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Cyber-physical systems interact with the world through software controlling
physical effectors. Carefully designed controllers, implemented as safety-critical
control software, also interact with other parts of the software suite, and may be
difficult to separate, verify, or maintain. Moreover, some software changes, not
intended to impact control system performance, do change controller response
through a variety of means including interaction with external libraries or un-
modeled changes only existing in the cyber system (e.g., exception handling).
As a result, identifying safety-critical control software, its boundaries with
other embedded software in the system, and the way in which control software
evolves could help developers isolate, test, and verify control implementation,
and improve control software development. In this work we present an auto- A kISMECEEICINCESICINAD
mated. technique, based on a novel aPplication of machine learning, to detect Fig. 1. QR code of the au-
commits related to control software, its changes, and how the control software topilot research website.
evolves. We leverage messages from developers (e.g., commit comments), and
code changes themselves to understand how control software is refined, extended, and adapted over time. We
examine three distinct, popular, real-world, safety-critical autopilots—ArduPilot, Paparazzi UAV, and LibrePilot
to test our method demonstrating an effective detection rate of 0.95 for control-related code changes.
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1 Introduction

Cyber-physical systems interact with the world through complex software and physical hardware.
Controllers, implemented as software, provide the primary means of enabling this interaction.
Models provide guarantees about performance of the controllers, while an associated faithful
implementation hopes to assure those properties. The implemented control software may only
be a small portion of a potentially large software suite consisting of many components, and yet,
the boundaries of the control software, and its interactions with the rest of the software suite are
not always clear or well understood and may abrogate the carefully crafted guarantees. Indeed, in
previous work we demonstrated that safety-critical control software may change frequently and
significantly, and that these changes may impact controller performance even when the changes
cannot be represented in the controller design [5].

This is especially true in small Uncrewed Robotic Systems, most commonly deployed using
open source control and autonomy software.! ArduPilot, Paparazzi UAV, LibrePilot, PX4 and
others are amongst those which were developed from the ground up in software, as opposed
to a more traditional model—implementation design flow. This means models may not exist for
these controllers and performance guarantees are missing, exacerbating the problem. It also means
developers may not understand the significance of changes they make to the control software
since the boundaries around the “control law” may be unclear. In this work we have developed an
algorithm to automatically isolate changes to a larger autonomy software suite that may impact
control performance, or the controller itself. The algorithm is tested on three large, popular, open-
source safety-critical autopilot suites: ArduPilot, LibrePilot, and Paparazzi UAV. This capability
can help developers understand the boundaries of the control software and identify what needs
tested, verified, and validated in the software and improve its associated development. Ultimately,
as shown in Figure 2, we imagine this tool as a part of a larger software suite that automatically
identifies changes to the control software, categorizes them, and then obtains a total controller
robustness score of the newly changed control software.

1.1 Research Questions

Designs, software, and hardware components for successful Cyber-Physical Systems (CPS)
evolve over their lifetime to fix bugs, repair damage, or provide new features. In our previous work
[5], we showed how quickly CPS and control software can evolve, and that many changes may not
be captured in design models (e.g., exception handling), and hence not amenable to model-based
design with automatic code generation [5]. But the core of the process was manual identification
and categorization of the control software and associated changes. Here we advance that work

!'The ArduPilot website reports that over one million vehicles use this code base, including companies like 3DR, Precision-
Hawk, AgEagle, Insitu Boeing, Kespry, branches of the US military, and NASA among others.
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Fig. 2. Larger vision to bridge control engineering and software engineering.

by developing an automated framework to (1) identify control related commits,? and (2) identify
maintenance changes/commits that do not impact the control software. For this purpose we define
two types of commits/changes:

—Non-control commits: changes that have no impact on the controller. These changes are
either for another part of the system software, or are software maintenance changes, such as
documentation, refactoring, or abstraction.

—Control commits: changes that impact control software and performance.

With these definitions in mind, we address the following research questions:

RQ1: How well can we automatically identify the control related commits within projects using
machine learning approaches?

RQ2: Which factors are useful in determining the control commits?

RQ3: Is cross-project training beneficial in predicting control commits?

We present an automated machine learning-based framework to identify changes and commits to
the safety-critical control software with 0.95 accuracy in ArduPilot, Paparazzi UAV, and LibrePilot.
This framework, in addition to answering the research questions above, addresses the key foun-
dational opportunity to identify, extract, examine, and measure the changes made to the control
software, paving the way for meeting the challenges mentioned. This framework gives us the ability
to rapidly study control software evolution, helping us identify principles and rules for the creation
of future tools that incorporate this evolution for controller development and maintenance. Because
we can identify the boundaries of control software and associated changes, we can develop software
engineering and control design strategies to produce more robust controllers to software changes.

Figures 3 and 5 depict a high-level overview of our automation framework to address the first
and third research questions, which consists of analysis steps and employing machine learning
%In version control systems, such as Git, Subversion (SVN), a commit is an operation which sends the latest software
code changes of the original source code to the software repository, each such change is logged by commit Identity (ID)s

that are identified by unique hash values. This commit ID is created whenever a new commit is recorded and provides
traceability benefits. Hence, we use this commit as our fundamental unit for our categorization.
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Fig. 3. Manual labeling process.

algorithms for classification. The process to answer RQ2 starts by systematically analyzing the
code changes that are responsible to identify control related commits and then organize them in a
mindmap.

