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ABSTRACT: Summer Arctic sea ice is declining rapidly but with superimposed variability on
multiple timescales that introduces large uncertainties into projections of future sea ice loss. To
better understand what drives at least part of this variability, we show how a simple linear model can
link dominant modes of climate variability to low-frequency regional Arctic sea ice concentration
(SIC) anomalies. Focusing on September, we find skillful projections from global climate models
(GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) at lead times of 4-20
years, with up to 60% of observed low-frequency variability explained at a 5-year lead time. The
dominant driver of low-frequency SIC variability is the Interdecadal Pacific Oscillation (IPO)
which is positively correlated with SIC anomalies in all regions up to a lead time of 15 years, but
with large uncertainty between GCMs and internal variability realization. The Nifo 3.4 Index and
Atlantic Multidecadal Oscillation have better agreement between GCMs of being positively and
negatively related, respectively, with low-frequency SIC anomalies for at least 10-year lead times.
The large variation between GCMs and between members within large ensembles indicate the
diverse simulation of teleconnections between the tropics and Arctic sea ice, and the dependence
on initial climate state. Further, the influence of the Nifio 3.4 Index was found to be sensitive to
the background climate. Our results suggest that, based on the 2022 phases of dominant climate

variability modes, enhanced loss of sea ice area across the Arctic is likely during the next decade.



24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

SIGNIFICANCE STATEMENT: The purpose of this study is to better understand the drivers of
low-frequency variability of Arctic sea ice. Teasing out the complicated relationships within the
climate system takes a large number of examples. Here we use 42 of the latest generation of global
climate models to construct a simple linear model based on dominant named climate features to
predict regional low-frequency sea ice anomalies at a lead time of 2-20 years. In 2022, these
modes of variability happen to be in the phases most conducive to low Arctic sea ice concentration
anomalies. Given the context of the longer-term trend of sea ice loss due to global warming, our

results suggest accelerated Arctic sea ice loss in the next decade.

1. Introduction

Over the past four decades, summer Arctic sea ice has rapidly declined and is projected to
continue to decline in the future (Wang and Overland 2012; Notz and Stroeve 2016; Sigmond
et al. 2018). However, large variability on multiple timescales is superimposed on this declining
trend, which can lead to 10-20 year periods of accelerated sea ice loss but also to a period of
over a decade of no sea ice loss (Kay et al. 2011; Swart et al. 2015). Hence, it is not unexpected
that no new record low September sea ice area has occurred since 2012 (Francis and Wu 2020),
in particular as September internal variability is currently elevated due to the decrease in the
thickness and mean sea ice state (Goosse et al. 2009; Eisenman 2010; Jahn 2018; Mioduszewski
et al. 2019). The shelf seas have been the focus of the observed decline as well as of the impact
of internal variability, with lower average sea ice concentration and thinner ice making the area a
hotspot of internal variability over the past few decades (Lindsay and Zhang 2006; England et al.
2019; VanAchter et al. 2020; Arthun et al. 2021). The shelf seas are also coincident with areas of
interest for shipping (Eguiluz et al. 2016; Melia et al. 2017), natural resource exploration (Petrick
et al. 2017), and ecological changes (Kovacs et al. 2011). However, the current characteristics
of variability are likely transitory as the shelf seas in the next few decades will become more
reliably ice-free throughout the summer (Barnhart et al. 2016; Crawford et al. 2021), ending

the dominant role of internal variability in projection uncertainty for this region (Bonan et al. 2021).
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The internal variability of Arctic sea ice acts on multiple timescales and has therefore been
challenging to cleanly separate from the forced response (Stroeve et al. 2007; Kay et al. 2011; Swart
et al. 2015; Dorr et al. 2023). High-frequency drivers such as atmospheric temperature and wind
anomalies are generally considered dominant over lower-frequency drivers (Ding et al. 2019; Olon-
scheck et al. 2019; Roach and Blanchard-Wrigglesworth 2022), but separating the drivers is difficult
due to large spatial and temporal heterogeneity in variability (Onarheim et al. 2018). By defining
low-frequency variability as periods of at least 2 years, approximately one quarter of September
pan-Arctic internal variability can be accounted for by low-frequency variability in a sample of
global climate models (GCMs) (Wyburn-Powell et al. 2022). Although low-frequency variability
is only a small component of internal variability, it promises some longer term predictability, as
the influence of initial conditions and high-frequency drivers of variability decay rapidly beyond
the current season (Blanchard-Wrigglesworth et al. 2011; Bonan et al. 2019; Bushuk et al. 2019),
and have been shown to be useful to a maximum of two-year lead time (Day et al. 2014; Yeager

etal. 2015; Bushuk and Giannakis 2017; Holland et al. 2019; Gregory etal. 2021; Wang et al. 2021).

There is some prospect of summer Arctic sea ice predictability at lead times greater than 2
years due to ocean heat transports (Zhang and Wallace 2015; Docquier et al. 2021) and climate
modes of variability (Guemas et al. 2016). However, results so far seem to be model dependent
(Tietsche et al. 2014; Blanchard-Wrigglesworth and Bushuk 2019), and our current length of
observations is likely too short to verify such relationships (Bonan and Blanchard-Wrigglesworth
2020; Karami et al. 2023). Despite these challenges, extra-tropical modes of sea level pressure
variability have been suggested to directly affect Arctic sea ice variability, but so far only
with strong evidence on high-frequency timescales (Ukita et al. 2007; Serreze et al. 2007;
L’Heureux et al. 2008; Zhang et al. 2019; Liu et al. 2021). Tropical teleconnections have also
been identified as influencing Arctic sea ice loss, primarily associated with Pacific sea surface
temperatures (SSTs) (Hu et al. 2016; Li et al. 2018a; Screen and Deser 2019; Ding et al. 2019;
Kim et al. 2020; Clancy et al. 2021; Jeong et al. 2022b; Simon et al. 2022), but also with
Atlantic variability (Day et al. 2012; Miles et al. 2014; Meehl et al. 2018; Li et al. 2018b;
Karami et al. 2023). Rossby wave trains are the primary mechanism linking tropical Pacific SST

anomalies to the Arctic (Yuan et al. 2018). These Rossby waves propagate from the tropics to
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the Arctic in the order of two weeks (Alexander et al. 2002), but can have seasonal Arctic sea
ice effects due to persistent positive geopotential height anomalies and associated subsidence and
diabatic warming leading to reduced sea ice cover (Baxter et al. 2019; Hofsteenge et al. 2022).
These insights into drivers of variability show promise, but skillful regional sea ice predictions

combining multiple modes of variability at lower-frequency timescales has so far been elusive.

Assessing drivers of low-frequency variability in the climate system is difficult to do without
large quantities of consistent data, such as that available from single model initial-condition large
ensembles (Deser et al. 2020; Milinski et al. 2020). This requirement for assessing drivers of
low-frequency Arctic sea ice variability stems from a multitude of drivers likely interacting on
heterogeneous spatial and temporal scales to cause this variability (Zhang et al. 2020). This has,
so far, lead to a lack of consensus of many of the drivers at time periods in excess of 2 years,
especially as GCMs and observations have been shown to represent these relationships differently.
We therefore leverage all available GCMs from the Coupled Model Intercomparison Project
Phase 6 (CMIP6) archive to investigate model consensus of these low-frequency relationships.
Additionally, we do not prescribe the nature of any of these relationships such as linearity and
independence, and perform a detailed regional analysis as well as assess multiple lead times.
To enable interpretation of these potentially complex relationships in the climate system we use
machine learning which has been used successfully before to explain patterns of surface climate
variability (e.g. Barnes et al. 2019; Labe and Barnes 2022). With this coherent approach to
determine the drivers of low-frequency Arctic sea ice variability on multiple timescales and
locations, we determine the modes of variability which are simulated to have the largest impact and

use the resulting model to make predictions of low frequency SIC variability over the next decade.
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2. Methods

a. Data sources

In order to gather sufficient data of both climate modes of variability and associated sea
ice concentrations, we use 42 GCMs with historical CMIP6 forcing (O’neill et al. 2016).
These GCMs are those for which both monthly sea ice concentration is available and the
full suite of climate mode data has been processed using the Climate Variability Diagnostics
Package (CVDP) (Phillips et al. 2014). In total we use 609 realizations, from 42 GCMs and
23 modeling centers; a full list can be found in Table 1. In using the full suite of CMIP6
GCMs we can get a consensus of low-frequency drivers of Arctic sea ice variability, as
individual GCMs have biases in their simulation of teleconnections (Dalelane et al. 2023), but

some systematic biases pervasive across CMIPS are improved in CMIP6 (Fasullo et al. 2020).

