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ABSTRACT: Summer Arctic sea ice is declining rapidly but with superimposed variability on

multiple timescales that introduces large uncertainties into projections of future sea ice loss. To

better understand what drives at least part of this variability, we show how a simple linear model can

link dominant modes of climate variability to low-frequency regional Arctic sea ice concentration

(SIC) anomalies. Focusing on September, we find skillful projections from global climate models

(GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) at lead times of 4-20

years, with up to 60% of observed low-frequency variability explained at a 5-year lead time. The

dominant driver of low-frequency SIC variability is the Interdecadal Pacific Oscillation (IPO)

which is positively correlated with SIC anomalies in all regions up to a lead time of 15 years, but

with large uncertainty between GCMs and internal variability realization. The Niño 3.4 Index and

Atlantic Multidecadal Oscillation have better agreement between GCMs of being positively and

negatively related, respectively, with low-frequency SIC anomalies for at least 10-year lead times.

The large variation between GCMs and between members within large ensembles indicate the

diverse simulation of teleconnections between the tropics and Arctic sea ice, and the dependence

on initial climate state. Further, the influence of the Niño 3.4 Index was found to be sensitive to

the background climate. Our results suggest that, based on the 2022 phases of dominant climate

variability modes, enhanced loss of sea ice area across the Arctic is likely during the next decade.
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SIGNIFICANCE STATEMENT: The purpose of this study is to better understand the drivers of24

low-frequency variability of Arctic sea ice. Teasing out the complicated relationships within the25

climate system takes a large number of examples. Here we use 42 of the latest generation of global26

climate models to construct a simple linear model based on dominant named climate features to27

predict regional low-frequency sea ice anomalies at a lead time of 2-20 years. In 2022, these28

modes of variability happen to be in the phases most conducive to low Arctic sea ice concentration29

anomalies. Given the context of the longer-term trend of sea ice loss due to global warming, our30

results suggest accelerated Arctic sea ice loss in the next decade.31

1. Introduction32

Over the past four decades, summer Arctic sea ice has rapidly declined and is projected to33

continue to decline in the future (Wang and Overland 2012; Notz and Stroeve 2016; Sigmond34

et al. 2018). However, large variability on multiple timescales is superimposed on this declining35

trend, which can lead to 10-20 year periods of accelerated sea ice loss but also to a period of36

over a decade of no sea ice loss (Kay et al. 2011; Swart et al. 2015). Hence, it is not unexpected37

that no new record low September sea ice area has occurred since 2012 (Francis and Wu 2020),38

in particular as September internal variability is currently elevated due to the decrease in the39

thickness and mean sea ice state (Goosse et al. 2009; Eisenman 2010; Jahn 2018; Mioduszewski40

et al. 2019). The shelf seas have been the focus of the observed decline as well as of the impact41

of internal variability, with lower average sea ice concentration and thinner ice making the area a42

hotspot of internal variability over the past few decades (Lindsay and Zhang 2006; England et al.43

2019; VanAchter et al. 2020; Årthun et al. 2021). The shelf seas are also coincident with areas of44

interest for shipping (Eguı́luz et al. 2016; Melia et al. 2017), natural resource exploration (Petrick45

et al. 2017), and ecological changes (Kovacs et al. 2011). However, the current characteristics46

of variability are likely transitory as the shelf seas in the next few decades will become more47

reliably ice-free throughout the summer (Barnhart et al. 2016; Crawford et al. 2021), ending48

the dominant role of internal variability in projection uncertainty for this region (Bonan et al. 2021).49
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The internal variability of Arctic sea ice acts on multiple timescales and has therefore been51

challenging to cleanly separate from the forced response (Stroeve et al. 2007; Kay et al. 2011; Swart52

et al. 2015; Dörr et al. 2023). High-frequency drivers such as atmospheric temperature and wind53

anomalies are generally considered dominant over lower-frequency drivers (Ding et al. 2019; Olon-54

scheck et al. 2019; Roach and Blanchard-Wrigglesworth 2022), but separating the drivers is difficult55

due to large spatial and temporal heterogeneity in variability (Onarheim et al. 2018). By defining56

low-frequency variability as periods of at least 2 years, approximately one quarter of September57

pan-Arctic internal variability can be accounted for by low-frequency variability in a sample of58

global climate models (GCMs) (Wyburn-Powell et al. 2022). Although low-frequency variability59

is only a small component of internal variability, it promises some longer term predictability, as60

the influence of initial conditions and high-frequency drivers of variability decay rapidly beyond61

the current season (Blanchard-Wrigglesworth et al. 2011; Bonan et al. 2019; Bushuk et al. 2019),62

and have been shown to be useful to a maximum of two-year lead time (Day et al. 2014; Yeager63

et al. 2015; Bushuk and Giannakis 2017; Holland et al. 2019; Gregory et al. 2021; Wang et al. 2021).64

65

There is some prospect of summer Arctic sea ice predictability at lead times greater than 266

years due to ocean heat transports (Zhang and Wallace 2015; Docquier et al. 2021) and climate67

modes of variability (Guemas et al. 2016). However, results so far seem to be model dependent68

(Tietsche et al. 2014; Blanchard-Wrigglesworth and Bushuk 2019), and our current length of69

observations is likely too short to verify such relationships (Bonan and Blanchard-Wrigglesworth70

2020; Karami et al. 2023). Despite these challenges, extra-tropical modes of sea level pressure71

variability have been suggested to directly affect Arctic sea ice variability, but so far only72

with strong evidence on high-frequency timescales (Ukita et al. 2007; Serreze et al. 2007;73

L’Heureux et al. 2008; Zhang et al. 2019; Liu et al. 2021). Tropical teleconnections have also74

been identified as influencing Arctic sea ice loss, primarily associated with Pacific sea surface75

temperatures (SSTs) (Hu et al. 2016; Li et al. 2018a; Screen and Deser 2019; Ding et al. 2019;76

Kim et al. 2020; Clancy et al. 2021; Jeong et al. 2022b; Simon et al. 2022), but also with77

Atlantic variability (Day et al. 2012; Miles et al. 2014; Meehl et al. 2018; Li et al. 2018b;78

Karami et al. 2023). Rossby wave trains are the primary mechanism linking tropical Pacific SST79

anomalies to the Arctic (Yuan et al. 2018). These Rossby waves propagate from the tropics to80
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the Arctic in the order of two weeks (Alexander et al. 2002), but can have seasonal Arctic sea81

ice effects due to persistent positive geopotential height anomalies and associated subsidence and82

diabatic warming leading to reduced sea ice cover (Baxter et al. 2019; Hofsteenge et al. 2022).83

These insights into drivers of variability show promise, but skillful regional sea ice predictions84

combining multiple modes of variability at lower-frequency timescales has so far been elusive.85

86

Assessing drivers of low-frequency variability in the climate system is difficult to do without87

large quantities of consistent data, such as that available from single model initial-condition large88

ensembles (Deser et al. 2020; Milinski et al. 2020). This requirement for assessing drivers of89

low-frequency Arctic sea ice variability stems from a multitude of drivers likely interacting on90

heterogeneous spatial and temporal scales to cause this variability (Zhang et al. 2020). This has,91

so far, lead to a lack of consensus of many of the drivers at time periods in excess of 2 years,92

especially as GCMs and observations have been shown to represent these relationships differently.93

We therefore leverage all available GCMs from the Coupled Model Intercomparison Project94

Phase 6 (CMIP6) archive to investigate model consensus of these low-frequency relationships.95

Additionally, we do not prescribe the nature of any of these relationships such as linearity and96

independence, and perform a detailed regional analysis as well as assess multiple lead times.97

To enable interpretation of these potentially complex relationships in the climate system we use98

machine learning which has been used successfully before to explain patterns of surface climate99

variability (e.g. Barnes et al. 2019; Labe and Barnes 2022). With this coherent approach to100

determine the drivers of low-frequency Arctic sea ice variability on multiple timescales and101

locations, we determine the modes of variability which are simulated to have the largest impact and102

use the resulting model to make predictions of low frequency SIC variability over the next decade.103

104

105
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2. Methods106

a. Data sources107

In order to gather sufficient data of both climate modes of variability and associated sea108

ice concentrations, we use 42 GCMs with historical CMIP6 forcing (O’neill et al. 2016).109

These GCMs are those for which both monthly sea ice concentration is available and the110

full suite of climate mode data has been processed using the Climate Variability Diagnostics111

Package (CVDP) (Phillips et al. 2014). In total we use 609 realizations, from 42 GCMs and112

23 modeling centers; a full list can be found in Table 1. In using the full suite of CMIP6113

GCMs we can get a consensus of low-frequency drivers of Arctic sea ice variability, as114

individual GCMs have biases in their simulation of teleconnections (Dalelane et al. 2023), but115

some systematic biases pervasive across CMIP5 are improved in CMIP6 (Fasullo et al. 2020).116

117

Alternatives to the historical simulations which could provide a similarly large quantity118

of data include future scenarios or pre-industrial control simulations. However, as the119

mean-state and variability of the Arctic sea ice (VanAchter et al. 2020; Årthun et al. 2021)120

and some aspects of the rest of the climate system such as El Niño Southern Oscillation121