The remainder of the article is organized as follows. In Section 5 we mention existing work in
mining code changes and empirical studies of coding practices and automation. Section 2 describes
the tool that we developed and the methodology of our empirical study. In Sections 3 we talk about
the results of our study and their implications, in Section 4 we list possible threats to validity of our
research, and in Section 6 we draw up conclusions and discuss possible directions for future work.

2 Methodology

Our goal is to automate the identification of control code changes. We collect a representative
corpus of code changes from the autopilot controller software projects mentioned. These code
changes are examined by five different machine learning classifiers. We use the following process
during our study: (a) we collect a sample of control files from the autopilot controller software
projects; (b) we extract all the code changes from these control files; (c) we label each and every
code change as either control or non-control related change; (d) we conduct supervised training
with five different machine learning classifiers and compare the results; and (e) we repeat the above
steps for cross-project control prediction. We describe each of these steps in further detail in the
following subsections.

2.1 Project Selection

The prime aim of the project selection was to: (1) analyze autopilot system that is representative of
code developed in the real world, (2) include significant safety-critical control code changes with
many available versions reflecting their software development process, and (3) support reproducibil-
ity of the results obtained from our methodology. Therefore, we only select active, open-source
autopilot software projects from GitHub. In addition, we opted to select projects that use program-
ming languages C/C++ for two reasons: first, embedded systems widely use C or C++, and second,
“compiled” languages are extremely efficient as they are fast and stable making them often more
suitable for low-level control.
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We began by selecting two autopilot software projects—ArduPilot [4] and Paparazzi UAV [41].
PX4 [48], another very popular open-source autopilot, was, in part, derived from ArduPilot, having
collaborated to produce the full flight control stack.> As a result, we have not selected it in this
work, believing it might not add meaningfully to our results since PX4 and ArduPilot may share
common design, file, and style elements. Additionally, ArduPilot is more mature, having been
in development for longer (circa 2009); PX4 did not exist till 2012. We analyzed ArduPilot and
Paparazzi UAV projects that have more than 10 years of development history and can operate
a variety of vehicles including airplanes, multi-rotors, helicopters, and boats. These repositories
have 448 and 99 contributors, respectively. Also, they contain ~38,000 and ~15,400 code changes,
respectively. The latest version contains approximately 441k lines of code (LOC) and 1.3M LOC,
respectively.

Our previous research [5] demonstrated that small code changes can dramatically affect a
controller’s behavior using a mutation tool. It uses abstract syntax tree parsing to change the
software code locations, such as the control variables. We quantified the control performance
algorithm via eight traditional control step response metrics: rise time, settling time, settling min,
settling max, overshoot, undershoot, peak, and peak time. And found that small code changes can
dramatically affect a controller’s behavior. In the current work, our novel framework addresses
the key foundational opportunity to identify, extract, examine, and measure the changes made to
the control software, paving the way for meeting future challenges. To facilitate the rapid study of
control software, we built a machine learning tool. Automating this classification process will help
facilitate a more rapid study of control software.

To test the cross-project evaluation of our proposed automatic classification, we selected a third
project—also widely used autopilot software—LibrePilot [32]. It provides a sophisticated control
system that supports various flight modes and can operate on a variety of vehicles including
multi-rotors, fixed wing, and cars. It has over 11 years of well maintained history, and its code base
is accessible through a git repository that stores the code changes committed by the developers
since June, 2010. As of October 2021, the repository includes 66 contributors that have committed
almost 15,000 changes. The latest version of LibrePilot contains approximately 452k LOC in C/C++.
The details of the three autopilot software projects are presented in Table 1.

Although “control” can be more broadly defined when considering a full autonomy stack that
includes successive loop closure, guidance, navigation, and planning, we focus on, and limit our
analysis to the control files that provide coverage of functionality associated with position and
attitude control. We selected a total of 15 control files central to position and attitude control from
the three different autopilot software projects. We then analyzed a total of 1,435 commits, 471
commits from LibrePilot and 964 commits from ArduPilot and Paparazzi UAV, where each commit
included changes to at least one of the target files.

2.2 Manual Labeling

Identifying the code changes that impact the control is not a trivial task as all code changes either
directly or indirectly impact the control of the vehicle. Adding to the complexity of identifying
control related code changes, a commit can change more than one line of code in more than one
file. In software engineering, we capture the change occurring in a file using a measure called code
churn [21]. To further highlight the implication, we use the “Rewrite Rate” metric to capture how
often the original controller software has essentially rewritten. It is computed as % where Z is the
code churn and Y is LOC changed in the earliest commit. From our previous work [5], we observed
that half of the analyzed files represent “Rewrite Rates” of around or above 20, indicating those

3The history of PX4 website URL—https://auterion.com/company/the-history-of-pixhawk/
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Table 1. Details of Three Autopilot Software Projects

Total Develop-
Repository name . ment LOC Code profile [43]
commits .
duration

C++: 63% Python: 12% C:
ArduPilot 63,066 13 years 441k 10% Objective-C: 9% Lua: 3%
HTML: 1% MATLAB: 1%
C: 76% OCaml: 7% Python:
7% Perl: 3% Makefile: 2%
C++: 2% Scilab: 1% MATLAB:
1% Processing: 1%
C: 59% C++: 34% Fortran:
LibrePilot 15,662 11 years 452k 3% Assembly: 1% HTML: 1%
Python: 1% Makefile: 1%

Paparazzi UAV 16,339 10 years 1.3m

control files have almost nothing in common with the original versions. To give perspective, even
the file with the lowest growth rate, AC_PosControl.cpp, has been rewritten almost three times.

