
TEE-SHirT: Scalable Leakage-Free Cache

Hierarchies for TEEs

Kerem Arıkan*, Abraham Farrell*, Williams Zhang Cen*, Jack McMahon*, Barry Williams*,

Yu David Liu*, Nael Abu-Ghazaleh�, and Dmitry Ponomarev*

*Binghamton University
�University of California, Riverside

Abstract—Protection of cache hierarchies from side-channel
attacks is critical for building secure systems, particularly the
ones using Trusted Execution Environments (TEEs). In this pa-
per, we consider the problem of efficient and secure fine-grained
partitioning of cache hierarchies and propose a framework, called
Secure Hierarchies for TEEs (TEE-SHirT). In the context of
a three-level cache system, TEE-SHirT consists of partitioned
shared last-level cache, partitioned private L2 caches, and non-
partitioned L1 caches that are flushed on context switches and
system calls. Efficient and correct partitioning requires careful
design. Towards this goal, TEE-SHirT makes three contributions:
1) we demonstrate how the hardware structures used for holding
cache partitioning metadata can be effectively virtualized to avoid
flushing of cache partition content on context switches and system
calls; 2) we show how to support multi-threaded enclaves in TEE-
SHirT, addressing the issues of coherency and consistency that
arise with both intra-core and inter-core data sharing; 3) we
develop a formal security model for TEE-SHirT to rigorously
reason about the security of our design.

I. INTRODUCTION

Cache hierarchies are the target of many recent side-channel

attacks that leak critical information from systems [4], [11],

[19], [29]–[31], [36], [43], [45], [49]–[52], [59], [64], [65],

[70], [72], [74]. These attacks enable a malicious process to

infer secret information about a victim process by observing

the performance of its memory accesses as they interact with a

shared cache. Side-channel information leakage also enables

dangerous transient execution attacks [42], [43], [64], [70],

where the attacker forces speculatively accessed secrets to

be exposed through cache side-channels. Cache-based side-

channel attacks also compromise Trusted Execution Environ-

ments (TEEs) such as Intel SGX [17]. While TEEs provide

logical isolation, they are still vulnerable due to the physical

sharing of resources. Indeed, a number of recent cache-based

attacks have been demonstrated against SGX [11], [19], [29],

[50], [51], [64]. It is therefore critical to integrate leakage-free

cache hierarchies into TEEs, augmenting the logical isolation

with physical isolation to eliminate side-channel leakage.

In this paper, we investigate cache partitioning mechanisms

for TEE systems with the goal of protecting the entire cache

hierarchy, and not just a single cache level. Cache partitioning

is a principled approach to security that physically isolates

applications from each other eliminating leakage due to con-

tention on shared resources. Since cache partitions belong-

ing to different applications (or enclaves in TEE systems)

are isolated, the behavior of the victim process does not

impact any cache-related observations by attackers, making

attacks impossible. Existing secure cache partitioning schemes

consider only a single level of caches, either private upper-

level caches [23] or shared LLC [41], [44], [56], [63]. These

schemes partition caches by ways [23], [41], sets [21], [56],

or both [63]. Without loss of generality, we study fine-grained

approaches that partition caches by both ways and sets [63].

Various levels of the cache hierarchy require different

approaches to achieve security. It has been established that

cache partitioning is an effective approach for shared last-level

caches [56], [63]. At the same time, prior research demon-

strated that L1-caches can be flushed on context switches

to prevent leakage with minimal loss in performance [28].

In this paper, we also make a case that private L2 caches

have to be partitioned, and present TEE-SHirT, a security

framework for multi-level cache hierarchies that combines a

shared partitioned LLC, private partitioned L2 caches, and

private L1 caches that are flushed on context switches and sys-

tem calls. Partitioning private caches introduces performance,

consistency, and coherence challenges, especially with multi-

threaded workloads. To ensure high performance, correctness,

and security of the entire memory hierarchy with TEE-SHirT,

this paper makes the following key contributions.

First, to avoid scalability limitations due to the limited

capacity of cache partitioning logic, we propose to virtualize

the cache partitioning metadata to enable partitions to be

tracked and maintained even when their respective enclave

is not actively running. Specifically, we integrate cache par-

titioning metadata into an enclave context that can be saved

and restored on context switches using mechanisms available

in Intel SGX. We augment existing SGX data structures to

include information about cache partitioning metadata, making

partitioned caches an integral part of the SGX ecosystem.

Once this support is established, the number of enclaves

simultaneously sharing the cache space is limited only by

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24390
www.ndss-symposium.org

L1 Cache

...

T
h
re

a
d
s

Cores

C
o
h
e
re

n
t

O
n

-C
h
ip

 I
n

te
rc

o
n
n

e
c
t LLC - L3

Cache

M
e
m

o
ry

 M
a
n
a
g
e
m

e
n

t
U

n
it

...

To
 O
ff-

C
h
ip

 M
e
m

o
ry

..
.

L2 Cache

L1 Cache L2 Cache

L1 Cache L2 Cache

T
h
re

a
d
s

T
h
re

a
d
s

Fig. 1: A conventional 3-level cache hierarchy.

the total cache capacity, and not by the number of physical

instances of hardware structures used to support partitioning.

Second, we address new consistency and coherence prob-

lems with multi-threaded enclaves when they use multiple

levels of partitioned caches. When multiple threads of an

enclave are scheduled on the same core, multiple partitions

(one for each thread) for the same enclave can be formed

within a single private L2 cache. Maintaining coherence of

data within the same cache is not supported by traditional

cache coherence protocols since they assume that at most a

single copy of a cache line exists in each cache. Furthermore, it

can also be possible that some private caches can maintain the

most recent copy of shared data, but the partitioning metadata

of the enclave that produced this data while executing on that

core is currently context-switched out. In this case, the cache

coherence protocol would be missing the metadata to perform

the cache query correctly and will need to be augmented.We

describe our solutions to both of these problems to provide

a coherent and consistent memory system in the presence of

shared and private partitioned caches.

Third, we prove security guarantees of TEE-SHirT through

a formal security analysis that is based on cache-aware and

enclave-aware operational semantics to account for the alloca-

tion across multiple levels of cache. Our analysis accounts for

enclave behavior in a variety of settings, including enclave

creation and destruction, and a full consideration of cache

coherence and context switch.

We evaluated the performance of TEE-SHirT using various

benchmarks, including MiBench [34], SPEC2017 [12], and

WolfSSL [2] functions, using gem5 [7] cycle-accurate microar-

chitectural simulator. To estimate the area overhead of TEE-

SHirT, we implemented parts of our design within the open-

source cache subsystem of the open ESP project [46]. We

integrated a prototype of TEE-SHirT with a 4-core CPU in an

open-source System on Chip (SoC) platform, demonstrating

an overhead of less than 2% relative to the baseline system.

II. BACKGROUND AND THREAT MODEL

In this section, we provide background on modern cache

hierarchies and the concept of cache partitioning for security,

overview relevant components of Intel SGX’s ecosystem, and

describe our threat model.

A. Cache Hierarchies

Figure 1 shows a typical three-level cache hierarchy of a

modern CPU. Each core has private L1 and L2 caches, and the

L3 cache (also called LLC interchangeably) is shared among

Tag Set Index Offst.

CPT

Partition Idx Way Mask

New Tag

Cache Lines

Partition Offset

 1 1 1 0
x

Tag Matching

Cache Partition

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

Fig. 2: Enclave address remapping in partitioned caches

all cores/threads running in the system. This is representative

of recent designs from major CPU manufacturers [13], [24],

[35], [38], [61]. While L1 and L2 caches can be shared

by threads simultaneously running on the same core in a

simultaneously multithreaded (SMT) processor, we do not

consider SMT in this paper — it is often disabled for security.

However, even if SMT is used, private caches can be statically

partitioned by ways across threads to provide isolation. Note

that the number of simultaneous threads is typically smaller

than the number of cache ways at the levels of private caches.

If such provisions are implemented, then the rest of our

design applies even to SMT systems (each thread works within

its own partition). In some designs, L2 caches are shared

by multiple neighboring cores. While we do not explicitly

evaluate such systems (due to the limitation of our gem5-based

simulation infrastructure), our partitioning principles apply to

them as well.