Alternatives to the historical simulations which could provide a similarly large quantity
of data include future scenarios or pre-industrial control simulations. = However, as the
mean-state and variability of the Arctic sea ice (VanAchter et al. 2020; Arthun et al. 2021)
and some aspects of the rest of the climate system such as El Nifio Southern Oscillation
(ENSO) (Brown et al. 2020) or AMOC (Weijer et al. 2020) differ from present conditions,
this approach would be less appropriate to analyze near-contemporaneous variability. Despite
differences in mean state, we do utilize pre-industrial control simulations to assess the va-

lidity of our detrending methodologies, but not make projections, as detailed in section 2d.

Within the historical period we use the 95-year time period 1920-2014 for sea ice concentration
(SIC), which we average over regions of the Arctic as defined by the National Snow and Ice Data
Center (NSIDC) Multisensor Analyzed Sea Ice Extent - Northern Hemisphere (Fetterer et al.
2010) (see Figure 1d). These seven regions cover the vast majority of the sea ice found during
the summer, although we do exclude the Canadian Arctic Archipelago due to complex coastal
zones which are typically poorly represented in GCMs (Long et al. 2021). We linearly detrend the

average SIC for each region and then apply a 2-year lowpass filter to exclude the high-frequency



s 1nterannual variability and leave only the low-frequency anomalies (see Figure la-c). This low-
s pass filtered regional sea ice concentration data becomes the predictands in our regression analysis.
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TasLE 1. Global climate model output used in this analysis

Modeling Center GCM Name Members | Citation

CSIRO-ARCCSS ACCESS-CM2 5 Dix et al. 2019

CSIRO ACCESS-ESML1.5 40 Ziehn et al. 2019

BCC BCC-CSM2-MR 3 Wu et al. 2018

BCC BCC-ESM1 3 Zhang et al. 2018

CAMS CAMS-CSM1.0 3 Rong 2019

NCAR CESM2-FV2 3 Danabasoglu 2019a

NCAR CESM2-LENS 50 Danabasoglu 2019b

NCAR CESM2-WACCM 3 Danabasoglu 2019d

NCAR CESM2-WACCM-FV2 | 3 Danabasoglu 2019¢

THU CIESM 3 Huang 2019

CMCC CMCC-CM2-SR5 11 Lovato and Peano 2020
CNRM-CERFACS CNRM-CM6-1 21 Voldoire 2018
CNRM-CERFACS CNRM-ESM2-1 6 Seferian 2018

CCCma CanESM5 65 Swart et al. 2019b

CCCma CanESMS5-CanOE 3 Swart et al. 2019a
E3SM-Project E3SM1.0 4 Bader et al. 2019
EC-Earth-Consortium EC-Earth3 23 EC-Earth-Consortium 2019a
EC-Earth-Consortium EC-Earth3-CC 10 EC-Earth-Consortium 2021
EC-Earth-Consortium EC-Earth3-Veg 7 EC-Earth-Consortium 2019b
EC-Earth-Consortium EC-Earth3-Veg-LR 3 EC-Earth-Consortium 2020
FIO-QLNM FIO-ESM2.0 3 Song et al. 2019
NOAA-GFDL GFDL-ESM4 3 Krasting et al. 2018
NASA-GISS GISS-E2-1-G 46 NASA Goddard Institute for Space Studies 2018
NASA-GISS GISS-E2-1-H 25 NASA Goddard Institute for Space Studies 2019b
NASA-GISS GISS-E2-2-G 11 NASA Goddard Institute for Space Studies 2019a
NASA-GISS GISS-E2-2-H 5 NASA Goddard Institute for Space Studies 2019¢
MOHC HadGEM3-GC31-LL 5 Ridley et al. 2019a

MOHC HadGEM3-GC31-MM | 4 Ridley et al. 2019b

INM INM-CM5-0 10 Volodin et al. 2019

IPSL IPSL-CM6A-LR 32 Boucher et al. 2018

MIROC MIROC-ES2H 3 Watanabe et al. 2021
MIROC MIROC-ES2L 31 Hajima et al. 2019

MIROC MIROC6 50 Tatebe and Watanabe 2018
HAMMOZ-Consortium | MPI-ESM1.2-HAM 3 Neubauer et al. 2019

MPI-M MPI-ESM1.2-HR 10 Schupfner et al. 2019
MPI-M MPI-ESM1.2-LR 30 Wieners et al. 2019

MRI MRI-ESM2.0 12 Yukimoto et al. 2019
NUIST NESM3 5 Cao and Wang 2019

NCC NorCPM1 30 Bethke et al. 2019

NCC NorESM2-LM 3 Seland et al. 2019

NCC NorESM2-MM 3 Bentsen et al. 2019

MOHC UKESM1.0-LL 16 Tang et al. 2019
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Fic. 1. Observed September sea ice concentrations for the seven Arctic regions used in this analysis. The
observational HadISST1 sea ice concentration data shown for (a) the regional average, (b) the linearly detrended
version of (a), and (c) a 2-year lowpass filter applied on (b). What is shown in (c) is the data used in the analysis
presented here. The outline of the different regions considered are shown in (d) and defined as for the National
Snow and Ice Data Center (NSIDC) Multisensor Analyzed Sea Ice Extent - Northern Hemisphere (MASIE-NH)

dataset (Fetterer et al. 2010).

We use nine variables from the CVDP to assess their influence on regional SIC anomalies in our
regression analysis. Below we have included a brief description of these modes of variability, we
have also included a citation of a relevant article using the same index. These climate modes of
variability aim to capture different aspects of variability within the climate system, although some
of these do overlap in spatial or temporal domains, and thus should not be considered independent.
We obtain seasonal values for all variability modes which are then linearly detrended over the
period 1920-2014 and standardized (if not already in such a format). As we lag the SIC data
between 2 and 20 years from the CVDP data, only the latest 74 of the 95 year time period is used
for a given lag time (1941-2014). When we present the linear effects of each mode of variability,
we only use one seasonal value for the climate modes listed below (see 2b for selection of the

season):
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AMO: Atlantic Multidecadal Oscillation, winter - DJF. The area-weighted SST anomalies in
the north Atlantic basin (0-60°N, 80°W-0°E), which is thought to have a period of approxi-
mately 60-80 years (Trenberth and Shea 2006).

NAO: North Atlantic Oscillation, winter - DJF. The leading principal component of the
Atlantic (20-80°N, 90°W-40°E) seasonal average sea level pressure anomalies. Positive phase
indicates a relatively enhanced Azores high and deepened Icelandic low (Hurrell and Deser
2009). The NAO may have some small decadal predictability, such as from the AMO, but is

dominated by large interannual variability (Klavans et al. 2021).

ATN: Atlantic Nifo, spring - MAM. The area-averaged tropical Atlantic SST anomalies (3°S-
3°N, 20°W-0°E), with a similar periodicity to the Pacific El Nifio/La Nifa phases (Zebiak
1993).

NINO34: Nifo 3.4 Index, winter - DJF. 5-month running mean SST anomalies in the equato-
rial Pacific (5°N-5°S, 120°-170°W). Values continuously in excess of +0.4°C for 6 months
indicate El Nifio conditions, below -0.4°C indicates La Nifia (Trenberth 1997). Such os-
cillations between positive and negative states occur approximately every 2-7 years in the

observational record.