(ENSO) (Brown et al. 2020) or AMOC (Weijer et al. 2020) differ from present conditions,122

this approach would be less appropriate to analyze near-contemporaneous variability. Despite123

differences in mean state, we do utilize pre-industrial control simulations to assess the va-124

lidity of our detrending methodologies, but not make projections, as detailed in section 2d.125

126

Within the historical period we use the 95-year time period 1920-2014 for sea ice concentration127

(SIC), which we average over regions of the Arctic as defined by the National Snow and Ice Data128

Center (NSIDC) Multisensor Analyzed Sea Ice Extent - Northern Hemisphere (Fetterer et al.129

2010) (see Figure 1d). These seven regions cover the vast majority of the sea ice found during130

the summer, although we do exclude the Canadian Arctic Archipelago due to complex coastal131

zones which are typically poorly represented in GCMs (Long et al. 2021). We linearly detrend the132

average SIC for each region and then apply a 2-year lowpass filter to exclude the high-frequency133
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interannual variability and leave only the low-frequency anomalies (see Figure 1a-c). This low-134

pass filtered regional sea ice concentration data becomes the predictands in our regression analysis.135

136
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Table 1. Global climate model output used in this analysis

Modeling Center GCM Name Members Citation

CSIRO-ARCCSS ACCESS-CM2 5 Dix et al. 2019

CSIRO ACCESS-ESM1.5 40 Ziehn et al. 2019

BCC BCC-CSM2-MR 3 Wu et al. 2018

BCC BCC-ESM1 3 Zhang et al. 2018

CAMS CAMS-CSM1.0 3 Rong 2019

NCAR CESM2-FV2 3 Danabasoglu 2019a

NCAR CESM2-LENS 50 Danabasoglu 2019b

NCAR CESM2-WACCM 3 Danabasoglu 2019d

NCAR CESM2-WACCM-FV2 3 Danabasoglu 2019c

THU CIESM 3 Huang 2019

CMCC CMCC-CM2-SR5 11 Lovato and Peano 2020

CNRM-CERFACS CNRM-CM6-1 21 Voldoire 2018

CNRM-CERFACS CNRM-ESM2-1 6 Seferian 2018

CCCma CanESM5 65 Swart et al. 2019b

CCCma CanESM5-CanOE 3 Swart et al. 2019a

E3SM-Project E3SM1.0 4 Bader et al. 2019

EC-Earth-Consortium EC-Earth3 23 EC-Earth-Consortium 2019a

EC-Earth-Consortium EC-Earth3-CC 10 EC-Earth-Consortium 2021

EC-Earth-Consortium EC-Earth3-Veg 7 EC-Earth-Consortium 2019b

EC-Earth-Consortium EC-Earth3-Veg-LR 3 EC-Earth-Consortium 2020

FIO-QLNM FIO-ESM2.0 3 Song et al. 2019

NOAA-GFDL GFDL-ESM4 3 Krasting et al. 2018

NASA-GISS GISS-E2-1-G 46 NASA Goddard Institute for Space Studies 2018

NASA-GISS GISS-E2-1-H 25 NASA Goddard Institute for Space Studies 2019b

NASA-GISS GISS-E2-2-G 11 NASA Goddard Institute for Space Studies 2019a

NASA-GISS GISS-E2-2-H 5 NASA Goddard Institute for Space Studies 2019c

MOHC HadGEM3-GC31-LL 5 Ridley et al. 2019a

MOHC HadGEM3-GC31-MM 4 Ridley et al. 2019b

INM INM-CM5-0 10 Volodin et al. 2019

IPSL IPSL-CM6A-LR 32 Boucher et al. 2018

MIROC MIROC-ES2H 3 Watanabe et al. 2021

MIROC MIROC-ES2L 31 Hajima et al. 2019

MIROC MIROC6 50 Tatebe and Watanabe 2018

HAMMOZ-Consortium MPI-ESM1.2-HAM 3 Neubauer et al. 2019

MPI-M MPI-ESM1.2-HR 10 Schupfner et al. 2019

MPI-M MPI-ESM1.2-LR 30 Wieners et al. 2019

MRI MRI-ESM2.0 12 Yukimoto et al. 2019

NUIST NESM3 5 Cao and Wang 2019

NCC NorCPM1 30 Bethke et al. 2019

NCC NorESM2-LM 3 Seland et al. 2019

NCC NorESM2-MM 3 Bentsen et al. 2019

MOHC UKESM1.0-LL 16 Tang et al. 2019
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Fig. 1. Observed September sea ice concentrations for the seven Arctic regions used in this analysis. The

observational HadISST1 sea ice concentration data shown for (a) the regional average, (b) the linearly detrended

version of (a), and (c) a 2-year lowpass filter applied on (b). What is shown in (c) is the data used in the analysis

presented here. The outline of the different regions considered are shown in (d) and defined as for the National

Snow and Ice Data Center (NSIDC) Multisensor Analyzed Sea Ice Extent - Northern Hemisphere (MASIE-NH)

dataset (Fetterer et al. 2010).
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142

We use nine variables from the CVDP to assess their influence on regional SIC anomalies in our143

regression analysis. Below we have included a brief description of these modes of variability, we144

have also included a citation of a relevant article using the same index. These climate modes of145

variability aim to capture different aspects of variability within the climate system, although some146

of these do overlap in spatial or temporal domains, and thus should not be considered independent.147

We obtain seasonal values for all variability modes which are then linearly detrended over the148

period 1920-2014 and standardized (if not already in such a format). As we lag the SIC data149

between 2 and 20 years from the CVDP data, only the latest 74 of the 95 year time period is used150

for a given lag time (1941-2014). When we present the linear effects of each mode of variability,151

we only use one seasonal value for the climate modes listed below (see 2b for selection of the152

season):153
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• AMO: Atlantic Multidecadal Oscillation, winter - DJF. The area-weighted SST anomalies in154

the north Atlantic basin (0-60°N, 80°W-0°E), which is thought to have a period of approxi-155

mately 60-80 years (Trenberth and Shea 2006).156

• NAO: North Atlantic Oscillation, winter - DJF. The leading principal component of the157

Atlantic (20-80°N, 90°W-40°E) seasonal average sea level pressure anomalies. Positive phase158

indicates a relatively enhanced Azores high and deepened Icelandic low (Hurrell and Deser159

2009). The NAO may have some small decadal predictability, such as from the AMO, but is160

dominated by large interannual variability (Klavans et al. 2021).161

• ATN: Atlantic Niño, spring - MAM. The area-averaged tropical Atlantic SST anomalies (3°S-162

3°N, 20°W-0°E), with a similar periodicity to the Pacific El Niño/La Niña phases (Zebiak163

1993).164

• NINO34: Niño 3.4 Index, winter - DJF. 5-month running mean SST anomalies in the equato-165

rial Pacific (5°N–5°S, 120°–170°W). Values continuously in excess of +0.4°C for 6 months166

indicate El Niño conditions, below -0.4°C indicates La Niña (Trenberth 1997). Such os-167

cillations between positive and negative states occur approximately every 2-7 years in the168

observational record.169

• PDO: Pacific Decadal Oscillation, spring - MAM. The leading principal component of north170

Pacific SST anomalies (20-70°N, 110°E-100°W). Positive phases are associated with positive171

SST anomalies in the eastern Pacific and negative SST anomalies in the western and central172

Pacific (Mantua et al. 1997). The PDO is thought to have a periodicity of approximately 50-70173

years over the last 200 years (MacDonald and Case 2005).174

• NPO: North Pacific Oscillation, spring - MAM. The second principal component of seasonal175

sea level pressures over the north Pacific and North American continent (20-85°N, 120°E-176

120°W) (Phillips et al. 2014). A positive phase is indicative of a deepened Aleutian low and177

enhanced sea level pressure in the region of 20-40°N as per Rogers (1981) who defined the178

NPO based on geopotential height. A given phase usually persists on the order of a week.179

• PNA: Pacific/North American Teleconnection, spring - MAM. The leading principal com-180

ponent of seasonal sea level pressures over the north Pacific and North American continent181
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(20-85°N, 120°E-120°W) (Phillips et al. 2014). A positive phase is similar to the NPO with182

a deepened Aleutian low, but this mode of variability is more extensive, also including en-183

hanced pressure over western Canada, see Leathers et al. (1991) who used geopotential height184

anomalies.185

• IPO: Interdecadal Pacific Oscillation, spring - MAM. The leading principal component of186

13-year lowpass filtered Pacific (40°S-60°N, 110°E-70°W) area-weighted SST anomalies. In187

its positive phase SST anomalies in the equatorial Pacific are positive with the western extra-188

tropical Pacific in both hemispheres experiencing cooler SST anomalies (Meehl et al. 2013).189

The period and symmetry of the IPO is thought to have varied considerably over time, but190

over the observational period it has been shown to change phase approximately every 20-30191

years (Vance et al. 2022).192

In addition to these modes of variability, we also include the summer (JJA)193

global average surface temperature (TAS), as motivated in section 2d.194

195

Several additional modes of variability were also available from the CVDP but were not196

included in the final analysis. The modes investigated but not used are as follows: the Indian197

Ocean Dipole, the Atlantic Meridional Mode, the Southern Annular Mode, the North Pacific198

Index. All of these modes of variability had no measurable effect on the regression model.199

Furthermore, including the Northern Annular Mode led to over-fitting with the highly related NAO.200

