Measurement-induced state transitions in dispersive qubit readout schemes
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The dispersive-readout scheme enables quantum nondemolition measurement of superconducting
qubits. An increased readout power can shorten the readout time and reduce the state discrimi-
nation error but can promote qubit transitions into higher noncomputational states. The ability
to predict the onset of these measurement-induced state transitions can aid the optimization of
qubit circuits and provide means for comparing the readout performance of different qubit types.
Building upon the concept of dressed coherent states, we consider two straightforward metrics for
determining the maximum number of photons that can be used for dispersive readout without caus-
ing state transitions. We focus on the fluxonium readout to demonstrate the independence of the
metrics from any qubit-type-specific approximations. The dispersive readout of transmons and other
superconducting qubits can be treated universally in the same fashion.

I. INTRODUCTION

The dispersive readout of a superconducting qubit
is performed by probing the qubit-state-dependent fre-
quency of a linear resonator coupled to the qubit [1, 2],
which enables a fast and high-fidelity single-shot mea-
surement [3-5]. A short measurement duration is vital
for implementing error-correction codes such as the sur-
face code [6], in which the data qubits must idle during
the readout of the measure qubits and, thus, unavoidably
accumulate errors due to intrinsic lifetime limitations [7].
Importantly, preserving the quantum nondemolitionness
of the dispersive readout would guarantee that a qubit
remains in a computational state after the measurement,
allowing straightforward reset protocols [8, 9].

Several parameters determine the measurement rate,
with the discussions typically framed in terms of the res-
onator dispersive shift x, the photon decay rate s, and
the average photon number 7. Numerical simulations can
easily predict the first two quantities for a given qubit
design. The optimal readout condition is often stated as
K & 2x, which maximizes the signal-to-noise ratio (SNR)
for a fixed 7 in a linear resonator [10, 11]. Naively, in-
creasing 7 should directly result in a higher SNR and
thus in a better readout [10]. Unfortunately, in addi-
tion to a stronger resonator nonlinearity at larger n, the
qubit undergoes measurement-induced state transitions
(MISTs) when the number of photons exceeds a thresh-
old value [12-15]. These transitions, sometimes referred
to as qubit ionization in the context of transmon qubits
escaping the Josephson potential well [14-17], limit the
measurement rate, degrade readout fidelity, and compli-
cate qubit reset.

In this paper, we theoretically investigate the onset of
MISTs during the dispersive readout of superconducting
qubits by focusing on two metrics that exhibit clear signa-
tures of MISTs. The first metric, qubit purity, quantifies
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the qubit-resonator entanglement and was used in the
past in numerical studies of qubit transitions and struc-
tural instabilities of the system dynamics [14, 18]. Time-
domain simulations reveal that the qubit purity remains
very close to unity unless a state transition occurs as
the number of readout photons increases. Our explana-
tion of this sensitivity is based on the notion that away
from MISTs, the state of a driven qubit-resonator sys-
tem would be close to a dressed coherent state [19-22].
Perhaps surprisingly, such a state and its squeezed modi-
fications have been shown to be almost unentangled [22].
Further exploring this picture, we propose another metric
that characterizes deviations in the drive matrix elements
computed for the dressed coherent states. This metric,
which is also very sensitive to MISTs, bypasses time-
domain simulations and only requires accurate identifica-
tion of the interacting qubit-resonator states. Through-
out the paper, we focus on the case of a fluxonium qubit
capacitively coupled to a resonator, although the analysis
applies to the dispersive readout of any qubit type with
a limited number of internal degrees of freedom.

The Jaynes-Cummings Hamiltonian [23] provides the
starting point for the readout analysis of an ideal two-
level qubit coupled to a resonator. In the dispersive
regime, when the qubit-resonator coupling g is much
smaller than the qubit-resonator detuning A, the res-
onator frequency is pulled by approximately +¢%/A with
the sign determined by the qubit state [1]. The disper-
sive approximation breaks down when the photon num-
ber becomes comparable to 1., = A?/(49?), which cor-
responds to significant hybridization of the bare qubit-
resonator states and the onset of resonator nonlinear-
ity [11]. Although nc; is often quoted as a character-
istic of a qubit-resonator system, it does not set a hard
limit on resonator occupation in a readout even when
generalized for realistic multi-level qubits [15]. In par-
ticular, neq; does not predict the likelihood of MISTs,
which, depending on the system parameters, may occur
at n drastically different from nc.;. MISTs in dispersive
readout schemes are poorly understood and have been
studied only in the context of transmon qubits as sum-
marized below [12-15, 24-27].
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In a nutshell, the explanation for MISTs in transmons
is based on the resonances between energy levels of the
interacting qubit-resonator system corresponding to dif-
ferent transmon states. The rotating-wave approxima-
tion (RWA) simplifies the analysis for this qubit type,
permitting an intuitive picture of level resonances based
on so-called RWA strips. Each RWA strip is defined
as the group of levels in the composite qubit-resonator
Hilbert space with a fixed total number of qubit and res-
onator excitations [13]. There are two distinct parameter
regimes determined by the transmon and resonator fre-
quencies wy and w,. When wy; > w,, the energies of
the levels within the same RWA strip are not monotonic
with the qubit index due to the negative transmon an-
harmonicity. This is visually represented as the bending
of the strip over itself [12], which can result in a reso-
nance between one of the two lowest qubit levels and a
level near the edge of the transmon’s cosine potential,
causing MISTs [12]. The onset of MISTs often happens
at relatively small photon numbers, depends strongly on
the qubit-resonator detuning A, and is highly sensitive
to the transmon offset charge ny because of an increased
sensitivity of the higher-lying qubit levels to ny. The ex-
perimental data is consistent with a model based on the
semiclassical equations of motions for the resonator field
and the effective Schrédinger equation for the qubit [12].

In the opposite regime, when w, < w,, the resonances
between levels in different RWA strips are found to be re-
sponsible for the transitions [13]. Crucially, while a sim-
ple model based on diagonalization of the Hamiltonian
in the RWA is sufficient to identify the resonances, non-
RWA terms are necessary to explain the presence of the
transitions between different RWA strips, when the to-
tal number of excitations is not conserved. This points
to the potential limitations of overly simplified models
in predicting MISTs. Notably, the transitions were ob-
served at 7 several times greater than ng;, confirming
that nes is not a reliable metric for estimating the limits
on the dispersive readout power. In the w, < w, regime,
temporary resonance conditions due to fluctuations in n,
may cause MISTs only during specific time intervals [27].

A computationally expensive numerical study of the
full dissipative dynamics of a transmon-resonator system
under a strong measurement drive also revealed signa-
tures of qubit transitions [14]. In that study, the Lind-
blad master equation with non-RWA terms in the Hamil-
tonian was integrated using large-scale computational ac-
celerators, while a semiclassical approach was used to
interpret the results. Similarly to Refs. [12, 13], qubit
transitions were attributed to level resonances occurring
at specific photon numbers. The photon numbers were
found to be strongly parameter dependent and some-
times very small. Theoretical understanding of MISTs
in transmons was further advanced through a compari-
son of the fully quantized model to the Floquet analysis
and an entirely classical model of a driven nonlinear pen-
dulum [15, 25].

The onset of MISTs in the other superconducting qubit
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FIG. 1. Schematic for dispersive readout of a superconducting
qubit. A drive tone probes a readout resonator coupled to the
qubit with coupling strength ¢. For illustrative purposes, we
consider the case of capacitive coupling and fluxonium qubit,
although the analysis can be generalized to inductive coupling
and other superconducting qubit types.

types remains unexplored in part because of the inappli-
cability of the RWA-based approaches, such as in the
case of fluxonia [28-30]. However, as with transmons,
the dispersive shifts in fluxonium-resonator systems can
be straightforwardly predicted with simulations match-
ing experiments [31], and large photon numbers have
been experimentally used for reading out fluxonia [32].
Yet, we are unaware of any practical tools for predicting
the onset of MISTs in fluxonia with an increase of 7.