To manually label a code change as a control* category we followed the process in Figure 3. The
labeling process is performed in three phases: (1) knowledge acquirement, (2) labeling control
related code change, and (3) reliability analysis. In the knowledge acquirement phase, we gathered
the relevant knowledge required to identify control related software change. The first step in this
phase is to understand the definitions of control category code change. To further enhance the
knowledge we also looked at the definitions and examples from our previous work [5] for better
understanding. As an additional resource, online documentation about the control code was used.

The second phase involves examining the code change commits. We used the following materi-
als for our guidance—autopilot software manual and documentation, developer comments, and
aerospace drone/control keywords. With this information, each commit will be analyzed as shown
in Figure 4, based on the probing questions [3] labeling flowchart. We identified all changes and
tried to determine whether or not a change impacts the control code in some way. If it impacts the
control code then we label it as “control” Otherwise, we label as “non-control” This may not always
be a straightforward process as some changes may indirectly impact control code. To mitigate
this we manually analyzed the code changes to see the impact on control code. Finally, if the code
change impacts the control of the vehicle we label that commit as control and anything else was
put into the non-control ° category. This process is repeated for all the commits. The total number
of control and non-control commit instances in the three autopilot software projects are presented
in Table 2.

Finally, to understand the agreement between the different researchers we use 10% of the commits
to validate our findings between the authors. From the pool of 471 commits, we extracted and
labeled a random sampling of 47 commits (approximately 10% of all commits). This random sample
represents the code changes in three different autopilot software projects. We had 93% agreement
and 100% agreement in the control-labeled commits and non-control-labeled commits, respectively

_ Pr(0)-pPr(C)

ST R© 2

4We use a different font, sans-serif typeface italic shape, to distinguish the use of the word control as a label name.
5Similar to control label, we use a different font, sans-serif typeface italic shape, to distinguish the use of the word non-control
as a label name.
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Table 2. Number of Control and Non-Control Commit Instances in the
Three Different Autopilot Software Projects as of October 22, 2022

ArduPilot Paparazzi UAV LibrePilot Total

Non-Control 189 225 180 594
Control 396 154 291 841
Total 585 379 471 1435

39:7

calculates the degree of agreement between authors during the manual labeling process. We use
the inter-rater reliability metric using Cohen’s, k. In this equation, Pr(O) represents the actual
observed agreement, and Pr(C) represents the chance agreement. As Cohen’s kappa « takes into
account the rater agreement due to chance. We adopted the chance agreement calculation from
Mary L. McHugh [36]. Our manual analysis of Cohen’s kappa is 0.84, which can be interpreted as
almost perfect agreement. After the first and second iteration, we had 98% agreement and 100%
agreement in the control labeling, respectively.

The difficulty in the manual labeling process is to hastily base the classification on a single metric
or one aspect of the commit rather than understanding the entirety of the code change and its impact
on the control of the vehicle. For example, as shown in Listing 1, we highlight a deceptively simple
code change, the renaming of Airspeed to TrueAirspeed® in the pathplanner.c file. However, in
reality, this single commit changed a total of 11 files with 55 code additions and 38 code deletions.

“True airspeed” is the idealized airspeed of an aircraft used for planning purposes.
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Fig. 5. Automated machine learning-based framework to identify the safety-critical control software changes.

Based on the developer’s comment and code change, one may be tempted to label this code change
as non-control as it is a simple rename. However, upon further inspection, based on the probing
questions approach, in the same commit, we find that there is another file called baroairspeed. xml
in which the data for this variable is actually changed. In this case, the baroairspeed. xml file
already had both the Airspeed parameter and TrueAirspeed parameter. After the code change,
the developers renamed Airspeed to CalibratedAirspeed’ in baroairspeed.xml file. But in the
pathplanner.c file calculation, however, they renamed Airspeed to TrueAirspeed. Hence, the
velocity calculation end result is impacted because the data is potentially significantly different.

BaroAirspeedData baroAirspeed;

BaroAirspeedGet (&baroAirspeed);

if (baroAirspeed.BaroConnected == BAROAIRSPEED_BAROCONECTED_TRUE) {
- velocity = baroAirspeed.Airspeed;
+ velocity = baroAirspeed.TrueAirspeed;

Listing 1. Code changes in papthplanner.c file

2.3 Machine Learning

Our objective is to perform extensive analysis on a large scale, requiring an automated method.
Through manual analysis, we found that basic keyword or rule-based techniques struggled to
accurately identify control-related code changes. Traditional software engineering techniques take
the rules-based approach to solving problems. Machine learning techniques, on the other hand,
learn from data and solve problems. Recognizing the limitations of such approaches, we opted
to implement a machine learning-based method, which offers more sophisticated and accurate
identification capabilities.