PDO: Pacific Decadal Oscillation, spring - MAM. The leading principal component of north
Pacific SST anomalies (20-70°N, 110°E-100°W). Positive phases are associated with positive
SST anomalies in the eastern Pacific and negative SST anomalies in the western and central
Pacific (Mantua et al. 1997). The PDO is thought to have a periodicity of approximately 50-70
years over the last 200 years (MacDonald and Case 2005).

NPO: North Pacific Oscillation, spring - MAM. The second principal component of seasonal
sea level pressures over the north Pacific and North American continent (20-85°N, 120°E-
120°W) (Phillips et al. 2014). A positive phase is indicative of a deepened Aleutian low and
enhanced sea level pressure in the region of 20-40°N as per Rogers (1981) who defined the

NPO based on geopotential height. A given phase usually persists on the order of a week.

PNA: Pacific/North American Teleconnection, spring - MAM. The leading principal com-

ponent of seasonal sea level pressures over the north Pacific and North American continent

10
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(20-85°N, 120°E-120°W) (Phillips et al. 2014). A positive phase is similar to the NPO with
a deepened Aleutian low, but this mode of variability is more extensive, also including en-
hanced pressure over western Canada, see Leathers et al. (1991) who used geopotential height

anomalies.

* [PO: Interdecadal Pacific Oscillation, spring - MAM. The leading principal component of
13-year lowpass filtered Pacific (40°S-60°N, 110°E-70°W) area-weighted SST anomalies. In
its positive phase SST anomalies in the equatorial Pacific are positive with the western extra-
tropical Pacific in both hemispheres experiencing cooler SST anomalies (Meehl et al. 2013).
The period and symmetry of the IPO is thought to have varied considerably over time, but
over the observational period it has been shown to change phase approximately every 20-30

years (Vance et al. 2022).

In addition to these modes of variability, we also include the summer (JJA)

global average surface temperature (TAS), as motivated in section 2d.

Several additional modes of variability were also available from the CVDP but were not
included in the final analysis. The modes investigated but not used are as follows: the Indian
Ocean Dipole, the Atlantic Meridional Mode, the Southern Annular Mode, the North Pacific
Index. All of these modes of variability had no measurable effect on the regression model.

Furthermore, including the Northern Annular Mode led to over-fitting with the highly related NAO.

To compare model results to observations, we use SIC from the Hadley Centre Sea Ice and
Sea Surface Temperature data set (HadISST1) (Rayner et al. 2003) for the period 1956-2022.
We use the HadISST1 SIC record before the beginning of the satellite era in 1978 to enable
longer analyses in our correlation analysis in section 3e. We start using the HadISST1 SIC
data in 1956, as variability is degraded substantially before 1956 due to interpolations during
winter (Rayner et al. 2003). However, when calculating linear trends for detrending, we use
SIC data for 1920-2014 in order to be consistent with the GCMs. This is possible due to
moderate confidence in the mean state for 1920-1955 despite the increased uncertainty in the

interannual sea ice variability for that period. The HadISST1 data, similarly to the SIC in the

11
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GCMs, is divided into regions, linearly detrended and interannual variability is removed with a
2-year lowpass filter. For observed climate variability data we also obtain these from the CVDP
where we use the HadISST1 dataset to calculate sea surface temperature-derived variables, the
NCEP-NCAR record for sea level pressures (Kalnay et al. 1996), and GISTEMP version 4 for
global surface temperatures (Lenssen et al. 2019). Similarly to the CVDP output variables for the

GCMs, we apply a linear detrending and standardization to the variables not already in this format.

b. Machine Learning Methods

To determine the relationship between the climate variability modes and the lagged effects on
regional Arctic SIC gain and loss, we use machine learning. Specifically we use neural networks
which excel at finding relationships within large data sets (e.g. Diffenbaugh and Barnes 2023). At
its simplest, the neural networks used here are multiple linear regression, but we can also account for
non-linear relationships and covariance by using more advanced neural network configurations. In
order to constrain the potentially complicated relationships between climate modes and subsequent
SIC changes, we require large quantities of data to train, validate and test our neural networks. We

therefore utilize three data sets as listed below, which fulfill different purposes:

* 12 LEs, individual CMIP6 GCM large ensembles of at least 20 members.
* MMLE 3+, all CMIP6 GCMs (42) with at least 3 members.

e MMLE 30+, all CMIP6 GCMs (8) with at least 30 members.

To determine the climate mode relationships with Arctic sea ice within an individual GCM we
require at least 20 members to provide sufficient data. This means we can train a neural network
separately on 12 of the 42 GCMs, referred to as LEs. To get a consensus across the 42 CMIP6
GCMs and weight them equally, we train a neural network on the 1st members of all 42 GCMs,
validate on the 2nd members and test on the 3rd members (the MMLE 3+). Finally, we also
train a neural network on the first 23 member of 8 GCMs with sufficiently large ensembles,

this allows us to see whether maximizing the available data increases predictive skill (MMLE 30+).

12
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For all LEs, MMLE3+ and MMLE30+ we use a single seasonal time series from 8 climate
modes and TAS to predict lagged sea ice anomalies at one lead time, one region, and one sea ice
anomaly month at a time. Allowing any patterns between the lags, region or sea ice anomaly
months to be discovered rather than prescribed. The SIC anomalies are in % points for consistency
across regions. Hence, when comparing the influence of modes of variability in aggregate,
the % point change should be scaled by the variability of that region (as is done for Figure 8).
The use of % SIC deviation from the trend has identical meaning to using sea ice area and is
not sensitive to the mean state, other than the 0-100% bounds capping anomalies. The neural
networks have no knowledge of the initial sea ice state, but as the memory for the summer at lead
times in excess of 1 year is considered negligible (Giesse et al. 2021), this omission is considered
unimportant at the timescales we consider. Further, including initial sea ice state as a predictand

would add complexity to our methods which would be difficult to constrain without additional data.

We utilize four configurations of machine learning model to test whether nonlinearities and
covariance between the climate modes is required to make skillful predictions of Arctic sea
ice anomalies. We achieve this by constructing four models listed below differing in their
linear or nonlinear relationships (activation functions) and whether they take into account
climate mode covariance (presence or absence of hidden layers). Model 1 has independent
linear relationships between the climate modes and sea ice anomalies, and hence is effectively
multiple linear regression. Model 2 is the same as model 1 but permits nonlinear relation-
ships. Model 3 uses only linear relationships but can take advantage of covariance between
climate modes, such as a positive phase of the IPO and a positive phase of the PDO having
a different combined effect than the individual effect of those modes. Model 4 is the most
complicated, allowing both nonlinear relationships and also covariance between the modes of

variability. For further details on the machine learning models see Supplementary section S1.
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c. Assessing Predictive Skill

The threshold for our machine learning model to be useful at a given lag time is defined as when
its Pearson correlation coeflicient for the validation data exceeds that obtained from persistence.
The persistence correlation coefficient in this instance is calculated from the 2-year lowpass filtered
regional SIC anomalies lagged between 2 and 20 years, the same lag times as used for our regression
analysis. When using the correlation coefficient, it is important to note that, especially at longer lag
times, there may be a high correlation between the linear model output and the validation data, but
this skill may be present with a smaller amplitude than for the validation data. Further, for regions
that are close to zero or 100% SIC, we are trying to predict very small variations in SIC. Hence

we could have poor predictability in these regions but still have small errors in absolute terms.