Here, we investigate generic approaches for predicting
MISTs in superconducting qubits with a known Hamilto-
nian model using fluxonium as an example. The outline
of this paper is as follows. In Sec. II, we introduce the
Hamiltonian model, describe the procedure of numerical
identification of its eigenstates, and discuss a particular
example of a fluxonium spectrum prone to qubit tran-
sitions. In Sec. III, we simulate the dynamics for this
specific example, discuss state transitions, and introduce
metrics to catch the MIST effects. In Sec. IV, we investi-
gate the dependence of MISTs on the external magnetic
flux and the resonator frequency. We conclude in Sec. V
with general remarks. In Appendix A, we discuss the
formal breakdown of the dispersive approximation and
calculate the dispersive critical photon number, while in
Appendix B, we discuss the step-size selection for the
state-identification algorithm. In Appendix C, we take
a closer look at the qubit purity by calculating it in sev-
eral limits. In Appendix D, we simulate the qubit purity
in the presence of resonator decay. In Appendix E, the
matrix element of the raising operator a' is calculated us-
ing the perturbation theory. In Appendix F, we compare
the metrics in more detail. In Appendix G, we provide
the simulation results for a transmon using parameters
from Ref. [12] to further justify our approach.



II. MODEL

A. Hamiltonian

We propose a universal method for identifying the on-
set of MISTs in a general class of circuit quantum electro-
dynamics (cQED) setups (Fig. 1) described by the Hamil-
tonian

o= I:Iq"_ﬂr"_vq?“(g) +Vdrive(t)~ (1)

Here, H ¢ is a qubit Hamiltonian. In the main text, we
examine a fluxonium qubit [28], for which

H,=4Eci® + ELp? /2 — Ejcos(®p — @oxt) s (2)

while in Appendix G we include results for a trans-
mon H,. In Eq. (2), ¢ and 7 are the normalized flux and
charge operators satisfying [p, 7] = 4, and FE¢, Ej, and
E; are the charging, Josephson, and inductive energies.
In addition, pext = 27 Pext/Po, where Peyy is the external
flux through the superconducting loop, ®, = h/(2e) is
the flux quantum, —e is the electron charge, and h = 27h
is the Planck constant.

The second term in Eq. (1) describes the (linear) res-
onator and is written in terms of the raising and lowering
operators at and a as H, = thde, whgre w, 1s the bare
resonator frequency. The third term, Vi, (g), describes
the qubit-resonator coupling, which is parameterized by
the coupling strength g. For a pure capacitive coupling,
considered in this paper, Vg, (g) = ihgﬁ(éff —a), while for
pure inductive coupling VqT (9) = hgp(a’+a). A readout
drive of a fixed drive frequency wqyive can be specified by

Vdrive(t) = 22h5(t) (dT - d) COS(Wdrivet) ’ (3)

where ¢(t) is the drive strength incorporating an initial
raising stage. Generally, though, the time dependence of
V arive(t) can be more complex [33], and the drive is not
necessarily monochromatic.

B. State identification

Let Higie(g) be the Hamiltonian (1) without the drive
term Vdrive(t). When g = 0, its eigenstates are trivially
|k,n) = |k) ® |[n) with total energies Ej , = Ey + nhw,,
where |k) is the k-th eigenstate of the qubit Hamiltonian
H, with energy Ej and |n) is the n-th eigenstate of the
resonator Hamiltonian ﬂh k,n > 0. When g # 0, the
bare states |k,n) are no longer eigenstates of Hidqie(g)-
For convenience, we use the same indices to label the
dressed eigenstates of the interacting Hamiltonian and
the corresponding eigenenergies as |k7n>g and Em(g),

or simply |k,n) and Ej-; whenever we do not need to
emphasize the value of g. A

Ideally, a particular eigenstate of Hige(g) should be
identified as |k,n>g when it is connected to |k,n) adi-

abatically, i.e., by varying ¢ slowly. In our numerical

simulations, we use a labeling algorithm that we refer to
as discrete adiabatic state identification (DASI). Start-
ing with the noninteracting states |k, n) = |k, n>g:0, the
coupling strength ¢ is gradually increased in small dis-
crete increments d¢g until the value of interest is reached.
At each new step, the updated interacting Hamilto-
nian Hiqie(g + dg) is diagonalized, and its eigenstates
|k,7n>g L5 BT€ identified by maximizing the overlaps with

dg
|l<:, n>q, the eigenstates of Hiqie(g). We emphasize that as

a result, a state ‘k, n>g can have the largest overlap with

a noninteracting state that is different from |k, n) due to
nontrivial state hybridization. A simpler approach based
on maximizing overlaps between dressed and bare states
works well when only low-lying eigenstates are needed,
such as when calculating dispersive shifts, but fails in
general.

Throughout the main text, we consider a fluxonium
qubit with E;/h = 4.0GHz, Ec/h = 1.0GHz, and
Er/h = 1.0GHz capacitively coupled with coupling
strength ¢g/2m = 150 MHz to a resonator with w, /27 =
7.0 GHz. In our numerical simulations, carried out with
the help of the QuTiP software package [34, 35], the
Hilbert space is composed of 20 qubit and 120 resonator
levels, with the qubit eigenstates calculated by prediag-
onalizing H, in the 50-level harmonic-oscillator basis of
the capacitive and inductive terms. The DASI algorithm
step size is d0¢g/2m = 1.5 MHz.

We start by fixing the external flux at ®ey/Po = 0.1,
where the |0)—|4) transition frequency woy = (E4—Fp)/h
is close to being twice the bare resonator frequency as
seen in Fig. 2(a). This condition does not lead to fea-
tures in the resonator dispersive shift but brings pairs
of the states |0,n) and |4,n — 2) into a resonance as de-
picted in Fig. 2(b). Figure 2(c) shows the evolution of the
dressed eigenenergies from the corresponding bare states
traced by the DASI algorithm for two particular dressed
states, |O,40> and ’4,38}. We note the appearance of
an avoided level crossing, where the naive diabatic la-
beling procedure with a single coarse step dg equal to g
would intermix the state labels.

The dressed eigenenergies corresponding to qubit in-
dices k = 0 and k = 4 and different photon numbers are
shown in Fig. 2(d) for g/2m = 150 MHz. At small photon
numbers, the spacing between the states corresponding to
the qubit being in the ground (k = 0) and the fourth ex-
cited state (k = 4) is as large as 130 MHz while at photon
numbers close to ncposs = 30 this difference reduces to ap-
proximately 15 MHz. This reduction in spacing, together
with the level repulsion, indicates a strong hybridization
between states |0,n) and |4, n — 2) at n ~ Neposs, Suggest-
ing that a MIST could take place for a qubit prepared in
its ground state at the resonator occupation i ~ ncposs-

Remarkably, the dispersive approximation for the
ground state and parameters of Fig. 2 formally breaks
down only at nerit,0 & 90 & 3ncross, as calculated in Ap-
pendix A 1 using the generalization of n.i; to multilevel
qubits [15]. Therefore, the breakdown of the dispersive
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FIG. 2. (a) Potential-energy profile and single-excitation en-
ergy level diagram for a fluxonium qubit at ®Pexs/Po = 0.1
with the other system parameters specified in the text. The
doubled bare resonator frequency is approximately equal to
the transition frequency between states |0) and |4), leading to
a resonant condition at a certain photon number. (b) Energy-
level diagram of the combined qubit-resonator system with
no interaction (g = 0). (c) Identification of the dressed eigen-
states via a gradual sweep of the coupling strength g from
zero (bare states) to g/2m = 150 MHz (black crosses). For
clarity, only the dressed eigenenergies Eg75 and Egzg rela-
tive to Eo,40 are shown. (d) Dressed eigenenergies Em
and Em versus photon number n for g/2m = 150 MHz.
The energies are shifted by Ep,, = nhw, to remove the linear
contribution proportional to n. The avoided-level-like cross-
ing of the eigenladders at ncross = 30 can lead to a MIST
when a comparable number of photons is used for readout.
Gray lines show energies calculated in the dispersive approx-
imation.

approximation is a poor indicator of potential MISTs as
it can significantly overestimate the allowed value of 7.
While neit,0 signifies strong hybridization between lev-
els due to single-photon processes, the avoided-level-like
crossing at neross happens due to multiphoton resonances,
which are not captured by the second-order perturbation
theory. For comparison, we also show the energies cal-
culated in the dispersive approximation, which depend
on n linearly as Er— ~ Er5 + n(Epg — Egg) [thin gray
lines in Fig. 2(d)]. The energies agree reasonably well
with the exact eigenenergies away from ngss thanks to
large ncrit,0. However, dispersive energies do not exhibit
the anticrossing: at n > ncoss, the level labels calculated
using DASI and the dispersive approximation swap; see
also Ref. [15].