To automate the identification of control code changes, as shown in Figure 5, we used five
machine learning techniques: Bayesian classifier [53], support vector machine (SVM) [46],
nearest neighbor [2], random forest (RF) [10], and neural network [39]. We used a wide range of
learning techniques to reduce the risk of dependence on a particular algorithm or implementation.
We observed that the selection of top ‘n’ feature attributes included common control keywords (e.g.,
control, derivative, error, feedforward, filter, frame, frequency, gain, integral, kalman, proportional)

7“Calibrated airspeed” is indicated, or measured airspeed corrected for instrument and positional errors.
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and also keywords specific to the target autopilot controller (e.g., acceleration, altitude, distance,
pitch, roll, yaw, waypoint, speed, velocity). We used the Auto-WEKA [28] with 10-fold cross-
validation for evaluation.

This binary classification approach for discerning control-related code changes offers both novelty
and practical utility. Traditionally, identifying such changes demanded intricate, time-consuming
methods like manual scrutiny or complex rule-based systems. However, with a straightforward
binary classification model, this process becomes streamlined and automated, yielding significant
time and resource savings. This model expedites accurately detecting control-related changes,
enhancing software maintenance, debugging, and enhancement endeavors. Moreover, its simplicity
facilitates seamless integration into existing development workflows, empowering software en-
gineers and developers to manage and monitor control code alterations effectively. Notably, the
model’s feature selection enables users to understand the classification rationale, enhancing its
real-world applicability.

2.3.1 BayesNet. We use the Bayesian Network classifier [53] that applies Bayes rule, both
qualitatively and quantitatively, to classify our code change commits either into control or non-
control. Intuitively, the qualitative component of a Bayesian network explicates features in the code
change commits and captures the direct influences between them. The quantitative component in
the form of conditional probabilities quantify the dependencies between features from code change
commits. We also used the Grid search technique to perform hyperparameter optimization for
different classifier configurations. Hyperparameter optimization directly controls the behaviors of
training algorithms and significantly affects the performance of machine learning models [56]. We
varied two parameters: (1) alpha is used for estimating the probability tables and can be interpreted
as the initial count on each value, and (2) the maximum number of parents in the Bayes net.

2.3.2  SVM. Based upon an assumption that code changes would be linearly separated across
factors, we selected SVM [46]. Our SVM uses the standard Radial Bases Function Kernel [29] and for
the other parameters we performed a grid search to choose the best classification. This configuration
result had a gamma ($gamma ) ranging from 0.1 to 0.0001, a complexity C ranging from 1 through
100 and one maximum iterator.

2.3.3 RF. Since RFs do not overfit because of the Law of Large Numbers, they are an effective
tool in prediction [10]. Injecting the right kind of randomness makes them accurate classifiers. We
configured the maximum depth of the tree from 0 to 10 and also the number of features that sets
the number of randomly chosen attributes. We configured a batch size of 100 that determines the
size of the instances used for training a classifier.

2.3.4  Nearest Neighbor. We used instance-based k (IBk) k-Nearest Neighbor classifier, which
uses similarity of the closely related instances to make predictions [2]. We selected this classifier
technique as it makes no assumptions. It uses knowledge of the nearest data points to predict the
output and hence used as a first option when there is a little or no prior knowledge. We configured
the number of neighbors from 0 to 100 and the window size to get the maximum number of
instances allowed in the training.

2.3.5 Multi-Layer Perceptron (MLP). We used an MLP to see if it could leverage hidden
relationships not explored in the other algorithms [39]. We configured our Perceptron with a 0.3
learning rate, a 0.2 momentum, and 500 epochs. The Perceptron would terminate its validation
testing after not being able to reduce its error 20 times in a row.

We also used Auto-WEKA [28] for identifying the best classifier, which automatically searches
through the joint space of WEKA’s learning algorithms and their respective hyperparameter
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settings to maximize performance, using sequential model-based optimization [11] (a Bayesian
optimization method). In Table 3, we provide hyperparameter details. Though there is one Python
based implementation called Auto-sklearn [16], we chose Auto-WEKA because it comprises a larger
space of models and hyperparameters [28] compared to Auto-sklearn. As a result, RandomForest
and SVM were determined to be the best techniques. These results were generated by running
Auto-WEKA with random seed 123 for 5 hours.

2.3.6 Training and Testing. We applied five different machine learning techniques and Auto-
WEKA using 10-fold cross validation and report the results in Table 4. A total of 1,435 commits, 471
commits from LibrePilot and 964 commits from ArduPilot and Paparazzi UAV was used in training
and testing. Since 1,435 commits are extracted from three different autopilot software projects,
the Table 4 results also shows the cross-project prediction. This is important for some projects,
specially projects that do not have historical data to perform any significant training. Hence, we
investigated whether it is feasible to perform cross-project training following the method used by
Rahman et al. [49].