As we do not have sufficiently long periods of observations, we cannot train a separate machine
learning model on the observations. Instead, by pooling several regions and SIC anomaly months,
we calculate the proportion of positively and negatively correlated modes of variability with the
most extreme 10% of SIC positive and negative anomalies. This is not a way of verifying the GCM
predictive models per se, rather it shows the range of correlations present within a large ensemble
and allows observation to be placed alongside that range. Observations would be expected
to typically fall within the large ensemble distribution, but as we do not know how atypical
our one realization of reality is, we cannot ascribe meaning to differences from the ensemble
mean (Notz 2015). Similarly, when in section 3e we provide predictions of past and future

regional SIC anomalies, good agreement to observations does not explicitly validate our results.

d. Sensitivities to time period and forcing

We use a linear detrending for both the SIC and the CVDP variables over the period
1920-2014 as this is a simple process to understand and does not make specific assumptions
about the time period in question. This is not perfect as during that period the radiative
forcing as well as the observed and modeled sea ice decline were not entirely linear (see

Figure 1 from Mcbride et al. 2021 for global temperature). This means that some of the very
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low-frequency variability of the forced response is incorporated into the anomalies of SIC and
CVDP variables, rather than being removed by detrending. Therefore, some predictability is
due to the shape of the forced response, primarily represented by our input variable of global
average surface temperature (TAS), and likely, to a small extent, the SST-derived variables
of NINO34, PDO, ATN, AMO, and the IPO. As the simple linear model used in our results
considers each variable independently, we can consider TAS similarly to a residual term in

the model which does not affect the conclusions we draw about other modes of variability.

To verify that our results from the period 1920-2014 are robust to different forcing conditions, we
compare results with a more linear forcing scenario for the historical period 1970-2014 and a con-
stant pre-industrial forcing scenario. For the 1970-2014 time period the global surface temperature
and sea ice area trends are both highly linear (Notz and Stroeve 2016; Mcbride et al. 2021). Conse-
quently, for 1970-2014 we find that the linear response to TAS in our models is far smaller than in
1920-2014 (see Figure S1, compared with Figure 4). The 1970-2014 time period, after accounting
for lags, only uses 24 years of data (compared with 74 for 1920-2014) and hence the linear response
i1s much more noisy than for 1920-2014. Therefore, although we get a broadly similar linear
responses for each climate mode, the low skill relative to persistence means we cannot use this

shorter time period, despite the more linear variables and more similar mean state to the present day.

Pre-industrial control runs (of which 35 GCMs are available to each provide 222 training years)
use constant 1850 radiative forcing and hence TAS trends are near zero over a 74-year time periods.
Despite the different mean state and variability, we still find very similar linear coefficients to the
1920-2014 time period, but with a smaller influence of TAS (see Figure S2 compared with Figure
4). However, the pre-industrial control results provide much smaller linear responses, likely due
to the 1850 mean-state exhibiting less variability than the 21st century, primarily due to thicker
Arctic sea ice (Kwok and Rothrock 2009). Despite the pre-industrial control climate being too
different to present day to make projections, the similar results to the 1920-2014 period implies that
the relationships are inherent to the climate system, not artifacts of the detrending methodology,

with the possible exception of NINO34 as discussed in section 4. We therefore use the 1920-2014
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time period, despite the TAS and SIC nonlinearity, as it both captures similar SIC mean state and

variability to the present day, and enables the use of sufficient training data.

3. Results

a. A simple linear model captures drivers of low-frequency variability

Predictions of regional low-frequency Arctic sea ice concentration anomalies can be produced
from climate modes of variability using a linear model, which are skillful when compared with
persistence. In general, we find that the simple linear variant of the machine learning models
(model 1) produces the highest predictive skill of the four models across GCMs, regions and
seasons. When validating our linear model we find it generally exceeds the skill from persistence
for lead times beyond approximately 4 years, but is dependent on the GCM (see Figure 2 for the
Chukchi Sea in September). The highest predictive skill is found at approximately a 5-year lead
time when the r? value of persistence has decayed close to zero while the r*> value of the linear
model declines more slowly with lead time. This temporal pattern of persistence, as well as the su-

periority of the linear model, is found across regions and months with nonzero skill (see section 3b).

The simple linear model with no hidden layers (model 1) and the linear neural network
allowing climate mode covariance (model 3) are nearly identical in their performance across
different LEs and MMLE:s (see Figure 2). The high performance of models 1 and 3 imply that
nonlinearities are not required to produce a skillful predictive model. The simple nonlinear
model 2 consistently performs poorly, with model 4 performing erratically for small training
data but can exceed the skill of other models for short lead-times and for the largest LEs and
MMLEs. As model 4 includes the effect of covariance of climate modes and nonlinearities,
this complex relationship between climate modes and sea ice anomalies is shown to only
provide a modest benefit to predictions. Subsequently, we therefore only utilize model 1, the
simple linear model, to clearly determine the independent linear effect of each climate mode of

variability. However, with additional data, the likely interdependent and nonlinear relationships
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Fic. 2. The effect of machine learning model complexity on predictive skill. Pearson correlation coefficients

in the Chukchi Sea in September for the validation data for four machine learning models as shown for the 12

LEs and 2 MMLE datasets. Model 1 refers to the simple linear model (red), model 2 to the simple nonlinear

model (blue), and Model 3 and Model 4 to the fully-connected 9-3-3-1 neural network with linear (purple) and

nonlinear (cyan) activation functions, respectively. The black dashed line indicates the average persistence for

that lag time for the GCM or GCMs used. Where the model validation r? values exceed persistence the model

has predictive skill. Numbers in parentheses indicate the number of ensemble members used in training.

18



356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

b. Hotspots of low-frequency variability predictive skill

The summer and autumn marginal seas are generally able to produce the highest skill at
a S-year lead time, however the predictive skill varies considerably between GCM. Based
on the MMLE 3+, which takes into account the full suite of CMIP6 GCMs with at least
3 ensemble members, the pattern of highest predictability is found in the Beaufort Sea in
September, with decaying skill for regions further from the Pacific and for months more
distant from September (Figure 3). The MMLE 3+ model is unable to produce high pre-
dictive skill in the Barents Sea for any season likely due to frequently near zero SIC, and

the Kara sea appears to have distinct peaks of predictive skill in July and late autumn.

For models using individual GCMs, the temporal and regional patterns of predictive skill
are often noisy for neighboring regions and months, unlike the clearer MMLE models. The
relatively high predictive skill values of the LEs typically exceed that of the MMLE 3+ for the
best regions, but with less coherence between regions and months. Selecting the LE with the
highest skill for a region and month may be appropriate, but each LE’s specific spatial and
temporal limitations should be taken into account. The MMLE 3+ has lower predictive skill
than the best LEs, but is influenced by all 42 CMIP6 GCMs. Therefore, the relatively higher
predictive skill in the MMLE 3+ should be seen as less sensitive to individual GCM biases as
it is representative of the general agreement between all GCMs. Some LEs such as CanESM5
and ACCESS-ESM1-5 exhibit unusual patterns of high predictability in the Kara and Chukchi
Seas in the winter. Other LEs such as CESM2-LENS, GISS-E2-1-H and MIROC-ES2L have
particular regions which are far more predictable than others. For example, the CESM2-LENS
simulates high persistence for the Chukchi Sea but not for the Beaufort Sea (see Figure S4
for 5-year persistence, and section 3f for a CESM2 bias discussion) which causes the large
disparity in predictive skill between these two regions. As September is of particular interest
as the typical minimum annual pan-Arctic sea ice cover, and relatively high validation > values

occur across regions for September in the MMLE 3+, this is our focus in subsequent analyses.
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c. Linear drivers of regional sea ice anomalies

Using a linear model trained on 42 CMIP6 GCMs (the MMLE 3+ model), we can establish
the consensus across GCMs for the independent effect of each mode of variability on regional
September SIC anomalies. The lead times where the MMLE 3+ model has no predictive skill is
before a 4-year lead time for all regions except the Central Arctic where it is not until a 5-year
lag time that the validation r? exceeds persistence (see the dotted lines in Figure 4). The most
important mode of variability is the IPO, which is strongly positively correlated with the SIC
in all regions, especially in the East Siberian and Beaufort Seas (Figure 4). The IPO decays in
influence over time, reaching near zero influence on SIC at approximately a 15-year lead time.
The global average surface temperature (TAS) also has a very large coeflicients, but as this is
not a mode of variability and is considered to integrate modes of variability not represented (see

section 2d for a more detailed explanation), we do not discuss in detail the influence of TAS further.