B. Partitioned Caches for Security

We consider TEE-SHirT in the context of hardware-

supported cache partitioning schemes, in particular in the

context of Composable Cachelets [63]. The key idea is to

create isolated cache partitions (CPs) for each enclave running

on a TEE system. Each CP is composed of the number of

consecutive sets and one or more ways. At a high level, a

hardware component is added to the cache circuitry to control

accesses to CPs. This component is called the Cache Partition

Table (CPT) and it holds the metadata related to cache

partitions. Specifically, this metadata includes the mappings

between the original set indices to the indices within allocated

CPs, and the way mask to indicate which cache ways belong to

this partition. This information is maintained at the granularity

of partition sizes in terms of the number of sets. By going

through the CPT, the original memory address generated by

an enclave can be remapped to a cache location within the

allocated CP.

Figure 2 shows the address remapping mechanism for cache

accesses from enclaves. Entries of the CPT are accessed with

the higher bits of the set index. The accessed CPT entry’s

partition index points to a group of sets that belong to the

enclave’s CP. Depending on the desired partition size and

shape, one or more of the CPT entries can be established by an

enclave, thus appropriately deflecting the initial addresses to

physical cache indexes within the boundary of the allocated

CP. The set index’s lower bits are used as partition offset,

where they point to the specific set within the CP. The way

2

mask determines which cache ways belong to this CP and

therefore should be checked. For example, in Figure 2, the

way mask is set as 1110, which denotes that ways zero, one,

and two belong to the CP being accessed, and way three does

not (in a 4-way cache).

C. Relevant Intel SGX Data Structures

One of our contributions is to build support for saving cache

partitioning metadata on context switches and system calls.

We demonstrate it using Intel SGX as a target TEE. In this

section, we provide relevant background on SGX and its data

structures.

In the memory layout of SGX, enclaves’ metadata is stored

in a dedicated data structure called Enclave Page Cache

(EPC) [17] within the Processor Reserved Memory (PRM).

SGX also deploys an architectural layer of integrity checks by

keeping a set of security records called the Enclave Page Cache

Map (EPCM). Each entry of the EPCM contains a pointer to

each EPC page, as well as the page type and permissions of

the corresponding EPC pages.

The EPC includes several pages that contain enclave meta-

data. The SGX Enclave Control Structure (SECS) page main-

tains a data structure that has basic information about an

enclave such as its size, Enclave ID (EID), and base address.

To support multithreaded enclaves, SGX maintains an EPC

page called the Thread Control Structure (TCS). The TCS

mostly contains the offsets of various EPC pages of the

corresponding thread (code pages, execution context, etc.). To

support context switches, SGX saves the enclave’s execution

context to a set of pages called the Save State Area (SSA) upon

a hardware exception. Each thread’s SSAs can be composed

of several pages called the SSA Frame Size. The SSA Frame

Size is held in SECS, while the offset of the last SSA page

is pointed to by the TCS. All of these structures are mostly

controlled by the hardware, mainly the Memory Management

Unit (MMU).

D. Threat Model

TEE-SHirT can be used to protect any program that uses

it, but we use a threat model that assumes a more powerful

adversary similar to the threat model of SGX [17]. Specifi-

cally, we assume that the system software, including OS and

hypervisors, is untrusted and that the attackers can exploit

any mechanisms available within these privileged software

layers to amplify their attacks. We also assume that the

attacker can mount any cache side-channel attack strategy such

as Prime+Probe [39], [45]. Importantly, TEE-SHirT protects

from situations where simultaneous attacks on multiple cache

levels are possible and the attacker can leverage multiple

threads (or enclaves) executing on multiple cores in the system,

including the core on which the victim application executes.

While we do not directly address denial-of-service attacks,

we limit the cache space that can be allocated to enclaves by

reserving at least one or more ways for non-enclave programs.

This reservation also has the important effect of allowing non-

enclave programs to access the cache without going through

fft jpeg lame rijndael sha susan0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 IP
C Performance Impact of L1 Data Cache Flushes

Baseline Time Quantum = 1ms Time Quantum = 10ms Time Quantum = 25ms

fft jpeg lame rijndael sha susan
Benchmarks

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 IP
C Performance Impact of L2 Cache Flushes

Fig. 3: Performance impact of private cache flushes in inclu-

sive hierarchies

the process of index remapping since at least one way is

always available for non-enclave programs in every set.

III. A CASE FOR PARTITIONING L2 CACHES IN INCLUSIVE

HIERARCHIES

Previous efforts convincingly established that partitioning

of the LLC and flushing of private L1 caches are attractive

solutions for securing those cache levels [10], [28]. In this sec-

tion, we explain in more detail why private L2 caches should

also be partitioned. Flushing a non-partitioned L2 on context

switches will have a more significant impact on performance

due to the larger size and higher miss latencies. To demonstrate

the performance impact of flushing L1 and L2 caches, we

performed experiments with six encryption benchmarks from

MiBench suite [34]. We account for invalidation and writeback

operations by blocking the cache until they are completed.

We also implement back-invalidations to ensure inclusivity.

Figure 3 shows the normalized commit IPC (Instructions per

Cycle) metric for scenarios where the L1 data cache and the

L2 cache are flushed on context switches with three different

time quantums. As observed, with L1 data cache flushes, IPC

impact does not exceed 2% for all benchmarks, whereas the

L2 cache flushes cause between 6% and 53% slowdown for

25ms time quantum. These results reassure the notion of L2

cache flushes being infeasible for performance.

Furthermore, if an L2 cache remains non-partitioned, an-

other performance and scalability problem arises in a system

with inclusive cache hierarchies. Inclusive cache hierarchies

ensure that data that resides in an upper-level cache (say, the

L2) also exists in a lower-level cache (say, the LLC). This

organization simplifies cache coherence hardware because the

absence of data in the LLC also indicates that the data is

not in the private caches, thus avoiding unnecessary snoops

and providing snoop filtering capabilities. Inclusive cache

hierarchies are commonly used in modern CPUs [33]. To

support inclusivity, the key additional mechanism used in such

systems is back-invalidation, where the eviction of data from

the LLC also caused the eviction of this data from all upper-

level private caches (note that the term ”upper-level” refers to

caches that are closer to the CPU).

In traditional cache hierarchies, the L3 cache (LLC) has

a larger size than the L2 cache. However, let us consider a

cache hierarchy where the L3 cache is smaller than the L2

cache in an inclusive cache hierarchy. A simplified example

3

A
A

access A

access B

access C

access D

access

sequence

load

data A to

L2 from the

main memory

load line A

to L2 from L3

L2 cache
L3 cache

A
A

access A

access B

access C

access D

access

sequence

load

data B to

L3 from the

main memory

load line B

to L2 from L3

L2 cache
L3 cache

B
B

A
C

access A

access B

access C

access D

access

sequence and load line C

and load line C

to L2 from L3

L2 cache
L3 cache

B
BC

delete line A

back-invalidate line A in L2

X
C

access A

access B

access C

access D

access

sequence
and load line D

and load line C

to L2 from L3

L2 cache
L3 cache

B
DC

delete line B

back-invalidate

line B

X

D

Fig. 4: An example of back-invalidation in inclusive cache

hierarchy

of this scenario is depicted in Figure 4, which represents a

cache hierarchy featuring fully associative L2 and L3 caches

with 4 and 2 lines respectively. The program accesses lines A

and B, which are loaded into both L2 and L3 caches. Later,

when line C is accessed, the least recently used line in the L3

cache (in this instance, line A) is evicted. As a result, line A

must also be back-invalidated in the L2 cache to sustain the

inclusivity with the L3 cache. The same sequence of events

occurs for line B when line D is accessed. As a result, the

effective capacity of L2 degenerates to that of L3 (2 lines).