2.4 Measures

We report the standard precision, recall, false positive rate (FPR), and Area Under the receiver
operating characteristic Curve (AUC) to asses the performance of the prediction models, because it
is independent of prior probabilities [7]. Also, AUC is a better measure of classifier performance than
accuracy because it is not biased by the size of test data. Moreover, AUC provides a “broader” view
of the performance of the classifier since both sensitivity and specificity for all threshold levels are
incorporated in calculating AUC. Other work related to prediction have used AUC for comparison
purposes [14, 18, 19, 58]. We list the formula used for calculating precision, recall and FPR below.
Based on the machine learning techniques, we get varying rates of false positives/negatives (f,/f),
and correct predictions in terms of true positives/negatives (t,/t,). The AUC curve is created by
plotting the recall against the FPR at various threshold settings.
Precision (P): A measure of whether the control predictions were relevant

. Ip @
preClSlOn = —.
to+Jp

Recall (R): A measure of the percentage of control instances that were correctly retrieved by
prediction models

= 3)
recall = ———.
tp + fu

FPR: A measure of the ratio of the number of control commits wrongly categorized and the total
number of actual control commits

o

FPR = .
fo+ta

©

3 Evaluation and Results

In this section we discuss the results of our study by placing them in the context of three research
questions, which investigate the ability to predict the control commits (RQ1), factors that are useful
in determining the control commits (RQ2), and whether we can perform cross-project control
commit prediction (RQ3).
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Table 3. Grid Search Technique Used to Perform Hyperparameter Optimization for Different Classifiers
Configuration

Classifier name Parameter interval Parameter description
alpha is used for estimating
the probability tables and can
be interpreted as the initial
count on each value.
MaxNrOfParents sets the
maximum number of parents
a node in the Bayes net can

Bayesian Network (BayesNet) alpha = [0.5,1,1.5,2]

MaxNrOfParents = [1,2,3,4,5]

have.
SVM (SMO_RBFkernel) Complexity=[1,10,100] Complexity parameter.
Gamma=[0.1,0.01,0.001,0.0001] The gamma value.

The confidence factor used
for pruning (smaller values
incur more pruning).
Minimum number of
instances per leaf.
Nearest Neighbor (IBk) KNN=[1,2,3,4,5] Number of neighbors to use.

The maximum number of

Confidence

RF Decision tree (J48) factor=[0.15,0.25,0.35,0.45]

minNumObj=[1,2,3,4,5]

maxInstLeaf=[20,30,40,50,60] instances in a leaf

B Number of hidden layers.
MLP (NN) H=[1,10,100] Default:251.
learning rate = The learning rate for weight
[0.1,0.2,0.3,0.4,0.5] updates.

Exponent controls the degree
of the polynomial. Set to 1 for
Exponent = [1,2,3] the linear kernel. Set to 2 for
the quadratic kernel and 3 for
the cubic kernel.

automatically performs

Auto-WEKA (5 hours) hyperparameter optimization

Parameters in bold are the default. Parameter description adapted from WEKA documentation.

3.1 Results for RQ1: How Well Can We Automatically Identify the Control Related
Commits within Projects Using Machine Learning Approaches?

To answer our first research question as to whether we can automatically identify control code, we
used the 964 commits from ArduPilot and Paparazzi UAV and the newly added 471 commits from
LibrePilot. We applied five different machine learning techniques using 10-fold cross validation:
Bayes network (BayesNet), SVM, RF, NN, and MLP. We also used Auto-WEKA, which automatically
searches through the joint space of WEKA'’s learning algorithms and their respective hyperparame-
ter settings to maximize performance and identify the best classifier. The algorithm with the best
performance according to Table 4 is RF, which has the highest AUC of 0.95. Table 4 shows the
results in terms of precision, recall, and AUC.

As shown in Table 4, for control commits, the recall was 93% in comment based classification.
779 out of 841 commits were correctly predicted as control which were the commits of interest in

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 39. Publication date: November 2024.



39:12 B. Balasubramaniam et al.

Table 4. Results of Automatic Identification of Control Code
Changes in ArduPilot, LibrePilot and Paprazzi UAV

Comment Class Precision Recall AUC
(English Non-control 0.86 0.65 0.87
sentence) ‘Control 0.79 0.93 0.87

Weighted Avg. 0.82 0.81 0.87
Code Class Precision Recall AUC
(software Non-control 0.82 0.98 0.95
code) Control 0.99 0.85 0.95

Weighted Avg. 0.92 090  0.95

this study. Similarly, the recall was 85% in code based classification. 711 out of 841 commits were
correctly predicted as control; this is comparatively less than comment based classification. But
the precision was 99% indicating that the prediction of non-control as control, statistically called as
false positives, were reduced. AUC is the measure of a classifier’s ability to distinguish between
classes. The higher the AUC value of a classifier, the better the performance of the classifier model
at distinguishing between control commits and non-control commits. Our results have a higher
AUC (95%), indicating our best model has a better performance at classifying the control commits.

3.2 Results for RQ2: Which Factors Are Useful in Determining the Control Commits?

To examine the useful factors in determining the control commits, we provide our observations
and highlight the important facts in a mindmap. In a broader sense, we are aware of two changes:
(1) software code change and (2) control code change. The software changes include renaming,
refactoring, documentation, moving code to library or other files, print statements for debug,
and moving parameter values to settings files for flexible configuration. The control changes
include modifications to K, (proportional component), K; (integral component), and K (derivative
component) value changes, resizing oversampling window for sensor data, normalize vector, better
filtering, calculation change and coefficients change. However, our article aims to shed light on the
control changes that are often overlooked.

