time scales,46–48 and under non-
equilibrium conditions49 are particular theoretical needs for
real catalytic systems.

Currently most computational chemistry software does
not have this full suite of capabilities, emphasizing the need
for interoperable software and frameworks to couple accurate
electronic structure, statistical mechanics, and kinetics for pro-
gressively larger and more complex systems. While some of
the components of a framework for coupling theories exist,
a seamless integration of these components and making the
components useful for many different applications is lacking.
Enabling this software on massively parallel, heterogeneous
hardware systems will also be required to enable computations
on the scale needed to address the catalysis challenge.50 With
the advent of machine learning as an approach to recapitulat-
ing advanced potential energy surfaces,51,52 their extension to
the design of new catalysts with specific properties requires
the accumulation of extensive amounts of data (both experi-
mental and computational) and the ability to access these data
through portals and/or databases. While there have been some
attempts at developing standards for the chemistry community
to make the data more accessible to a broader audience, there
has been limited traction in this area.

III. LONG-RANGE CHARGE AND EXCITATION
TRANSFER

A wide range of materials and biological systems make
use of charge and/or excitation transport over long distances.
These processes are the fundamental core of natural and arti-
ficial light harvesting,53 cellular respiration, proton-coupled
electron transfer in fuel cells and batteries, photonics, elec-
tronics, and spintronics. These inherently quantum phenomena
span multiple time, energy, and length scales and involve
numerous coupled degrees of freedom. Furthermore, they
operate in a diverse range of ordered and disordered organic
and inorganic materials.

As a fascinating example illustrating the complexity
of these processes, consider electrochemically active bacte-
ria,54–56 the metabolic cycle of which involves shuttling elec-
trons from the periplasm, via the outer-membrane, to solid
external acceptors. At certain conditions, electron transport in
these bacteria occurs via long (tens of µm) extensions called
bacterial nanowires.57 These species can be exploited in novel
technologies including biophotovoltaics, microbial fuel cells,
bioremediation of heavy metals, and more.

Experiments have measured nanowires’ conductivity and
their range of redox potentials exhibited at different condi-
tions, identified the proteins responsible for electron transport,
and determined their crystal structures, density, and location
within the cellular membranes. And yet our mechanistic under-
standing of the electron transfer in these organisms is rather
rudimentary, and the interpretation of these state-of-the-art
experiments is hotly debated. Does electron transfer occur by

tunneling-like ballistic transport or via hopping?58 What is the
exact role of different cofactors, such as flavin? Why there are
redundant pathways and what controls the variation in expres-
sion of the multiple proteins associated with these pathways?
And how can the high electrical currents57 be supported by
this fluctuating biological scaffold?

In one type of such organism, Shewanella oneidensis
MR-1, electron transport proceeds via 3 distinct membrane
proteins,59 MtrF, MtrC, and OmcA, all of which are deca-
heme cytochromes, shown in Fig. 2. Theoretical modeling60–63

has provided important insights into this system. For example,
pioneering calculations by Blumberger and co-workers60–62

determined that the redox landscape does not have a gradient.
Therefore electron transport can proceed in either direction
(10-to-5 or 5-to-10 as shown in Fig. 2), meaning that the bac-
teria can reverse the direction of the electron flow depending
on their functional needs. This work also pointed out that the
larger free-energy barriers between hemes are often compen-
sated by larger electronic couplings, and vice versa. A more
recent study63 has quantified the effect of the overall redox
state of the protein on the free energy landscape and explained
the variations in measured redox potentials by different con-
ductance regimes, i.e., hole hopping versus electron hopping.
Even while these studies employed very advanced theoretical
approaches for quantitative modeling of electron transfer,64

together they revealed limitations of the currently available
software and methodology, and thus left many intriguing
questions unanswered.

To quantitatively model redox states of just one decaheme
cytochrome (roughly 200 000 atoms, not counting the solvat-
ing water), one needs to compute free energies of each heme
in a reduced and oxidized state for different combinations of
redox states of the other hemes, which results in 29 = 512

FIG. 2. A series of heme-c cofactors in the protein MtrF illustrating the cur-
rent model of electron flow via hopping in the decaheme outer-membrane
proteins in Shewanella oneidensis MR-1. The staggered-cross arrangement of
the 10 hemes is counter-intuitive and is still not fully explained. Reprinted
with permission from Barrozo et al., Angew. Chem., Int. Ed. 57, 6805–6809
(2018). Copyright 2018 John Wiley and Sons, Inc.
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distinct redox states of the protein. Additional information
needed to arrive at the redox energies should include the
protonation states of various protein residues, as well as
their possible pKa changes in response to redox states of the
hemes. Furthermore, each redox calculation entails extensive
sampling of configurations on the reduced and oxidized state.