Now let us project this example to a cache partitioning

system. Exactly this situation would happen (on a larger scale)

if the L3 cache is partitioned, the L2 cache is not, and the

size of the allocated L3 partition is less than the size of the

L2 cache. As a result, if only the LLC is partitioned, then

either the performance suffers due to the effective reduction

of the L2 capacity, or allocated partition sizes in the LLC are

constrained to be larger than the L2 size. Neither of these

scenarios is a desirable outcome in a high-performance and

scalable TEE system.

IV. TEE-SHIRT

Following the arguments presented above, TEE-SHirT em-

ploys partitioned LLC and L2 caches, and a non-partitioned

L1 that is flushed on time-driven context switches and system

calls. We now describe the architecture of TEE-SHirT, address

its complexity, correctness, and performance challenges, and

develop a formal model to demonstrate security.

A. TEE-SHirT Design Overview

TEE-SHirT partitions private L2 and shared L3 caches

into smaller CPs. The partition size at every cache level is

controlled independently depending on the size of the caches

and the performance demands of the application. Enclaves can

request the allocations of CPs through additional instructions.

Though specific details are beyond the scope of the paper,

some possible solutions are described by prior work [63].

The high-level architecture of a multi-core system with

TEE-SHirT is illustrated in Figure 5. In this example, the sys-

tem has four concurrent enclaves, with Enclave 0 and Enclave

1 currently executing on Core 0 and Core 1, respectively. L1

caches are flushed on context switches and system calls. Thus,

they do not need additional support for security. However,

in the L2 and L3 caches, all four enclaves have allocated

C
o
re

 1

Coherent Snooping Interconnect

L2 Cache

CP - E0

CPMU

C
o
re

 0

L2 Cache

CP-0 CP-1

X

CPMU

Enclave 0 Enclave 1

CPTC-E0

CPT

CP - E0

CPMU
CPTC-E1

CPT

CP - E1

X(E)

C
o
re

 1

L2 Cache

CPMU

C
o
re

 0

L2 Cache

CP-0 CP-1

X

CPMUCPMU
CPTC-E1

CPT

L3 Cache

CPMU

CPMUCPMU
CPTC-E1

CPTCPMUCPMU
CPTC-E0

CPT

Additional Partition Coherence Logic

Memory Management

Unit

CPTC Handler

L1 Cache

CP - E0

L1 Cache

CP-0 CP-1

X

CP - E0 CP - E1

X(E)

CP-0 CP-1

X
Occupied by

Enclave 0

Occupied by

Enclave 1

CP-E0

CP-E2

CP-E1

CP-E3

CPTC

Buffers

To/From Memory

Enclave 2 and 3

Pending to be

scheduled:

CPTC-E0

CPT-0

CPTC-E1

CPT-1

...

...

CP-E1

CP-E0 CP-

E3
CP-E2

Fig. 5: An overview of the TEE-SHirT architecture

CPs that are isolated from other enclaves and also from non-

enclave programs. This system creates separation for different

processes in the cache. Notably, programs do not have to be

actively running on a core to have partitions in L2 and L3

caches (i.e. Enclaves 2 and 3 in this example). We describe

support to enable this feature in detail in Section IV-B1.

To support TEE-SHirT-related operations, every cache level

except for L1s is equipped with a Cache Partitioning Manage-

ment Unit (CPMU). We assume that allocation requests are

specified in terms of the desired CP size without specifying

a particular shape for the CP. In turn, TEE-SHirT maps

allocation requests onto a specific way-set partition of the

cache. This partition is represented in the metadata for the

CP within the CPT. We refer to this metadata - the contents

of the CPT - as Cache Partition Table Context (CPTC). The

management of CPTC is done by the hardware and is not

visible to the OS. This is implemented through a CPTC

Handler that is integrated with the MMU.

When an enclave requests a CP allocation, a physical region

within the cache is assigned to it. However, the allocated

region is likely to contain data that was placed there by another

program prior to the allocation request. If this data is not

evicted from the cache, it will no longer be accessible by the

original program once a CP is established. As a result, all the

dirty data within the allocated region has to be written back to

the lower-level structure. We now explain how the boundary is

established and how the data is written back and invalidated.

After the CPTC is created, two other activities take place:

1) CPTC update when the CPMU sends the newly generated

CPTC to main memory to be stored, and 2) gang-invalidation

which is the invalidation and write-back of existing cache lines

within the allocated region. In case an invalidated cache line is

dirty, it is also written back. To support inclusivity in inclusive

cache hierarchies, the invalidated cache lines are also back-

invalidated in upper-level caches.

All cache accesses that are initiated after the CP allocation

request must wait until all allocation operations have been

completed. Consequently, TEE-SHirT-related requests should

be globally serialized with regular cache accesses. During CP

creation, the new CP mapping should not take effect until the

4

gang-invalidation process is completed, even though the CPTC

has already been created.

Another requirement is that before the gang-invalidation

process, the CPMU has to ensure that all pending cache misses

are handled. This is because if a cache line with a pending

miss status is invalidated before being updated, then the newly

received version of the cache line cannot be written to the

cache since it is now reserved for an enclave. These operations

ensure that consistency is maintained across all the levels of

the cache system during CP allocation.

In the rest of this section, we address two key issues in the

design and implementation of TEE-SHirT: 1) how to maintain

partition data in the caches on context switches and sys-

tem calls without significant additional hardware complexity;

2) how to support multi-threaded enclaves with partitioned

caches.

B. Partition-Aware Context Switches and System Calls

To securely support context switches and system calls under

the untrusted OS, leakage in caches has to be carefully

considered during these operations. One way to handle this

leakage is to flush the contents of enclave cache partitions on

every context switch and system call. However, this can get

expensive for larger lower-level caches. Ideally, we would like

to preserve the CP contents of the enclave in the caches across

context switches and especially system calls. However, to do

this, the partition metadata (the CPTC) has to also be retained

to appropriately link to the corresponding CP. If a large number

of enclaves are sharing a system, maintaining multiple CPTCs

at the same time in the cache requires significant complexity

in the form of an additional number of physical CPTs.

1) CPTC Virtualization: We now address the challenge

of supporting the scalable operation, where the number of

enclaves that can share the cache subsystem concurrently is

only limited by the cache capacity and not by the availability

of CPTs or other similar remapping hardware. Partitioning

metadata has to be maintained for every enclave. Maintaining

this information only in the cache system entails significant

hardware complexity or restricts the number of concurrent

enclaves that can be running in the system. We now show

how this partitioning metadata can be effectively saved into a

reserved memory following a timing interrupt-driven context

switch or a system call, to be restored when the enclave

is rescheduled for execution. We call this scheme CPTC

Virtualization.

The key idea behind CPTC Virtualization is to leverage ex-

isting TEE data structures (using Intel SGX as an example) and

MMU hardware to maintain partitioning information rather

than allocating a separate CPT for each enclave in the system.

We accomplish this goal by storing CPTCs in the Processor

Reserved Memory (PRM) of Intel SGX and reloading them

back only when the corresponding enclave is scheduled to

run. Figure 6 contrasts the hardware requirements between

the CPT-per-enclave approach and CPTC virtualization. In the

following example, there are n enclaves running in the system.

Keeping CPTCs exclusively in the remapping logic may result

Enclaves

Remapping

Logic Cache

Remapping

Logic

 CPT-1

 CPT-n

 CPT-0

 CPT-1

Main

Memory

meta-

data 0

CPTC

0

Processor

Reserved Memory

...

e-0

e-1 ...

e-n

 CPT-0

Cache

...

CP-0Enclaves

e-0

e-1 ...

e-n

CPTC

1CP-1

CP-n

...

CP-0

CP-1

CP-n

CPTC

n-1
CPTC

n

...

Fig. 6: CPT-per-enclave (top) vs. CPTC virtualization (bottom)

in two possible scenarios when an n+1-th enclave requests a

new CP allocation:

Scenario 1: The lack of available CPTs will result in the

enclave waiting until one of the existing enclaves terminates.

This approach limits the maximum number of concurrent

enclaves to the number of physical CPTs provided by the

cache.

Scenario 2: The CPTC and CP of an existing enclave are

removed to make space for the n+1-th enclave, leading to loss

of the enclave’s cache contents, thus limiting performance.