For the DASI step size dg used throughout this pa-

per, the algorithm may misidentify states at anticross-
ings with gaps 2¢es /27 < 1.6 MHz; see Appendix B for
a more detailed discussion of the breakdown of DASI.
In general, a step dg can be chosen to accommodate a
specific threshold 2g.g for anticrossings that need to be
captured by the algorithm, making the algorithm very
flexible. In particular, we find DASI to be more robust
compared to the approach in which the states with one
additional photon, i.e., >, are identified by find-
ing the maximum overlap with the states generated by a'
acting on already identified states |k, n) [14, 15]. The ap-
proach of Refs. [14, 15] has been recently improved in the
algorithm of Ref. [36], where states |k, n + 1) are labeled
by comparing their bare-qubit occupations with those of
states |k n> and noticing that Ey—— pES! must be close to
Er—+ hw,. A disadvantage of DAST is its high computa-
tlonal cost, which, however, could be greatly reduced in
the future by making the DASI step dg change dynami-
cally depending on the proximity to a level crossing.

IIT. METRICS FOR IDENTIFYING
MEASUREMENT-INDUCED TRANSITIONS

A. Qubit occupation probabilities

Time-domain simulations of Hamiltonian (1) with
drive term (3) reveal the expected MIST for parame-
ters of Fig. 2(d). We ignore any dissipation for sim-

plicity and solve the Schrédinger equation for a drive

with Warive = wﬁo) for the initial state

w = = (Ef1— Egg)/his the dressed resonator frequency
for the qublt in |k). To reduce the stray population
of states |k,n) with a wrong qubit index k # 0, we
choose an adiabatic drive [22] whose strength increases
as sin(mt/2traise) in the interval 0 < ¢t < tpaise with
traise = 20ns until it reaches a constant value €. In
Figs. 3(a)-3(c), the simulation results are plotted versus
the simultaneously computed average resonator photon
T

0,0), where

occupation <& &>.

Figure 3(a) shows the probabilities of finding the qubit
in various bare states defined as Py pare = <k|bq|k> =
>, (k,n|p|k,n) for the k-th state, where p is the density

matrix for the qubit-resonator system and

ﬁq = Trresp (4)

is the reduced density matrix for the qubit with the trace
taken over the resonator degree of freedom. We find that
Py bare Noticeably decreases while P 1,y increases even
with a few photons. This behavior is unrelated to MISTs
since it is caused by the hybridization of bare states
|0,n) and |1,n — 1), which gets stronger with increas-
ing n. A better metric is the probability of finding the
interacting system in the k-th dressed eigenladder com-
posed of dressed states |k,n) with a fixed k (the dressed
eigenladders are termed branches in Ref. [15]). The phys-
ical interpretation of this is the probability of finding the
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FIG. 3. (a)—(c) Time evolution of the initial state |0,0) in the
presence of the resonant readout drive with e /27 = 20 (dotted
lines), 25 (dashed lines), and 30 MHz (solid lines) for parame-
ters of Fig. 2. (a) Probabilities Py pare (blue), Pi bare (green),
and Py bare (orange) of finding the qubit in the bare states
|0), |1), and |4) versus the average photon number (a'a).
(b) Same but for P dressed, Where Pk dressed is the total prob-
ability of finding the system in one of the states |k, n> (in the
k-th dressed eigenladder). (c) Qubit purity error 1—7P, versus
<&Td>. (d) Matrix-element error £, as defined by Eq. (6)
for the ground state versus the average photon occupation
|a|? calculated exactly (solid line) and perturbatively (dashed
line). In all panels, gray shading highlights ncross & \/Tcross
with neross defined in Fig. 2(d).

qubit in its k-th dressed state. The dressed probabili-
ties Pr dressed = D, <k,n P k:,n> for Kk = 0,1 and 4 are
shown in Fig. 3(b). We observe that Py dressed =~ 1 up to

<&T&> ~ 20, while P} dressed is suppressed by roughly five

orders of magnitude, indicating that the system remains
in the correct eigenladder. In contrast, Py dressed drops
quickly between ncross — 1/Tcross aNd Neross + /Meross and
flattens again beyond this region. The drop is accompa-
nied by a sharp increase in Py dressed, indicating a popula-
tion exchange between the dressed states with £ = 0 and
k =4, a clear sign of a MIST. Similar observations can be
made for bare probabilities P hare and Pj pare, although
the effect is obscured and hard to quantify because of the
initial hybridization-induced slope.

A Dbetter indicator of MISTs is hidden in the depen-
dence of bare probabilities on the drive power. We note
that both Pj pare and Py dressed are practically indepen-

dent of € at <deL> < 20. They, however, depend on ¢

at larger resonator occupation when the drive strength
dictates how fast the system goes through the avoided-

level-crossing-like region shaded in Fig. 3. A larger ¢ re-
duces the adiabaticity of the evolution, i.e., the probabil-
ity of traversing along the same eigenladder [the bottom
eigenladder in Fig. 2(d)], but increases the probability
of a diabatic-like transition into the k = 4 eigenladder
[the top eigenladder in Fig. 2(d)]. Therefore, the drive-
strength order of the bare and dressed probabilities is re-
versed [compare the blue solid, dashed, and dotted lines
in Figs. 3(a) and 3(b)].

We stress that a MIST event during the resonator
ring-up corresponds to the adiabatic passage through the
avoided-level-like crossing in Fig. 2(d). In this case, the
largest bare-state amplitude in the dressed state |O,n>
evolves from |0,n) to |4,n — 2), meaning that the qubit
experiences a transition from its bare state |0) to bare
state |4). Therefore, while 1 — Py gressed can be thought
of as the MIST probability before the shaded region in
Fig. 3(b), it is Py dressed that corresponds to the MIST
probability after that region, where P qressed becomes

flat, i.e., at <dT&> 2 40. We note that the calculation
of the experimentally relevant MIST probability requires
simulation of the full readout process with the resonator

ring-down and the dissipative dynamics, which is beyond
the scope of this paper.

B. Qubit purity

Here, we discuss qubit-resonator entanglement by cal-
culating the qubit purity Pr = Trpg, where index k
stands for the initial state |m> at the start of a drive
and p, is given by Eq. (4). Figure 3(c) shows the “error”
1 — Py as a function of the average photon occupation
<dT€1>. Due to qubit-resonator coupling, the purity of

the initial state |0,70> is not exactly 1. Somewhat coun-
terintuitively, Py does not change appreciably during the
initial stages of the drive despite the increased hybridized
nature of the eigenstates |0, n> with n # 0. In the MIST

region, however, 1 — Py grows rapidly from about 1073
at <de> ~ 20 to about 107! at <de> ~ 40, indicating
a stronger entanglement of the qubit-resonator system.
Similar observations for the purity were made for the
transmon [14].

This behavior of the qubit-resonator entanglement is
readily understood within the framework of the dressed
coherent states [19-21], which are defined for an arbitrary
coherent-state amplitude «a as

I a) :eflap/gz% ). (5)

n!