201

To compare model results to observations, we use SIC from the Hadley Centre Sea Ice and202

Sea Surface Temperature data set (HadISST1) (Rayner et al. 2003) for the period 1956-2022.203

We use the HadISST1 SIC record before the beginning of the satellite era in 1978 to enable204

longer analyses in our correlation analysis in section 3e. We start using the HadISST1 SIC205

data in 1956, as variability is degraded substantially before 1956 due to interpolations during206

winter (Rayner et al. 2003). However, when calculating linear trends for detrending, we use207

SIC data for 1920-2014 in order to be consistent with the GCMs. This is possible due to208

moderate confidence in the mean state for 1920-1955 despite the increased uncertainty in the209

interannual sea ice variability for that period. The HadISST1 data, similarly to the SIC in the210
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GCMs, is divided into regions, linearly detrended and interannual variability is removed with a211

2-year lowpass filter. For observed climate variability data we also obtain these from the CVDP212

where we use the HadISST1 dataset to calculate sea surface temperature-derived variables, the213

NCEP-NCAR record for sea level pressures (Kalnay et al. 1996), and GISTEMP version 4 for214

global surface temperatures (Lenssen et al. 2019). Similarly to the CVDP output variables for the215

GCMs, we apply a linear detrending and standardization to the variables not already in this format.216

217

b. Machine Learning Methods218

To determine the relationship between the climate variability modes and the lagged effects on219

regional Arctic SIC gain and loss, we use machine learning. Specifically we use neural networks220

which excel at finding relationships within large data sets (e.g. Diffenbaugh and Barnes 2023). At221

its simplest, the neural networks used here are multiple linear regression, but we can also account for222

non-linear relationships and covariance by using more advanced neural network configurations. In223

order to constrain the potentially complicated relationships between climate modes and subsequent224

SIC changes, we require large quantities of data to train, validate and test our neural networks. We225

therefore utilize three data sets as listed below, which fulfill different purposes:226

• 12 LEs, individual CMIP6 GCM large ensembles of at least 20 members.227

• MMLE 3+, all CMIP6 GCMs (42) with at least 3 members.228

• MMLE 30+, all CMIP6 GCMs (8) with at least 30 members.229

To determine the climate mode relationships with Arctic sea ice within an individual GCM we230

require at least 20 members to provide sufficient data. This means we can train a neural network231

separately on 12 of the 42 GCMs, referred to as LEs. To get a consensus across the 42 CMIP6232

GCMs and weight them equally, we train a neural network on the 1st members of all 42 GCMs,233

validate on the 2nd members and test on the 3rd members (the MMLE 3+). Finally, we also234

train a neural network on the first 23 member of 8 GCMs with sufficiently large ensembles,235

this allows us to see whether maximizing the available data increases predictive skill (MMLE 30+).236

237
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For all LEs, MMLE3+ and MMLE30+ we use a single seasonal time series from 8 climate238

modes and TAS to predict lagged sea ice anomalies at one lead time, one region, and one sea ice239

anomaly month at a time. Allowing any patterns between the lags, region or sea ice anomaly240

months to be discovered rather than prescribed. The SIC anomalies are in % points for consistency241

across regions. Hence, when comparing the influence of modes of variability in aggregate,242

the % point change should be scaled by the variability of that region (as is done for Figure 8).243

The use of % SIC deviation from the trend has identical meaning to using sea ice area and is244

not sensitive to the mean state, other than the 0-100% bounds capping anomalies. The neural245

networks have no knowledge of the initial sea ice state, but as the memory for the summer at lead246

times in excess of 1 year is considered negligible (Giesse et al. 2021), this omission is considered247

unimportant at the timescales we consider. Further, including initial sea ice state as a predictand248

would add complexity to our methods which would be difficult to constrain without additional data.249

250

We utilize four configurations of machine learning model to test whether nonlinearities and251

covariance between the climate modes is required to make skillful predictions of Arctic sea252

ice anomalies. We achieve this by constructing four models listed below differing in their253

linear or nonlinear relationships (activation functions) and whether they take into account254

climate mode covariance (presence or absence of hidden layers). Model 1 has independent255

linear relationships between the climate modes and sea ice anomalies, and hence is effectively256

multiple linear regression. Model 2 is the same as model 1 but permits nonlinear relation-257

ships. Model 3 uses only linear relationships but can take advantage of covariance between258

climate modes, such as a positive phase of the IPO and a positive phase of the PDO having259

a different combined effect than the individual effect of those modes. Model 4 is the most260

complicated, allowing both nonlinear relationships and also covariance between the modes of261

variability. For further details on the machine learning models see Supplementary section S1.262

263
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c. Assessing Predictive Skill264

The threshold for our machine learning model to be useful at a given lag time is defined as when265

its Pearson correlation coefficient for the validation data exceeds that obtained from persistence.266

The persistence correlation coefficient in this instance is calculated from the 2-year lowpass filtered267

regional SIC anomalies lagged between 2 and 20 years, the same lag times as used for our regression268

analysis. When using the correlation coefficient, it is important to note that, especially at longer lag269

times, there may be a high correlation between the linear model output and the validation data, but270

this skill may be present with a smaller amplitude than for the validation data. Further, for regions271

that are close to zero or 100% SIC, we are trying to predict very small variations in SIC. Hence272

we could have poor predictability in these regions but still have small errors in absolute terms.273

274

As we do not have sufficiently long periods of observations, we cannot train a separate machine275

learning model on the observations. Instead, by pooling several regions and SIC anomaly months,276

we calculate the proportion of positively and negatively correlated modes of variability with the277

most extreme 10% of SIC positive and negative anomalies. This is not a way of verifying the GCM278

predictive models per se, rather it shows the range of correlations present within a large ensemble279

and allows observation to be placed alongside that range. Observations would be expected280

to typically fall within the large ensemble distribution, but as we do not know how atypical281

our one realization of reality is, we cannot ascribe meaning to differences from the ensemble282

mean (Notz 2015). Similarly, when in section 3e we provide predictions of past and future283

regional SIC anomalies, good agreement to observations does not explicitly validate our results.284

285

d. Sensitivities to time period and forcing286

We use a linear detrending for both the SIC and the CVDP variables over the period287

1920-2014 as this is a simple process to understand and does not make specific assumptions288

about the time period in question. This is not perfect as during that period the radiative289

forcing as well as the observed and modeled sea ice decline were not entirely linear (see290

Figure 1 from Mcbride et al. 2021 for global temperature). This means that some of the very291
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low-frequency variability of the forced response is incorporated into the anomalies of SIC and292

CVDP variables, rather than being removed by detrending. Therefore, some predictability is293

due to the shape of the forced response, primarily represented by our input variable of global294

average surface temperature (TAS), and likely, to a small extent, the SST-derived variables295

of NINO34, PDO, ATN, AMO, and the IPO. As the simple linear model used in our results296

considers each variable independently, we can consider TAS similarly to a residual term in297

the model which does not affect the conclusions we draw about other modes of variability.298

299

To verify that our results from the period 1920-2014 are robust to different forcing conditions, we300

compare results with a more linear forcing scenario for the historical period 1970-2014 and a con-301

stant pre-industrial forcing scenario. For the 1970-2014 time period the global surface temperature302

and sea ice area trends are both highly linear (Notz and Stroeve 2016; Mcbride et al. 2021). Conse-303

quently, for 1970-2014 we find that the linear response to TAS in our models is far smaller than in304

1920-2014 (see Figure S1, compared with Figure 4). The 1970-2014 time period, after accounting305

for lags, only uses 24 years of data (compared with 74 for 1920-2014) and hence the linear response306

is much more noisy than for 1920-2014. Therefore, although we get a broadly similar linear307

responses for each climate mode, the low skill relative to persistence means we cannot use this308

shorter time period, despite the more linear variables and more similar mean state to the present day.309

310

Pre-industrial control runs (of which 35 GCMs are available to each provide 222 training years)311

use constant 1850 radiative forcing and hence TAS trends are near zero over a 74-year time periods.312

Despite the different mean state and variability, we still find very similar linear coefficients to the313

1920-2014 time period, but with a smaller influence of TAS (see Figure S2 compared with Figure314

4). However, the pre-industrial control results provide much smaller linear responses, likely due315

to the 1850 mean-state exhibiting less variability than the 21st century, primarily due to thicker316

Arctic sea ice (Kwok and Rothrock 2009). Despite the pre-industrial control climate being too317

different to present day to make projections, the similar results to the 1920-2014 period implies that318

the relationships are inherent to the climate system, not artifacts of the detrending methodology,319

with the possible exception of NINO34 as discussed in section 4. We therefore use the 1920-2014320
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time period, despite the TAS and SIC nonlinearity, as it both captures similar SIC mean state and321

variability to the present day, and enables the use of sufficient training data.322

3. Results323

a. A simple linear model captures drivers of low-frequency variability324

Predictions of regional low-frequency Arctic sea ice concentration anomalies can be produced325

from climate modes of variability using a linear model, which are skillful when compared with326

persistence. In general, we find that the simple linear variant of the machine learning models327

(model 1) produces the highest predictive skill of the four models across GCMs, regions and328

seasons. When validating our linear model we find it generally exceeds the skill from persistence329

for lead times beyond approximately 4 years, but is dependent on the GCM (see Figure 2 for the330