We address the issue in Scenario 2 as follows. CPTC

virtualization requires that a CPTC should be present in a CPT

only if the corresponding enclave is executing in the core. If

an enclave is context-switched out of the core, its CPTC is

removed from the CPT since it is already stored in the PRM

memory. And if the program running on the core is a non-

enclave program, then the corresponding CPT is unused.

Importantly, note that the contents of an enclave’s CP are

not invalidated upon a context switch even when its CPTC

is removed from the CPT. Therefore, the enclave’s data is

preserved in the cache, addressing the problem in scenario

2 and resulting in substantial performance improvement in

system call-intensive workloads. The CP remains isolated as

TEE-SHirT diverts cache accesses from non-enclave processes

and other enclaves from this enclave’s CPs. Furthermore,

this design allows the CPT to load the CPTC when it is

needed, which eliminates scenario 1 and reduces the CPTs

in the remapping logic by n-1. We evaluate the impact of

the number of CPTs on hardware complexity in Section VI,

as well as the performance improvement CPTC virtualization

provides.

2) Memory Layout Extensions for TEE-SHirT: TEE-SHirT-

related operations must be performed without relying on an

untrusted system software. With TEE-SHirT, the Memory

Management Unit (MMU) conducts CPTC virtualization with

additional hardware. TEE-SHirT does this by extending the

SGX-reserved memory areas — the TCS, SSA, and SECS

(introduced in Section II-C)— along with the corresponding

EPCM entries.

Every SGX enclave maintains the TCS and SSA pages for

every thread. The TCS includes a set of offsets that point to

the head of particular data structures. For example, the Offset

of the SSAs (OSSA) contains the head of the SSA pages. We

5

Main Memory

EPC

......
...

...
...

...
...

MMU

CPTC

Handler

CPTC

Buffers

LLC

CPMU

CPT-0

L2 Cache

CPMU

CPT

L2 Cache

CPMU

CPT

CP

(new)

L1 Cache

L1 Cache

CP

(old)

Core 1

CP

(idle)

3 Allocate

CP in L1

6
Update L2

CPTC

5
Allocate

CP

7
Load

the CPTC

to MMU

9
Update CPTC

8
Fetch SSA

Offset

10
CPTC

Update

Response

11
Notify

Completion

...

EPCM

PT_TCS - - -

PT_REG r w -...
...

...
...

...

SECS

...

PT_SECS r - -

CPMU

CPMU

CPT-1...

CPT-n

SSA Pages

TCS

OSSA

OCPTCSSA

SSA Page 0

CPTCSSA

Page 0

Code and

Data Pages

CP

(old)

1
Context

Switch

2

Notify Context

Switch

Core 0

Old CP

Information

Baseline

Context

(old) X

X

PT_REG r - -

CPALLOCATED 1MB-3MB

Deallocate

the Old CP

Flush the

L1 Cache

CP Alloc.

Request

Baseline

Context

(new)

Update

L2 CPTC

4

12

Notify Completion

13

Notify Completion

Fig. 7: Context switching example for enclaves with CPs. White and yellow colored structures represent the standard logic.

Light blue represents structures associated with the CPTC of the enclave being switched out; while dark blue represents

additional logic and structures. Red arrows are related to the operations that are performed in the background and not a part

of the main workflow.

extend the MMU and the aforementioned areas to store the

CPTC alongside the traditional thread context.

We extend the TCS with the Offset of the CPTC State Save

Area (OCPTCSSA), which contains the relative address to

the head of the CPTCSSA pages. Considering that there is

a separate TCB for each thread of an enclave process, TEE-

SHirT can provide a non-uniform allocation to threads as an

additional feature, meaning that threads of the same enclave

can allocate differently sized CPs. In terms of composition,

there is no difference between regular SSA and CPTCSSA

pages. The only divergence between them stems from the

contents and corresponding permission bits in the EPCM,

which has rw- permissions for the regular SSA pages. Due

to security implications, we cannot let any software explicitly

modify the CPTCSSA; that task is handled only by TEE-

SHirT. Hence, we reduce the permissions on CPTCSSA pages

to r- - for ”read-only”, making them non-cacheable and

accessible only by the hardware.

To store the combined CP size allocated by an enclave, we

can also add an auxiliary field called CPALLOCATED to SECS

to store the total CP sizes for the enclave on each cache level.

In the figure, the CPALLOCATED indicates 1MB and 2MB CP

allocation for L2 and L3 caches, respectively.

3) Partition-Aware Context Switches: Figure 7 illustrates

the cross-core context switch process of a single-threaded

enclave with pre-allocated CPs along with the memory layout

extensions to SGX. In 1 , the baseline context switch is

initiated, which is followed by an enclave allocation instruction

in 2 . After the allocation request is processed by the L1

cache, the L1 cache is flushed to avoid leakage in 3 . The

request received by the L1 cache contains the allocation data

for both of the lower-level caches, so it can be forwarded to

the L2 cache in 4 . The allocation process in 5 involves the

CPMU in the L2 cache checking for available cache space

and filling the CPT with the new CPTC. When caches receive

a context switch-related allocation request, they send a CP

deallocation message to other same-level caches in the system.

When caches create a new CPTC, they forward it to the

lower-level structure in the hierarchy. So, in 6 , the L2 cache

sends its newly created CPTC to the LLC. Since all of the

cores share the LLC, we do not need to update the CPTC at

that level. The LLC propagates the request to the MMU in 7 .

Before updating the CPTCSSA pages in 9 , we have to load

the OCPTCSSA in 8 . The CPTC Handler is equipped with

a state machine and dedicated CPTC buffers that carry out

the CPTC Update operation which reads the OCPTCSSA and

updates the CPTCSSA pages. Once the MMU is done with

the updating process, it sends a ”completion” response in 10 .

11 , 12 , and 13 forward events to notify completion of the

CPTC-update operation to the core.

Still, the core has to wait until existing non-enclave data

within the boundary that is now allocated to the program

are gang-invalidated so that the data integrity of non-enclave

processes is retained.

C. Multithreaded Enclaves with Partitioned Caches

A distinct problem with cache partitioning is how to cor-

rectly and efficiently support enclave data sharing with multi-

threaded enclaves. Modern TEEs such as Intel SGX offer

support for multi-threaded enclaves, where threads within

an enclave are mutually trusted. These threads can naturally

access shared memory locations. While this programming

model does not pose challenges for LLC-only partitioning

schemes, consistency and coherence problems can occur when

multiple levels of the cache hierarchy are partitioned, including

private caches. We explore this challenge under two scenarios:

1) Inter-core sharing, when threads of an enclave are being

executed in separate cores, and 2) Intra-core sharing when

threads belonging to the same enclave are being context-

switched in and out within the same core. In this section,

we initially focus on snooping-based [25] MOESI coherence

protocols [62], and then we discuss the implications of these

scenarios for directory-based coherence [16].

1) Challenge 1 - Inter-Core Data Sharing: Traditional

cache coherence protocols are built on the premise that cache

accesses can be performed solely based on the cache line’s

address. This assumption does not apply to the design principle

of TEE-SHirT, as we rely on the CPTCs to deflect the access

6

C
o
re

 1

Coherent Snooping Interconnect

L2 Cache

CP - E0

CPMU

C
o
re

 0
L2 Cache

CP-0 CP-1

X

CPMU

Thread of Enclave 0 Thread of Enclave 1

CPTC-E0

CPT

CP - E0

CPMU
CPTC-E1

CPT

CP - E1

?

X(E)

snoop request... ...

C
o
re

 1

Coherent Snooping Interconnect

L2 Cache

CP - E0

CPMU

C
o
re

 0
L2 Cache

CP-0 CP-1

X

CPMU

Thread of Enclave 0 Thread of Enclave 1

CPTC-E0

(Core 0)

CPT

CP - E0

CPMU
CPTC-E1

CPT

CP - E1

?

X(E)

snoop request... ...