A dressed coherent state approximates very well the
state of an interacting qubit-resonator system gener-
ated by a classical microwave drive from the initial state
|k,0) [21]. In comparison to the product state |k, ) =
|k)®|a), where |«) is the resonator coherent state, Eq. (5)



shows that the system remains in the eigenladder for the
k-th qubit state, in agreement with Fig. 3(b). As shown
for the transmon, the states evolve primarily within the
qubit eigenladder even when |a|? > ney with two cor-
rections to Eq. (5): small leakage to neighboring eigen-
ladders and squeezing of the correct eigenladder portion,
caused by the qubit nonlinearity [22]. Importantly, in
stark contrast with strongly hybridized eigenstates |k, n>,
dressed coherent states (5) remain practically unentan-
gled: for a large |af?, |k,a) ~ |¢) ® |o) with some
lg) = > pcklk) [22]. This also holds when Eq.(5) is
corrected for squeezing [22]. Thus, purity is expected
to remain close to unity in the dispersive and strong-
hybridization limits, provided the system predominantly
stays in the correct eigenladder. In Appendix C, we illus-
trate this statement for Jaynes-Cummings Hamiltonian
by calculating Py analytically. In particular, we show
that in the dispersive limit, the deviation of Py from 1
is the second-order effect for eigenstates, but is the effect
of only sixzth order in the coupling strength for dressed
coherent states defined by Eq. (5).

The initially weak increase in purity error 1 — Py seen
in Fig. 3(c) is consistent with the expectation of the
qubit-resonator system to remain in a state close to |0, a>
and thus be almost unentangled. The subsequent rapid
growth of 1—"P, by two orders of magnitude in the MIST
region is caused by a probability splitting between the
k = 0 and k = 4 eigenladders [see Fig. 3(b)], which
breaks the dressed-coherent-state picture. The onset of
this transition can be determined by computing the sensi-
tivity of the purity error to the drive amplitude at a fixed

<&Td>, although the non-RWA terms can complicate the

numerical evaluation of these sensitivities. We note that
in the presence of dissipation, 1 — Py behaves similarly
to Fig. 3(c) with the effect of an increased resonator
decay rate being analogous to that of a smaller drive
power, which reduces the speed of traversing through the
avoided-level-crossing-like region; see Appendix D.

Although both the probability of finding the system
in a particular eigenladder [Fig. 3(b)] and the qubit pu-
rity [Fig. 3(c)] are sensitive MIST metrics, calculation
of Py dressed 18 computationally more intensive as it re-
quires both time-domain simulations and identification
of dressed states for large photon numbers with a de-
fined labeling algorithm. In comparison, Py can be com-
puted directly from the time-dependent density matrix
p(t), expressed in the bare basis, eliminating the need
to label dressed eigenstates. Therefore, the qubit pu-
rity (and other entanglement measures) can be used as
a practical probe of MISTs when doing the time domain
simulations. We note that a probability metric based on
the occupation of approximate eigenstates in the disper-
sive approximation, corresponding to the gray lines of
Fig. 2(d), may also be practical in certain situations but
can fail when neross > Nerit k-

C. Dressed matrix elements of the drive

The exact shape of the purity-error curves depends on
the resonator ring-up protocol and photon loss. Here, we
introduce another metric based on the matrix elements
of a that does not require time-domain simulations with
a specific drive term. Instead, we now assume that the
qubit-resonator system is already in a dressed coherent
state |k, a> and check whether the dressed-coherent-state
picture remains valid if an extra photon is added or re-
moved. To this end, we define a simple error metric that
quantifies to what extent the dressed coherent state is an
eigenstate of bare a:

(F-alaffa)

gk@ =|1-

(6)

The metric is trivially zero for bare coherent states |k, a)
since a |k, a) = a |k, «). For dressed states, it shows how
close the operators a' and a are to their dressed versions
a' and a, where a = >, Vn+1|kn)(kn+ 1’. It
is the condition a ~ a that results in the generation of
dressed coherent states by Vgyive [22]; therefore, a large
&k, indicates the breakdown of the dressed-coherent-
state picture and thus the onset of MISTs.

We note that to compute &, numerically, special at-
tention has to be paid to the signs of eigenstates at each
step of the DASI algorithm: in addition to identifying
eigenstates |k, n>g 5 by maximizing overlaps, we also fix
their phases by requiring g(m |k,7n>g i
tive real values. In this way, the numerically calculated
|k,7a> is well defined and is not spoiled by the potential

to have posi-

phase ambiguity of |k,7n>

In Fig. 3(d), we plot &, as a function of |a|? computed
for the same parameters as in other panels (solid line).
We find an order-of-magnitude jump between |a|? ~ 20
and |a]? &~ 40, indicating the expected MIST in agree-
ment with the time-domain simulations. Due to state
hybridization, & ¢ is not zero at |a|? = 0 with the actual
value closely matching the perturbative result, which is
independent of |«| [dashed line in Fig. 3(d); calculated in
Appendix EJ.

The practical advantage of the metric defined by
Eq. (6) is that it requires only time-independent terms of
the Hamiltonian (1) and allows direct comparison of dif-
ferent qubit types regardless of the specifics of the drive
and system losses.

IV. DEPENDENCE ON HAMILTONIAN
PARAMETERS

Here, we apply the ideas from Sec. I1I to explore MIST's
in a wider parameter space of the chosen fluxonium cir-
cuit. In Fig. 4, we investigate the dependence on the
external flux ®.. We show the simulation results as
a function of @y for a qubit prepared in states |0) (left
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FIG. 4. MIST dependence on the external flux ®ext (hor-
izontal axes) for a fluxonium initially in the ground (left)
and first excited (right) states. (a), (b) Bare qubit and
resonator transition frequencies with the resonance condi-
tions highlighted by round markers. (c), (d) Dispersive shifts
Xk = (Eﬁ — EW) /h — wy, which diverge when w, matches
one of the qubit transitions wyx/. (e), (f) Qubit purity errors
1 — Py, versus the average photon occupation <de> (vertical
axes). (g), (h) Matrix-element errors &, versus the aver-
age photon occupation |a|? (vertical axes). The flux value of
Figs. 2 and 3 is highlighted by vertical dashed lines in the left-
column panels; other parameters are the same as in Figs. 2
and 3.

column) and |1} (right column). To build an intuition
where MISTs are possible, we start by plotting single-
qubit transition frequencies wyp = (Eyp — Ey)/k for
k=0 and k = 1 in Figs. 4(a) and 4(b). In these fig-
ures, the round markers indicate where wgxs cross multi-
ples of the bare resonator frequency w,. “First-order”
crossings wgrr = w, lead to divergences in the corre-
sponding dispersive shift x, = wﬁk) — w, of the resonator
frequency [31], clearly observed in Figs. 4(c) and 4(d).
“Higher-order” crossings, e.g., those with 2w, and 3w,
do not cause the dispersive shift to diverge but are ex-
pected to cause MISTs. Ultimately, the anticrossing of
the Eg; and Ep— ladders in Fig. 2(d) occurs at a rel-
atively small neoss = 30 because wyy is close to 2w, [see
Fig. 2(a) and the orange circle in Fig. 4(a)].
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FIG. 5. Same as Fig. 4, but for the dependence on the res-
onator frequency w, (horizontal axes) at the Py = Po/2
sweet spot. The value w,/2r = 7.0GHz of Fig. 4 is high-
lighted by vertical dashed lines (the cross sections along these
lines are identical to the rightmost cross sections in the cor-
responding panels of Fig. 4). Round markers in panels (a)
and (b) label only those resonances for which the sweet-spot
selection rules allow state transitions.

The intuition built upon the crossings of bare qubit
and resonator frequencies is confirmed by simulations of
the qubit purity P, and the matrix-element error & .
In Figs. 4(e) and 4(f), we show the qubit purity errors
1 — Py and 1 — Py for the starting states [00) and |10)

as two-dimensional color maps versus ®.,; and <&T&>.

Both errors are simulated for /2 = 25 MHz as de-
scribed in Sec. III except that the drive frequency is
Wdrive = wﬁk) for the initial state |k_0> to simplify sim-
ulations (the time-domain simulations do not correspond
to an actual readout where wq;ive is not qubit-state de-
pendent). In Figs. 4(g) and 4(h), we show & o and & o
versus Peyy and \a|2. We brief on several observations.
First, the features (i.e., the regions with increased er-
rors) in the 1 — Py, panels mostly agree with the features
in the & o panels. Second, the largest features in these

panels, which occur at small photon numbers <dT&> and

||, correspond to divergences in the dispersive shifts.