Even if the sampling of structures is carried out with
molecular dynamics, the evaluation of the electronic energy
differences will require multiple QM/MM calculations. In the
minimal setup needed to obtain quantitative agreement with
the experiment,63 when the QM region includes only one
heme, the quantum system was comprised of 109 atoms. Such
calculations63 of the redox states of MtrF and MtrC in only 3
out of 512 distinct regimes (electron hopping, hole hopping,
and electron hopping with heme 7 reduced) using KS-DFT,
classical molecular dynamics, and a linear response approx-
imation have burned well over 150 000 central processing
unit (CPU)-hours at the Extreme Science and Engineering
Discovery Environment (XSEDE) and University of South-
ern California High-Performance Computing Cluster (USC-
HPCC) facilities, all while using the fastest and most efficient
implementations of these methods.

To calculate electron-transfer rates and electron flow,
one needs to go beyond this QM/MM approach and com-
pute free energy changes for electron transfer between each
pair of neighboring hemes (9 pairs) as well as their respec-
tive electronic couplings. To do so, the QM system should
include 2 hemes and employ an electronic structure method
capable of describing multiple electronic states (D/A and
D+/A−) and their interactions. Obviously, such calculations
are demanding, even when using the least sophisticated lev-
els of theory (DFT, non-polarizable force-fields, and a linear
response approximation). Modeling of excitation transfer and
exciton dynamics is even more demanding. Given the ultrafast
nature of photo-induced processes, a more correct calculation
requires the departure from Marcus-type models toward the-
ories appropriate for non-equilibrium processes, as shown in
Fig. 3.

FIG. 3. Phycobiliprotein light harvesting complexes from cryptophyte algae.
Excitation energy transfer among eight bilin chromophores is strongly modu-
lated by their interactions with local environment and vibrational motions.
A multiscale approach combining high-level electronic structure calcula-
tions and non-Markovian reduced density matrix description provided insight
into inhomogeneous line broadening, excited-state lifetimes, and dissipative
dynamics66 in these systems. Reprinted with permission from Lee et al., J.
Am. Chem. Soc. 139, 7803–7814 (2017). Copyright 2017 American Chemical
Society.

These different types of calculations entail different work-
flows that affect the data exchange between the modules for
this grand challenge science case. Some standard workflows,
such as those used for redox potentials, are not automated
and require diligent and expert human involvement at various
stages of the calculation. Consequently, the software limita-
tions affect productivity since too much precious research time
is spent on fighting with idiosyncrasies of various packages,
fixing broken interfaces, and trouble-shooting technical issues.
A recent attempt to create a more automated workflow for high-
throughput modeling of rhodopsins illustrates the progress that
has been made, as well as the complexity and heterogeneity of
the underlying theoretical models and the severe requirements
for the software stack.65

And yet, this is still insufficient for a complete descrip-
tion of electron transport through Shewanella’s nanowires!
How does electron transfer occur between different proteins
across the membrane protein complex? Do the properties of
the proteins in immediate contact with the solid electron accep-
tor (i.e., an electrode) differ from those residing deep inside
the membrane? Does bending of the nanowires affect their
conductivity? What is the role of soluble electron shuttlers in
the overall mechanism? Does the electron flow follow static
one-dimensional pathways or dynamic three-dimensional net-
works? To answer these questions, the theoretical model must
go beyond a single isolated protein, while preserving atomic-
level resolution in describing the essential physics. This makes
the software requirements even more challenging.

IV. INTRINSICALLY DISORDERED PROTEINS

While most of the effort in molecular biology over the
last 30 years has focused on the characterization of the con-
formational changes and folding of structured proteins, it has
long been known that regions of intrinsic disorder (see Fig. 4)
are common in eukaryotic proteins.67,68 Intrinsically disor-
dered regions (IDRs) and proteins (IDPs) comprise approx-
imately 25% of the human proteome, and their inherent
disorder is required for function, such as in cellular regulation
and signaling.69 At the same time, numerous IDPs are asso-
ciated with human diseases, including cancer, cardiovascu-
lar disease, amyloidoses, neurodegenerative diseases, and
diabetes.69

One of the deep intellectual challenges of studying IDPs
is how to build structural and dynamical models that allow
researchers to gain insight and conceptualize their nature.72