(a) Snoop request for X fails due to
the lack of required CPTC in Core 1

C
o
re

 1

L2 Cache

CP - E0

CPMU

C
o
re

 0

L2 Cache

CP-0 CP-1

X

CPMU

Thread of Enclave 0 Thread of Enclave 1

CPTC-E0

CPT

CP - E0

CPMU
CPTC-E1

CPT

CP - E1

X(E)

C
o
re

 1

Coherent Snooping Interconnect

L2 Cache

CP - E0

CPMU

C
o
re

 0

L2 Cache

CP-0 CP-1

X

CPMU

Thread of Enclave 0 Thread of Enclave 1

CPTC-E0

(Core 0)

CPT

CP - E0

CPMU
CPTC-E1

CPT

CP - E1

X(E)

CPTC-E0

(Core 1)

CPT
...CPTC-E1

(Core 3)

CPT

✓

(b) The snooping CPT embedded in
the interconnect is used to access CPs
in other core’s L2 cache

L2 Cache

CP - E0

CPMU

C
o
re

 0

Thread 0 of Enclave 0

CPTC-E0

CPT

Coherent Snooping Interconnect

L2 Cache

CP - T0

CPMU

C
o
re

 0

CPTC-T0

CPT

CPTC-T2

CPT

CP - T1

X(E)

?

Thread 1 of Enclave 0
(not scheduled)

(c) Snooping broadcast cannot
cannot retrieve X from other
cores when caches are parti-
tioned

L2 Cache

CP - E0

CPMU

C
o
re

 0

Thread 0 of Enclave 0

CPTC-E0

CPT

Coherent Snooping Interconnect

L2 Cache

CP - T0/1

CPMU

C
o
re

 0

CPTC-T0/1

CPT

CPTC-T2

CPT

X(E)

Thread 1 of Enclave 0
(not scheduled)

✓ CPTC-T0/1

CPTC-T0

CPTC-T1

Upon scheduling

(d) Merged partitions effec-
tively resolve the intra-core co-
herence issue.

Fig. 8: The illustration of TEE-SHirT-related snooping challenges and respective solutions

to the CPs held by an enclave. Therefore, when a cache is

snooped in TEE-SHirT, only lines within the enclave’s CPTC

should be accessed.

This challenge is illustrated in Figure 8(a), where threads

of different enclaves run on Core 0 and Core 1. The thread of

Enclave 0 tries to access the line X, which is in an Exclusive

state only in Core 1. Therefore, the read request in Core 0

results in a snooping broadcast to all other cores and the L3

cache. When the snoop request reaches Core 1, where a thread

of Enclave 1 is currently running, the L2 cache cannot access X

in the partition boundary. At this point, Core 1 has two options:

it can either wait for the corresponding thread of Enclave 0 to

be scheduled, or it can manually load the CPTC of Enclave

0 each time it gets snooped; both of these alternatives would

incur significant performance overhead.

To address this issue, we propose including additional CPTs

for each core, embedded in the cross-core interconnect fabric,

which we call snooping-CPTs. Snooping-CPTs serve as a

cache-like optimization for coherence interconnects, allowing

them to store frequently accessed CPTCs and access them

quickly. In cases where a CPTC is not found in the snooping-

CPT during a coherence query, it needs to be loaded from

CPTCSSA pages. As they contain the CPTCs of L2 caches

of other cores, their size is the same as regular CPTs in L2

caches. This mechanism improves performance by reducing

the latency associated with fetching CPTCs from memory.

Figure 8(b) depicts this strategy, where following the L2

cache miss, Core 0 accesses its snooping-CPT entry associated

with X, and subsequently, the interconnect broadcasts the

snoop with the retrieved entry to all other cores. As a result of

this broadcast, Core 1 successfully retrieves X by utilizing the

snooping-CPT entry served from the interconnect. However, if

Core 0 tries to access a cache line that exists in another core

than Core 1, its snooping-CPT has to replace its CPTC, which

causes some performance overhead. We evaluate snooping-

CPT hit rates and compare the average snooping delay inflicted

by snooping-CPT and load-CPTC-on-snoop approaches in

Section VI-C.

2) Challenge 2 - Intra-Core Data Sharing: Threads within

an enclave execute separate workflows once they are initi-

ated, resulting in disjointed execution paths. This implies that

enclave threads, in conjunction with TEE-SHirT, can invoke

allocation instructions with individual parameters, enabling

them to independently allocate cache partitions of varying

sizes while concurrently sharing data. This allows enclaves

to create threads with diverse workloads to meet their varying

resource requirements. However, when multiple threads of a

single enclave are scheduled into a single core, consistency

issues emerge when they access the same address through

separate partitions that reside in a single cache.

An illustrative example of such a scenario is depicted in

Figure 8(c), which showcases the execution of Thread 0 and

Thread 1 of an enclave, both scheduled on Core 0. Both

threads have CPs in the L2 cache and are running concurrently.

Thread 1, again, has an instance of X in its CP. After Thread

0 gets context switched in the core, it attempts to load X.

The load request leads to a cache miss, triggering a snooping

broadcast. However, the queries to all cores result in a miss,

indicating that the system is unable to retrieve the most recent

version of X.

Hence, if cache partitions are maintained separately, the sys-

tem needs to employ a mechanism that iterates through each

partition individually, resulting in a significant cost. Instead,

we propose partition merging where threads belonging to the

same enclave all access the same CPs. To do this, when two

threads of the same enclave are scheduled in the same core,

the CPMU has to combine the CPTCs of the threads into

one and update the changes in the CPTCSSA pages of both

threads. This ensures that there is at most a single instance of

a data line in each cache. This approach not only addresses the

cost issue but also aligns with our threat model since threads

are permitted to access the same enclave pages. The CPMUs

in caches are responsible for handling the merging process

during cross-core context switches and updating the CPTCs

accordingly.

We demonstrate the efficacy of partition merging in Fig-

ure 8(d). When Threads 0 and 1 are scheduled in Core 0,

CPMU combines CPTC-T0 and CPTC-T1 in a merged CPTC

(denoted as CPTC-T0/1). This way, X can be serviced from

the common partition. By having a shared partition for all

threads within an enclave, TEE-SHirT ensures that a cache line

does not have multiple instances in a single cache, preventing

version inconsistencies.

3) Considerations for directory-based coherence: Similar

challenges also arise for directory-based coherence mech-

anisms for the two scenarios. For example, for intra-core

7

sharing, a cache still has to have the CPTC of the cache

line after a directory query. However, in systems with a

directory, TEE-SHirT can utilize the directory entries to in-

clude supplementary CPT entries as an additional field. By

adding the corresponding CPT entry of the cache line to the

directory entries, probes to cache lines can be served upon

request. Directory entries need to exclusively store the CPT

entry for cache lines in the Modified, Owned, and Exclusive

states, as they indicate that the cache line has an updated

version present in only one cache. Notably, this approach

does not introduce additional cycles during coherence-related

probes but incurs additional hardware overhead. Intra-core

sharing with directories can also be efficiently supported with

a partition merging approach as described above

While these solutions handle coherence challenges, it has

been previously shown that directories are also prone to side-

channel attacks [72]. As we do not alter the remapping of

the directory, proposed directory defense mechanisms such as

SecDir [73] can be cleanly integrated with TEE-SHirT.

V. A FORMAL SECURITY ANALYSIS

We now rigorously establish the security guarantees pro-

vided by TEE-SHirT. We present an outline of the formal

model here, with the full model included in the Appendix.

Our approach is to define the essential TEE-SHirT-aware

program behavior through small-step operational semantics,

whose metatheory confirms the desirable properties of TEE-

SHirT. This is a non-trivial task: our semantic system captures

a rich yet essential set of features — such as cache hierarchy

access and replacement, cache coherence, enclave lifecycle,

and hardware/OS context switch — and it reasons about the

properties of cache isolation and side-channel immunity.

A. Definitions

a) Common Notations: Notation X
m

represents the se-

quence of [X1, . . . , Xm] for some m g 0. When the length

of a sequence does not matter, we also shorthand X
m

as X .