Third, the features appearing at crossings of single-qubit
frequencies with 2w,, i.e., at Poxt/Po = 0.1 for a qubit
in |0) and at Pext /Py ~ 0.3 for a qubit in |1), are more
pronounced with an earlier onset of MISTs in comparison
to the features corresponding to crossings with 3w,..

Figure 5 shows the same metrics calculated for the
same parameters as Fig. 4 but as a function of the res-
onator frequency w, for the fluxonium parked at its half-
integer sweet spot, Pext/Po = 0.5. We note that due to
the selection rules at the sweet spot, i.e., (k|n|k') =0
for two states k and k' of the same parity, not every fre-
quency collision observed in Figs. 5(a) and 5(b) leads to
a divergence in the dispersive shift or an error growth
in Figs. 5(e)-5(h). Even at higher orders, V4-(g) mixes
only the bare states |k,n) of the same combined parity
(—1)**" and, therefore, the parity of the dressed states
is well defined. The avoided-level-like crossings such as
the one shown in Fig. 2(d) occur only between dressed
states of the same parity, and, thus, the resonance con-
dition wgg = nw, must be supplemented by the parity
requirement (—1)*~* = (=1)”. Only such crossings are
highlighted by round markers in Figs. 5(a) and 5(b), and
the onset of the errors for each of these crossings is clearly
visible in Figs. 5(e)-5(h).

We emphasize that except for the locations of diver-
gences in the dispersive shifts, features in the heat maps
of Figs. 4 and 5 are not related to the formal break-
down of the dispersive approximation; see Appendix A 2
for the calculations of ngit,r versus @exy and w,. Fi-
nally, we stress that the two metrics are not fully equiv-
alent and care should be taken when comparing the pho-
ton numbers at which a particular feature becomes pro-
nounced. While &, is agnostic to a specific ring-up
protocol, 1 — Py, is a characteristic of both the spectrum
and the readout protocol and should exhibit the same
onset of features as &, only for an adiabatic traversal
through the avoided-level-like crossings. A finite drive
strength € used in the time-domain simulations can re-
sult in diabatic passages through the avoided-level-like
crossings, shifting the appearance of features in 1 — Py, to
higher photon numbers compared to £ . The sensitivity
of 1 — Py, to € and the connection between various MIST
metrics are discussed in more detail in Appendix F.

V. SUMMARY AND CONCLUSIONS

Despite the well-established techniques for engineer-
ing dispersive shifts and coupling losses in circuit QED
architectures, the task of readout optimization remains
partially a trial-and-error empirical endeavor. Crucially
for this task, it is possible for qubit-resonator systems to
have the same dispersive shifts and loss rates but behave
differently with the increasing number of readout photons
because of the measurement-induced state transitions. In
this paper, we demonstrated how the qubit purity and the
matrix-element error computed for the dressed coherent
states can be employed to identify parameter regimes fa-

vorable for implementing fast and high-fidelity readout
protocols compatible with the deterministic reset.

The first metric, the qubit purity, requires the time-
domain simulations of the readout process to quantify
the entanglement, while the second metric, the matrix-
element error, employs accurate identification of dressed
states and quantifies the ease with which the drive can
increase the size of the dressed coherent state. Even
though the system losses and the drive specifications do
not enter the definition of the matrix-element error, we
expect this metric to be useful for identifying high-power
readout regimes that are robust to minor drive calibra-
tion errors. Both metrics do not rely on any approxima-
tion, such as the RWA, apart from the presumed (and
practically desired) validity of the dressed-coherent-state
picture. The metrics can be extended to the dressed
squeezed states and evaluated along the semiclassical tra-
jectories the drive may produce in the resonator phase
space. They allow a quantifiable comparison of different
superconducting qubit types with respect to their per-
formance in dispersive-readout schemes and can provide
universal guidelines for readout optimization.
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Appendix A: Breakdown of the dispersive
approximation

1. Critical photon number

We define the critical photon number corresponding
to the breakdown of the conventional dispersive approx-
imation using the generalization of n.i, = A%/4¢? to
multilevel qubits [15]. For a qubit in state |k), et is
given by

2
lwri| — wyr

_— Al
R | 5 (AT | - (A1)

Nerit,k =

where the minimum is taken only over those qubit levels
l # k for which (k|n|l) # 0.

For the parameters of Fig. 2, Eq. (A1) gives nerit,0 &
90, which is much larger than the avoided-level-crossing
location at n¢ross = 30. There is no contradiction here:
Neris, ;. Signifies the resonator photon occupation n when
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FIG. 6. (a), (b) Dispersive critical photon numbers ncrit,k
and (c), (d) qubit state indices lcyit,x for the transitions
|k) = |lcrit, k) defining nerig,x for a qubit in its ground (k = 0,
blue lines) and first excited (k = 1, green lines) states. The
left column shows the dependence on Py for parameters of
Fig. 4, while the right column shows the dependence on w,
for parameters of Fig. 5. Vertical dashed lines mark the same
values as they do in Figs. 4 and 5.

the first-order correction to the qubit-resonator state
|k,n) and the second-order correction to energy Ej .
become large, while the avoided-level-like crossing in
Fig. 2(d) can be traced to the breakdown of the second-
order correction to |0,n) and fourth-order correction to
Ey.n. The opposite situation, when ncross > TNerit,k, 1S
also possible [13], demonstrating that neis , i generally
a bad predictor of the breakdown of the higher-order cor-
rections and MISTs. We note that while the location of
the anticrossing can be associated with a divergent term
in perturbation theory, the anticrossing of the levels itself
is a nonperturbative effect [15].

2. Dependence on Hamiltonian parameters

Figure 6 shows nit 0 and neie,1 for the same param-
eters as in Figs. 4 and 5 and the values of luit,0 and
lerit,1 that correspond to the qubit indices [ that minimize
Eq. (A1) for K = 0 and k = 1. As expected, the values
of neyit,i; correlate strongly with the dispersive shifts x
shown in Figs. 4 and 5: ncyit,, vanishes whenever y;, di-
verges. Equation (A1) makes it evident that neis x = 0 at
the single-photon resonance conditions |wy;| = w,., when
the second-order corrections to energies Ej, ,, diverge at
any n > 0 (for I < k) or n > 1 (for [ > k), resulting in
large shifts xj. In comparison, there is no visible correla-
tion between neis,; and MIST-related features in Figs. 4
and 5, which are due to multiphoton resonances.
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FIG. 7. Zoom-in into Fig. 2(c) near the avoided level crossing.
Blue circles and orange squares show energies of the same
states as solid and dashed lines but labeled using a larger
DASI step dg/2m = 21.4MHz. The critical DASI step dgerit
is estimated using the energies calculated in the dispersive
approximation (gray dots) and the gap 2ges at the avoided
level crossing; see Eq. (B4).

