
Integrated Prognostics and Health Monitoring Tool for Software
Components Aboard UAS Swarm Agents

Landen Fogle∗, Grant Phillips†

University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Justin Bradley‡

North Carolina State University, Raleigh, NC 27695, USA

Uncrewed Aircraft Systems (UAS) are pivotal in numerous fields, requiring dependable
software architectures that reinforce functionality and e!ciency. However, e"ective in-flight
monitoring of these agents is often limited to verifying hardware performance and may lack
monitors for more complex software systems. The problem is seen in small UAS multi-agent
systems and swarms where bandwidth is minimal and computational resources are highly
constrained. Here we introduce the development, processes, and evaluation of a Health
Management and Control tool tailored for monitoring the health and operational status of
essential UAS software architecture components. This tool facilitates system debugging and
enhances operational e!ciency through diagnostics and recovery-focused health management.

I. Introduction

Fig. 1 UAS swarm during field experimentation using
a novel, decentralized controller.

Decentralized uncrewed aircraft system (UAS) swarm-
ing is an approach to enhancing mission capabilities
through the use of several intelligent, independently-acting
agents. In a decentralized system architecture, control,
planning, and decision-making tasks are delegated to the
agents towards improving the overall system robustness
at the expense of increasing the complexity of the agent’s
software and hardware architectures. Inevitably, exer-
cising a complex system that is under development will
invoke failure cases, either as a result of design oversights
or wear-and-tear on the hardware. Isolating the source
of failures within a swarm is typically done by manually
reviewing agent logs and field notes, or re-creating failure
scenarios; however, these heuristic methodologies are
time intensive and do not guarantee that the source(s) of
a particular failure will be discovered.

To illustrate, consider an operator attempting to relo-
cate a flying swarm to a new ground target. A command
is sent from a ground control station (GCS) over a radio
link to the swarm agents; the receiving radio is connected
to an onboard companion computer and the command interpreted by the controller, see Figure 2. If some subset (but
not all) of the agents fail to relocate then we need to uncover why some worked and some did not. From experience,
possible causes of this failure could span a wide variety of potential cyber-physical issues: lost sent packets, radio
disconnect/failure, the companion computer losing connection to the radio, logs on the companion computer have filled
the free disk space, the companion computer ports have failed, or an uncaught exception has caused the command
interpreter to crash. While manually isolating the failure is possible, significant time may be needed diagnosing all
failing agents due to a broad range of failure sources. Furthermore, this is likely impossible during the flight when

∗Undergraduate Student, UNL School of Computing, AIAA Student Member
†Graduate Student, UNL School of Computing, AIAA Student Member
‡Associate Professor, Department of Computer Science, AIAA Associate Fellow

1

D
ow

nl
oa

de
d 

by
 Ju

st
in

 B
ra

dl
ey

 o
n 

Ja
nu

ar
y 

6,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
25

-1
35

6 

 AIAA SCITECH 2025 Forum 
 6-10 January 2025, Orlando, FL 

 10.2514/6.2025-1356 

 Copyright © 2025 by Landen Fogle. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 AIAA SciTech Forum 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2025-1356&domain=pdf&date_stamp=2025-01-03


the error presents. This example highlights the need for an automated methodology to quickly identify and anticipate
sub-system failures within swarms.

Fig. 2 A command sent from the ground station must “move” through connected hardware components to
reach the flight control unit (hardware is described in Section III.A). The command encounters several points of
failure: 1) the radio link, 2) the radio-companion computer connection, 3) the software handling the command,
4) the companion computer, 5) the flight control unit-companion computer connection, 6) the flight control unit.
A failure at any of these stages will result in the command not being executed, however, the “location” of the
failure would be unclear without further health monitoring capability.

Prognostics and Health Management (PHM) is an engineering practice that focuses on predicting the reliability and
health state of complex, safety-critical systems. This methodology has been widely used by the aerospace, automotive,
and manufacturing industries due to its ability to reduce system life-cycle costs. Life-cycle costs are reduced by adopting
condition-based maintenance practices in place of traditional preventative and corrective maintenance strategies [1].

Most often, PHM is used to predict hardware component failure by supplying real-time sensor data to a system
model that can distinguish nominal system performance from behavior that indicates a component is approaching failure.
Several types of models have been explored, simple systems can be e!ectively monitored using regression methods
while more complex systems have been modeled using neural networks and support vector machines [2].