Overlooked control code changes can have an indirect impact on control, such as adding flightplan
safety checks to pathplanner, a new motor definition for OctoX body frame, an added flight
plan cyclic redundency check consistency checks, resizing stack sizes that execute tasks in real
time operating system, using callbacks on the waypoints, and updating desired position. To help
characterize these types of changes we provide these observations in a mindmap, as shown in
Figure 6. This can be used to enhance the understanding of autopilot control code changes. Recent
research has found that mindmaps can be effective as a learning tool [42, 55]. In the following
section, we discuss how the mindmap has visually organized the autopilot code change information
with examples.®

Software changes: This is the easiest to understand and also has no impact on the overall control
performance. For example, in commit ID 5484, line 217, the developers have added a standard error
print statement to check the work-in-progress code while building simulation firmware for OSX.
As part of this commit, they also used PiOS core hardware abstraction layer to compare raw times

8We refer to the examples with commit ID; this directly references real-world developer code changes. You can review these
changes and download them by visiting our autopilot research website by following this URL—https://controlsoftware.
autopilotresearch.com/ClI/controlleridentification.html
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Autopilot
Code Changes
I
[ I I 1
Software Core Control Flight Related Software Related
Changes Changes Control Changes Control Changes
| | alarm or warnings L1 K, K, and K, values | | safetycheck to path | memory allocation
for user P d planner
| | printstatement | | oversampling window | | change stabilization || Use callbacks on the
for debug for sensor data modes way points
typo in code/ | | Change the update || hew motor deifintion | |task exgcutlon control
rework rate in RTOS
| | move codeto better filtering/ . accommodate
library/ file — mahoney orientation H ﬂl,ght plan CRC |_| mother-board/ sensor
filter consistency chcecks processing
1 refactor/ rename C e desired o ~ capabilities
ompute desire! | | update position
attitude desired auto start the
L documentation relevant calls

Fig. 6. MindMap of autopilot control code changes.

and convert them to a microsecond value. However, they did not use PiOS wait which provides a
micro-second granular delay using the CPU cycle counter. Hence, this code change has no logical
control impact.

Core control changes: These changes are typical control software changes. For example, in commit
ID 5390, line 137, the task delay is changed, and in line 54 the waypoint is updated. This change
relates to time and space operation of the control and impacts it directly. A control software
developer should be able to identify this. The delay of the pathplanner task changes from 100 ticks
to 20 ticks, effectively the frequency at which the function is called. The waypoints are updated
more frequently from the ground control station impacting the control response and performance.

Flight related control changes: The challenging part of this work is to identify the indirect changes,
such as affecting the simulation or changing the mode of operation. For example, in commit 6,335,
line 576, the change allows easy switching between indoor and outdoor mode. As a result only the
magnetometer configuration is used for flying without setting the home location impacting the
overall sense of vehicle direction and mission completion between various mode of operation.

Software related control changes: These are the most difficult to identify and often overlooked or
assumed to be solved by the control community. These code changes impact the control indirectly,
such as task order execution, computer architecture memory allocation, but are more subtle and
may require deeper understanding of the interaction of computing and control. For example, in
commit ID 5520 as provided in the Listing 2, in line 252, this commit introduces a 1 ms timeout to
avoid a race condition. During attitude estimation the accel queue would not immediately have the
data available. The change allows the tasks to wait until the gyroscope data and acceleration data
are available for attitude estimation.

// Wait until the AttitudeRaw object is updated, if a timeout then go to
— failsafe

- xQueueReceive(accelQueue, &ev, @) != pdTRUE )

+ XxQueueReceive(accelQueue, &ev, 1/ portTICK_RATE_MS )!=pdTRUE)

Listing 2. Commit ID 5520 - Code changes in attitude.c file

ACM Transactions on Cyber-Physical Systems, Vol. 8, No. 4, Article 39. Publication date: November 2024.



39:14 B. Balasubramaniam et al.

Table 5. Results of ArduPilot and Paprazzi UAV as Training and LibrePilot as
Testing for Cross-Project Prediction Analysis

Comment Class Precision Recall F-Measure AUC
(English Non-Control 0.54 0.38 0.45 0.67
sentence) ‘Control 0.68 0.80 0.73 0.67

Weighted Avg. 0.63 0.64 0.62 0.67
Code Class Precision Recall F-Measure AUC
(software Non-Control 0.67 0.50 0.57 0.65
code) Control 0.73 0.84 0.76 0.67

Weighted Avg. 0.71 0.71 0.70 0.66

As an additional example, in commit ID 14182, in line 141, the developer changed the data type
to use enum instead of uint8_t. There are two likely reasons [20, 50]: (1) The size of an enum is
implementation specific; if it is user-defined, you can control the size. This can be important for
small buses, small memory systems, or to minimize space when serializing to a disk or a socket.
(2) If the information is used in another scope, passed across code boundaries, stored or serialized
in some form that requires a specific type, or defined as a bitmask then an enum can improve
performance. Especially in embedded code where memory is tight, this technique can improve
the data cache hit rate if many accesses are necessary. In a safety-critical autopilot system, where
timing is critical, this can heavily impact control performance. This single commit has 14 changed
files with 48 additions and 43 deletions.

Our mindmap with the above discussed observation examples helps to make new connections
between useful factors to ascertain the control commits and control code changes that are often
overlooked. To enhance the understanding of autopilot control code changes, we organized this
information into four categories based on the factors in determining the control commits.