Appendix B: Breakdown of the state-identification
algorithm

The DASI algorithm presented in Sec. II B fails when
the energy gap 2g.s at the anticrossing such as that
shown in Fig. 2(c) is too small or the step size dg used by
the algorithm is too large. We illustrate this breakdown
in Fig. 7, where we zoom in on the avoided level crossing
of Fig. 2(c) to show the energies of the states identified
using a large dg/2m = g/7 ~ 21.4 MHz; see the blue cir-
cles and orange squares. To better understand the DASI
failure, we consider a simplified model of a two-level sys-
tem described by

77— (Adiab(g)/2

geff(g) (Bl)

Geft (g) )
Agian(9)/2)

Here, using the terminology of the Landau-Zener prob-
lem, Agiap and geg are the g-dependent energy difference
and interaction between diabatic states |—) and |+). The
eigenstates of this Hamiltonian are given by

|:>g =cosfy|—) —sinfy |+) ,

— . (B2)
|+)g =sinf, |—) + cosby |+) ,

where 09 = %tanfl[Qgeg(g)/Adiab(g)] at Adiab(g) >
0 (before the anticrossing) and 6, = 7/2 —

%tal’l_l[2geﬁ‘(g)/|Adiab(g)|] at Agian(g) < 0 (after the
anticrossing). The overlaps between these eigenstates at
one step of the DASI algorithm are given by

= c08(bg459 — bg) »

= sin(fg459 — by) ,

S Py
S )y )

implying that the algorithm misidentifies states when
|tan(0y459 —0g)] > 1. Assuming, for simplicity, that



g and g + dg are chosen symmetrically around the
avoided level crossing, so ger(9)/|Adiab(9)| = Gest(g +
39)/|Adian(g + dg)| and 7/4 — 0, = 0445, — 7/4, we find
the breakdown condition 20, < /4, or

Adiab(9) > 29es(9) - (B4)

Following this criterion, we estimate the critical DASI
step 0¢geit for parameters of Fig. 7 by using the en-
ergies obtained in the dispersive approximation to find
Agiab(g) (gray dotted lines) and by extracting 2geg /27 ~
14.1 MHz from the actual gap at the avoided level cross-
ing, where we ignore the change in geg(g) in the interval
of interest. The estimate yields dgerit /27 &~ 13.6 MHz, as
illustrated in the figure. Alternatively, for the dg/27 =
1.5 MHz step of the main text, we estimate that the al-
gorithm may break down at 2geg/2m ~ 1.6 MHz.

Appendix C: Qubit purity for two-level qubits
1. Model

Here, we build intuition for why the purity of the re-
duced qubit density matrix remains close to 1 for dressed
coherent states (5) by considering a simple Jaynes-
Cummings model in the RWA:

Hic
h
wg and w, are the bare qubit and resonator frequen-
cies, and g is the coupling strength. The purity error
1 — Py calculated numerically for this model is shown
in Fig. 8 for various values of dimensionless coupling
strength A = g/A, where A = w, — w,. In this section,
we calculate Py for dressed coherent states analytically
and derive a simple expression in the dispersive limit.

The Hamiltonian (C1) has a block-diagonal structure,
with each block corresponding to a different RWA strip
defined by the total excitation number. The exact diago-
nalization of the 2 x 2 block with n > 0 excitations gives
the relation between dressed and bare states:

|0,n) = cos 0, [0,n) —sinb, [1,n —1) ,
|T,n—1) =sin6, |0,n) + cos by, [1,n — 1)

= wita— %62 tg (am + aT&_) . (C)

(C2)

Evitdh 0, = 3tan™' (2A\y/n). In the dispersive limit, we
n

0n = A/n — % (\Wn)’+0 (()\\/ﬁ)5) : (C3)

In addition, the dressed state |0,0) is exactly its bare
version |0, 0).

2. Dressed Fock states

We start by calculating the qubit purity for the exact
eigenstate }0, n> given by Eq. (C2). To this end, we first
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FIG. 8. Purity error 1—"Py calculated for the dressed coherent
states |0, &) in the Jaynes-Cummings model (C1) versus |o/”.
The qubit purity is calculated exactly (solid lines) and using
the dispersive result of Eq. (C20) (dashed lines) for various
values of the dispersive parameter g/A.

write the full density matrix:

Pom = cos? 6, |0, n)X0, n| + sin® 6, [1,n—1)X1,n — 1|
—sin6, cos b, (|0,n¥1l,n — 1|+ |1,n — 1}0,n]) . (C4)

The reduced qubit density matrix is then given by

ﬁgﬁn = TtresPo = cos? 0, |0X0] + sin? 6, |1X1]| , (C5)
which demonstrates that the qubit is not in a pure state.
There are no off-diagonal terms in the reduced density
matrix because the terms that are off-diagonal in the full
density matrix (C4) are also off-diagonal in the resonator
index and do not survive the partial-trace operation. The
purity of the reduced density matrix (C5) is given by

2
Py =Tr (ﬁgm) = cos* 6, +sin* 0, . (C6)

In the dispersive limit of small 6,,, we observe that Pg- ~

1 — 2sin?60,,. Thus, the qubit purity decreases twice as
fast as the probability of finding the qubit in its bare
ground state, which is simply 1 — sin?#,,. This cannot
explain our numerical observations that purity remains
close to 1 up to relatively large photon numbers during
the readout drive.

3. Dressed coherent states

We now consider a generic state of the system within
the same ground-state eigenladder:

where Y |Cy|? = 1. A dressed coherent state of Eq. (5)
is formed for C, = a"e"a‘2/2/\/m. The full density



matrix for the state (C7) is given by

pw—ZC Cri (cosby, |0,n) —sinb, [1,n — 1))

X (€080, (0,n'| —sin b, (1,n" —1|) . (C8)

To find the reduced qubit density matrix ﬁi, we only need
to keep track of the bra-ket pairs with the same photon
number. Such pairs come from the diagonal terms when
n =n' and the off-diagonal terms when n =n’ £1 (e.g.,

from the same or nearest-neighbor RWA strips). Thus,
we find
P = po [0XO1+py 11X +p8y [0XL]+(051)" [1XO], (C9)
where
plo = (cos? 0,,) Z|C’ | cos? 0, , (C10)

J

2 2
Py =Tr (bi)z = <Z |C,n]? cos? 9n> + (Z |C,|? sin? 9n> +2

11

pl, = (sin?6,,)

(C11)

Z|C’ |*sin?6,, ,

and

Pl =~ Z CnCiyqcosbysinby, . (C12)

This more generic expression contrasts with the reduced
density matrix given in Eq. (C5) for an eigenstate. While
the diagonal matrix elements of ,Z)fp are simply averages of
those in Eq. (C5), off-diagonal elements appear only in
the general expression (C9). They arise from the joint
contributions of the nearest-neighbor RWA strips and
increase the qubit purity. For a state |¢) that is al-
most evenly “spread out” over many RWA strips such as
the dressed coherent state |0, ) with |a|> > 1, we have
Cn ~ Cpy1 and 6, ~ 0,41 for the dominant terms, so

lpdi] ~ /pdopt,. For a perfectly pure state, of course,

P61 =/ PoorTs-
The generalization of Eq. (C6) for the qubit purity is
given by

2

E CnChyqcosbtysinb,
n

2
=1-2 (Z |C,u |2 cos? 9n> <Z |C |2 sin? 9n> +2 Z CnChy i cosbysinf, (C13)
n n n
Since 0,, = 0 when n = 0, we can shift index n by one in the sum containing sin? 6,, to find that
Py=1-2 Z (\Cn|2\Cn/+1 % cos? 0, sin® 0,1 — CnCr 1 CCrigq €08 0y, sin 0y, 1 cos by, sin 971/4_1)
n,n’
=1- Z [|C’n|2|C’n/+1|2 c08? 0, 8in? 0, 1 + |Crr |2|Cry1]? cos? 0, sin? 0,41
n,n’
—(CnhCpr 1 CrCrrr + C Oy 1 Cr Crg1) cos By, sin 0y, 11 cos B, sin 9n/+1]
=1- Z |CpChiy1 cos by, 8in 0,1 — CprCryq cos b, sin 9n+1|2 (C14)
n,n’
For a dressed coherent state |0, ), we thus have
P o—2lal? Z |27 D) cos B, sin O,y o8 O sin9n+1)2 (C15)
O nin/! Vvl + 1 N

n,n’

4. Dispersive limit

Let us find the leading contribution in the dispersive limit when |a|? < A?/(4¢%). We first notice that if we simply
use 0, ~ \y/n and cosf, = 1, the result would be Poa = 1, so we should consider higher-order corrections. Using



12

Eq. (C3) and keeping the terms up to the cubic power in Ay/n, we find

siné,, = \/n — ;(A\/ﬁ)?’ + 0 ((AWn)?) ,

1 (C16)
cosf, =1 — 5(A\/ﬁ)"‘ +0 (W)Y,
and
cos 0, sin 6,/ 11 {n 3(n' + 1)] 3 5
— == |4+ ——=| X+ 0(\), C17
NCES 2 2 (3 (C17)
SO
cosOpsinf,iq  cosby, sin 0n+1>2 NG s
— =(n— A O(N°). C18
(= VZEST (= AT O (C18)

Therefore, the effect of the qubit purity being different from one is in the sixth order in g/A!l In reality, deviations
of the real state from the dressed coherent state and deviations from the dispersive limit can give lower-order terms
in A

To evaluate Eq. (C15), we calculate

Fla) = 2ol Z |0<|2 e H) 7 _ 9p-lol? Z |04|2 (nt1) 9e—2lof’ (Z |04|2"+1 )
2
2 |Oz‘2("+1) 3 5 |a|2n+1
n>1 ’ n>1 )
Therefore, we find in the dispersive approximation
6
Pow = 1—2/af* (%) . (C20)

In Fig. 8, we show this approximate result by dashed lines.