For folded proteins, crystal structures from X-ray crystal-
lography provide concrete, predictive, and yet conceptually
straightforward models, as represented by the often power-
ful connections between structure and protein function. IDPs
require a broader framework to achieve comparable insights.
As such, investigation of the properties of IDP structural
ensembles will require significantly more than one dominant
experimental tool and computational analysis approach than
found when using X-ray crystallography beamlines. Although
nuclear magnetic resonance (NMR)73 and small angle X-ray
spectroscopy (SAXS)74 are typically used to characterize the
solution structure and dynamical conformations of IDPs, the
long time scale of these measurements limits the identification
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FIG. 4. (Left) Representative ensemble of conformers for CBP-ID4. Some parts of the CBP-ID4 protein take on a definite structure (red and blue), while
other regions remain disordered (gray) in the unbound state. Reprinted with permission from Piai et al., Biophys. J. 110, 372–381 (2016). Copyright 2016,
Biophysical Society.70 (Right) Disordered protein regions can sometimes become structured upon binding with another protein as shown for the unstructured KID
domain of CREB that folds upon binding with CBP. Reprinted with permission from Babu, Biochem. Soc. Trans. 44, 1185 (2016). Copyright 2016 Biochemical
Society.71

of the conformational substrates due to conformational aver-
aging; these specific substrates are thought to have distinct
functional roles, so even solution experimental approaches to
IDPs are inherently underdetermined.

For these reasons, the demand for reliable computer sim-
ulations of IDPs has become increasingly intense in recent
years.72,75 However such computational tools have yet to real-
ize their full potential due to serious software obstacles. These
include the concurrency and scaling limits associated with
some of the more aggressive sampling methods.76,77 There is a
need for improved force fields beyond that used for folded pro-
teins,78,79 which can entail additional computational expense
when including many-body interactions such as polarization.80

In turn, the trial ensembles that are generated need to be vali-
dated through back-calculation using more accurate property
prediction (such as for NMR chemical shifts) derived from
large-scale quantum chemical computations to compare to
experiment since current heuristic property calculators81 per-
form inadequately for IDPs. Finally, IDP structural ensembles
must be evaluated with Bayesian and statistical tools to vali-
date and interpret IDP ensembles,82,83 due to the problem of
underdetermination.

Therefore by analogy with X-ray crystallographic beam-
lines and their role in streamlining acquisition of structures,
the IDP problem ultimately requires an integrative approach by
combining diverse experimental data and simulation method-
ology into a single computational instrument, which we have
previously referred to as a “computational beamline.”72 In
terms of software and data, a computational beamline is cur-
rently a significant and unsolved software infrastructure chal-
lenge that requires a larger software framework and that would
ideally be composed of the following elements.

Computational simulation codes such as Amber,84

CHARMM,85 NAMD,86 or OpenMM87 (to name a few) would
be needed to create trial IDP structural ensembles using
brute force MD, or taking up newer software modules that
perform enhanced and adaptive sampling methods.46,77,88,89

Additional software will be needed to allow a rich network of
interactions to occur between the experimental data, such as
NMR, SAXS, and Förster resonance energy transfer (FRET),90

and their connection to structural or dynamical observables
through back-calculations to validate the trial IDP ensem-
ble. This would include agreement with chemical shifts and
scalar couplings from more rigorous quantum mechanical
codes such as CFOUR (www.cfour.de), GAMESS,91 Gaus-
sian,92 NWChem,93 Psi4,94 or Q-Chem95 (again, to name a
few).

The co-location and integration of all the data and codes
combined with the ability to run many concurrent ensembles
will require sophisticated software frameworks. Fireworks,96

Ensemble Toolkit,97 and RepEx98 leverage the computing
power of supercomputers and mid-range clusters to accom-
modate the large number of runs needed to sample the large
conformational space of IDPs and their complexes, including
back-calculations of the experimental data for their validation.
As part of the workflow, the output should be automatically
curated, along with all the parameters used to create that
output, for subsequent analysis.

A central data repository to integrate all available exper-
imental and simulated data and which provides powerful and
flexible search capabilities is needed. Data sharing would also
occur to external IDP and NMR databases such as BioIsis,99

pE-DB,100 and BMRB101 from the computational beamline
repository. Making the data collected and generated by the
computational beamline accessible via a central resource will
significantly improve access, use, and reuse of data. Uploaded
data can be processed further to build data objects and will be
discoverable by relevant data attributes so that researchers will
be able to find and retrieve experimental and computational
data for validation, to determine constraints, and to perform
advanced data analysis.

To make the data generated by the scalable workflows
accessible to users for analysis, it is critical that we pro-
vide an end-station comprising robust statistical tools such
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as regression, clustering, Bayesian inference, and Markov
State Models, that can give insight into key structural aspects
and to identify dynamical motifs, including repeated tran-
sient structure and more sophisticated correlative motions.
The analysis end station could also be integrated with visu-
alization software and utilize Jupyter Notebooks to enable
a more integrated workspace where IDP scientists can
collaborate.