In this work, we seek to extend the methodologies of PHM to monitor the hardware, but more importantly, the
software health of a distributed, multi-agent UAS swarm composed of identical quadrotors. Distributed UAS swarms are
characterized as a group of four or more “agents” that work cooperatively with one-another to achieve a common goal
without a centralized controller or planner [3]. In this control scheme, each agent governs its own planning, decision,
and control with limited communication between agents. Although the control complexity and computational burden
is increased at the agent level under distributed control, the swarm achieves a much higher level of intelligence and
autonomy, making it highly robust to individual agent failures, and thus increasing the likelihood the mission objectives
will be met.

Monitoring the agents’ health (from a software and hardware perspective) and long-term physical condition quickly
becomes di"cult as the number of agents in a swarm grows. The quadrotor hardware (e.g., motors, electronic speed
controllers, sensing modules) are all single points of failure in the system and tracking flight hours, repairs, and
mean-time-to-failure across the entire fleet is tedious for small research teams; moreover, crashes introduce uncertainty
into these e!orts and potentially reduce the expected life of parts. When a hardware failure does occur, locating the
source of the failure requires several hours of sifting through vehicle logs (just for one vehicle). Furthermore, fielding
experimental software introduces other failure risks that are time consuming to track down. Given the number of swarm
agents, automated, on-board health-checking is needed to quickly and succinctly identify software and hardware failures.
This paper will make the following contributions:

• A highly dependable and scalable tool created to monitor health check metrics aboard an agent.
• Provide health reports of swarm research flights pinpointing communication and software failures.

2

D
ow

nl
oa

de
d 

by
 Ju

st
in

 B
ra

dl
ey

 o
n 

Ja
nu

ar
y 

6,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
25

-1
35

6 



• Demonstration of accuracy and deficiency metrics on Software in the Loop (SITL) and hardware experiments.

II. Related Work
Our work stems o! of a new engineering discipline in the industry, known as PHM. Related work in this field looks

specifically at system health metrics during field operations and aims to create recovery strategies based on the health
states. Many work combines the practices of fault prediction and diagnosis, and health management to ensure reliability
where PHM practices are implemented [4].

PHM methods have been adopted across various industries due to their ability to improve the reliability of complex
systems under variable and challenging conditions. One industry example of this practice is in marine engines. PHM
concepts have been implemented in this space because of the complexities of marine diesel engines that power most
commercial vessels. Because of their critical status in operation, health monitoring techniques like PHM have been
crucial to their developmental practices. [5].

PHM techniques have also been seen in aerospace fields to increase the reliability of aircraft systems. Advances
in data analytics and machine learning have propelled the development of these predictive maintenance strategies.
This industry has benefited from this semi-supervised anomaly detection techniques and research applied to various
components, of which the most popular are aircraft cooling units. These techniques utilize deep neural networks to detect
anomalies from nominal operational data, thus allowing for early detection of potential aircraft failures. Importantly, the
ongoing research demonstrates the potential of semi-supervised learning models to adapt to the high uncertainty. This
would have the potential to reduce unscheduled maintenance costs and improve system reliability [6].

Robotics has also seen the integration of PHM, particularly when using the industry standard Robot Operating
System (ROS). ROS∗ is an open-source framework that houses many tools and software libraries for developing robotics
systems. ROS aids developers in both academia and industry environments, with creating anything from drivers to
complex algorithms using a full software development kit (SDK). PHM tools within ROS are designed to enhance the
reliability of any type of robotic systems, including mobile robots and drones. Current PHM tools are implemented to
check for system health issues, health monitoring, estimation of remaining useful life (RUL), and prediction of task
completion probabilities. [7].

The application of PHM in UAS forms one critical area of research with potential applications, especially in
developing mission reliability and operational e"ciency. UAS benefit from Prognostic Decision-Making (PDM) systems
that utilize continuous Partially Observable Markov Decision Processes (POMDPs)[8]. These frameworks involve
complex simulations toward managing non-linear degradation processes, besides the uncertainties associated with state
estimation and the e!ects of the actions. This, in turn, enables UAS to dynamically re-plan the mission if component
faults are detected during flight, which will significantly increase the success rate. These are enabled by advanced
randomized algorithms supported by detailed physics simulators to generate and evaluate potential future states and
actions to ensure reasonable operations under unpredictable conditions [9].