5. Strong hybridization

Let us now consider the regime opposite to the dispersive approximation. Namely, we assume that |a|? > A? /g2
so the Fock states hybridize very strongly and 6,, ~ /4 for relevant n. Using cos8,, = sin6,, = 1/2 in Eq. (C15), we
find

e—2|(x\2 |a‘2(n+n/+1) 1 1 2 e-2|o¢\2 ‘Ot|2"‘04|2("l+1)
16 nn/! (\/n’+1_\/n+1) 8 &l + 1)

—2|a|? n 2 —|a? n
- > Pt )y 1o ] 5 |1te leaI? o Zvn+ 1)
8 — nlvn +1 8 — nlvn+1

This expression suggests that even in this strong-coupling regime, the dressed coherent state is very close to being
pure.

(C21)

(

Appendix D: Dissipation effects by integrating the Lindblad master equation with the
collapse operator v/ka using the Monte-Carlo-quantum-
trajectories solver of QuTiP [34, 35]. In Fig. 9, we show

In this appendix, we verify the robustness of qubit the results of these simulations for /27 = 25 MHz and
purity to the dissipation effects. To this end, we sim- two different values of the resonator decay rate x, which
ulate the dissipative dynamics for parameters of Fig. 3 are close to |x| and 3|x| with x/2m ~ —1.55 MHz being
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FIG. 9. Time evolution of the initial state |0,0) in the pres-
ence of the resonant readout drive with /27 = 25 MHz for
a coherent dynamics (dashed lines) and in the presence of dis-
sipation (solid lines) for parameters of Fig. 3. (a) Resonator
photon occupation <de> versus time t. (b) Purity error 1—7Pg
versus <&Td> with the dashed line matching the dashed line
of Fig. 3(c). Gray shading highlights the same regions as in
Fig. 3.
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to its value for a coherent system (dashed line). Second,
comparing Figs. 3(c) and 9(b), we observe that the effect
of k is opposite to that of € since both increasing x and
reducing ¢ result in a higher probability of an adiabatic
transition at an avoided-level-like crossing.

Appendix E: Perturbation theory for matrix
elements

Here, we calculate the matrix elements of a' for the
states within the same eigenladder perturbatively, as-
suming charge coupling. For the same eigenladder, the
first-order perturbation theory gives zero correction, and
we need to perform the calculations in the second order.
For fluxonium, the perturbation (qubit-resonator inter-
action) has the form

V =V,(g) = —ihgn (a - aT) . (E1)
the resonator dispersive shift for given parameters. First,
we find that the purity error 1 — Py remains very close
J
For the bare states, we have
(K, 0|V |k,n) = igOw 1, (Vn+ 10, ni1 — Vibnin—1) (E2)

where Oy, = B (k'| 7 |k) . Then, the dressed state up to the second order in g, including the normalization correction,

has the form

1 K. n'|V|k,n)|?
kony=|1-> > [, m] |’n>‘2 |k, n) +
2 (En — Eir )
(k'Y kn) R T EE R
n Z (K 0| VK" ") (K", 0" |V |k,n)

E’ﬂ_E/n’ E’I’L_E”n”
{k’,n’},{k”,n”}#{k,n} ( k’ k7 )( k7 k s )

/AR
Z (k‘,n|V|k,n> |k/,n/)

Epn— By
(YA k) n T R
k,n|V |k,n) (K, n'|V |k
|k/,n/>7 Z < ,TL|V‘ ,TL>< ’n|2/| vn> |k/,n/>.
{k' ,n'}£{k,n} (Ek,n - Ek’,n/)
(E3)

The last term in this expression is exactly zero because it contains a diagonal matrix element of V. The other terms

yield

2
— g 2 n+l
= 1 — =— ’
k,n) { 5 Ek/ |0k k| |:(Ek T B — w2 +

vn+1

(Ek - Ek’ +wr)2:| } |k,n>

N

' Opp | =———— K ) ———F—— |k n—1
+zg; k’k{Ek—Ek/—wJ ,n+1) Ek_Ek’+wr| N >]

(n+2)(n+1)

- ¢ E O k7 Ok ke
k:/,k//

E.n+2)+
(Ek — Ek/ — QWT)(Ek — Ek// — wr) | >

n

n(n—1) ,
-2
(Ek — Ep + QWT)(E]C — Eprv + wr) |k 7t >‘|

n+1

+g° Z Ot 1 Oprr i

k' #k, k"

[(Ek — By )(Ex — Exr +wr)

t (Er —Bw)(Er — B —wr)} |k',n) . (E4)
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Thus, we find

_ 2n + 3 2n+1
k /ATk = 1 1—* O/ 2 5n’n
(kw'|al [k, m) = v+ { Z‘ .k [Ek—Ek/—w,.)2+(Ek—Ek/+wr)2]} i

n+2)(n+1 n n+1 n+2)(n+1
( )( )5n’,n+2 - (Sn’,n - 5n/,n + ( )( )
—wy W —Wy Wy

2 n + 2)\/ +1 nyn + 1 n\/ﬁén',n—l + \/(n + 3)(” + 2)(” + 1)671’7”4-3
+9 ZlOk / + 2 5n’,n+1 -
E — By — wr) (Ek — Ey + wr) (Ek - B — wr)(Ek — B + WT)
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Vi +3)(n+2)(n+1)
QWT(Ek — By + wy)

+ igOk,k 5n’,n+2

) Vi3 + 2)(n+ D)
Z |O 2(.07)(Ek - Ekl - wr)

n+ 1)y/n
7922|0k,k/|2 ( )\/>
k/

2w, )(Ey — Ex — wy)
We note that Oy, = 0 is the expectation value of the momentum operator in a one-dimensional bound state and
that the terms with d, ,3 cancel each other out. Therefore, only the following matrix elements within the same
eigenladder are nonzero in second order:

§n’,n+3 +

5n’,n—l +

5n/,n+3 (E5)

S 1 1
AT . _
(k,n+1|a |k,n>—\/n—|—1{1+ E |0, { Fr— By —w,)? (Ek—Ek'+wr)2]} (E6)

and
e Ey — By
Eon—1latkn) =g¢*vn>  |Oww|? . E7
< ’ ’ > g f;' k| wy(Ey — Ep — w,)(Ey — B + wy) (E7)
We next find the expectation value for the dressed coherent state:
2n
Fralalfa) = e S0 1O [or (ki 1jal [fon) + o (Ronfa [Fon 5 1)
(Rl Fr0) = " 3 s (o (o Tl ) + o (Rl B )
= o Z 0 1L [ o - o + 20(Byc — B ]
o kok! n! (Ek — FBp — wr)Q (Ek — Fi + wr)2 wr(Ek — By — wr)(Ek — FE + wr) '
(E8)

At o — 0, this expectation value does not simply reduce to Eq. (E6) but has a correction coming from Eq. (ET7).
Finally, the matrix-elements error (6) is given by

Z|O . |: 1 _ 1 + Q(Ek*Ek/)(Oz/Oé*) :|
k| Ey— Ey —w)?  (Ep— Ep +w)? | wp(Ex — By — w)(Ep — B + wy)

o (E9)

70‘7

g
2

which is shown by the dashed line in Fig. 3(d). We thus find that & . calculated perturbatively depends on the phase
of a but is independent of its magnitude. In simulations in this paper, we used o = |a|e’™/2.
[