In summary, IDPs require an unprecedented level of inte-
gration of multiple and complementary experimental data
types, state-of-the art molecular simulation methodology, and
a comprehensive set of statistical and data science analysis
tools. Such software could connect observed structural or
dynamical motifs to greater functional relevance for a wide
range of IDP systems. The primary benefit from this ambi-
tious software effort is to push IDP models closer to crystal
structures in the goals of utility, understandability, and predic-
tive power.

V. EARLY SOFTWARE EFFORTS AT THE MolSSI

MolSSI is working with the CMS community to address
the software bottlenecks posed by these scientific use cases
through the development of new software tools and improve-
ments to software infrastructure. To illustrate, the eMap soft-
ware developed by Bravaya and co-workers102 is a community-
led effort that has received partial support by MolSSI to
address the theoretical modeling of electron transfer cov-
ered in Sec. III. The software issue stems from the scien-
tific problem that if the crystal structures are not available or
electron-transfer pathways are not immediately obvious, as in
the case of photo-induced electron transfer in different mutants
of the green fluorescent protein103 shown in Fig. 5, eMap can
narrow down the search of likely electron accepting residues by
determining the shortest chain of aromatic residues connecting
the chromophore with the surface. Currently such commu-
nity led software projects are solicited through the software
fellows program,3 but this also entails a significant edu-
cation program around software best practices for novices.
Our expectation for the future is a process for more open
and direct engagement with more senior software develop-
ers and end users to help lead MolSSI in new software project
directions.

As we begin the 3rd year of MolSSI, there are currently
three overarching directions in software projects that will ulti-
mately address the larger software infrastructure needs for the
grand challenge use cases described in Secs. II–IV. These
include reproducibility and interoperability of different soft-
ware packages, code curation efforts, as well as software
development processes.

For example, manual conversion of the energy expression
files between molecular simulation programs is error-prone,
and consequently many automated tools have been devel-
oped to perform these conversions.104,105 The Energy Expres-
sion Exchange (EEX)106 developed at MolSSI is building on
these efforts using an all-to-all Python package translator that
converts the topology, force field and simulation parameters
between two given simulation programs. The EEX uses a
plug-in architecture that makes the application more modular,

customizable, and extensible. The host application contains
EEX’s internal representation of the system and defines the
interface of such representation with the external world (i.e.,
the various reader/writer plug-ins). Each of the MD or MC
codes has an associated plug-in that interacts with EEX’s
host application to carry out the conversion. The EEX project
will benefit the community by facilitating the interconversion
of simulation inputs from one engine to another. This will
allow researchers to reproduce the same calculation in different
codes, and to leverage the capabilities of one software package
that might not be available in other packages, or to com-
pare two simulation codes. The agreement among complex
computational tools is important for scientific reproducibil-
ity107–109 and therefore impacts all scientific drivers reviewed
here equally.

Similarly, MolSSI is involved in a rewrite of the pop-
ular Environmental Molecular Sciences Laboratory (EMSL)
Basis Set Exchange,110,111 which is a repository for basis sets
used in QM calculations. As part of this project, basis sets are
being curated and verified against the literature and other rep-
utable sources. Different QM codes can have different internal
data for a basis set, even though they will use the same name,
resulting in computations that are not comparable between
codes. The end product of the project will not only be a user-
accessible repository of information related to basis sets, but
a canonical source for verified data which programs can use
to verify their own basis sets, and a place where users can
download a specific basis set to use across many different
codes, increasing the reproducibility and comparability of their
computation.

The MolSSI Driver Interface112 is a socket-based interface
that enables an external driver to control the high-level program
flow of QM and MM production codes. From a developer’s per-
spective, the interface appears very similar to Message Pass-
ing Interface (MPI), with simple MDI-Send and MDI-Recv
functions handling communication between the driver and
production codes. The driver sends commands to the produc-
tion codes, such as “receive a new set of nuclear coordinates
from me” or “calculate and send the forces to me.” When not
performing a command, the production codes wait and lis-
ten for a new command. By sending particular commands to
particular production codes in a particular order, a driver can
orchestrate complex, multi-code calculations. Development of
the interface was originally motivated by the challenges of
QM/MM simulations, but it is sufficiently general that it can
also support Path-Integral MD, ab initio MD, Metadynamics,
and many other methods that can benefit from the cooperation
of multiple codes.

Another example is the creation of a schema for quantum
chemistry data. QCSchema,113 will help define data interfaces
that, if used by the community, can facilitate a more seamless
environment for software components to work together. An
initial draft of the schema is available at the MolSSI GitHub
website and has been developed in partnership with many of
the quantum chemistry code developers as well as developers
of the consumers of that data—such as visualization, analysis
software, and stand-alone geometry optimizers. An analogous
schema for molecular mechanics and molecular dynamics data
is in the planning stage.