Further integration of PHM in UAS is observed through the use of Integrated Vehicle Health Management (IVHM)
techniques for assessing the RUL of UAS components. Such techniques often involve fault tree analysis fed by probability
density functions, which that dynamically adapt to the aircraft health state and therefore limit uncertainty during
flight missions. [10] The recent interest in deep learning applications has further pushed the adaptation of machine
learning-based frameworks in anomaly detection for UAS. These studies typically utilize clustering algorithms to
e!ectively label flight data, and thus allow the detection of potential anomalies before they a!ect system performance.
This intersection of machine learning and PHM tools represents significant developmental progress and pivot to
predictive analytics approaches in UAS health management [11, 12].

Current research in the area of PHM, especially within UAS operations, has predominantly concentrated on
enhancing anomaly detection capabilities. These methods use new techniques including machine learning models or
through the application of non-linear decision optimization algorithms. These methods typically focus on the robust
nature of custom hardware or the monitoring of system functionalities [8]. However, a notable limitation of these
approaches is their heavy reliance on predictive analytics, which while powerful, may not fully address all operational
contingencies. Especially in the UAS space, these heavy weighted tools do not allow for systems working with limited
resources These approaches are not only computationally straining, which a!ect e"ciency, but also limited by necessary
hardware onboard the agent.

Contrary to the common trends in PHM research, our project adopts a di!erent approach by developing a PHM
software tool designed specifically for reporting the performance and uptime of UASs. This tool is unique in that

∗https://www.ros.org/

3

D
ow

nl
oa

de
d 

by
 Ju

st
in

 B
ra

dl
ey

 o
n 

Ja
nu

ar
y 

6,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
25

-1
35

6 



it does not rely on machine learning algorithms or predictive outputs, which are not only common in the field, but
also resource intensive. It additionally does not require high levels of bandwidth in turn having minimal e!ect on
communication networks and hardware aboard the UAS. This approach is more suitable in small UASs due to their
limited computational and power resources. Instead, our focus is on direct reporting to ground stations to address
discrepancies in communication which is a frequent issue in UAS swarm operations. We are creating a tool that is
tailored to detect and log specific types of communication failures, such as disruptions in radio transmissions, issues
within Raspberry Pi hardware, malfunctions in Docker container processes, or failures in ROS nodes. By identifying the
locations of potential communication failures between what is sent to the agent and the outcome, we aim to immediately
alert the ground station control (GSC) and minimize downtime for any operational swarm team .

III. Methodology
The core objective of this research is to develop an extendable methodology that helps quickly and accurately

identify software failures during swarm missions. This work focuses specifically on the health of individual agents
within the swarm, and then creating a summary report of the entire swarm. This involves a straightforward approach to
testing and monitoring each layer of the software stack. The software stack for this research includes three primary
layers: Companion Computer, Docker, and ROS layers - visualized in Figure 3. This layer structure will ensure full
coverage by the PHM tool from the hardware layer up through the higher-level application layers. Each of these layers
has its respective monitoring metrics and specific monitoring and recovery mechanisms.

A. System Overview
In this section, we provide an overview of a swarm agent’s hardware and software components to better contextualize

our methodology; these are illustrated in Figure 3. While the system described is our specific implementation, the core
components (autopilot, companion computer, radios) are representative of other intelligent UAS systems.

Our UAS agents utilize an o!-the shelf pixhawk-style autopilot (Cube Blue) with either PX4 or ArduPilot firmware.
The autopilot is a self-contained embedded system that manages the UAS’s internal inertial measurement units,
gyroscopes, barometers, and GPS modules as well as realizing a desired roll, pitch, and yaw, stabilizing the vehicle,
or navigating to global waypoints. These o!-the-shelf components are supplemented by a companion computer
(Raspberry Pi/Intel NUC/Nvidia Jetson) that executes other control or computation beyond the autopilot such as
high-level autonomous planning, image processing, or in our case a cluster of swarm control processes (nodes). The
companion computer and autopilot communicate via MAVLink†: a lightweight messaging protocol designed for micro
aerial vehicles. Through MAVLink, the autopilot sensor readings are available to the companion computer, and the
companion computer can send control commands to the autopilot. The swarm agents are connected via two separate
networks: 1) a 2.4 GHz asynchronous inter-agent XBee network used to exchange agent states and 2) a 900 MHz
synchronous agent-to-GCS RFD900 network used for slower, long-range backup commands.