Chukchi Sea in September). The highest predictive skill is found at approximately a 5-year lead331

time when the r2 value of persistence has decayed close to zero while the r2 value of the linear332

model declines more slowly with lead time. This temporal pattern of persistence, as well as the su-333

periority of the linear model, is found across regions and months with nonzero skill (see section 3b).334

335

The simple linear model with no hidden layers (model 1) and the linear neural network336

allowing climate mode covariance (model 3) are nearly identical in their performance across337

different LEs and MMLEs (see Figure 2). The high performance of models 1 and 3 imply that338

nonlinearities are not required to produce a skillful predictive model. The simple nonlinear339

model 2 consistently performs poorly, with model 4 performing erratically for small training340

data but can exceed the skill of other models for short lead-times and for the largest LEs and341

MMLEs. As model 4 includes the effect of covariance of climate modes and nonlinearities,342

this complex relationship between climate modes and sea ice anomalies is shown to only343

provide a modest benefit to predictions. Subsequently, we therefore only utilize model 1, the344

simple linear model, to clearly determine the independent linear effect of each climate mode of345

variability. However, with additional data, the likely interdependent and nonlinear relationships346
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may be able to be detected robustly to allow greater generalization and produce better predictions.347

348
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in the Chukchi Sea in September for the validation data for four machine learning models as shown for the 12

LEs and 2 MMLE datasets. Model 1 refers to the simple linear model (red), model 2 to the simple nonlinear

model (blue), and Model 3 and Model 4 to the fully-connected 9-3-3-1 neural network with linear (purple) and

nonlinear (cyan) activation functions, respectively. The black dashed line indicates the average persistence for

that lag time for the GCM or GCMs used. Where the model validation r2 values exceed persistence the model

has predictive skill. Numbers in parentheses indicate the number of ensemble members used in training.
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b. Hotspots of low-frequency variability predictive skill356

The summer and autumn marginal seas are generally able to produce the highest skill at357

a 5-year lead time, however the predictive skill varies considerably between GCM. Based358

on the MMLE 3+, which takes into account the full suite of CMIP6 GCMs with at least359

3 ensemble members, the pattern of highest predictability is found in the Beaufort Sea in360

September, with decaying skill for regions further from the Pacific and for months more361

distant from September (Figure 3). The MMLE 3+ model is unable to produce high pre-362

dictive skill in the Barents Sea for any season likely due to frequently near zero SIC, and363

the Kara sea appears to have distinct peaks of predictive skill in July and late autumn.364

365

366

For models using individual GCMs, the temporal and regional patterns of predictive skill367

are often noisy for neighboring regions and months, unlike the clearer MMLE models. The368

relatively high predictive skill values of the LEs typically exceed that of the MMLE 3+ for the369

best regions, but with less coherence between regions and months. Selecting the LE with the370

highest skill for a region and month may be appropriate, but each LE’s specific spatial and371

temporal limitations should be taken into account. The MMLE 3+ has lower predictive skill372

than the best LEs, but is influenced by all 42 CMIP6 GCMs. Therefore, the relatively higher373

predictive skill in the MMLE 3+ should be seen as less sensitive to individual GCM biases as374

it is representative of the general agreement between all GCMs. Some LEs such as CanESM5375

and ACCESS-ESM1-5 exhibit unusual patterns of high predictability in the Kara and Chukchi376

Seas in the winter. Other LEs such as CESM2-LENS, GISS-E2-1-H and MIROC-ES2L have377

particular regions which are far more predictable than others. For example, the CESM2-LENS378

simulates high persistence for the Chukchi Sea but not for the Beaufort Sea (see Figure S4379

for 5-year persistence, and section 3f for a CESM2 bias discussion) which causes the large380

disparity in predictive skill between these two regions. As September is of particular interest381

as the typical minimum annual pan-Arctic sea ice cover, and relatively high validation r2 values382

occur across regions for September in the MMLE 3+, this is our focus in subsequent analyses.383

384
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Fig. 3. 5-year lagged predictive skill for multiple global climate models and the CMIP6 multi-model

ensembles. Pearson correlation coefficients are shown for the validation data minus persistence at a 5-year lag

time between the input climate modes and sea ice concentration anomalies. Persistence is removed to indicate the

regions and months for each LE or MMLE where predictive skill is high, rather than where explained variability

is high. Numbers in parentheses indicate the total number of ensemble members used for training.

385

386

387

388

389

20



c. Linear drivers of regional sea ice anomalies390

Using a linear model trained on 42 CMIP6 GCMs (the MMLE 3+ model), we can establish391

the consensus across GCMs for the independent effect of each mode of variability on regional392

September SIC anomalies. The lead times where the MMLE 3+ model has no predictive skill is393

before a 4-year lead time for all regions except the Central Arctic where it is not until a 5-year394

lag time that the validation r2 exceeds persistence (see the dotted lines in Figure 4). The most395

important mode of variability is the IPO, which is strongly positively correlated with the SIC396

in all regions, especially in the East Siberian and Beaufort Seas (Figure 4). The IPO decays in397

influence over time, reaching near zero influence on SIC at approximately a 15-year lead time.398

The global average surface temperature (TAS) also has a very large coefficients, but as this is399

not a mode of variability and is considered to integrate modes of variability not represented (see400

section 2d for a more detailed explanation), we do not discuss in detail the influence of TAS further.401

402

Aside from the large influence of the IPO, the Niño 3.4 index (NINO34) and the Atlantic403

Multidecadal Oscillation (AMO) both display a very consistent sign of influence which decays with404

time. The NINO34 and AMO both have smaller influences than the dominant IPO (approximately405

one third and one quarter, respectively) for a given one standard deviation anomaly in each mode406

of variability. Like the IPO and TAS, the influence of the AMO and NINO34 decays relatively407

monotonically with time. As the skill of persistence also declines nearly monotonically, and the408

IPO, TAS, NINO34 and AMO all display low-frequency variability, this increases confidence in the409

validity of these relationships found in the MMLE 3+. The low-frequency oscillations of the other410

sea surface temperature-derived indices of the Pacific Decadal Oscillation (PDO), and to a lesser411

extent the Atlantic Niño (ATN), implies the potential for longer-term predictability as with the IPO,412

TAS, NINO34 and AMO. However the influence of these modes is small at most time periods and413

does not display a monotonic decline with time. This suggests these two modes are not highly im-414

portant in driving low-frequency Arctic sea ice variability, but consistency or lack thereof between415

LEs (see section 3d) may clarify whether the relationships in the MMLE 3+ are small and inde-416

pendently consistent in magnitude between GCMs, or small due to disagreement between GCMs.417

418
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The modes of variability based on sea level pressure patterns are generally a small influence426

on low-frequency variability of Arctic sea ice. The Pacific/North American Teleconnec-427

tion (PNA) and North Pacific Oscillation (NPO) do have some coherent regional effects428

but the switch in sign of influence over time may be indicative of the expectation of a429

change in the mode itself rather than the effect of the initial sign of the mode. Further, the430

NPO and PNA are influenced by longer-lived modes of variability in the Pacific (Furtado431

et al.), potentially meaning these modes are not independent. The North Atlantic Oscilla-432

tion (NAO) is less erratic than the NPO and PNA with a general negative effect on SIC433

anomalies but is very small in magnitude and is shown to affect SIC anomalies minimally.434

435

d. Low-frequency driver representation across global climate models436

Comparing the independent results from 12 LEs aids our interpretation of the linear drivers of437

SIC anomalies captured in the MMLE 3+. We do this by comparing the datasets for both the438

medium-term for lead times of 4-9 years (Figure 5). Although the LE analysis only includes 12439

of the 42 GCMs that went into the MMLE 3+ linear model, we can get a sense of the consistency440

between the CMIP6-suite of GCMs. This informs our interpretation of the two dominant modes of441

variability, namely the IPO and NINO34 with the LEs varying considerably for both modes of vari-442

ability during both periods. Although the influence of the IPO and NINO34 are seen to gradually443

decrease over time for the MMLE 3+, the individual LEs show large magnitudes of influence on444

SIC for both time periods and the sign is inconsistent between LEs. We find little consensus across445

GCMs on the sign of influence of the IPO across the 12 LEs. However, when we include these446

same 12 GCMs and 30 others in the MMLE 3+, a more positive signal emerges. This suggests447

either the additional 30 GCMs used in the MMLE 3+ have stronger positive linear relationships,448

and/or that by chance the first members used in the MMLE 3+ have a disproportionately strong449

positive relationship compared to the many members used for training in the LEs for a given GCM.450

451

For the NINO34 there appears more consistency across the full CMIP6-suite of models with simi-452

larities between the collection of 12 LEs and both MMLEs. This again highlights the importance of453
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taking a multi-model approach for the detection of low-frequency variability as two GCMs selected454

at random may produce vastly different results. Further, although we use large ensembles, the455

teleconnections between the tropics and Arctic may vary considerably between realization within456

a large ensemble. Without pooling multiple GCMs and members we may not be able to capture457

the full possible range of tropical-Arctic linkages which could be present over a 74-year time period.458

459
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Fig. 5. The linear effect on regional SIC for 12 large ensembles and the two multi-model large ensembles.