Aside from the large influence of the IPO, the Nifio 3.4 index (NINO34) and the Atlantic
Multidecadal Oscillation (AMO) both display a very consistent sign of influence which decays with
time. The NINO34 and AMO both have smaller influences than the dominant IPO (approximately
one third and one quarter, respectively) for a given one standard deviation anomaly in each mode
of variability. Like the IPO and TAS, the influence of the AMO and NINO34 decays relatively
monotonically with time. As the skill of persistence also declines nearly monotonically, and the
IPO, TAS, NINO34 and AMO all display low-frequency variability, this increases confidence in the
validity of these relationships found in the MMLE 3+. The low-frequency oscillations of the other
sea surface temperature-derived indices of the Pacific Decadal Oscillation (PDO), and to a lesser
extent the Atlantic Nino (ATN), implies the potential for longer-term predictability as with the IPO,
TAS, NINO34 and AMO. However the influence of these modes is small at most time periods and
does not display a monotonic decline with time. This suggests these two modes are not highly im-
portant in driving low-frequency Arctic sea ice variability, but consistency or lack thereof between
LEs (see section 3d) may clarify whether the relationships in the MMLE 3+ are small and inde-

pendently consistent in magnitude between GCMs, or small due to disagreement between GCMs.
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Fic. 4. Linear drivers of September regional sea ice concentration anomalies. Linear response of a +1
standard deviation anomaly of each of the 8 climate modes and global average surface temperature on sea ice
concentration anomalies in each of the seven Arctic regions. Positive SIC anomaly values indicate a positive SIC
anomaly results from the +1 standard deviation anomaly in the climate mode of variability. Solid lines indicate
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regions except for the Beaufort Sea which has some predictive skill for a wider range of 3- to 20-year lead times.
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The modes of variability based on sea level pressure patterns are generally a small influence
on low-frequency variability of Arctic sea ice. The Pacific/North American Teleconnec-
tion (PNA) and North Pacific Oscillation (NPO) do have some coherent regional effects
but the switch in sign of influence over time may be indicative of the expectation of a
change in the mode itself rather than the effect of the initial sign of the mode. Further, the
NPO and PNA are influenced by longer-lived modes of variability in the Pacific (Furtado
et al.), potentially meaning these modes are not independent. The North Atlantic Oscilla-
tion (NAO) is less erratic than the NPO and PNA with a general negative effect on SIC

anomalies but is very small in magnitude and is shown to affect SIC anomalies minimally.

d. Low-frequency driver representation across global climate models

Comparing the independent results from 12 LEs aids our interpretation of the linear drivers of
SIC anomalies captured in the MMLE 3+. We do this by comparing the datasets for both the
medium-term for lead times of 4-9 years (Figure 5). Although the LE analysis only includes 12
of the 42 GCMs that went into the MMLE 3+ linear model, we can get a sense of the consistency
between the CMIP6-suite of GCMs. This informs our interpretation of the two dominant modes of
variability, namely the [PO and NINO34 with the LEs varying considerably for both modes of vari-
ability during both periods. Although the influence of the IPO and NINO34 are seen to gradually
decrease over time for the MMLE 3+, the individual LEs show large magnitudes of influence on
SIC for both time periods and the sign is inconsistent between LEs. We find little consensus across
GCMs on the sign of influence of the IPO across the 12 LEs. However, when we include these
same 12 GCMs and 30 others in the MMLE 3+, a more positive signal emerges. This suggests
either the additional 30 GCMs used in the MMLE 3+ have stronger positive linear relationships,
and/or that by chance the first members used in the MMLE 3+ have a disproportionately strong

positive relationship compared to the many members used for training in the LEs for a given GCM.

For the NINO34 there appears more consistency across the full CMIP6-suite of models with simi-
larities between the collection of 12 LEs and both MMLEs. This again highlights the importance of
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taking a multi-model approach for the detection of low-frequency variability as two GCMs selected
at random may produce vastly different results. Further, although we use large ensembles, the
teleconnections between the tropics and Arctic may vary considerably between realization within
a large ensemble. Without pooling multiple GCMs and members we may not be able to capture

the full possible range of tropical-Arctic linkages which could be present over a 74-year time period.
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F1G. 5. The linear effect on regional SIC for 12 large ensembles and the two multi-model large ensembles.

Linear response in September sea ice concentration for a +1 standard deviation anomaly of each climate mode,
as in Figure 4, but averaged over two distinct lead times. Bars are the linear response averaged over 4 to 9-year
lead times. Agreement within the CMIP6-suite of GCMs is high where bars are similar in magnitude and sign.

Note the different y-axis scale for the global average surface temperature.
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The AMO has reasonably good agreement between the LEs with almost all indicating
negative influence on regional SIC in the medium-term. The PDO in the MMLE 3+ has
near zero influence, across all 12 LEs we can see that none indicate the PDO as being
particularly influential, with disagreement in sign reducing the overall effect for the MMLE
3+. For the other modes of variability we find that almost all of the LEs coefficients
are small in magnitude and without overwhelming agreement on sign. This allows us to
interpret the MMLE 3+ near zero coefficients as being representative of both the lack of

consensus across CMIP6 GCMs and no strong relationships being found in any of the LEs.

The average magnitude of influence across all modes of variability differs considerably between
individual LEs. For example CESM2-LENS often produces the largest magnitudes for a given
mode and NorCPM1 the smallest. Such systematic differences may occur due to differences in
the mean state and magnitude of variability by GCM. This may well be the case considering
the SIC anomaly is recorded in percentage points and CEMS2-LENS has a low biased summer
mean-state (DuVivier et al. 2020) and consequently large variability. Conversely, NorCPM1 has
been noted as having a high biased sea ice thickness (Bethke et al. 2021), which may explain
why NorCPM1 is an outlier for small low-frequency SIC variability. Again, this indicates
care must be taken to understand the effect of limitations to the results from individual LEs.
Although many of the CMIP6-suite GCMs are related (Knutti et al. 2013), and their biases may

not average out, taking the results from the MMLE 3+ can reduce the risk of extreme outliers.

When testing our MMLE 3+ model on unseen members from the 42 GCMs, we find large vari-
ation between GCMs and ensemble members (see Figure 6). This limits our ability to determine
which GCMs are most like the CMIP6 consensus if they have small ensemble sizes which cannot
populate the full range of potential values (Notz 2015). Observational comparison with a similar
time period will therefore be also difficult as observations could be expected, due to internal
variability, to fall somewhere between 0 and 0.5 r? if internal variability in the actual climate sys-

tem behaves similarly to the the range of ensemble members in a large ensemble such as CanESMS.
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Despite the ensemble member disagreement, the MMLE 3+ model appears to be well generalized
to multiple GCMs as the test 1> values appear very similar if a linear model is trained on all 42
GCMs as for the MMLE 3+ (blue circles in Figure 6) or only on other members from the same
GCM as for the LE (red triangles). CESM2-LENS has a wide distribution of test r* values between
ensemble members, with larger variations between the micro-perturbations (atmospheric state),
than between ensemble members with different ocean states (macro-perturbations) (see Figure
S3), as also found for pan- Arctic sea ice volume variability (Kay et al. 2022). This indicates that
for a 74-year time period, the specific manifestation of the relationships between climate variability

modes and regional Arctic SIC anomalies can be highly dependent on the initial climate state.
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FiG. 6. September r’ values for the test ensemble members from either the multi-model large ensemble
(3+, blue) or the 12 single GCM large ensembles (red). The performance of the test members (third and later
ensemble members) for the 42 GCMs included in the MMLE 3+ model are shown as blue circles, ensemble
mean values are indicated by gray bars. The red triangles indicate the performance of the test members for the
individually trained linear models for each of the 12 LEs, where 10% of the LE members were reserved for
testing against the linear model trained and validated on the first 75% and 15% of members from each GCM.
Where the red triangles and blue circles for a given GCM have a similar distribution, the MMLE 3+ is equally
good at capturing the relationships between climate modes and SIC as the LE, indicating the MMLE 3+ is well

generalized. The r? values are for a 5-year lead time minus persistence.
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e. Observational comparisons