Our custom swarm planning and control applications [13] are implemented on the companion computer within
the ROS framework. ROS provides a relatively simple means to develop and run processes that interact with sensors
and actuators through publisher-subscriber messaging channels. While ROS o!ers the means to easily implement our
swarm planning and control applications, managing the ROS application and software environments (i.e., code changes,
operating system, device drivers, network mapping) across several companion computers is tedious and if not properly
managed, can lead to failure. To eliminate the adverse e!ects of mismanaged software/software environments, we
have adopted the Docker dev-ops paradigm in which the application and the environment is packaged in a pre-built
image/container that can be easily transported between companion computers.

B. PHM Tool Architecture
Similar to our ROS swarm control application, the PHM software tool is deployed within a separate Docker container

on the companion computer so that the tool can be readily used on any operating system that supports the Docker
Engine. This container utilizes a common docker feature known as volume mounting to enable data sharing with other
containers, or the container host. Volume mounting allows containers to access and share files without altering the data
permanently. This enables the PHM container to access files relating to ROS logs and outputs of the ROS application
container. This setup is necessary for performing health checks and diagnostics without disrupting the swarm ROS
packages. Next, we will break down the health monitoring at each system layer, as depicted in Figure 3.

†mavlink.io

4

D
ow

nl
oa

de
d 

by
 Ju

st
in

 B
ra

dl
ey

 o
n 

Ja
nu

ar
y 

6,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
25

-1
35

6 



Swarm Node Cluster

ROS Container

Docker

Host OS

Health Checker

PHM Container

Companion Computer

Flight Controller

ArduPilot
MAVLink

MP Firmware

XBee

Firmware
UART

UART

Fig. 3 Representation of a swarm agent’s hardware and software organization. The PHM container communi-
cates and shares files with the ROS container via shared network and volume respectively. MAVLink is used to
facilitate communication with external swarm agents and the GCS.

1. Companion Computer Health Monitoring
The initial health monitoring layer of our PHM framework is directed towards the companion computer aboard each

agent within the UAS swarm; which is typically running a version of Ubuntu on hardware such as a Raspberry Pi or a
similar low-level device‡. The companion computer acts as the central processing unit, orchestrating the functionality
and managing the data critical to each UAS. This top-level layer is key to the operational health of an agent. Here, the
companion computer regularly sends heartbeat signals to the GCS at set intervals. These signals confirm the operational
status of the UASs, thus ensuring communication between the agents and the GCS is functional. This method facilitates
early detection of communication failures or hardware issues.

2. Docker Health Monitoring
Each agent’s companion computer hosts Docker containers that encapsulate the software necessary for swarm

mission execution. Docker is often used as a container service because of its wide array of benefits, primarily its
consistency across multiple environments to reduce environment setup and conflicts. Because this research is focused on
maximizing e"ciency and minimizing resources, Docker’s ability to create lightweight containers allows us to focus on
the deployed code and resources. In small UAS, hardware, and environmental resources are often limited, making this a
large benefit of using Docker. Another advantage is Docker’s ability for repeatable and scalable software deployment.
Since we are working with large swarms of identical copies of the same hardware and software, this allows for easy
deployment. Containerizing these applications ensures developers can roll out updates seamlessly to all swarm agents.

For portability, health checks are carried out at the Docker container level and are designed to test three essential
aspects of swarm UAS operations: 1) ensuring the presence and validity of operational files within each container 2)
verifying the continuous connectivity of each agent with the application container 3) validating connected devices.
Standard practice within Docker, Kubernetes, or any container-based service is to implement two types of probes:
liveness and readiness. Liveness probes help determine if the container is active and running as expected, while
readiness probes ensure the container is fully prepared to handle communication tasks with the GCS from internal
software. Additionally, connected devices to the swarm agents are critical and often cause failures if not connected
properly. To include this in our health monitoring, device ports accessed by the Docker container will be checked for
discrepancies from what is expected. The failures within the Docker layer will result in logging, GSC notifications, and
Docker container reboot. Additionally, monitoring will be in place to read Docker’s embedded ‘Healthcheck’ property
to provide a continuous review of the application container status. One of the key features of our tool is the automatic
restart when failures are detected. This automated recovery system is crucial to minimize our operational downtime for

‡Raspberry Pi’s are often favored in UAS applications due to their balance of computational capability, low power consumption, and integration
with open source platforms like ROS.