Linear response in September sea ice concentration for a +1 standard deviation anomaly of each climate mode,

as in Figure 4, but averaged over two distinct lead times. Bars are the linear response averaged over 4 to 9-year

lead times. Agreement within the CMIP6-suite of GCMs is high where bars are similar in magnitude and sign.

Note the different y-axis scale for the global average surface temperature.
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The AMO has reasonably good agreement between the LEs with almost all indicating465

negative influence on regional SIC in the medium-term. The PDO in the MMLE 3+ has466

near zero influence, across all 12 LEs we can see that none indicate the PDO as being467

particularly influential, with disagreement in sign reducing the overall effect for the MMLE468

3+. For the other modes of variability we find that almost all of the LEs coefficients469

are small in magnitude and without overwhelming agreement on sign. This allows us to470

interpret the MMLE 3+ near zero coefficients as being representative of both the lack of471

consensus across CMIP6 GCMs and no strong relationships being found in any of the LEs.472

473

The average magnitude of influence across all modes of variability differs considerably between474

individual LEs. For example CESM2-LENS often produces the largest magnitudes for a given475

mode and NorCPM1 the smallest. Such systematic differences may occur due to differences in476

the mean state and magnitude of variability by GCM. This may well be the case considering477

the SIC anomaly is recorded in percentage points and CEMS2-LENS has a low biased summer478

mean-state (DuVivier et al. 2020) and consequently large variability. Conversely, NorCPM1 has479

been noted as having a high biased sea ice thickness (Bethke et al. 2021), which may explain480

why NorCPM1 is an outlier for small low-frequency SIC variability. Again, this indicates481

care must be taken to understand the effect of limitations to the results from individual LEs.482

Although many of the CMIP6-suite GCMs are related (Knutti et al. 2013), and their biases may483

not average out, taking the results from the MMLE 3+ can reduce the risk of extreme outliers.484

485

When testing our MMLE 3+ model on unseen members from the 42 GCMs, we find large vari-486

ation between GCMs and ensemble members (see Figure 6). This limits our ability to determine487

which GCMs are most like the CMIP6 consensus if they have small ensemble sizes which cannot488

populate the full range of potential values (Notz 2015). Observational comparison with a similar489

time period will therefore be also difficult as observations could be expected, due to internal490

variability, to fall somewhere between 0 and 0.5 r2 if internal variability in the actual climate sys-491

tem behaves similarly to the the range of ensemble members in a large ensemble such as CanESM5.492

493
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Despite the ensemble member disagreement, the MMLE 3+ model appears to be well generalized494

to multiple GCMs as the test r2 values appear very similar if a linear model is trained on all 42495

GCMs as for the MMLE 3+ (blue circles in Figure 6) or only on other members from the same496

GCM as for the LE (red triangles). CESM2-LENS has a wide distribution of test r2 values between497

ensemble members, with larger variations between the micro-perturbations (atmospheric state),498

than between ensemble members with different ocean states (macro-perturbations) (see Figure499

S3), as also found for pan- Arctic sea ice volume variability (Kay et al. 2022). This indicates that500

for a 74-year time period, the specific manifestation of the relationships between climate variability501

modes and regional Arctic SIC anomalies can be highly dependent on the initial climate state.502

503
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Fig. 6. September r2 values for the test ensemble members from either the multi-model large ensemble

(3+, blue) or the 12 single GCM large ensembles (red). The performance of the test members (third and later

ensemble members) for the 42 GCMs included in the MMLE 3+ model are shown as blue circles, ensemble

mean values are indicated by gray bars. The red triangles indicate the performance of the test members for the

individually trained linear models for each of the 12 LEs, where 10% of the LE members were reserved for

testing against the linear model trained and validated on the first 75% and 15% of members from each GCM.

Where the red triangles and blue circles for a given GCM have a similar distribution, the MMLE 3+ is equally

good at capturing the relationships between climate modes and SIC as the LE, indicating the MMLE 3+ is well

generalized. The r2 values are for a 5-year lead time minus persistence.
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e. Observational comparisons513

Correlations between the climate modes and extreme SIC anomalies show observations514

broadly fall within what is simulated for the LEs, but validation is difficult due to the large515

differences between realizations. In order to directly compare observations with ensemble516

members, we compute the correlation between the 6 most extreme regional SIC anomaly years517

in the period 1956-2022 and correlate whether each mode of variability was in a positive or518

negative phase. To make a more representative sample, we pool the seven regions (except519

the Barents Sea where summer variability is near zero), averaged over a 4- to 9-year lead520

time. However, the correlations should not be seen as comparable to the linear model as the521

correlations are binary, unlike the abilities of the linear model to apply lower weights to less522

important climate modes. Observations fall within the ensemble spread for all GCMs for all523

modes of variability except for the AMO which falls outside of only the NorCPM1, and the524

ATN and NPO which are outside multiple GCM ensemble ranges (see Figure 7). This suggests525

that the observed correlations between most climate modes of variability and SIC anomalies526

is consistent with the CMIP6 large ensembles, within internal variability uncertainty. The far527

stronger correlation of observations for the ATN and NPO may mean in our one realization of528

reality these modes of variability have played a larger role than has been simulated in many529

climate models. Again, the large spread between realizations within a large ensemble highlights530

the extremely large range that observations would be expected to fall within (particularly for the531

IPO), and hence the difficulty of validating the simulated low-frequency drivers with observations.532
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Fig. 7. Correlations between ensemble members and observations between modes of variability and

extreme SIC anomaly events. The 6 most extreme SIC positive and negative anomalies are found for each

ensemble member and September observations over the period 1956-2014. For a lead time of 4-9 years the

positive and negative correlations with each mode of variability is summed. These data are the average for the

Beaufort, Chukchi, East Siberian, Kara and Laptev Seas and the Central Arctic. Each colored dot indicates the

correlations for a single ensemble member, with the same colored triangle indicating the ensemble mean. The

observed value for each variable is shown with a black hollow bar. When observations lie within a given GCM

ensemble member distribution, the correlation in the observations is consistent with that simulated in the GCM.
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f. Future projections542

Our limited time period of observations may not be representative of a typical climate543

realization and therefore may arbitrarily match well or poorly to a specific machine learning544

model trained on GCMs. However, validation of our LE and MMLE 3+ models against the545

period 1956-2022 may have some implications for how well we can expect projections over the546

next 4-20 years to hold up. The r2 values of the MMLE 3+ validated against the observations547

(Figure 8 prediction columns) is similar to that of the MMLE 3+ validated against the second548

large ensemble members (Figure 3). The MMLE 3+ and the best LEs when used for hindcasting549

SIC anomalies from observed climate modes, often achieve r2 values of between 0.2-0.3 above550

persistence, but is highly regionally dependent. As the MMLE 3+ typically has the highest or near551

highest validation skill against the observations, we use these for future projections in the following.552

553
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Fig. 8. Linear model projections of SIC anomalies based on observed climate modes. The projection

subplots a,c,e,g,i,k,m,o show the observed 1956-2022 regional or pan-Arctic SIC anomalies (brown), the 2-year

lowpass filtered anomalies (black), the MML3+ linear model historical hindcasts on a 5-year lead time (red), and

the future projections based on the climate mode anomalies observed in 2022 using the MMLE 3+ (blue) and

individual LEs (grey). The prediction skill subplots b,d,f,h,j,l,n,p show the observed persistence in dashed back

lines while the MMLE 3+ and LE hindcast performances for 1976-2022 at 2- to 20- year lead times are shown

in red and gray, respectively. The subplot q depicts the observed climate mode anomalies for the year 2022.

Subplot r shows the MMLE 3+ contribution to the projected anomalies in 2027 based on 2022 data of each of

the modes of variability.
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For all regions of the Arctic, our linear model predicts below trend sea ice concentrations563

over the coming decade. The seven regions have different time evolutions of the projected SIC564

anomalies, however all regions for the MMLE 3+ projections show accelerated SIC loss due to565

low-frequency variability over the 20 years following 2022 (see Figure 8). Taking the pan-Arctic566

as a whole, the predicted negative anomaly from the linear trend is the largest anomaly at a567

5-year lead time during the period 1956-2022. Therefore, our MMLE 3+ model predicts current568

climate modes as being particularly conducive to a large low-frequency SIC anomaly. This is569

fairly consistent across LEs, with the only large outlier being the CESM2-LENS which predicts570

an extreme accelerated loss due to being a large outlier in Central Arctic projections. This571

outlier is likely due to thin biased ice as discussed in section 3d. Comparing the persistence572

of CESM2-LENS with CESM2-lessmelt runs which have thicker sea ice (Kay et al. 2022), the573

lessmelt CESM2 variant is more in line with the persistence in other GCMs (see Figure S4).574

This indicates the low thickness bias likely caused the enhanced simulated variability outlier.575

576

The contributions to this predicted accelerated SIC loss throughout the Arctic in the coming577

decade is dominated by the large anomalies in 2022 of a negative IPO and strongly positive AMO,578

alongside a moderately negative NINO34 value. Furthermore, the above trend surface temperature579

warming in 2022 is also modeled as being a large contribution in the year 2027 (see Figure 8q,r).580