We use ∅ to represent an empty sequence and comma (,) as

the binary operator for sequence concatenation. We also call

a special form of sequences, X 7→ Y , a mapping when the

elements in X are distinct. For any mapping, we use notations

M [X 7→ X ′], MX , dom(M), ran(M) to refer to the update,

restriction, domain, and range of mapping M with standard

definitions.

b) Physical Cache Hierarchy and CPU Cores: For con-

venience, we associate identifiers to both physical cache units

(¼ ∈ PCU) and CPU cores (q ∈ CORE). The cache hierarchy

is captured by a static structure H : PCU ∪ CORE →
PCU ∪ {¦}, which maps a “child” cache unit in the cache

hierarchy to its “parent” cache unit, where a “child” cache unit

is closer to the CPU core than its “parent”. For completeness,

we use ¦ to represent the “imaginary” parent of the physical

cache unit at the root of the cache hierarchy.

Top-Level Structures

Σ ::= ï»;µ; Ä;Ãð runtime state

µ ::= b 7→ D memory

Ä ::= r 7→ v registers

Ã ::= p 7→ ïϵ; l; qð program store

Multi-Level Cache

» ::= ¼ 7→ È multi-level cache

È ::= ïF ;V ;C;Rð single-level cache unit

PCU-Related Structures

F ::= c free list

V ::= e 7→ L CPT

C ::= c 7→ ïvb; t;Dð way-set cache

L ::= s → W remapping list

D ::= ¶ 7→ v data block

c ::= ïw; sð CP index

vb ::= M | O | E | S | I coherence bit

W ::= w way mask

Memory/Register-Related Structures

v ::= º | n memory value

º ∈ INST instruction

n ∈ DATA data

Enclave-Related Structures

ϵ ::= ïe;Eð enclave state

E ::= e 7→ ïl;nð enclave memory range

e ::= e | § enclave ID

Access and Observations

a ::= R | W access type

ot ::= a | LM | GM observation type

o ::= ïot; c;¼ð observation

O ::= o observation trace

Ä ::= ïl; a; ϵð access descriptor

Identifiers and Atomic Values

q ∈ CORE core ID

¼ ∈ PCU physical cache unit ID

w ∈ WAY way ID

s ∈ SET set ID

b ∈ BLOCK block ID

r ∈ REG register ID

e ∈ ENCLAVE raw enclave ID

¶ ∈ Z
∗ data offset

t ∈ TAG cache tag value

l ∈ ADDR memory address

Fig. 9: Runtime Definitions

Example V.1 (Cache Topology). For a two-core CPU (q1 and

q2) with 2 L1 private caches (¼1 and ¼2) and 1 L1 shared

cache (¼3), H is defined as

q1 7→ ¼1, q2 7→ ¼2, ¼1 7→ ¼3, ¼2 7→ ¼3, ¼3 7→ ¦

In line with the notion of the cache hierarchy, we further

require that H be a total and surjective function, and the

relation it defines forms a poset. Since H is static for a

concrete machine, the definitions for the rest of this paper

are implicitly parameterized by this structure.

c) Runtime State: As shown in Fig. 9, the runtime

state (Σ) consists of the TEE-SHirT (»), the memory (µ),

the register file (Ä), and the program store (Ã). For cache

lines, note that a cache coherence bit (vb) is associated; our

operational semantics is fully compliant of the MOESI cache

protocol [62]. Each entry in our program store Ã is aligned

with our intuitive notion of a thread. Our formal system

considers the general model where multiple applications may

co-run on the same system, and each application may be

multi-threaded. Our operational semantics makes the common

assumption that different applications (such as the victim and

attacker) do not share memory locations, but the threads within

an application may share memory, where cache coherence is at

work. Given a memory address l, we define a bijective function

³ : ADDR ⇌ BLOCK×Z
∗ to compute its block index b and

8

offset ¶ in the block. We use µ{l} to refer to µ(b)(¶) where

³(l) = ïb; ¶ð. We use µ{l 7→ v} to refer to µ[b 7→ D′] and

D′ = D[¶ 7→ v] where ³(l) = ïb; ¶ð.

B. Observation and Observation Traces

To reason about side channels, what can be observed is

important and must be clearly defined.

Definition V.1 (Observation and Observation Trace). We

define an observation o as a tuple ïot; c;¼ð. It says CP

c ∈ WAY × SET residing in physical cache unit ¼ ∈ PCU

is accessed with observation type ot ∈ {R,W, LM,GM}. The

identifiers correspond to a hit-read, a hit-write, a level-scoped

miss (the content is only available in a peer cache on the same

cache level), a global miss (the content is not available in any

cache of the same cache level), respectively. An observation

trace O is defined as a sequence of observations.

Example V.2 (Observation Trace). Observation trace

[ïR; ïw1; s1ð;¼1ð, ïLM; ïw1; s2ð;¼1ð, ïW; ïw3; s3ð;¼2ð] says

in physical cache unit ¼1, CP ïw1; s1ð is first hit-read and its

CP ïw1; s2ð access leads to a cache miss but found in another

cache unit on the same cache level; afterward, in physical unit

¼2, CP ïw3; s3ð is hit-written.

Our definition of observations is fine-grained: an attacker

can observe not only the timing/power/magnetic-field differ-

ence of hit-reads/hit-writes/local-misses/global-misses but also

where they happen: a specific CP in a specific physical cache

unit (level). As we shall see, our theorems state that despite

strong assumptions about the attacker’s observation capability,

our system can guarantee that an attacker cannot use such

observations to infer program values.

With parallelism inherent in our scope, the observation

trace generated by individual threads may be interleaved when

taking a global view. To capture this, we introduce

Definition V.2 (Global Observation and Observation Trace).

A global observation É is a tuple ïp; oð, where p is the thread

where the observation o is observed. A global observation

trace Ω is a sequence of global observations.

C. Operational Semantics

a) Multi-Level Access: For convenience, we define ac-

cess through an access descriptor Ä , defined as a triple ïl; a; ϵð,
including the address to be accessed l, the access mode itself

a, and the enclave where the access is initiated.

The behavior of intra-level and inter-level cache access is

defined in Fig. 10. Relation », µ
¼,v,Ä
===⇒

O
»′, µ′ says that a

multi-level cache » and main memory µ transitions to »′

and µ′ respectively, when cache unit ¼ subjects to access

defined by access descriptor Ä . v computes the read result

when the access is a read, and it carries the value to be

written when the access is written. The access produces a set

of observations in O. The first rule demonstrates the intra-level

behavior, including both a hit to the requested cache unit, or

a localized miss where the content can be found in a peer

cache unit on the same cache level. This rule is defined over

»
λ,v,τ
−−−−→

O
»
′

O ̸= {ïGM; c;¼
′
ð} for any c and ¼

′

», µ
λ,v,τ
====⇒

O
»
′
, µ

»
λ,v,τ
−−−−→

O
»
′′

O = {ïGM; c;¼
′
ð} for some c and ¼

′
»
′′
, µ

H(λ),v,τ
=======⇒

O′
»
′
, µ

′

», µ
λ,v,τ
====⇒

O∪O′
»
′
, µ

′

Ä = ïl; R; ϵð

», µ
¦,µ{l},τ
=======⇒

∅
», µ

Ä = ïl; W; ϵð

», µ
¦,v,τ
====⇒

∅
», µ{l 7→ v}

Fig. 10: TEE-SHirT Multi-Level Cache Access

[MULTI]

», µ, Ä, ϵ, µ(l)
O

−−→
q,n

»
′
, µ

′
, Ä

′
, ϵ

′
µ(l + n) = º for some º

», µ, Ä, Ã[p 7→ ïϵ; l; qð]
O@p
===⇒ »

′
, µ

′
, Ä

′
, Ã[p 7→ ïϵ

′
; l + n, qð]

[CONTEXTSWITCH]
q ̸= q

′

», µ, Ä, Ã[p 7→ ïϵ; l; qð]
∅
=⇒ », µ, Ä, Ã[p 7→ ïϵ; l; q

′
ð]]

Fig. 11: Parallel Operational Semantics

another relation Relation »
¼,v,Ä
−−−→

O
»′. It corresponds to the

“intra-level” behavior when cache unit ¼ is accessed; we defer

this definition to the Appendix, which captures the essence of

MOESI. The second rule shows the inter-level behavior if a

miss cannot be resolved at one cache level. The third and

fourth rules define the read and write behavior when main

memory is (ultimately) accessed.

b) A Parallel Model with Context Switches: We discuss

the small-step operational semantics of programs running

on TEE-SHirT next (they are defined in Figure 11 in the

appendix). Reduction relation Σ
Ω
=⇒ Σ′ says that runtime state

Σ reduces to Σ′, producing global observation trace Ω.