5

D
ow

nl
oa

de
d 

by
 Ju

st
in

 B
ra

dl
ey

 o
n 

Ja
nu

ar
y 

6,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
25

-1
35

6 



the application container.

3. ROS Health Monitoring
The ROS layer facilitates communication and operational consensus among various software nodes built into

our Docker containers as seen in Figure 3. Health checks performed on these nodes broadcast and receive signals
(Pub-Sub Model) to verify the existence and performance of adjacent nodes. This inter-node communication facilitates
its consensus mechanism illustrated in Figure 4. As seen in the figure, the consensus on node status is communicated to
a specific topic, that in turn the PHM tool monitors. This is considered more reliable rather than directly interfacing
with the GCS. This tool can be dynamically configured to adjust to the number and specific functions of ROS nodes it
monitors, thereby providing a scalable solution adaptable to varying operational needs within the UAS swarm. The
PHM tool ensures that each node is not only active but also e!ectively participating in the network’s communication by
monitoring the active topic connections. This comprehensive monitoring of topic tra"c is the PHM tools process for
detecting any discrepancies in communication between the agent and the GCS.

Fig. 4 Sequence diagram of ROS node consensus mechanism.

After the PHM tool has successfully monitored the application container, the container digests the logs created in
two primary methods. First, logs are maintained within the Docker container, which contains more detailed outputs
of the issues detected by the PHM tool during swarm flights. These logs serve as a permanent record that can be
reviewed for troubleshooting and system refinement. Secondly, the GCS server is configured to receive a summary of
the monitored data. This summary will be in a high-level form of what agents are failing and at what level. This dual
approach not only ensures an option for immediate awareness at the ground level, but also more detailed operation data
post-flight for inspection and after-the-fact enhancements. Once the container has completed its reporting it waits for a
reactivation interval that is provided within the environment before reassessing the application container again.

C. Testing
We have validated the PHM tool’s functionality using a simulation built around ArduPilot’s§ Software in the Loop

(SITL) capabilities. SITL provides a controlled, repeatable, and safe testbed where software systems can interact
with virtual hardware to simulate flight dynamics and operational scenarios that are uniform with the real deployment
environment. Multiple SITL instances are locally networked via a MAVLink router that re-creates the wireless
mesh-network used in real deployments. This simulation methodology is particularly beneficial for early-stage testing of
software tools like our PHM system because it allows developers to introduce and precisely control fault conditions.

Our validation approach consists of artificial “attacks” to the simulated system in the form of various faults within
§https://ardupilot.org/

6

D
ow

nl
oa

de
d 

by
 Ju

st
in

 B
ra

dl
ey

 o
n 

Ja
nu

ar
y 

6,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
25

-1
35

6 



the SITL environment. This methodology involves deliberately introducing di!erent faults into the system over multiple
trials, to observe how the PHM tool detects and responds to these disruptions. We created a manual testing suite of
functions to deliberately kill parts of the architecture from Figure 3. The faults are designed to test each layer and health
measure outlined in Table 1. The SITL environment facilitates both single and multiple attack trials, allowing us to
observe the behavior of the PHM tool under isolated as well as compounded fault conditions.

Table 1 Health Checks Performed by the PHM Tool

Layer Specific Check Description Method Response

Companion
Computer

Heartbeat Status Checks if the companion
computer is responsive.

Periodic heartbeat
checks.

Alert and log the
status; initiate
troubleshooting if
unresponsive.

Container
Service

Correct and
Executable Files

Ensures that all files within the
container are present and
executable as expected.

Docker Health
Check Flags with
File integrity
scans.

Alert and Log

Network
Communication
Capabilities

Assesses the ability of the
containers to be connected to
the same network.

Docker Health
Check Flags with
Network
connectivity tests.

Alert and reconnect
to shared network

Port Devices
Connected

Verifies that all required devices
are correctly connected and
recognized.

Docker Health
Check Flags with
Device
connection
verification

Alert and Log

ROS Consensus of
Running Nodes

Ensures that all active ROS
nodes are in consensus
regarding system status and
operational parameters.

ROS topics. Alert and Log

Node Topic
Connections

Checks that each ROS node is
properly connected to necessary
topics for communication.

Topic
subscription
audits.

Alert and Log

Topic Tra"c
Monitoring

Monitors the flow of messages
across topics to ensure fluid
communication between steps.