Only the negative phase of the PDO in 2022 is expected to counter the accelerated sea ice loss by581

leading to positive SIC anomalies in the Pacific sector. The remaining modes of variability are582

either in near neutral phase in 2022 or have small influences on the linear model and hence do not583

feature as contributing to future anomalies. The alignment of modes of variability phases in 2022584

combine to simulate a negative anomaly to the linear trend larger than any anomaly predicted during585

the period 1956-2021. Even if for example there were a sudden switch in phase of the NINO 3.4586

index from -0.8 in 2022 to +2.0 standard deviation, the SIC % point influence in the East Siberian587

sea would change the projected 2027 contribution from -0.78% to 1.89%. The more dominant588

modes of variability, namely the IPO and AMO as well as the TAS influence, transition phase589

more slowly, which would therefore reduce the sensitivity of projections based on a single year.590

591
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4. Discussion592

Skillful projections of regional Arctic SIC anomalies are able to be produced using simple linear593

relationships. This has allowed us to identify the individual impact of the dominant modes of594

variability, namely the IPO, NINO34 and the AMO. However, covariance between the climate595

modes of variability and nonlinearities in their effect on sea ice are likely to exist (e.g. Heo et al.596

2021). This is also supported by the fact that many of the climate modes of variability are not597

spatially or temporally independent of one another, such as the PDO and NINO34 (Chen and598

Wallace 2016). The lack of improvement in skill when we included nonlinearities or covariance599

in our analysis may be a result of a lack of data (see section 3a), despite the quantity and quality600

of GCM data available from CMIP6 simulations being unprecedented (Davy and Outten 2020).601

The multimodal ensemble approach to learning the drivers of Arctic sea ice variability did not602

degrade our skill when compared with training our linear model on a single GCM (see section603

3d). This shows that a generalized model can be obtained from a variety of GCMs differing in604

model physics, model biases and ocean states. However, large differences in validation between605

realizations indicates the extent to which the linear relationships themselves can differ due to606

internal variability.607

Previous studies have primarily focused on seasonal or interannual timescales of variability,608

with the notable exceptions of the IPO and AMO which have been considered on decadal609

timescales. As these modes of variability persist in one phase for several years to decades it610

is unsurprising for their influence on sea ice to also persist with a slow near-monotonic decay611

with time. We found the IPO to be the most influential mode of variability on all lead times612

between 4 and 20 years, positively correlated with SIC anomalies in all regions. In previous613

research the IPO’s influence on Arctic sea ice has not been featured, except as found by Screen614

and Deser 2019 for the CMIP5 GCM CESM1. The transition between the negative and positive615

IPO phase in CESM1 was found to be associated with a strengthened Aleutian Low which616

enhances poleward heat and moisture transports, facilitating enhanced Arctic sea ice loss. The617

disagreement in sign and longevity of the IPO’s influence on SIC between the CMIP6 LEs follows618

on from research that CMIP5 GCMs generally poorly simulate the extratropical effects of the IPO619

(Baxter et al. 2019; Ding et al. 2019; Topál et al. 2020). In addition to the lack of consensus620
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between GCMs broadly, the correlation appears highly sensitive to realization (see Figure 7).621

Previous studies have suggested the variability in the strength of the Pacific-Arctic (PARC)622

teleconnection may cause the linkages between Pacific SST anomalies and Arctic sea ice to vary623

substantially and even change sign depending on initial climate state (Bonan and Blanchard-624

Wrigglesworth 2020). Additional focus on this mode with a wider variety of modeling applications625

appears needed and is particularly pressing given the strong current negative phase (see Figure 8q).626

627

The AMO was found in our MMLE 3+ linear model to be negatively correlated with all628

regions of the Arctic sea ice, which shows good agreement with previous studies (e.g. Day629

et al. 2012; Miles et al. 2014; Li et al. 2018b) for the pan-Arctic or Atlantic sector on decadal630

timescales. The suggested physical mechanism for a positive AMO leading sea ice loss is the631

enhanced winter atmospheric heat transport into the Atlantic sector of the Arctic (Day et al.632

2012). However, the AMO itself may have a forced component (Murphy et al. 2021; Cai et al.633

2021; Klavans et al. 2022), and its oscillatory timescale varies considerably between GCMs634

(Lee et al. 2021), potentially limiting the use of the AMO as an independent variable. Despite635

this, the pre-industrial control simulations (see Figure S2) match well with the MMLE 3+ for636

1920-2014 for the IPO and AMO, suggesting that forcing context is not highly important for637

these modes. A much smaller influence of the NINO34 in the pre-industrial control simulations638

may suggest sensitivity to climate state. Similarly the selection of the dominant season based639

on the LEs in the period 1920-2014 could also cause an array of responses in different climate640

conditions and for different GCMs if they simulate other seasons as being most influential.641

642

El Niño and La Niña have been shown to be influential on Arctic sea ice and generally suggest643

that NINO34 is positively correlated with SIC except for the Beaufort Sea (e.g. Clancy et al.644

2021; Hu et al. 2016; Jeong et al. 2022b). However, the lead times considered previously were645

shorter than our 4- to 20-year timescale, making our positively correlated influence hard to directly646

compare with previous research. Furthermore, previous literature on shorter timescales have noted647

the importance of the type of El Niño regime (Jeong et al. 2022a; Lee et al. 2023) and the likely648

nonlinear and asymmetrical climate response from NINO34 variations (Hoerling et al. 1997).649

Limitations to the detection of lagged influence from ENSO could be derived from the fact that650
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CMIP6 GCMs still fail to accurately simulate the periodicity and phase-locking characteristics of651

ENSO (Hou and Tang 2022). Nonetheless, El Niño favoring a positive Arctic Oscillation and a652

deepened Aleutian Low via Rossby wave trains, which in turn promote enhanced sea ice export,653

have been shown to exist in a number of CMIP5 and CMIP6 GCMs (Clancy et al. 2021; Lee et al.654

2023). What remains elusive is the persistence of the influence of the NINO34 on sea ice across655

GCMs up to approximately 14 years (Figure 4). This is surprising due to the transition between656

phases often occurring interannually, which would therefore require persistent lagged telecon-657

nection pathway to the Arctic which has not been suggested. During 1970-2014 when radiative658

forcing increase was more linear compared with 1920-2014, we found NINO34 still has a positive659

correlation on sea ice, but only for approximately 5 years (Figure S1). For pre-industrial control660

simulations, a constant near zero relationship was found (Figure S2). It would therefore appear that661

for periods when nonlinearities in radiative forcing is more effectively removed by detrending or662

by constant forcing, the lagged NINO34 influence sea ice is substantially reduced. As no physical663

mechanism for a lagged sea ice response to a given phase of NINO34 is suggested, the influence664

of NINO34 encapsulating residuals in the model or nonlinearities in warming must be considered.665

666

The PDO was previously not found to be highly important for Arctic sea ice by itself (Zhang et al.667

2020; Karami et al. 2023) and its influence may also have changed over time (Bonan and Blanchard-668

Wrigglesworth 2020; Kim et al. 2020). Similarly we also only found a small influence of the PDO669

over our long time period of 1920-2014. The SST pattern of the PDO is related to the Pacific SST670

climate modes of the NINO34 and IPO, which each have similar teleconnection mechanisms via671

Rossby wave train formation (Yuan et al. 2018). Further, the mechanisms of an oceanic ’tunnel’672

and atmospheric ’bridge’ may be common between the IPO and PDO, leading to the similar673

characteristics of persistence, Arctic influence, and modulation by ENSO (Liu and Alexander 2007;674

Henley et al. 2017). Therefore it is unsurprising for a subset of tropical Pacific modes of variability675

to dominate due to their similarity. The ATN is the only negligible mode of variability derived from676

SSTs, but has not previously been identified as specific driver of Arctic sea ice variability. However677

the tropical Atlantic was been suggested to influence Arctic sea ice (Meehl et al. 2018). Thus, the678

unimportant nature of the ATN does not preclude other aspects of tropical Atlantic being important.679

680
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Consistent with the previous lack of evidence of influence beyond interannual timescales, the sea681

level pressure-derived modes of variability (the NAO, NPO and PNA) were found to have negligible682

effect at lead times of 4-20 years. Previous research has shown the effect of the NAO to decay to683

zero after approximately 2 years (Ukita et al. 2007), this timescale and the regional correlations684

(e.g. Serreze et al. 2007; Döscher et al. 2010) align with our findings given the smoothing inherent685

in our lowpass filtered data. This provides confidence in our linear model’s ability to capture686

higher frequency variability but dismiss low-frequency influence from these modes of variability.687

688

5. Conclusions689

We have shown that low-frequency variability of regional Arctic sea ice concentration can be690

modeled using linear drivers consisting of climate modes of variability. We achieve predictions691

superior to persistence for most regions for a lead time of 4-20 years and find that the climate692

modes of variability can be considered independently without reducing skill. By comparing the693

linear responses between twelve large ensembles from CMIP6 and a multi-model large ensemble694

comprising of 42 GCMs, we find where there is consensus of the dominant linear drivers of695

low-frequency sea ice variability except in the case of the Interdecadal Pacific Oscillation (IPO). In696

the pan-Arctic we are able to explain up to 60% of observed low-frequency sea ice concentration697

variability at lead times of 5 years. However, the ability of a GCM or a multi-model large698

ensemble to predict unseen ensemble members or observations can vary wildly depending on the699

realization of internal variability; between 0-0.46 r2 in the case of CanESM5, the largest single700