A simple but important observation is that parallelism

support is inherent in our formal system: different threads

may be executed in parallel on multi-core CPUs where SMT

is allowed. Any thread in Ã may take a reduction step (the

[MULTI] rule described in the appendix). Some of these

threads may host the victim execution, while others may

host the attacker execution. The reduction sequences of these

parallel threads may interleave in an arbitrary manner allowed

by the SMT hardware, OS scheduler, and program logic

of the application. With minimal restrictions on the parallel

semantics, the properties we formally establish make minimal

assumptions on the software side, regardless of, e.g., what

victim programs are run, how the attacker constructs her

program, how many attacker threads may collude, and how

the victim program and the attacker program interleave.

As context switches have non-trivial implications on secure

cache hierarchy design, a [CONTEXTSWITCH] rule captures

this behavior: the CPU core a thread resides on may change

at any arbitrary reduction step, either due to the SMT-level

context switches or OS scheduler.

9

[LOAD]

Ä = ïl; R; ϵð », µ
H(q),v,τ
=======⇒

O
»
′
, µ

′

», µ, Ä, ϵ, LOAD l r
O

−−→
q,1

»
′
, µ

′
, Ä[r 7→ v], ϵ

[STORE]

Ä = ïl; W; ϵð », µ
H(q),ρ(r),τ
=========⇒

O
»
′
, µ

′

», µ, Ä, ϵ, STORE r l
O

−−→
q,1

»
′
, µ

′
, Ä, ϵ

Fig. 12: Selected Reduction Rules of Single-Process Opera-

tional Semantics

The [MULTI] rule also shows the program counters at

work. In our system, program counters are memory addresses

pointing to the instruction sequence. Whenever a program

executes a step, the reduction system tracks what the offset

of the program counter should be for the next instruction. For

convenience, we use • to represent the program counter when

the program halts. We define O@p as [ïp; o1ð, . . . , ïp; onð]
where O = [o1, . . . on] for some n g 0.

c) Instruction-Specific Behaviors: The parallel reduction

system bridges with the single-thread reduction system, which

defines the behavior of a thread over a single-thread state

Ã. The latter is defined as ï»;µ; Ä; ϵð, where », µ, and Ä

are the states of the TEE-SHirT , memory, and registers

respectively, while ϵ is the enclave that is currently under

execution. Reduction relation Ã, º
O

−−→
q,n

Ã′ says single-thread

state Ã reduces to Ã′ while executing instruction º at CPU

core q, producing global observation trace O.

Our formal system defines the behavior of the enclave life-

cycle (CREATE, ENTER, EXIT, DESTROY), memory/cache

access (LOAD and STORE), and control flow (BR). A selected

subset of the reduction rule is shown at the bottom of Fig. 12,

with the rest deferred to the appendix. Our semantic model

treats dynamic partitioning as the default behavior. Static

partitioning is a restrictive form of semantics where the initial

number of CPs is equal to the number of threads, and CP al-

location/deallocation happens at the program start/termination

time. As a result, our metatheory below subsumes the practical

design where L1 undergoes static partitioning.

D. Metatheory

Theorem V.1. The TEE-SHirT design is immune against side

channel attacks.

We defer the rigorous statement of this important theorem to

the appendix. Formally, the theorem resembles the “Immunity

Against Side Channel Attacks” theorem in prior work [63], but

under the more realistic assumption that a cache hierarchy and

a cache coherence protocol are at work, and parallel program

executions are supported.

VI. EVALUATION

A. Experimental Methodology

To evaluate the performance of TEE-SHirT, we imple-

mented our design in gem5 [7] cycle-accurate simulator with

system call emulation mode. Since gem5 does not have support

for simulating native-SGX enclaves [1], we simulated the

scenario where the entire program executes in an enclave,

but without modeling SGX interfaces. The only impact that

our design has on SGX interfaces is the time to store parti-

tioning metadata on a context switch out of an enclave. We

account for this by adding an additional memory access(es) to

store/retrieve partitioning metadata.

To evaluate the impact on the performance of enclave

programs, we simulated a variety of benchmark suites, namely

SPEC2017 [12], MiBench [34], PARSEC [6], and three im-

portant functions from the WolfSSL cryptography library [2]

(fp gcd, fp gcd, and wc ecc mulmod ex, all executed repeat-

edly in a loop). This range of programs allows us to evaluate

the impact of TEE-SHirT on applications with various memory

demands. The primary metric we track for performance is

Instructions Committed Per Cycle (IPC).

TABLE I: Parameters of the Simulated System
Hardware Parameters

Core x86 ISA Out-of-Order cores

Cache Hier-

archy

Snooping-based MOESI coherence policy, inclusive
write-back caches

L1i/d

Caches

32KB total size, 8-ways, 4-cycle access latency (one for
each core)

L2 Cache 512KB total size 8-ways, 16-cycle access latency (one
for each core)

L3 Cache 4MB total size 16-ways, 32-cycle access latency (shared)

DRAM 32GB size, 4GB channel capacity, DDR4-2400 x64 chan-
nel, 4 devices per rank, 1 rank per channel, 1GB per
device

Mixes of SPEC2017 Benchmarks

Mix-1 cam4, perlbench, bwaves, fotonik3d

Mix-2 mcf, exchange2, blender, cactusBSSN

Mix-3 nab, x264, namd, parest

Mix-4 povray, imagick, omnetpp, gcc

Mix-5 wrf, lbm, xalancbmk, leela

For the CPTC virtualization experiments, we execute single-

core simulations of SPEC2017 and MiBench benchmarks. To

emulate context switches, we assumed three time quantum

values: 1ms, 10ms, and 25ms, and extended the simulator to

emulate the gang-invalidation process including write-backs

of dirty data, as described in detail in Section IV-A. We also

flush the caches in system calls as well as emulated context

switches. We block the caches from being accessed until all

the data is written back.

For TEE-SHirT performance experiments, we simulated a

4-core system in gem5’s system call emulation mode where

all four cores execute five mixes of SPEC2017 programs

concurrently. The mixes are specified in Table I. In this

design, we assume that every enclave access is extended by

two extra cycles to the cache latency at L2 and L3 levels

- one cycle for the extra delay through the remapping logic

and one cycle to account for the extra complexity in cache

replacement logic. This is consistent with the estimates in prior

work [56], [63]. Saileshwar et al. [56] showed that when the

extra LLC latency due to partitioning increases from 1 to 6

cycles, performance decreases minimally - from 1% to 2%.

Therefore, the additional latency at the level of L2/L3 caches

has minimal impact on the overall program throughput. The

L1 cache is flushed with a time quantum of 25ms to simulate

10

xz

cactuBSSN
omnetpp wrf

xalancbmk
blender

cam4

deepsjeng
imagick leela nab

exchange2
fotonik3d fft sha

rijndael
blowfish avg

Benchmark

0.0

2.5

5.0

7.5

10.0

Sl
ow

do
w

n
(%

)
Slowdown Inflicted by Context Switches and System Calls Without CPTC Virtualization

 Slowdown with OS Time Quantum: 1ms
 Slowdown with OS Time Quantum: 10ms
 Slowdown with OS Time Quantum: 25ms

0

10000

20000

30000

N
um

ber of System
 Calls

Number of System Calls

Fig. 13: The slowdown percentage inflicted by cache flushing when CPTC virtualization is not implemented. The yellow plot

indicates the number of system calls invoked by the benchmark on the right-hand side y-axis.

a Linux context switch interval.

We enhanced gem5’s snooping-based classic cache hierar-

chy to emulate our coherence optimizations as outlined in

Section IV-C. We utilize PARSEC [6] benchmarks with four

threads on a 4-core system with full system simulation. We

allocate a quarter of the capacity in all caches for each of

the threads, where the L3 CP is utilized by all threads due to

partition merging. We perform detailed simulations until any

of the threads reach 100 million instructions after the kernel

boot.