Tra"c analysis
and integrity
checks.

Alert and Log

IV. Results
The main software artifact from this research is our containerized prognosis and health management tool. The

tool periodically tests other local application containers on each swarm agent and generates health reports containing
detailed insights into the status of the individual agent. Upon gaining status it is then broadcast out for other agents to
listen and build consensus through the swarm. Ground stations receive updates through the MAVLink infrastructure
informing the swarm operators of the status of the agent. The tool has been designed to be lightweight and scalable
ensuring compatibility and integration into current swarm architectures. The tool is designed to inform users of
potential faults in di!erent layers of the system allowing users to know where packets of information or requests are
failing. Summary reports inform users of where the fault may be occurring and if the system will be able to recover
autonomously. Particular faults are able to be fixed in real time as the container provides actionable responses to a third
of the pre-designed health checks. If more detailed information is needed, logs are available on agents for post flight
analysis.

7

D
ow

nl
oa

de
d 

by
 Ju

st
in

 B
ra

dl
ey

 o
n 

Ja
nu

ar
y 

6,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
25

-1
35

6 



A. Performance and Evaluation
The PHM tool was evaluated by performing SITL simulations with di!erent agent environments. “Faults” were

injected into our simulation to test each of the predetermined health checks. Overall testing resulted in high performance
metrics and high detection rates for all pre-defined health checks. As shown in Table 2, the parameters used for the
tool during testing were the number of agents in the SITL environment and the reactivation interval. The reactivation
interval was set to 20 s to balance the additional radio bandwidth consumed by PHM monitoring with timely fault
detection. Additionally, 8 SITL agents were used in our testing runs, this number of agents reflects the deployments
from [13]. Overall the trials of the tool showed strong performance metrics including high uptime and accuracy, leading
to many injected faults properly documented, logged, and mitigated properly.

Table 2 PHM Tool Performance Metrics

Metric Value
Parameter: Reactivation Interval 20 s
Parameter: SITL Agents 8
Average PHM Response 14.82 s
Average Fault Detection 5.2 s
Self-Resolved Faults 16.6 %
PHM Uptime 96.77 %

The results outlined in Table 2 are the result of twenty SITL simulations following the testing plan outlined in
section III.C. The average PHM response time corresponded to the tools ability to publish a summarized report from
its previous testing suite. This metric corresponds to the interval in which other agents are informed of that status
of its peers. The average fault detection rate was calculated by taking the average time from fault injection until the
tools complete response and logging of the fault. Additionally measures were calculated from logs similar to Figure 5,
including uptime of the containers and the number of faults resolved by the PHM tool.

B. Limitations
The purpose of this research was to explore a lightweight and easily deployable methodology to identifying where

faults may be occurring on intelligent agents in a swarm. This preliminary research was conducted in a proof of concept
way which introduces a handful of limitations that can be solved with continued development. The tool’s primary
limitations are bi-products of our software design. Currently checks often are prone to failure based on their dependency
lists. Health checks are often dependent on previous checks testing layers above them respectively. This often would
result in a chain of errors during testing that were not necessarily inaccurate however the result of too tightly coupled
design. Indirect to the results, the container should be re-factored to follow better software design principles including
class hierarchies, interfaces, and encapsulation to limit future limitations.

Hidden limitations stem from relying solely on SITL testing in this research. Hardware-in-the-loop or live field
testing could have uncovered additional constraints within the system. Hardware testing introduces additional issues
such as hardware specification limitations, possible electrical and power failures, and direct radio bandwidth constraints.
These in turn create possible communication bandwidth challenges, especially in environments with limited radio
frequency availability or significant interference. The scale of the swarm was tightly mimicked in SITL testing to try and
identify these constraints; however, due to resources, these limitations are still unknown. To address these constraints,
proposed solutions include compressing health check data to reduce transmission size and optimizing the frequency of
health reports. These improvements would enable swarms to scale horizontally while maintaining the use of the PHM
tool across agents.

Additionally, due to the initial health checklist, faults outside of these outlined health checks will go unnoticed unless
they a!ect the monitored system. Although the goal of the tool was to be lightweight, non-predictive, and niche-focused,
this often was found to be a limitation when testing the health of the system overall. Expanding the PHM tool to support
dynamic or user-defined health checks through a graphical user interface would enable the tool to adapt to new fault
scenarios without requiring manual updates. This tool serves to solve the problem of identifying and monitoring the
system’s ability to perform the mission provided, by ensuring the health of the system-level components aboard the
agent.