 02 June 2025 21:30:26



180901-8 Krylov et al. J. Chem. Phys. 149, 180901 (2018)

FIG. 5. Photoinduced electron transfer in green fluorescent protein. The first step in modeling the rate and yield of photoxidation requires finding a pathway
of electron transfer from the chromophore (bright green) tucked inside a tight protein barrel (a) to an outside oxidant. The eMap software package determines
such pathways by identifying amino acid residues that are the most likely intermediate electron acceptors and renders the resulting pathways in 3D, as shown in
panels (b) and (c).

The MolSSI Quantum Chemistry Archive114 sets out to
answer a single fundamental question: How do we compile,
aggregate, query, and share quantum chemistry data to accel-
erate the understanding of new method performance, fitting of
novel force fields, and supporting the incredible data needs
of machine learning for computational molecular science?
The resulting project is a hybrid distributed computing and
database program for quantum chemistry to make creation,
curation, and distribution of large datasets more accessible to
the entire CMS community. The QCSchema is used as the
core transfer of quantum chemistry information to ensure that
the project is not specific to any single quantum chemistry
program. The project also has several distributed computing
backends to choose from like Dask115 and Fireworks96 to
ensure users can switch between flexibility and scalability as
required for their projects.

Finally, the software created by the CMS community is
broad and deep, and the MolSSI has developed the Com-
munity Code Database116 for curation of community soft-
ware metadata to move beyond basic Wikipedia lists of web-
sites. The database is accessible through a web gateway as
well as REST APIs, and it is searchable with many pos-
sible filters. The database includes more expanded infor-
mation such as licensing, version release, requested cita-
tions(s), programming language(s), relevant compilers, graph-
ical user interfaces, test suites and coverage, file formats,
documentation, and much more. In addition, it has domain-
specific information such as basis sets, element coverage,
force field types, and sampling methods. Through a straight-
forward web interface, the CMS community can easily con-
tribute to the database by submitting their own software
products.
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VI. CONCLUSION

There are many opportunities for developing the nec-
essary models, software, and tools needed for simulating
realistic catalytic systems,50 long-range electron and charge
transfer,53 and intrinsically disordered proteins and their com-
plexes.72 MolSSI is at an early stage of systematically advanc-
ing software frameworks in all three of these scientific use
cases. Looking ahead, MolSSI envisions its role in advancing
CMS through active engagement with the community in the
following software areas.

One is the more rapid deployment of the newest state-
of-the-art methods and models from electronic structure,
quantum dynamics, multiscale modeling, equilibrium and
non-equilibrium dynamics, statistical mechanics, and coarse-
graining. This would be formulated as a sophisticated set of
modular software and containers for greater agility in uptake
into CMS community codes.

Another is to further increase the robustness and inter-
operability of community codes deploying such models. At
present, often the choice of computational protocols is dic-
tated by the methodological availability in specific software
packages rather than by the best theoretical considerations.

It would also be desirable for the CMS community to
establish data and software standards. The timing for this
endeavor is especially propitious given the emergence of data
science and machine learning that will be employed in many
grand challenge CMS problems, including the three discussed
here.

Finally, the porting and scalability of CMS software must
take advantage of multicore architectures, GPUs, and high per-
formance computing. This is the best way to fully exploit
high throughput computation and the inevitable advances
toward exascale computing.50 Of course new computing
paradigms such as the emergence of quantum computing117

will ensure that computer architectures will always be
disruptive!

In summary, producing robust, scalable, and sustainable
molecular simulation software requires a multi-disciplinary
community of CMS domain scientists, computer science and
software engineers, and applied mathematicians to advance
new software initiatives. The MolSSI will provide the home
and focal point for bridging and interfacing among differ-
ent simulation communities to do a new level of science
grand challenge problems not currently achievable within
more specialized communities.

ACKNOWLEDGMENTS

The authors thank the National Science Foundation for
support under Grant No. ACI-1547580. T.H.G. is thankful
to Daniel Gunter and Julie Forman-Kay for discussions on
experimental data and software needs for IDPs. The MolSSI
team would also like to thank the many members of the CMS
community for their participation in the Institute.

1See https://molssi.org/about/ for MolSSI.
2See https://molssi.org/molssi-software-scientists/ for Current MolSSI Soft-
ware Scientists.

3See https://molssi.org/the-molssi-software-fellowship-program/ for
MolSSI Software Fellowship Program.

4See https://molssi.org/people/ for MolSSI Board of Directors.
5See https://molssi.org/people/advisory-board/ for MolSSI Scientific Soft-
ware Advisory Board.

6See https://molssi.org/the-molecular-sciences-consortium/ for Molecular
Sciences Consortium.

7See https://molssi.org/education/summer-schools/ for MolSSI Summer
Schools.