GCM ensemble. Hence, this both complicates the analysis of small samples of GCMs and the701

application and verification of these relationships with our single realization of observations.702

703

The most important modes of variability we found were the IPO, Nino 3.4 Index (NINO34)704

and the Atlantic Mutidecadal Oscillation (AMO). The multi-model large ensemble linear model705

showed the IPO to have a strong positive correlation with this being most pronounced in the706

East Siberian, Beaufort and Laptev Seas at lead times of up to 14 years. Although this large707

magnitude of influence of the IPO was found across GCMs, the sign and regional influence708
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was especially dependent on the GCM used and the specific realization of internal variability.709

NINO34 was found to be positively correlated with SIC anomalies in all regions, particularly710

in the Pacific sector. This correlation was more consistent between GCMs, with disagreement711

growing at longer lead-times. The AMO was the only other mode of variability considered712

important for long periods of time, being modeled as highly negatively correlated with SIC713

across all regions for up to approximately 10 years. However, the agreement across CMIP6714

GCMs for the AMO was less consistent than NINO34. The persistence of influence on sea ice715

from the IPO and AMO is not surprising due to their similar phase persistence. NINO34 in716

contrast can change phase interannually, suggesting the influence found here may be an artifact717

of forcing conditions, as no physical mechanism for a delayed Arctic influence has been suggested.718

719

When using our linear model to make predictions, we find a near ’perfect storm’ of modes of720

variability in the year 2021/2022 to induce an acceleration to the sea ice loss trend over the next721

decade. The primary influences of this projected acceleration of low-frequency variability driven722

sea ice loss are an above trend global average surface temperature warming, a negative IPO, La723

Niña conditions, and a positive AMO. For the pan-Arctic, the projected low-frequency deviation724

from the long-term trend due to current climate mode phase configurations is expected to be the725

largest since at least 1956. While the transition between La Niña and El Niño can occur rapidly,726

the fact that our strong negative predictions are primarily due to the slowly changing climate727

modes of the AMO and IPO imply robustness of this prediction to interannual variability. Of728

course, the sea ice anomalies that will actually be observed are still dominated by interannual729

variability, which makes up roughly three quarters of the total variability. Thus, while we cannot730

say with confidence that a new record low September extent will occur over the next decade, the731

modeled low-frequency variability suggests that extreme low SIC values will be more likely over732

the coming decade, with low-frequency variability likely to enhance the long-term negative trend.733

734
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Dörr, J., D. B. Bonan, M. Årthun, L. Svendsen, and R. C. J. Wills, 2023: Forced and in-849

ternal components of observed Arctic sea-ice changes. The Cryosphere, 17 (9), 4133–4153,850

https://doi.org/10.5194/tc-17-4133-2023.851

EC-Earth-Consortium, 2019a: EC-Earth-Consortium EC-Earth3 model output prepared for852

CMIP6 CMIP historical. Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.853

4700.854

43



EC-Earth-Consortium, 2019b: EC-Earth-Consortium EC-Earth3-Veg model output prepared for855

CMIP6 CMIP historical. Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.856

4706.857

EC-Earth-Consortium, 2020: EC-Earth-Consortium EC-Earth3-Veg-LR model output prepared858

for CMIP6 CMIP historical. Earth System Grid Federation, https://doi.org/10.22033/ESGF/859

CMIP6.4707.860

EC-Earth-Consortium, 2021: EC-Earth-Consortium EC-Earth-3-CC model output prepared for861

CMIP6 CMIP historical. Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.862

4702.863

Eguı́luz, V. M., J. Fernández-Gracia, X. Irigoien, and C. M. Duarte, 2016: A quantitative as-864

sessment of Arctic shipping in 2010–2014. Scientific Reports 2016 6:1, 6, 1–6, https://doi.org/865

10.1038/srep30682.866

Eisenman, I., 2010: Geographic muting of changes in the arctic sea ice cover. Geophysical Research867

Letters, 37, https://doi.org/10.1029/2010GL043741.868

England, M., A. Jahn, and L. Polvani, 2019: Nonuniform contribution of internal vari-869

ability to recent Arctic sea ice loss. Journal of Climate, 32, 4039–4053, https://doi.org/870

10.1175/JCLI-D-18-0864.1.871

Fasullo, J. T., A. S. Phillips, and C. Deser, 2020: Evaluation of Leading Modes of Climate872

Variability in the CMIP Archives. Journal of Climate, 33, 5527–5545, https://doi.org/10.1175/873

jcli-d-19-1024.1.874

Fetterer, F., M. Savoie, S. Helfrich, and P. Clemente-Colón, 2010: Multisensor Analyzed Sea Ice875

Extent - Northern Hemisphere (MASIE-NH), Version 1. U.S. National Ice Center and National876

Snow and Ice Data Center, https://doi.org/10.7265/N5GT5K3K.877

Francis, J. A., and B. Wu, 2020: Why has no new record-minimum Arctic sea-ice extent occurred878

since September 2012? Environmental Research Letters, 15, https://doi.org/10.1088/1748-9326/879

abc047.880

Furtado, J. C., E. D. Lorenzo, B. T. Anderson, and N. Schneider, ????: https://doi.org/10.1007/881

s00382-011-1245-4.882

44



Giesse, C., D. Notz, and J. Baehr, 2021: On the Origin of Discrepancies Between Observed883

and Simulated Memory of Arctic Sea Ice. Geophysical Research Letters, 48, https://doi.org/884

10.1029/2020GL091784.885

Goosse, H., O. Arzel, C. M. Bitz, A. D. Montety, and M. Vancoppenolle, 2009: Increased variability886

of the Arctic summer ice extent in a warmer climate. Geophysical Research Letters, 36, 1–5,887

https://doi.org/10.1029/2009GL040546.888

Gregory, W., J. Stroeve, and M. Tsamados, 2021: Network connectivity between the winter Arctic889

Oscillation and summer sea ice in CMIP6 models and observations. The Cryosphere, 1653–1673.890

Guemas, V., and Coauthors, 2016: A review on Arctic sea-ice predictability and prediction on891

seasonal to decadal time-scales. Quarterly Journal of the Royal Meteorological Society, 142,892

546–561, https://doi.org/10.1002/qj.2401.893

Hajima, T., and Coauthors, 2019: MIROC MIROC-ES2L model output prepared for CMIP6 CMIP894

historical. Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5602.895

Henley, B. J., and Coauthors, 2017: Spatial and temporal agreement in climate model simulations896

of the Interdecadal Pacific Oscillation. Environmental Research Letters, 12, https://doi.org/897

10.1088/1748-9326/aa5cc8.898

Heo, E. S., M. K. Sung, S. I. An, and Y. M. Yang, 2021: Decadal phase shift of summertime Arctic899

dipole pattern and its nonlinear effect on sea ice extent. International Journal of Climatology,900

41, 4732–4742, https://doi.org/10.1002/joc.7097.901

Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the Nonlinearity of Their902

Teleconnections. Journal of Climate, 10 (8), 1769–1786, https://doi.org/https://doi.org/10.1175/903

1520-0442(1997)010⟨1769:ENOLNA⟩2.0.CO;2.904

Hofsteenge, M. G., R. G. Graversen, J. H. Rydsaa, and Z. Rey, 2022: The impact of atmospheric905

Rossby waves and cyclones on the Arctic sea ice variability. Climate Dynamics, 59, 579–594,906

https://doi.org/10.1007/s00382-022-06145-z.907

Holland, M. M., L. Landrum, D. Bailey, and S. Vavrus, 2019: Changing seasonal predictability908

of Arctic summer sea ice area in a warming climate. Journal of Climate, 32, 4963–4979,909

https://doi.org/10.1175/jcli-d-19-0034.1.910

45



Hou, M., and Y. Tang, 2022: Recent progress in simulating two types of ENSO – from CMIP5 to911

CMIP6. Frontiers in Marine Science, 9, https://doi.org/10.3389/fmars.2022.986780.912

Hu, C., S. Yang, Q. Wu, Z. Li, J. Chen, K. Deng, T. Zhang, and C. Zhang, 2016: Shifting El913

Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin. Nature914

Communications, 7, 1–9, https://doi.org/10.1038/ncomms11721.915

Huang, W., 2019: THU CIESM model output prepared for CMIP6 CMIP historical. Earth System916

Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.8843.917

Hurrell, J. W., and C. Deser, 2009: North Atlantic climate variability: The role of the North Atlantic918

Oscillation. Journal of Marine Systems, 78 (1), 28–41, https://doi.org/10.1016/j.jmarsys.2008.919

11.026, URL http://dx.doi.org/10.1016/j.jmarsys.2008.11.026.920

Jahn, A., 2018: Reduced probability of ice-free summers for 1.5 °c compared to 2 °c warming.921

Nature Climate Change, 8, 409–413, https://doi.org/10.1038/s41558-018-0127-8.922

Jeong, H., H.-S. Park, M. F. Stuecker, and S.-W. Yeh, 2022a: Distinct impacts of major El923

Niño events on Arctic temperatures due to differences in eastern tropical Pacific sea surface924

temperatures. Sci. Adv, 8, 8278.925

Jeong, H., H. S. Park, M. F. Stuecker, and S. W. Yeh, 2022b: Record Low Arctic Sea Ice Extent926

in 2012 Linked to Two-Year La Niña-Driven Sea Surface Temperature Pattern. Geophysical927