Correlations between the climate modes and extreme SIC anomalies show observations
broadly fall within what is simulated for the LEs, but validation is difficult due to the large
differences between realizations. In order to directly compare observations with ensemble
members, we compute the correlation between the 6 most extreme regional SIC anomaly years
in the period 1956-2022 and correlate whether each mode of variability was in a positive or
negative phase. To make a more representative sample, we pool the seven regions (except
the Barents Sea where summer variability is near zero), averaged over a 4- to 9-year lead
time. However, the correlations should not be seen as comparable to the linear model as the
correlations are binary, unlike the abilities of the linear model to apply lower weights to less
important climate modes. Observations fall within the ensemble spread for all GCMs for all
modes of variability except for the AMO which falls outside of only the NorCPM1, and the
ATN and NPO which are outside multiple GCM ensemble ranges (see Figure 7). This suggests
that the observed correlations between most climate modes of variability and SIC anomalies
is consistent with the CMIP6 large ensembles, within internal variability uncertainty. The far
stronger correlation of observations for the ATN and NPO may mean in our one realization of
reality these modes of variability have played a larger role than has been simulated in many
climate models. Again, the large spread between realizations within a large ensemble highlights
the extremely large range that observations would be expected to fall within (particularly for the

IPO), and hence the difficulty of validating the simulated low-frequency drivers with observations.
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Fic. 7. Correlations between ensemble members and observations between modes of variability and
extreme SIC anomaly events. The 6 most extreme SIC positive and negative anomalies are found for each
ensemble member and September observations over the period 1956-2014. For a lead time of 4-9 years the
positive and negative correlations with each mode of variability is summed. These data are the average for the
Beaufort, Chukchi, East Siberian, Kara and Laptev Seas and the Central Arctic. Each colored dot indicates the
correlations for a single ensemble member, with the same colored triangle indicating the ensemble mean. The
observed value for each variable is shown with a black hollow bar. When observations lie within a given GCM

ensemble member distribution, the correlation in the observations is consistent with that simulated in the GCM.
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s« f. Future projections

s« Our limited time period of observations may not be representative of a typical climate
s« realization and therefore may arbitrarily match well or poorly to a specific machine learning
= model trained on GCMs. However, validation of our LE and MMLE 3+ models against the
s period 1956-2022 may have some implications for how well we can expect projections over the
sz next 4-20 years to hold up. The r? values of the MMLE 3+ validated against the observations
s (Figure 8 prediction columns) is similar to that of the MMLE 3+ validated against the second
s large ensemble members (Figure 3). The MMLE 3+ and the best LEs when used for hindcasting
s SIC anomalies from observed climate modes, often achieve 2 values of between 0.2-0.3 above
st persistence, but is highly regionally dependent. As the MMLE 3+ typically has the highest or near
s highest validation skill against the observations, we use these for future projections in the following.

553

31



(a) Beaufort Sea SIC anomalies [%]o s (b) Predictive skill [r?] (c) Chukchi Sea SIC anomalies [%)] 0

(d) Predictive skill [r?]
301 30 8T

0.8
0.61"
0.4
0.21

_10<
=204

-30 0
(m) Central Arctic SIC anomalies [%13 (n) Predictive skill [r?] (o) Pan-Arctic SIA anomalies [10® kmzo]
304 87 Py 8
20+ 0.6 =
101
0 1 0.4
-10<
-20 1 0.2
_30< —

. . . — 1 ol 3 . . . S Y — -
1960 1980 2000 2020 2040 5 10 15 20 1960 1980 2000 2020 2040 5 10 15 20

Year Lead Time [Years] Year Lead Time [Years]
—— Linearly Detrended Observations —— MMLE 3+ model historical projections —— LE model projections
—— 2-year Lowpass Filtered Observations =~ —— MMLE 3+ model 2022 projections ---- Observational Persistence
(q) Climate Mode Anomalies, 2022 (r) MMLE 3+ model 2027 SIC Contributions of Each Mode
= 24 -
E )
S 1
< 8
3 3
N s
R 5
5 ] PO
< 24 ] NAO = TAS
b w NINO34
-3 T T T T T T T T T T T
o S O (] ol O o \g 9
R o]
FELLFELTw
%

554 Fic. 8. Linear model projections of SIC anomalies based on observed climate modes. The projection
s subplots a,c,e,g,i,k,m,0 show the observed 1956-2022 regional or pan-Arctic SIC anomalies (brown), the 2-year
sss  lowpass filtered anomalies (black), the MML3+ linear model historical hindcasts on a 5-year lead time (red), and
ss»  the future projections based on the climate mode anomalies observed in 2022 using the MMLE 3+ (blue) and
sss  individual LEs (grey). The prediction skill subplots b,d,f,h,j,1,n,p show the observed persistence in dashed back
sso  lines while the MMLE 3+ and LE hindcast performances for 1976-2022 at 2- to 20- year lead times are shown
so in red and gray, respectively. The subplot q depicts the observed climate mode anomalies for the year 2022.
sst  Subplot r shows the MMLE 3+ contribution to the projected anomalies in 2027 based on 2022 data of each of

sz the modes of variability.
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For all regions of the Arctic, our linear model predicts below trend sea ice concentrations
over the coming decade. The seven regions have different time evolutions of the projected SIC
anomalies, however all regions for the MMLE 3+ projections show accelerated SIC loss due to
low-frequency variability over the 20 years following 2022 (see Figure 8). Taking the pan-Arctic
as a whole, the predicted negative anomaly from the linear trend is the largest anomaly at a
S-year lead time during the period 1956-2022. Therefore, our MMLE 3+ model predicts current
climate modes as being particularly conducive to a large low-frequency SIC anomaly. This is
fairly consistent across LEs, with the only large outlier being the CESM2-LENS which predicts
an extreme accelerated loss due to being a large outlier in Central Arctic projections. This
outlier is likely due to thin biased ice as discussed in section 3d. Comparing the persistence
of CESM2-LENS with CESM2-lessmelt runs which have thicker sea ice (Kay et al. 2022), the
lessmelt CESM2 variant is more in line with the persistence in other GCMs (see Figure S4).

This indicates the low thickness bias likely caused the enhanced simulated variability outlier.

The contributions to this predicted accelerated SIC loss throughout the Arctic in the coming
decade is dominated by the large anomalies in 2022 of a negative IPO and strongly positive AMO,
alongside a moderately negative NINO34 value. Furthermore, the above trend surface temperature
warming in 2022 is also modeled as being a large contribution in the year 2027 (see Figure 8q,r).
Only the negative phase of the PDO in 2022 is expected to counter the accelerated sea ice loss by
leading to positive SIC anomalies in the Pacific sector. The remaining modes of variability are
either in near neutral phase in 2022 or have small influences on the linear model and hence do not
feature as contributing to future anomalies. The alignment of modes of variability phases in 2022
combine to simulate a negative anomaly to the linear trend larger than any anomaly predicted during
the period 1956-2021. Even if for example there were a sudden switch in phase of the NINO 3.4
index from -0.8 in 2022 to +2.0 standard deviation, the SIC % point influence in the East Siberian
sea would change the projected 2027 contribution from -0.78% to 1.89%. The more dominant
modes of variability, namely the IPO and AMO as well as the TAS influence, transition phase

more slowly, which would therefore reduce the sensitivity of projections based on a single year.
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4. Discussion

Skillful projections of regional Arctic SIC anomalies are able to be produced using simple linear
relationships. This has allowed us to identify the individual impact of the dominant modes of
variability, namely the IPO, NINO34 and the AMO. However, covariance between the climate
modes of variability and nonlinearities in their effect on sea ice are likely to exist (e.g. Heo et al.
2021). This is also supported by the fact that many of the climate modes of variability are not
spatially or temporally independent of one another, such as the PDO and NINO34 (Chen and
Wallace 2016). The lack of improvement in skill when we included nonlinearities or covariance
in our analysis may be a result of a lack of data (see section 3a), despite the quantity and quality
of GCM data available from CMIP6 simulations being unprecedented (Davy and Outten 2020).
The multimodal ensemble approach to learning the drivers of Arctic sea ice variability did not
degrade our skill when compared with training our linear model on a single GCM (see section
3d). This shows that a generalized model can be obtained from a variety of GCMs differing in
model physics, model biases and ocean states. However, large differences in validation between
realizations indicates the extent to which the linear relationships themselves can differ due to

internal variability.