8See https://molssi.org/job-opportunities/ for CMS Job Postings.
9P. C. J. Kamer, D. Vogt, and J. W. Thybaut, Contemporary Catalysis:
Science, Technology, and Applications (Royal Society of Chemistry, 2017).

10E. G. Derouane, “Catalysis in the 21st century, lessons from the past,
challenges for the future,” CATTECH 5(4), 214–225 (2001).

11A. Primo and H. Garcia, “Zeolites as catalysts in oil refining,” Chem. Soc.
Rev. 43, 7548–7561 (2014).

12C. A. Busacca, D. R. Fandrick, J. J. Song, and C. H. Senanayake, “The
growing impact of catalysis in the pharmaceutical industry,” Adv. Synth.
Catal. 353, 1825–1864 (2011).

13Y. Li and G. A. Somorjai, “Nanoscale advances in catalysis and energy
applications,” Nano Lett. 10, 2289–2295 (2010).

14B. Parida, S. Iniyan, and R. Goic, “A review of solar photovoltaic
technologies,” Renewable Sustainable Energy Rev. 15, 1625–1636
(2011).

15R. J. Lim et al., “A review on the electrochemical reduction of CO2 in
fuel cells, metal electrodes and molecular catalysts,” Catal. Today 233,
169–180 (2014).

16J.-i. Kadokawa and S. Kobayashi, “Polymer synthesis by enzymatic
catalysis,” Curr. Opin. Chem. Biol. 14, 145–153 (2010).

17K. C. Nicolaou, “Catalyst: Synthetic organic chemistry as a force for good,”
Chem 1, 331–334 (2016).

18E. L. Kunkes et al., “Catalytic conversion of biomass to monofunctional
hydrocarbons and targeted liquid-fuel classes,” Science 322, 417 (2008).

19D. Baker, “An exciting but challenging road ahead for computational
enzyme design,” Protein Sci. 19, 1817–1819 (2010).

20I. V. Korendovych and W. F. DeGrado, “Catalytic efficiency of designed
catalytic proteins,” Curr. Opin. Struct. Biol. 27, 113–121 (2014).

21J. K. Norskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, “Towards
the computational design of solid catalysts,” Nat. Chem. 1, 37 (2009).

22V. V. Welborn, L. R. Pestana, and T. Head-Gordon, “Computational opti-
mization of electric fields for better catalysis design,” Nat. Catal. 1, 649
(2018).

23J. J. Bravo-Surez, R. V. Chaudhari, and B. Subramaniam, Novel Materials
for Catalysis and Fuels Processing (American Chemical Society, 2013),
Vol. 1132, Chap. 1, pp. 3–68.

24L. Falivene, S. M. Kozlov, and L. Cavallo, “Constructing bridges between
computational tools in heterogeneous and homogeneous catalysis,” ACS
Catal. 8, 5637–5656 (2018).

25J. D. A. Pelletier and J.-M. Basset, “Catalysis by design: Well-defined
single-site heterogeneous catalysts,” Acc. Chem. Res. 49, 664–677 (2016).

26A. Bhowmick, S. C. Sharma, and T. Head-Gordon, “The importance of the
scaffold for de Novo enzymes: A case study with Kemp Eliminase,” J. Am.
Chem. Soc. 139, 5793–5800 (2017).

27E. Mansoor, J. Van der Mynsbrugge, M. Head-Gordon, and A. T. Bell,
“Impact of long-range electrostatic and dispersive interactions on theoret-
ical predictions of adsorption and catalysis in zeolites,” Catal. Today 312,
51 (2018).

28M. Dunwell, W. Luc, Y. Yan, F. Jiao, and B. Xu, “Understanding surface-
mediated electrochemical reactions: CO2 reduction and beyond,” ACS
Catal. 8, 8121–8129 (2018).

29A. Zecchina, S. Bordiga, and E. Groppo, “The structure and reactivity of
single and multiple sites on heterogeneous and homogeneous catalysts:
Analogies, differences, and challenges for characterization methods,” in
Selective Nanocatalysts and Nanoscience: Concepts for Heterogeneous
and Homogeneous Catalysis (Wiley, 2011).

30C. Sievers et al., “Phenomena affecting catalytic reactions at solidliquid
interfaces,” ACS Catal. 6, 8286–8307 (2016).

31S. Belsare, V. Pattni, M. Heyden, and T. Head-Gordon, “Solvent entropy
contributions to catalytic activity in designed and optimized Kemp Elimi-
nases,” J. Phys. Chem. B 122, 5300–5307 (2018).

32K. Kandel, S. M. Althaus, C. Peeraphatdit, T. Kobayashi, B. G. Trewyn,
M. Pruski, and I. I. Slowing, “Solvent-induced reversal of activities between
two closely related heterogeneous catalysts in the aldol reaction,” ACS
Catal. 3, 265–271 (2013).