Research Letters, 49, https://doi.org/10.1029/2022GL098385.928

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of929

the American Meteorological Society, 77, 437–471, https://doi.org/10.1175/1520-0477(1996)930

077⟨0437:TNYRP⟩2.0.CO;2.931

Karami, M. P., T. Koenigk, and B. Tremblay, 2023: Variability modes of September Arctic sea ice:932

drivers and their contributions to sea ice trend and extremes. Environmental Research: Climate,933

2, 025 005, https://doi.org/10.1088/2752-5295/accbe3.934

Kay, J. E., M. M. Holland, and A. Jahn, 2011: Inter-annual to multi-decadal Arctic sea ice extent935

trends in a warming world. Geophysical Research Letters, 38, 2–7, https://doi.org/10.1029/936

2011GL048008.937

46



Kay, J. E., and Coauthors, 2022: Less Surface Sea Ice Melt in the CESM2 Improves Arctic Sea Ice938

Simulation With Minimal Non-Polar Climate Impacts. Journal of Advances in Modeling Earth939

Systems, 14, https://doi.org/10.1029/2021MS002679.940

Kim, H., S. W. Yeh, S. I. An, and S. Y. Song, 2020: Changes in the role of Pacific decadal oscillation941

on sea ice extent variability across the mid-1990s. Scientific Reports, 10, https://doi.org/10.1038/942

s41598-020-74260-0.943

Klavans, J. M., M. A. Cane, A. C. Clement, and L. N. Murphy, 2021: NAO predictability from944

external forcing in the late 20th century. npj Climate and Atmospheric Science 2021 4:1, 4, 1–8,945

https://doi.org/10.1038/s41612-021-00177-8.946

Klavans, J. M., A. C. Clement, M. A. Cane, and L. N. Murphy, 2022: The Evolving Role of External947

Forcing in North Atlantic SST Variability over the Last Millennium. Journal of Climate, 35,948

2741–2754, https://doi.org/10.1175/JCLI-D-21-0338.1.949

Knutti, R., D. Masson, and A. Gettelman, 2013: Climate model genealogy: Generation CMIP5950

and how we got there. Geophysical Research Letters, 40, 1194–1199, https://doi.org/10.1002/951

grl.50256.952

Kovacs, K. M., C. Lydersen, J. E. Overland, and S. E. Moore, 2011: Impacts of changing sea-953

ice conditions on Arctic marine mammals. Marine Biodiversity, 41, 181–194, https://doi.org/954

10.1007/s12526-010-0061-0.955

Krasting, J. P., and Coauthors, 2018: NOAA-GFDL GFDL-ESM4 model output prepared for956

CMIP6 CMIP historical. Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.957

8597.958

Kwok, R., and D. A. Rothrock, 2009: Decline in Arctic sea ice thickness from submarine and959

ICESat records: 1958-2008. Geophysical Research Letters, 36 (15), 1–5, https://doi.org/10.960

1029/2009GL039035.961

Labe, Z. M., and E. A. Barnes, 2022: Comparison of Climate Model Large Ensembles With962

Observations in the Arctic Using Simple Neural Networks. Earth and Space Science, 9,963

e2022EA002 348, https://doi.org/10.1029/2022EA002348.964

47



Leathers, D. J., B. Yarnal, and M. A. Palecki, 1991: The Pacific/North American Teleconnection965

Pattern and United States Climate. Part I: Regional Temperature and Precipitation Associations.966

Journal of Climate, 4, 517 – 528, https://doi.org/10.1175/1520-0442(1991)004⟨0517:TPATPA⟩967

2.0.CO;2.968

Lee, J., K. R. Sperber, P. J. Gleckler, K. E. Taylor, , Céline, and J. W. Bonfils, 2021: Benchmarking969
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S1. Machine Learning Method Details

a. Splitting for training, validation and testing

For each LE we divide the members into training, validation, and testing sets with 75%, 15%,

10% of members respectively. For the MMLE 3+, we then use the first member for the training

data set, the second member for the validation set, and leave the third and any other members for

testing. For the MMLE 30+, we pool the first 23 members from all 8 GCMs for training, we use

the next 4 members for validation, and the final 3 or more members for testing. As we use 74 years

of data for each ensemble member (1920-2014) the smallest LE uses 74 years with 21 ensemble

members, yielding an effective 1554 years for training - far in excess of observations and typically

longer than pre-industrial control runs from any individual GCM. The MMLE3+ has 2294 years

of training data and the MMLE 30+ maximizes the number of training years at 13,320, allowing us

to determine whether substantially increasing the training data provides any gain in predictive skill.

b. Neural network configurations

All of the four machine learning models (see section 2.2 for a physical explanation of their utility)

use a fully-connected neural network with the same L1 loss function to encourage sparseness and

an Adam optimizer for suitability to the four diverse models. We selected models 1 and 2 to have

no bias term, which ensures the zero values of the standardized input variables (a neutral phase

of the climate mode) predicts a zero SIC anomaly. With these four machine learning models, as

detailed below, we can separate the effect of linear/nonlinear activation functions from the effect

of additional neural network layers which allows one climate variable to interact with another:

• Model 1 - Model layers: 9-1 with linear activation functions and no bias.

• Model 2 - Model layers: 9-1 with nonlinear (ReLU) activation functions and no bias.

• Model 3 - Model layers: 9-3-3-1 with linear activation functions with bias.

• Model 4 - Model layers: 9-3-3-1 with nonlinear (ReLU) activation functions with bias.
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By comparing the predictive skill of model 1 versus 2 and model 3 versus 4 we can identify the

effect of increasing the model complexity from a linear to nonlinear activation functions. This

is because the only difference between those two groups is the activation function, analogous

to linear or nonlinear relationships between the climate modes of variability and SIC. Then,

by comparing the predictive skill of models 1 versus 3 as well as model 2 versus 4, we can

determine the difference in allowing the climate modes of variability to be independent of one

another. This independence is facilitated in the simple models 1 and 2 where each of the 9

neurons in the input layer connects directly with the output layer. Models 3 and 4 which take into

account covariance of different climate modes, this is achieved by connecting the input layer to

two hidden intermediate layers of 3 fully-connected neurons before reaching the output layer.

c. Determining dominant seasons

We first compute our machine learning models on four seasonal values for each of our 9 input

variables for the LE datasets and find the most dominant season averaged over all 7 regions of

the Arctic for September. This is done by using model 1 with model layers of 36-1 and a linear

activation function, and then selecting the largest seasonal input. We considered this reduction in

seasons necessary due to the slowest changing climate modes such as the IPO having very similar

seasonal values, resulting in over-fitting. Using all 4 seasons for some climate modes and a single

season for one would not allow a fair comparison between climate modes, while using only one

season rather than four does not substantially decrease the predictive skill. However, there is a

limitation of this approach, whereby the dominant season for a given climate mode may differ

between the GCMs, regions, and SIC anomaly months. Further, ’best’ seasons for some climate

modes of variability have little physical meaning as no season has much influence on Arctic sea ice.
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Fig. S1. Linear drivers of regional sea ice concentration anomalies for a reduced time period. Same as

Figure 4, except for the reduced time period of 1970-2014 instead of 1920-2014. By comparing this figure with

Figure 4, we can see that the modes of variability have a similar influence as for the 1920-2014 time period,

although the results are far more noisy and predictive skill does not exceed persistence for as much of the lead

times as for the period 1920-2014.
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Fig. S2. Linear drivers of regional sea ice concentration anomalies for pre-industrial control runs.

Same as Figure 4 and S1, except here using the 1850 control simulations instead of the period 1920-2014 in

the historical simulations. As for Figure S1, the influence of the climate variability modes are very similar as

for the period 1920-2014 (Figure 4), but the coefficients are smaller, likely due to the lower variability in the

pre-industrial mean state. Instead of different ensemble members, the available 35 GCMs are each split into

several members of 74 year length each, with the first 222 years used for training and the following 74 years for

validation.
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Fig. S3. Influence of macro versus micro initializations in the CESM2-LENS on September test member

r2 values. Of the 48 test members from the CESM2-LENS (see Figure 6), 12 are created through macro

initializations by choosing different start years from the pre-industrial simulation, and hence differ in their ocean

and atmospheric state. Of those 12, four (here shown on the x-axis by branch year) have 9 additional ensemble

members branched from them, which all only differ slightly in their atmospheric state due to small atmospheric

perturbations, i.e., referred to as micro initializations. Here we show these latter 40 simulations (blue circles),

to assess whether macro or micro initializations dominate the possible r2 values (with persistence removed). As

the four distributions of 10 realizations for each macro initialization are very similar, this shows that the ocean

state (macro perturbation) can influence the predictive skill, but generally does not narrow the potential range of

r2 values which can occur due to micro perturbation.
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Fig. S4. Persistence r2 values for LEs, MMLEs, and CESM2-lessmelt at a 5-year lag time. This figure

shows the persistence r2 value that was subtracted from the absolute value of the validation r2 in Figure 3.

Additionally the CESM2-lessmelt persistence is shown for comparison with CESM2-LENS. CESM2-lessmelt

has a thicker sea ice mean state than CESM2-LENS and, as shown in this figure, has a smaller persistence

validation r2 value, although this value is still an outlier compared with the other GCMs.
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