Previous studies have primarily focused on seasonal or interannual timescales of variability,
with the notable exceptions of the IPO and AMO which have been considered on decadal
timescales. As these modes of variability persist in one phase for several years to decades it
is unsurprising for their influence on sea ice to also persist with a slow near-monotonic decay
with time. We found the IPO to be the most influential mode of variability on all lead times
between 4 and 20 years, positively correlated with SIC anomalies in all regions. In previous
research the IPO’s influence on Arctic sea ice has not been featured, except as found by Screen
and Deser 2019 for the CMIP5 GCM CESMI. The transition between the negative and positive
IPO phase in CESM1 was found to be associated with a strengthened Aleutian Low which
enhances poleward heat and moisture transports, facilitating enhanced Arctic sea ice loss. The
disagreement in sign and longevity of the IPO’s influence on SIC between the CMIP6 LEs follows
on from research that CMIP5 GCMs generally poorly simulate the extratropical effects of the IPO
(Baxter et al. 2019; Ding et al. 2019; Topal et al. 2020). In addition to the lack of consensus
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between GCMs broadly, the correlation appears highly sensitive to realization (see Figure 7).
Previous studies have suggested the variability in the strength of the Pacific-Arctic (PARC)
teleconnection may cause the linkages between Pacific SST anomalies and Arctic sea ice to vary
substantially and even change sign depending on initial climate state (Bonan and Blanchard-
Wrigglesworth 2020). Additional focus on this mode with a wider variety of modeling applications

appears needed and is particularly pressing given the strong current negative phase (see Figure 8q).

The AMO was found in our MMLE 3+ linear model to be negatively correlated with all
regions of the Arctic sea ice, which shows good agreement with previous studies (e.g. Day
et al. 2012; Miles et al. 2014; Li et al. 2018b) for the pan-Arctic or Atlantic sector on decadal
timescales. The suggested physical mechanism for a positive AMO leading sea ice loss is the
enhanced winter atmospheric heat transport into the Atlantic sector of the Arctic (Day et al.
2012). However, the AMO itself may have a forced component (Murphy et al. 2021; Cai et al.
2021; Klavans et al. 2022), and its oscillatory timescale varies considerably between GCMs
(Lee et al. 2021), potentially limiting the use of the AMO as an independent variable. Despite
this, the pre-industrial control simulations (see Figure S2) match well with the MMLE 3+ for
1920-2014 for the IPO and AMO, suggesting that forcing context is not highly important for
these modes. A much smaller influence of the NINO34 in the pre-industrial control simulations
may suggest sensitivity to climate state. Similarly the selection of the dominant season based
on the LEs in the period 1920-2014 could also cause an array of responses in different climate

conditions and for different GCMs if they simulate other seasons as being most influential.

El Nino and La Nifia have been shown to be influential on Arctic sea ice and generally suggest
that NINO34 is positively correlated with SIC except for the Beaufort Sea (e.g. Clancy et al.
2021; Hu et al. 2016; Jeong et al. 2022b). However, the lead times considered previously were
shorter than our 4- to 20-year timescale, making our positively correlated influence hard to directly
compare with previous research. Furthermore, previous literature on shorter timescales have noted
the importance of the type of El Nifio regime (Jeong et al. 2022a; Lee et al. 2023) and the likely
nonlinear and asymmetrical climate response from NINO34 variations (Hoerling et al. 1997).

Limitations to the detection of lagged influence from ENSO could be derived from the fact that
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CMIP6 GCMs still fail to accurately simulate the periodicity and phase-locking characteristics of
ENSO (Hou and Tang 2022). Nonetheless, El Nifio favoring a positive Arctic Oscillation and a
deepened Aleutian Low via Rossby wave trains, which in turn promote enhanced sea ice export,
have been shown to exist in a number of CMIP5 and CMIP6 GCMs (Clancy et al. 2021; Lee et al.
2023). What remains elusive is the persistence of the influence of the NINO34 on sea ice across
GCMs up to approximately 14 years (Figure 4). This is surprising due to the transition between
phases often occurring interannually, which would therefore require persistent lagged telecon-
nection pathway to the Arctic which has not been suggested. During 1970-2014 when radiative
forcing increase was more linear compared with 1920-2014, we found NINO34 still has a positive
correlation on sea ice, but only for approximately 5 years (Figure S1). For pre-industrial control
simulations, a constant near zero relationship was found (Figure S2). It would therefore appear that
for periods when nonlinearities in radiative forcing is more effectively removed by detrending or
by constant forcing, the lagged NINO34 influence sea ice is substantially reduced. As no physical
mechanism for a lagged sea ice response to a given phase of NINO34 is suggested, the influence

of NINO34 encapsulating residuals in the model or nonlinearities in warming must be considered.

The PDO was previously not found to be highly important for Arctic sea ice by itself (Zhang et al.
2020; Karami et al. 2023) and its influence may also have changed over time (Bonan and Blanchard-
Wrigglesworth 2020; Kim et al. 2020). Similarly we also only found a small influence of the PDO
over our long time period of 1920-2014. The SST pattern of the PDO is related to the Pacific SST
climate modes of the NINO34 and IPO, which each have similar teleconnection mechanisms via
Rossby wave train formation (Yuan et al. 2018). Further, the mechanisms of an oceanic "tunnel’
and atmospheric ’bridge’ may be common between the [PO and PDO, leading to the similar
characteristics of persistence, Arctic influence, and modulation by ENSO (Liu and Alexander 2007;
Henley et al. 2017). Therefore it is unsurprising for a subset of tropical Pacific modes of variability
to dominate due to their similarity. The ATN is the only negligible mode of variability derived from
SSTs, but has not previously been identified as specific driver of Arctic sea ice variability. However
the tropical Atlantic was been suggested to influence Arctic sea ice (Meehl et al. 2018). Thus, the

unimportant nature of the ATN does not preclude other aspects of tropical Atlantic being important.
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Consistent with the previous lack of evidence of influence beyond interannual timescales, the sea
level pressure-derived modes of variability (the NAO, NPO and PNA) were found to have negligible
effect at lead times of 4-20 years. Previous research has shown the effect of the NAO to decay to
zero after approximately 2 years (Ukita et al. 2007), this timescale and the regional correlations
(e.g. Serreze et al. 2007; Doscher et al. 2010) align with our findings given the smoothing inherent
in our lowpass filtered data. This provides confidence in our linear model’s ability to capture

higher frequency variability but dismiss low-frequency influence from these modes of variability.

5. Conclusions

We have shown that low-frequency variability of regional Arctic sea ice concentration can be
modeled using linear drivers consisting of climate modes of variability. We achieve predictions
superior to persistence for most regions for a lead time of 4-20 years and find that the climate
modes of variability can be considered independently without reducing skill. By comparing the
linear responses between twelve large ensembles from CMIP6 and a multi-model large ensemble
comprising of 42 GCMs, we find where there is consensus of the dominant linear drivers of
low-frequency sea ice variability except in the case of the Interdecadal Pacific Oscillation (IPO). In
the pan-Arctic we are able to explain up to 60% of observed low-frequency sea ice concentration
variability at lead times of 5 years. However, the ability of a GCM or a multi-model large
ensemble to predict unseen ensemble members or observations can vary wildly depending on the
realization of internal variability; between 0-0.46 r? in the case of CanESMS3, the largest single
GCM ensemble. Hence, this both complicates the analysis of small samples of GCMs and the

application and verification of these relationships with our single realization of observations.