Appendix F: Identifying measurement-induced state condition wig &~ 2w,, see Fig. 4(b). In Figs. 10(a) and
transitions with different metrics 10(c), we show zoom-ins into Figs. 4(f) and 4(h), while

Figure 10(b) shows the purity error recalculated for a

much smaller drive amplitude €/27 = 5MHz but for a

In this appendix, we investigate the dependence of  longer pulse time of 400ns. [For visual clarity, the data
qubit purity on the drive amplitude and compare dif-  in Fig. 10(b) are extrapolated whenever the maximum
ferent metrics in more detail. To this end, we focus on  resonator occupation reached is below the vertical axis

the features near ®cx;/®o = 0.3 in the right column of  limit of 80 photons.] We immediately observe that when
Fig. 4, which correspond to the two-photon resonance
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FIG. 10. (a) Zoom-in into Fig. 4(f) near ®ex;/Po = 0.3.
(b) Same but for the purity error 1 — P; calculated for
€/2m = 5 MHz instead of 25 MHz. (c) Zoom-in into Fig. 4(h)
over the same external flux range. The color scales in panels
(a—c) match those in Figs. 4(f) and 4(h). The solid lines in
panels (a—c) show ncross defined as the location of the avoided-
level-like crossings between eigenenergies Fi3 and Epn—5
with an energy gap 2¢es in an analogy to Fig. 2(d). (d) The
parametric plot 2geg versus neross- Circles and squares high-
light identical flux values in the left-column panels. In panels
(e—g), solid lines show 1 — P1 (e), Pi,dressea (f), and qubit
occupation Ny = >, k (k|p,|k) (g) versus (a'a) for 5 values
of the drive amplitude £ and the flux corresponding to the
red circles in the left column. The area around ncross = 6 is
shaded; and the additional dashed line in panel (e) shows &1 «
versus |a|?. (h) Squares (circles): purity error 1 — P versus
Py dressea calculated at <dfd> = 25(30) for the left-column
purple squares (red circles) and for the same set of £ values
as in panels (e-g).

compared to Fig. 10(a), the onset of features in 1 —P; in
Fig. 10(b) generally occurs at a lower resonator occupa-
tion 7, with the value closer to the onset of the feature in
&1,q seen in Fig. 10(c). To understand this effect, we ex-
amined the avoided-level-like crossings between dressed
energies of states I,_n> and |6,n — 2> at various Peyt by
calculating their locations nc..ss and the corresponding
energy gaps 2¢gefr, following the methodology of Fig. 2(d).
We superimpose neposs versus ®Peyt in all the heat maps
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of Fig. 10, and we plot 2geg versus nNeross in Fig. 10(d).

Figure 10(d) reveals that the gap 2g.s grows with ncross
monotonically. Moreover, because of the two-photon-
resonance condition, this dependence is almost linear as
expected for a second-order effect with the matrix el-
ements of the qubit-resonator interaction V,(g) scaling
as gv/n. We next observe that the onset of the features in
1—"P is less sensitive to the drive amplitude € when ncposs
and therefore the gap 2g.g are both larger. That is, this
onset occurs at almost the same 7 ~ Ngposs 0N all three
heat maps at @ext/Po < 0.27, where 2ges /27 approaches
20 MHz, causing increased adiabaticity of the transition
through the avoided-level-like crossing during the res-
onator ring-up. In contrast, for the flux corresponding
to the purple square, where 2ges /27 is only 3 MHz and
the adiabaticity is noticeably reduced for large ¢, the on-
set for €/2m = 25 MHz occurs at 7 several times larger
than neoss = 3. As aresult, the value of 71 for the onset of
features is higher for 1 —P; calculated at £/2m = 25 MHz
than for £ o. A similar observation holds for other mul-
tiphoton resonances in Figs. 4 and 5.

In Fig. 10(e), we further explore the sensitivity of the
purity error to the degree of adiabaticity of traversal
through the avoided-level-crossing-like region. We show

+

1 — Py versus <d d> calculated for several values of ¢

(solid lines) at the flux corresponding to the red circles in
the left column, when neposs = 6 and 2geg /27 ~ 6 MHz.
We supplement these curves by showing &1 , versus |a/?
on the same plot (dashed line) and P gressed and qubit
occupation N, = >, k(k|p,|k) in Figs. 10(f) and 10(g)
for the same set of e. For the smallest /27 = 5MHz
(blue lines), the error 1—7P; is accumulated mainly within
the avoided-level-crossing-like region (shaded area), with
a rapid increase appearing closer to the one in the drive-
independent metric £ o. In this case, the probability of
the adiabatic transition and therefore of staying within
the |L_n> eigenladder is near 40%, resulting in an approx-
imately 60%-40% population split between the bare qubit
levels |1) and |6) and N, ~ 3. We explain the earlier onset
of changes in both 1—P; at smaller € and &; ,, by the met-
rics sensitivities to the right tail of the photon-number
distribution in |1,_a> entering the avoided-level-crossing-
like region ahead of the average reaching ncross — v/Mcross-
In comparison, for the largest e/27 = 25 MHz (purple
lines), when the probability of the adiabatic transition is
below 10% and about half of the change in Ny comes from
the increased hybridization of the bare states in 1,_n>
rather than the MIST, 1 — P; is accumulated mainly af-
ter the avoided-level-crossing-like region. In this case,
the accumulation of the purity error is due to the left
tail of the photon-number distribution in the state ‘1,_04>
During the resonator ring-up, the width of the distribu-
tion increases with the points in its left tail moving more
slowly than those in its center and right tail, increasing
the relative contribution of the left tail to the probability
of the adiabatic transition.

Finally, we briefly discuss the relation between 1 — Py
and the MIST probability, which is given by the prob-




ability of the adiabatic transition, i.e., P dressed af-
ter the avoided-level-crossing-like region; see the end of
Sec. IIT A. In Fig. 10(h), we show 1 — P versus Pj dressed
with the values taken after the avoided-level-crossing-like
region, when both metrics saturate. Here, the points are
sampled from the simulations for ®.,; marked by circles
and squares in the left column of Fig. 10. We find that
the purity error increases monotonically with the MIST
probability. We note that this observation is not general
and may be violated when 2g.¢ is larger and the adia-
baticity is higher. Nevertheless, Fig. 10(h) suggests that
the purity error 1 — Py is a good proxy metric when the
probability of MISTs is small, an experimentally relevant
high-fidelity readout regime.

Appendix G: Measurement-induced state transitions
in a transmon qubit

To facilitate comparison with a recent transmon
study [12], we include the simulations for a transmon
qubit defined by the Hamiltonian [37]

H,=4Ec(h —n,)* — Ejcos . (G1)
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Here, ng is the offset charge, which can often be ignored
in the transmon regime E;/Ec > 1 but must be taken
into account in a MIST study due to the sensitivity of
higher-lying transmon levels to ngy [12]. We intention-
ally do not assume any approximation and use the drive
term of the form (3) together with the qubit-resonator
interaction term

Var(g) = ihg(i —ng)(a' —a).

We present our simulations in Fig. 11 for the parameters
of Ref. [12]: w, /27 = 4.751 GHz, Ec/h = 0.194 GHz,
e/2r = 45MHz, and keg = 0.048 for the qubit-
resonator coupling efficiency. For each value of the qubit-
resonator detuning A = wg; — w,, varied in the range
between 0.7 and 1.6 GHz, we calculate E; to match
the qubit frequency wp; and find the coupling strength
g = kesry/worwr/(2(0[n[1)) = 27 x 92.2 MHz, which is
independent of E;. Although the averaging over n,
is straightforward and is necessary to explain the ex-
perimental observations in Ref. [12], the simulations in
Fig. 11 are done for a fixed ny = 0.2 to preserve the clar-
ity of the transition-frequency diagrams in Figs. 11(a)
and 11(b). Even with a fixed ng4, the simulations agree
very well with the experimental data of Ref. [12]. These
simulations do not rely on the RWA approximation used
in Ref. [12], although the RWA approximation can pro-
vide similar results in a faster computational runtime.
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