33A. P. de Lima Batista, F. Zahariev, I. I. Slowing, A. A. C. Braga, F. R. Ornel-
las, and M. S. Gordon, “Silanol-assisted carbinolamine formation in an

 02 June 2025 21:30:26

https://molssi.org/about/
https://molssi.org/molssi-software-scientists/
https://molssi.org/the-molssi-software-fellowship-program/
https://molssi.org/people/
https://molssi.org/people/advisory-board/
https://molssi.org/the-molecular-sciences-consortium/
https://molssi.org/education/summer-schools/
https://molssi.org/job-opportunities/
https://doi.org/10.1023/a:1014036813345
https://doi.org/10.1039/c3cs60394f
https://doi.org/10.1039/c3cs60394f
https://doi.org/10.1002/adsc.201100488
https://doi.org/10.1002/adsc.201100488
https://doi.org/10.1021/nl101807g
https://doi.org/10.1016/j.rser.2010.11.032
https://doi.org/10.1016/j.cattod.2013.11.037
https://doi.org/10.1016/j.cbpa.2009.11.020
https://doi.org/10.1016/j.chempr.2016.08.006
https://doi.org/10.1126/science.1159210
https://doi.org/10.1002/pro.481
https://doi.org/10.1016/j.sbi.2014.06.006
https://doi.org/10.1038/nchem.121
https://doi.org/10.1038/s41929-018-0109-2
https://doi.org/10.1021/acscatal.8b00042
https://doi.org/10.1021/acscatal.8b00042
https://doi.org/10.1021/acs.accounts.5b00518
https://doi.org/10.1021/jacs.6b12265
https://doi.org/10.1021/jacs.6b12265
https://doi.org/10.1016/j.cattod.2018.02.007
https://doi.org/10.1021/acscatal.8b02181
https://doi.org/10.1021/acscatal.8b02181
https://doi.org/10.1002/9783527635689.ch1
https://doi.org/10.1002/9783527635689.ch1
https://doi.org/10.1021/acscatal.6b02532
https://doi.org/10.1021/acs.jpcb.7b07526
https://doi.org/10.1021/cs300748g
https://doi.org/10.1021/cs300748g


180901-10 Krylov et al. J. Chem. Phys. 149, 180901 (2018)

amine-functionalized mesoporous silica surface: Theoretical investigation
by fragmentation methods,” J. Phys. Chem. B 120, 1660–1669 (2016).

34A. Garca, I. I. Slowing, and J. W. Evans, “Pore diameter dependence
of catalytic activity: p-Nitrobenzaldehyde conversion to an aldol product
in amine-functionalized mesoporous silica,” J. Chem. Phys. 149, 024101
(2018).

35M. R. Singh, E. L. Clark, and A. T. Bell, “Effects of electrolyte, catalyst,
and membrane composition and operating conditions on the performance
of solar-driven electrochemical reduction of carbon dioxide,” Phys. Chem.
Chem. Phys. 17, 18924–18936 (2015).

36W. Kohn and L. J. Sham, “Self-consistent equations including exchange
and correlation effects,” Phys. Rev. 140, A1133–A1138 (1965).

37J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approxi-
mation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).

38N. Mardirossian and M. Head-Gordon, “Thirty years of density functional
theory in computational chemistry: An overview and extensive assessment
of 200 density functionals,” Mol. Phys. 115, 2315–2372 (2017).

39T. Helgaker, W. Klopper, and D. P. Tew, “Quantitative quantum chemistry,”
Mol. Phys. 106, 2107–2143 (2008).

40F. Libisch, C. Huang, and E. A. Carter, “Embedded correlated wavefunc-
tion schemes: Theory and applications,” Acc. Chem. Res. 47, 2768–2775
(2014).

41M. W. van der Kamp and A. J. Mulholland, “Combined quantum mechan-
ics/molecular mechanics (QM/MM) methods in computational enzymol-
ogy,” Biochemistry 52, 2708–2728 (2013).

42X. Lu et al., “QM/MM free energy simulations: Recent progress and
challenges,” Mol. Simul. 42, 1056–1078 (2016).

43D. Marx and J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and
Advanced Methods (Cambridge University Press, New York, 2009).

44W. H. Miller, “The semiclassical initial value representation: A potentially
practical way for adding quantum effects to classical molecular dynamics
simulations,” J. Phys. Chem. A 105, 2942–2955 (2001).

45A. S. Petit and J. E. Subotnik, “Appraisal of surface hopping as a tool for
modeling condensed phase linear absorption spectra,” J. Chem. Theory
Comput. 11, 4328–4341 (2015).