8

D
ow

nl
oa

de
d 

by
 Ju

st
in

 B
ra

dl
ey

 o
n 

Ja
nu

ar
y 

6,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
25

-1
35

6 



Fig. 5 An example log file from a SITL simulation showing the results of a fault injection test, where a command
was issued to terminate a specific ROS node within the ROS application container. The test recorded six successful
status checks and two failures directly linked to the fault injection event.

C. Practical Applications
Use cases of this tool are directly tied to decentralized swarm systems, especially those relying on the ROS framework

for robotics applications. Its primary use case involves diagnosing and resolving existing faults rather than predicting
potential issues, making it ideal for real-time fault management in operational environments. Unlike identifying existing
solutions focusing on predictive and learning PHM algorithms, we focused on identifying existing faults and using that
information to help operators make informed decisions about the root cause of the failure. The tool looks for faults
along the systems that could possibly interfere with swarm commands. When using this tool swarms can expect to have
low levels of bandwidth impact while receiving logs and in flight reporting on critical systems aboard the agents. This
capability is particularly valuable in scenarios where an agent becomes unresponsive, as the tool can determine whether
the issue lies in a recovery attempt, or complete mission failure.

This work is a step towards developing real swarm applications with a “swarm mentality”. That is, the approach to
handling swarms (debugging, maintenance, fielding) is very di!erent than the approach used with 1 or 2 agents due to
time and personnel limitations. Swarm developers must automate as many time burdens as possible, including answering
the question: “What caused this agent to fail”, and using this knowledge to remedy the failure. The methodologies and
artifacts presented here fill another gap towards developing robust and reliable intelligent swarms.

V. Conclusions
A significant challenge in decentralized swarm deployments is the system complexity and emergent behavior that

can arise from inadvertently violating compositionality and composability system design principles. This makes errors,
bugs, and hardware problems very di"cult to track down without more rigorous onboard health monitoring. Here
we have described the foundation for an operational prognostics and health monitoring tool for robotic drone swarm
deployments. We have explicitly focused on drone swarms that leverage a containerized ROS image to integrate the
autonomy stack into the autopilot as this has suited our use case. A common failure point is various component, ROS
node, and container failures – a problem the tool will notify users about in a timely fashion.

One drawback of customized tools of this nature is their often poor applicability in di!erent systems, integrations,
and deployment environments. To avoid creating yet another one-o! tool not widely applicable, we are actively working
to evolve our tool into a more flexible mechanism by which tests and checks can be easily developed and “plugged in” to
the software framework. This will allow developers and integrators the ability to customize their failure checks, monitor
health states of components, and alert users in the ways that work for their system while providing a set of backbone
PHM services.

9

D
ow

nl
oa

de
d 

by
 Ju

st
in

 B
ra

dl
ey

 o
n 

Ja
nu

ar
y 

6,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
25

-1
35

6 



Acknowledgments
This work supported in part by NSF-2047971, USDA 2023-67021-38977, NSF-2221648, and NSRI FA4600-20-D-0003.
This work was supported in part by AI for assistance in research, manuscript ideation, and figure creation.

References
[1] Gray, D., Rivers, D., and Vermont, G., “Measuring the Economic Impacts of the NSF Indus-

try/University Cooperative Research Centers Program,” 2012. URL https://www.slideshare.net/slideshow/
iucrceconimpactfeasibilityreportfinalfinal-58582920/58582920.

[2] Kim, H.-E., Tan, A. C., Mathew, J., Kim, E. Y., and Choi, B.-K., “Machine prognostics based on health state estimation using
SVM,” Asset condition, information systems and decision models, 2012, pp. 169–186.

[3] Arnold, R., Carey, K., Abruzzo, B., and Korpela, C., “What Is A Robot Swarm: A Definition for Swarming Robotics,” 2019
IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), 2019, pp. 0074–0081.
https://doi.org/10.1109/UEMCON47517.2019.8993024, URL https://ieeexplore.ieee.org/abstract/document/8993024.

[4] Qiao, H., “Prognostics, health management, and Control (PHMC),” NIST, 2018. URL https://www.nist.gov/programs-
projects/prognostics-health-management-and-control-phmc.