The most important modes of variability we found were the IPO, Nino 3.4 Index (NINO34)
and the Atlantic Mutidecadal Oscillation (AMO). The multi-model large ensemble linear model
showed the IPO to have a strong positive correlation with this being most pronounced in the
East Siberian, Beaufort and Laptev Seas at lead times of up to 14 years. Although this large

magnitude of influence of the IPO was found across GCMs, the sign and regional influence
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was especially dependent on the GCM used and the specific realization of internal variability.
NINO34 was found to be positively correlated with SIC anomalies in all regions, particularly
in the Pacific sector. This correlation was more consistent between GCMs, with disagreement
growing at longer lead-times. The AMO was the only other mode of variability considered
important for long periods of time, being modeled as highly negatively correlated with SIC
across all regions for up to approximately 10 years. However, the agreement across CMIP6
GCMs for the AMO was less consistent than NINO34. The persistence of influence on sea ice
from the IPO and AMO is not surprising due to their similar phase persistence. NINO34 in
contrast can change phase interannually, suggesting the influence found here may be an artifact

of forcing conditions, as no physical mechanism for a delayed Arctic influence has been suggested.

When using our linear model to make predictions, we find a near ’perfect storm’ of modes of
variability in the year 2021/2022 to induce an acceleration to the sea ice loss trend over the next
decade. The primary influences of this projected acceleration of low-frequency variability driven
sea ice loss are an above trend global average surface temperature warming, a negative IPO, La
Nina conditions, and a positive AMO. For the pan-Arctic, the projected low-frequency deviation
from the long-term trend due to current climate mode phase configurations is expected to be the
largest since at least 1956. While the transition between La Nifia and El Nifio can occur rapidly,
the fact that our strong negative predictions are primarily due to the slowly changing climate
modes of the AMO and IPO imply robustness of this prediction to interannual variability. Of
course, the sea ice anomalies that will actually be observed are still dominated by interannual
variability, which makes up roughly three quarters of the total variability. Thus, while we cannot
say with confidence that a new record low September extent will occur over the next decade, the
modeled low-frequency variability suggests that extreme low SIC values will be more likely over

the coming decade, with low-frequency variability likely to enhance the long-term negative trend.
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S1. Machine Learning Method Details

a. Splitting for training, validation and testing

For each LE we divide the members into training, validation, and testing sets with 75%, 15%,
10% of members respectively. For the MMLE 3+, we then use the first member for the training
data set, the second member for the validation set, and leave the third and any other members for
testing. For the MMLE 30+, we pool the first 23 members from all 8 GCMs for training, we use
the next 4 members for validation, and the final 3 or more members for testing. As we use 74 years
of data for each ensemble member (1920-2014) the smallest LE uses 74 years with 21 ensemble
members, yielding an effective 1554 years for training - far in excess of observations and typically
longer than pre-industrial control runs from any individual GCM. The MMLE3+ has 2294 years
of training data and the MMLE 30+ maximizes the number of training years at 13,320, allowing us

to determine whether substantially increasing the training data provides any gain in predictive skill.

b. Neural network configurations

All of the four machine learning models (see section 2.2 for a physical explanation of their utility)
use a fully-connected neural network with the same L1 loss function to encourage sparseness and
an Adam optimizer for suitability to the four diverse models. We selected models 1 and 2 to have
no bias term, which ensures the zero values of the standardized input variables (a neutral phase
of the climate mode) predicts a zero SIC anomaly. With these four machine learning models, as
detailed below, we can separate the effect of linear/nonlinear activation functions from the effect

of additional neural network layers which allows one climate variable to interact with another:

Model 1 - Model layers: 9-1 with linear activation functions and no bias.

Model 2 - Model layers: 9-1 with nonlinear (ReLLU) activation functions and no bias.

Model 3 - Model layers: 9-3-3-1 with linear activation functions with bias.

Model 4 - Model layers: 9-3-3-1 with nonlinear (ReLLU) activation functions with bias.



By comparing the predictive skill of model 1 versus 2 and model 3 versus 4 we can identify the
effect of increasing the model complexity from a linear to nonlinear activation functions. This
is because the only difference between those two groups is the activation function, analogous
to linear or nonlinear relationships between the climate modes of variability and SIC. Then,
by comparing the predictive skill of models 1 versus 3 as well as model 2 versus 4, we can
determine the difference in allowing the climate modes of variability to be independent of one
another. This independence is facilitated in the simple models 1 and 2 where each of the 9
neurons in the input layer connects directly with the output layer. Models 3 and 4 which take into
account covariance of different climate modes, this is achieved by connecting the input layer to

two hidden intermediate layers of 3 fully-connected neurons before reaching the output layer.

c¢. Determining dominant seasons

We first compute our machine learning models on four seasonal values for each of our 9 input
variables for the LE datasets and find the most dominant season averaged over all 7 regions of
the Arctic for September. This is done by using model 1 with model layers of 36-1 and a linear
activation function, and then selecting the largest seasonal input. We considered this reduction in
seasons necessary due to the slowest changing climate modes such as the IPO having very similar
seasonal values, resulting in over-fitting. Using all 4 seasons for some climate modes and a single
season for one would not allow a fair comparison between climate modes, while using only one
season rather than four does not substantially decrease the predictive skill. However, there is a
limitation of this approach, whereby the dominant season for a given climate mode may differ
between the GCMs, regions, and SIC anomaly months. Further, *best’ seasons for some climate

modes of variability have little physical meaning as no season has much influence on Arctic sea ice.
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Fic. S1. Linear drivers of regional sea ice concentration anomalies for a reduced time period. Same as

Figure 4, except for the reduced time period of 1970-2014 instead of 1920-2014. By comparing this figure with

Figure 4, we can see that the modes of variability have a similar influence as for the 1920-2014 time period,

although the results are far more noisy and predictive skill does not exceed persistence for as much of the lead

times as for the period 1920-2014.
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Same as Figure 4 and S1, except here using the 1850 control simulations instead of the period 1920-2014 in
the historical simulations. As for Figure S1, the influence of the climate variability modes are very similar as
for the period 1920-2014 (Figure 4), but the coefficients are smaller, likely due to the lower variability in the
pre-industrial mean state. Instead of different ensemble members, the available 35 GCMs are each split into
several members of 74 year length each, with the first 222 years used for training and the following 74 years for

validation.
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Fic. S3. Influence of macro versus micro initializations in the CESM2-LENS on September test member

r’ values. Of the 48 test members from the CESM2-LENS (see Figure 6), 12 are created through macro

initializations by choosing different start years from the pre-industrial simulation, and hence differ in their ocean

and atmospheric state. Of those 12, four (here shown on the x-axis by branch year) have 9 additional ensemble

members branched from them, which all only differ slightly in their atmospheric state due to small atmospheric

perturbations, i.e., referred to as micro initializations. Here we show these latter 40 simulations (blue circles),

to assess whether macro or micro initializations dominate the possible r values (with persistence removed). As

the four distributions of 10 realizations for each macro initialization are very similar, this shows that the ocean

state (macro perturbation) can influence the predictive skill, but generally does not narrow the potential range of

12 values which can occur due to micro perturbation.
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Fic. S4. Persistence r> values for LEs, MMLEs, and CESM2-lessmelt at a 5-year lag time. This figure

shows the persistence r2 value that was subtracted from the absolute value of the validation r> in Figure 3.

Additionally the CESM2-lessmelt persistence is shown for comparison with CESM2-LENS. CESM2-lessmelt

has a thicker sea ice mean state than CESM2-LENS and, as shown in this figure, has a smaller persistence

validation r value, although this value is still an outlier compared with the other GCMs.