3.3 Results for RQ3: Is Cross-Project Training Beneficial in Predicting Control
Commits?

In RQ1, we tested our machine learning algorithms using a 10-fold cross-validation with all our
data (1,435 commits). However, considering other open source autopilot software projects that may
not have historical data to perform any significant training, we perform cross-project prediction
analysis by training the algorithms on the dataset from our previous work [5] (this dataset contains
ArduPilot and Paparazzi UAV) and then testing the resulting classifier on the newly added LibrePilot
dataset. Cross-project prediction analysis has been developed and investigated in other areas of
software engineering, such as defect prediction [33, 52, 60]. However, investigating the applicability
of cross-project control commits is novel. We followed the method used by Rahman et al. [49] to
perform cross-project control commit prediction analysis. To test the portability, Rahman et al.
evaluated machine learning models trained on one project on all releases of other projects, ignoring
time-ordering. We adopt this method by considering ArduPilot and Paparazzi UAV as one project
and the added LibrePilot as a different project to perform cross-project control commit prediction
analysis.

Table 5 shows the result of our best performing machine learning algorithms using Auto-WEKA
for different sets of evaluation metrics (precision, recall, F-Measure and AUC). We added the F-
Measure metric to this test as it provides intuition on how precise the classifier is. The overall
prediction performance difference is considerable compared to RQ1 with AUC of 0.67 and an
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F-Measure of 0.76. Although we can train across projects, the comment based prediction and code
based prediction had a performance decline compared to RQ1.

Our findings, based on precision, recall, F-Measure and AUC, indicate that the comment based
prediction seems to be less stable compared to code based prediction. One of the reasons may be
that all the developers involved in ArduPilot, Paparazzi UAV, and LibrePilot are different in the
comment based prediction. As a result, their writing style differed from one developer to another.
Moreover, checking for incomplete sentences or verification of meaning in the sentences are not
strictly enforced. It is also important to note that most of the comments are short and not as
detailed as they might be in a manual or other documentation. On the other hand, compared to
comment based prediction, the code changes present in the code based prediction had valuable
details because: (1) codes must follow the strict rules of programming, (2) codes must be checked
for errors and testing results, and (3) codes may often provide additional information about the
characteristics of the surrounding program code. This suggests leveraging a cross project approach
using code has fewer factors tied to influence machine learning model prediction.

4 Threats to Validity

We have taken care to ensure that our results are unbiased, and have tried to eliminate the effects
of human errors. Nevertheless, in this section we discuss threats to validity for our study.

External validity: These are threats that concern the generalization of our findings. Our research
findings are focused on three autopilot control software projects. This choice was opportunistic in
that ArduPilot, Paparazzi UAV, and LibrePilot have been widely deployed and are open-source, so
findings in these code bases can still be valid for similar systems (e.g., PX4 [45], BetaFlight [8]).
Likewise, even though the cost of analyzing hundreds of commits limited the scope of files studied,
those files perform different controller tasks and were designed by different groups of developers.
As a result, we anticipate these findings will also apply to other files designed by other developers.
We also acknowledge that the granularity of changes we studied (i.e., commits) may not expose all
code changes made by developers.

To support reproducibility: (1) we have used an open source version control and source code
management functionality, GitHub, (2) we used an open source knowledge analysis tool that has
the collection of machine learning algorithms, WEKA, and (3) developed a project website hosting
all the labeled datasets and machine learning models. Researchers can download our machine
learning models’ and use our database to get the same results and possibly apply on new auto pilot
software projects. We have also included the QR code in Figure 1 in the abstract section to visit our
digital resources more quickly and efficiently.

Internal validity: These are threats that concern uncontrolled factors that may have affected our
results. Since we used our manual analysis approach to figure out if a code change impacts the
control code or not, we may have missed some of the control code changes. However, we took
precaution by reviewing the code changes by multiple researchers to label the code changes as
control or not. Such judgment calls are subject to many biases, which we tried to reduce by defining
clear criteria for filtering and classification, by having multiple authors check different parts of the
results, and by iterating and revisiting the results. However, it is still possible we may have missed
or mislabelled some of the control code changes as non-control. To overcome this, we also used the
inter-rater reliability using Cohen’s Kappa « to show the manual label agreement by chance. We
have explained the Kappa calculation process and agreement results in our methodology section.
Our manual labeling agreement was between different researchers with 10% of the commits to

?You can review and download the datasets and Machine Learning models by visiting our autopilot research website by
following this URL—https://controlsoftware.autopilotresearch.com/ClI/controlleridentification.html
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validate our finding, and the percentage agreement is 0.93 while the Kappa is 0.84—a considerable
reduction; the greater the expected chance agreement, the lower the resulting value of the kappa.
This can be interpreted as almost perfect agreement.

Construct validity: These are threats that concern our metrics and measures. Regarding the
evaluation of the classification techniques, we used the standard performance metrics precision,
recall, F-measure, and AUC. We used widely-used autopilot software projects along with a large
dataset of control commits (841) and non-control commits (594), which has preserved code changes
for more than 10 years. Although this cannot serve for forming universal claims, it injects realism
in our analysis as the control commits have been delivered in widely used real-life projects with
elaborate complex functionalities delivered to hundreds of thousands of users.