46D. M. Zuckerman, “Equilibrium sampling in biomolecular simulation,”
Annu. Rev. Biophys. 40, 41–62 (2011).

47M. A. Rohrdanz, W. Zheng, and C. Clementi, “Discovering mountain
passes via torchlight: Methods for the definition of reaction coordinates
and pathways in complex macromolecular reactions,” Annu. Rev. Phys.
Chem. 64, 295–316 (2013).

48C. Dellago and P. Bolhuis, “Transition path sampling and other advanced
simulation techniques for rare events,” Adv. Polym. Sci. 221, 167–233
(2008).

49U. Ray, G. K.-L. Chan, and D. T. Limmer, “Exact fluctuations of nonequi-
librium steady states from approximate auxiliary dynamics,” Phys. Rev.
Lett. 120, 210602 (2018).

50T. Windus, T. Devereaux, M. Banda, https://science.energy.gov/∼/
media/bes/pdf/reports/2017/BES-EXA rpt.pdf.

51J. Behler, “Perspective: Machine learning potentials for atomistic simula-
tions,” J. Chem. Phys. 145, 170901 (2016).

52K. Yao, J. E. Herr, and J. Parkhill, “The many-body expansion combined
with neural networks,” J. Chem. Phys. 146, 014106 (2017).

53G. D. Scholes, “Introduction: Light harvesting,” Chem. Rev. 117, 247
(2018), Editorial for a special issue on light harvesting.

54K. H. Nealson, A. Belz, and B. McKee, “Breathing metals as a way of
life: Geobiology in action,” Antonie Van Leeuwenhoek Int. J. Gen. Mol.
Microbiol. 81, 215 (2002).

55J. K. Fredrickson, M. F. Romine, A. S. Beliaev, J. M. Auchtung, M.
E. Driscoll, T. S. Gardner, K. H. Nealson, A. L. Osterman, G. Pinchuk,
J. L. Reed, D. A. Rodionov, J. L. M. Rodrigues, D. A. Saffarini, M.
H. Serres, A. M. Spormann, I. B. Zhulin, and J. M. Tiedje, “Towards envi-
ronmental systems biology of Shewanella,” Nat. Rev. Microbiol. 6, 592
(2008).

56D. R. Lovley, J. D. Coates, E. L. Blunt-Harris, E. J. P. Phillips, and J.
C. Woodward, “Humic substances as electron acceptors for microbial
respiration,” Nature 382, 445 (1996).

57M. Y. El-Naggar, G. Wanger, K. M. Leung, T. D. Yuzvinsky, G. Southam,
J. Yang, W. M. Lau, K. H. Nealson, and Y. A. Gorby, “Electrical transport
along bacterial nanowires from Shewanella oneidensis MR-1,” Proc. Natl.
Acad. Sci. U. S. A. 107, 18127 (2010).

58N. F. Polizzi, S. S. Skourtis, and D. N. Beratan, “Physical constraints on
charge transport through bacterial nanowires,” Faraday Discuss. 155, 43
(2012).

59M. Breuer, K. M. Rosso, J. Blumberger, and J. N. Butt, “Multi-haem
cytochromes in Shewanella oneidensis MR-1: Structures, functions and
opportunities,” J. R. Soc. Interface 12, 20141117 (2014).

60J. Blumberger, “Free energies for biological electron transfer from
QM/MM calculation: Method, application and critical assessment,” Phys.
Chem. Chem. Phys. 10, 5651 (2008).

61M. Breuer, P. Zarzycki, L. Shi, T. A. Clarke, M. J. Edwards, J. N. Butt,
D. J. Richardson, J. K. Fredrickson, J. M. Zachara, J. Blumberger, and
K. M. Rosso, “Molecular structure and free energy landscape for electron
transport in the decahaem cytochrome MtrF,” Biochem. Soc. Trans. 40,
1198 (2012).

62M. Breuer, K. M. Rosso, and J. Blumberger, “Electron flow in multiheme
bacterial cytochromes is a balancing act between heme electronic inter-
action and redox potentials,” Proc. Natl. Acad. Sci. U. S. A. 111, 611
(2014).

63A. Barrozo, M. Y. El-Naggar, and A. I. Krylov, “Distinct electron conduc-
tance regimes in bacterial decaheme cytochromes,” Angew. Chem., Int.
Ed. 57, 6805–6809 (2018).

64J. Blumberger, “Recent advances in the theory and molecular simula-
tion of biological electron transfer reactions,” Chem. Rev. 115, 11191
(2015).

65F. Melaccio, M. C. Marı́n, A. Valentini, F. Montisci, S. Rinaldi, M. Cheru-
bini, X. Yang, Y. Kato, M. Stenrup, Y. Orozco-Gonzalez, N. Ferré, H.
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