[5] Gharib, H., and Kovács, G., “A Review of Prognostic and Health Management (PHM) Methods and Limitations for Marine
Diesel Engines: New Research Directions,” Machines, Vol. 11, No. 7, 2023. https://doi.org/10.3390/machines11070695, URL
https://www.mdpi.com/2075-1702/11/7/695.

[6] Basora, L., Bry, P., Olive, X., and Freeman, F., “Aircraft Fleet Health Monitoring with Anomaly Detection Techniques,”
Aerospace, Vol. 8, No. 4, 2021. https://doi.org/10.3390/aerospace8040103, URL https://www.mdpi.com/2226-4310/8/4/103.

[7] Gencturk, H., Erdogan, E., Karaca, M., and Yayan, U., “Prognostic and Health Management (PHM) tool for Robot Operating
System (ROS),” CoRR, Vol. abs/2011.09222, 2020. URL https://arxiv.org/abs/2011.09222.

[8] Balaban, E., and Alonso, J. J., “A modeling framework for prognostic decision making and its application to UAV mission
planning,” Annual Conference of the PHM Society, ???? URL https://papers.phmsociety.org/index.php/phmconf/article/view/
2294.

[9] Pan, J., Qu, W., Xue, H., Zhang, L., and Wu, L., “Study on fault prognostics and Health Management for UAV,” IOS Press
Ebooks, 2022. URL https://ebooks.iospress.nl/doi/10.3233/FAIA220569.

[10] Paixão de Medeiros, I., Ramos Rodrigues, L., Strottmann Kern, C., Duarte Coelho dos Santos, R., and Hideiti Shiguemori, E.,
“Integrated task assignment and maintenance recommendation based on system architecture and PHM information for UAVs,”
2015, pp. 182–188. https://doi.org/10.1109/SYSCON.2015.7116749.

[11] Ahn, H., Choi, H.-L., Kang, M., and Moon, S., “Learning-Based Anomaly Detection and Monitoring for Swarm Drone Flights,”
Applied Sciences, Vol. 9, No. 24, 2019. https://doi.org/10.3390/app9245477, URL https://www.mdpi.com/2076-3417/9/24/5477.

[12] Ahn, H., “Deep Learning based Anomaly Detection for a Vehicle in Swarm Drone System,” 2020, pp. 557–561. https:
//doi.org/10.1109/ICUAS48674.2020.9213880.

[13] Phillips, G., Bradley, J. M., and Fernando, C., “A Deployable, Decentralized Hierarchical Reinforcement Learning Strategy for
Trajectory Planning and Control of UAV Swarms,” AIAA SCITECH 2024 Forum, 2024, p. 2761.

10

D
ow

nl
oa

de
d 

by
 Ju

st
in

 B
ra

dl
ey

 o
n 

Ja
nu

ar
y 

6,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
25

-1
35

6 

https://www.slideshare.net/slideshow/iucrceconimpactfeasibilityreportfinalfinal-58582920/58582920
https://www.slideshare.net/slideshow/iucrceconimpactfeasibilityreportfinalfinal-58582920/58582920
https://doi.org/10.1109/UEMCON47517.2019.8993024
https://ieeexplore.ieee.org/abstract/document/8993024
https://www.nist.gov/programs-projects/prognostics-health-management-and-control-phmc
https://www.nist.gov/programs-projects/prognostics-health-management-and-control-phmc
https://doi.org/10.3390/machines11070695
https://www.mdpi.com/2075-1702/11/7/695
https://doi.org/10.3390/aerospace8040103
https://www.mdpi.com/2226-4310/8/4/103
https://arxiv.org/abs/2011.09222
https://papers.phmsociety.org/index.php/phmconf/article/view/2294
https://papers.phmsociety.org/index.php/phmconf/article/view/2294
https://ebooks.iospress.nl/doi/10.3233/FAIA220569
https://doi.org/10.1109/SYSCON.2015.7116749
https://doi.org/10.3390/app9245477
https://www.mdpi.com/2076-3417/9/24/5477
https://doi.org/10.1109/ICUAS48674.2020.9213880
https://doi.org/10.1109/ICUAS48674.2020.9213880

	Introduction
	Related Work
	Methodology
	System Overview
	PHM Tool Architecture
	Companion Computer Health Monitoring
	Docker Health Monitoring
	ROS Health Monitoring

	Testing

	Results
	Performance and Evaluation
	Limitations
	Practical Applications

	Conclusions