5 Related Work

In this section, we provide a discussion of the related efforts in the control software area and
examine them in the light of our research.

5.1 Safety and Machine Learning

Machine learning algorithms are increasingly used in the control system of autonomous cyber-
physical systems, such as self-driving cars, to make intelligent navigation decisions in real-time
without any human input. Varshney et al. [54] discuss strategies for increasing safety in terms
of harm, risk, and uncertainty and building upon it in the machine learning context. Also, Khan
et al. [26] introduce a rigorous method of machine learning for secure and autonomous cyber
physical systems. Pereira et al. [44] present the challenges during the design and development of a
system with an integrated Machine Learning algorithm. They also discuss the approaches for safety
engineering and certification of Machine Learning-based systems. Different from all prior work,
this article focuses on using machine learning algorithms during the control software development
process to provide insight into the evolution of control software and the impacts thereof.

5.2 Bug Detection and Machine Learning

Building bug-free autopilot control software continues to be a very significant challenge. Huang et al.
[23] apply Machine Learning for runtime bug detection in aviation software. Kim et al. [27] presents
a cross-domain robotic aerial vehicles post-accident investigation tool that localizes program-level
root causes of accidents, based on robotic aerial vehicles control model and enhanced in-flight logs.
Even though our technique does not directly target detecting bugs, it takes important first steps in
automating the identification and isolation of the safety-critical control-related software in, by and
large autopilot software projects.

5.3 Model-Based Design Strategies

Model-based design strategies ideally create a 1:1 correspondence between the model and the
software [15, 47, 59]. This is done for safety-critical systems by: (1) building models in a numeric
computer environment (e.g., MATLAB, Simulink, Stateflow, or other tools), (2) verifying these
models, and then (3) autogenerating corresponding code. The code synthesis tool often must be
certified and adhere to standards (e.g., DO-178C) [13, 51] to produce provably correct results.
While this strategy links the model and autogenerated software, it may only exist in domain-
specific applications [25], and may not provide guarantees for third-party supporting software
libraries, drivers, or other specialized pieces of code used in the development of the system, or
may be otherwise incomplete. In addition, the vast majority of autopilot control systems, including
unmanned air systems, are typically not developed using a model-based design strategy, but rather,
use hand coded controllers, such as ArduPilotfor which there may be no mathematical or computer
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model at all. Hence, our work could potentially bridge the gap by identifying the control related
code changes during the development process.

5.4 Security and Vulnerability

As unmanned robotic system usage is increasingly popular, another set of researchers aims to solve
the challenges of malicious attacks and mitigate system vulnerability [1, 37, 57]. Mohamed et al. [38]
authors discuss the usage of advanced cyber penetration tools for criminal network surveillance.
Another vital source code analysis technique is taint analysis [12, 40]. It helps to identify the flow
of sensitive data through a program. Taint analysis could be a complementary technique to our
current work. One such application uses a watch list of control variables to potentially capture core
control changes shown in Figure 6. However, we may miss out on flight-related control changes
and software-related code changes. These overlooked code changes can indirectly impact control.
Controllers, such as Proportional, Integral, and Derivative, serve as the heart of controlling the
movement of vehicles. Our proposed framework can serve as a first step in identifying these control
code changes.

5.5 Software Engineering

The software engineering community has developed a wide range of techniques to cope with the
challenges involved in validating and verifying the safety and security of safety-critical systems,
including control software (e.g., [9, 22, 30, 34, 35]), or their sound applications to assist in self-
adaptation [17]. Among others, Jackson [24] discusses a new architectural pattern called certified
control that is used for achieving high assurance of safety in autonomous cars. Simone et al. [31]
and Peng et al. [6] discuss embedding adaptation features in the ArduPilot control structure, and
their software-in-the-loop experiments show improved performance. Unfortunately, outside of
highly regulated safety-critical systems, the application of the majority of these strategies is limited
due to their high costs. This is particularly noticeable in the extremely active Unmanned Air System
industry where open source autopilot control systems (e.g., ArduPilot [4], Paparazzi UAV [41],
LibrePilot [32], PX4 [45]) are used extensively on various types of hardware with contrastingly
very light, or no regulations in their design and test processes.

6 Conclusions and Future Work

Identifying safety-critical control software, its boundaries with other embedded software in the
system could help developers isolate, test, and verify control implementation, and improve control
software development. In this work, we have directly studied the code changes in three different
dominant open-source control software suites, ArduPilot, Paparazzi UAV, and LibrePilot, used
extensively in safety-critical Unmanned Aircraft System. Our novel framework addresses the key
foundational opportunity to identify, extract, examine, and measure the changes made to the control
software, paving the way for meeting future challenges. To facilitate the rapid study of control
software evolution we built a machine learning tool that can automatically identify the control
code change with an accuracy of 0.95.

In future work, we hope to develop design-time and runtime solutions that isolate impacts of veri-
fied autogenerated control code from code external to that process and vice versa. As we learn more
about control code changes we envision a supplementing set of control design strategies and theory
for how to build improved computer-controlled systems, an increase in developer tools suited for
control code, and improved test suite generation. A deeper understanding of the types and quantity
of control changes can help the control and software communities develop new models and devel-
opment strategies to maintain the integrity of key properties verified in the model and/or software.
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