We evaluated multi-core system performance using both

small crypto programs and larger SPEC 2017 benchmarks.

First, to evaluate the cache impact of the mixed crypto and

regular workloads, we combined three cryptography programs

(from Mibench suite and WolfSSL functions) and the xz

benchmark (from SPEC2017). Furthermore, to evaluate cache

performance for more memory-intensive workloads, we ran

five mixes from the SPEC2017 suite (specified in Table I)

under different L2 and L3 configurations. We fast-forwarded

the execution for the first one billion instructions and per-

formed detailed simulations for the one billion instructions.

We had to limit the number of instructions executed because

of the simulation time. Skipping the first Billion instructions

bypasses the initial phase of the program and warms up caches,

branch predictors and other microarchitectural structures of

the processor. Simulating for one billion instructions provides

sufficient statistics and is in line with the size of simulation

samples used by typical computer architecture studies [20],

[21], [56], [63], while all cryptography benchmarks were run

to completion.

To evaluate TEE-SHirT’s impact on area, we implemented it

in the cache subsystem of the open-source ESP SoC platform

[47]. Our implementation consists of a configurable number

of CPTs in the L2 caches and the LLC. As a metric for

hardware area overhead estimation, we measure the increase

in the utilization of FPGA resources relative to the baseline

SoC, which has one 512KB L2 cache per core, and a shared

4MB LLC in a 4-core LEON3 [27] CPU. We used the Vivado

Design Suite [26] to synthesize an FPGA prototype of the

design and collected utilization values for several different

configurations. As our target platform, we used the AMD

Virtex UltraScale+ VCU118.

B. Performance of CPTC Virtualization

Figure 13 shows the performance advantage that can be

gained by CPTC virtualization over Scenario 2 in Section

IV-B1. Recall that this scenario requires flushing the LLC

partition on a context switch to preserve cache consistency.

The baseline shown in this figure is the CPTC virtualization

(zero across all benchmarks), where the data is kept in the LLC

across context switches. As expected, the largest performance

gain was observed for 1ms time quantum, where benchmarks

such as cactusBSSN, omnetpp, wrf, xalancbmk, and cam4 yield

4.4%, 10.8%, 4.5%, 3.7%, and 10.4% speedup, respectively.

For a more conventional 25ms time interval, omnetpp gener-

ated the highest speedup of 10.3%.

The main takeaway from these results is that the system call

intensity of a benchmark is more correlated to the speedup it

gains from CPTC virtualization compared to context switches.

Most benchmarks with infrequent system calls have modest

performance losses. On the other hand, system call intensive

benchmarks such as omnetpp and cam4 tend to experience

performance degradation even when the time quantum is

increased (at around 10% and 4% respectively). These re-

sults indicate that workloads that frequently invoke kernel

operations experience the greatest benefit from data retention

achieved through CPTC virtualization.

C. Performance of Cache Coherence Optimizations

Figure 15 shows the average normalized snooping time be-

tween different approaches. We selected a baseline case where

snoops between threads do not introduce any additional delays.

In the remaining bars of the graph, we present the snooping

delays incurred when implementing different configurations:

snooping-CPT and loading the CPTC upon a snoop.

Among the workloads examined, the benchmarks fluidan-

imate and raytrace exhibit a significant number of snoops

between L2 caches, resulting in higher average snoop delays.

Specifically, fluidanimate demonstrates an average snoop delay

of 1.91 times that of the baseline, while raytrace exhibits an

average snoop delay of 2.11 times the baseline. However, when

snooping-CPTs are employed, these benchmarks experience

improved performance, with average snoop delays reduced to

1.08 times and 1.09 times the baseline for these workloads

respectively. This is due to high snooping-CPT hit rates across

11

blowfish rijndael sha
xz (with MiBench)

Benchmark

0

50

100

Sl
ow

do
w

n
(%

)

0.0
5

0.3
7

0.0
1

0.0
2

0.0
7

0.0
9

0.0
1

0.0
2

0.0
8

0.0
1

0.0
2

0.0
4

0.0
1

0.0
2

0.0
5

0.0
1

0.0
2

0.0
7

MiBench

fp_gcd fp_invmod
wc_ecc_mulmod_ex

xz (with WolfSSL)

Benchmark

0

50

100

Sl
ow

do
w

n
(%

)

0.0
4

0.0
4

0.0
9

0.0
4

0.0
4

0.0
7

0.0
2

0.0
2

0.0
5

0.0
1

0.0
1

0.0
4

0.0 0.0 0.0
3

0.0 0.0
2

WolfSSL
L2 CP: 16KB L3 CP: 16KB
L2 CP: 16KB L3 CP: 32KB
L2 CP: 32KB L3 CP: 32KB
L2 CP: 64KB L3 CP: 128KB
L2 CP: 128KB L3 CP: 128KB
L2 CP: 256KB L3 CP: 256KB
L2 CP: 512KB L3 CP: 1024KB

Performance Impact of TEE-SHirT on Cryptography Programs

Fig. 14: Multi-core simulation for MiBench and WolfSSL. The legend shows CP sizes for L2 and L3 caches

blackscholes facesim fluidanimate raytrace swaptions
Benchmark

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

N
or

m
al

iz
ed

 S
no

op
in

g
D

el
ay Impact of TEE-SHirT on Snooping Delay for PARSEC Benchmarks

Baseline Snooping-CPT Load CPTC upon snooping

0.9

1.0

Snooping-CPT H
it Rate

Snooping-CPT Hit Rate

Fig. 15: Normalized average snoop delay for PARSEC bench-

marks under three conditions. The yellow plot indicates the

Snooping-CPT hit rate on the right-hand side y-axis

the board, all of them being between 91.5% and 93.7%. These

results show the effectiveness of the caching mechanism for

CPTCs.

D. Overall Performance of TEE-SHirT

Figure 14 shows the results for cryptography programs,

which may often be isolated in TEEs. The four leftmost

bar groups show the MiBench experiments, while the four

rightmost ones show the WolfSSL functions. The smallest

overall configuration we provide is 16KB CPs for both L2 and

L3 caches, which produces the highest slowdown percentages:

1.2%, 32.2%, 6.4%, 96.3%, 9.5%, 9.6%, 24.7%, and 96.9% for

blowfish, rijndael, sha, xz (with MiBench), fp gcd, fp invmod,

wc ecc mulmod ex, and xz (with WolfSSL), respectively. How-

ever, the large slowdowns decrease significantly once we

increase the L3 cache’s CP to 32KB. In this case, all security

benchmarks exhibit a slowdown below 0.5%. These results

demonstrate that some benchmarks can perform very well with

small CPs at the LLC level - something that would not be

practical if L2 caches were not partitioned as well.

One of the key insights from these results is that when L2

and L3 CPs are the same sizes, they seem to perform worse

than the cases where the L2 cache’s CP is smaller. For xz in

both runs, when CPs in L2 and L3 are 128KB, the overall

slowdown is higher than in the case with 64KB L2 CP and

128KB L3 CP (5.3% and 1.3% respectively). This is due to the

inclusivity effect we discussed in Section III, where the miss

penalty in the L2 cache effectively increases by the redundant

L3 access latency since the cache line is not present in L3.

This result shows that arbitrarily increasing the size of CPs

without considering the interaction of cache levels can have a

detrimental performance impact.

Figure 16 shows the performance impact of TEE-SHirT on

large SPEC2017 programs, where individual benchmarks in-

cluded in the mixes are outlined in Table I. The highest

mix-1 mix-2 mix-3 mix-4 mix-5
Benchmark

0.6
0.7
0.8
0.9
1.0

W
ei

gh
te

d
Av

er
ag

e
N

or
m

al
iz

ed
 IP

C

Performance Impact of TEE-SHirT on SPEC2017 Benchmarks
baseline
L2 CP: 64kB L3 CP: 128kB

L2 CP: 64kB L3 CP: 1024kB
L2 CP: 128kB L3 CP: 512kB

L2 CP: 256kB L3 CP: 512kB
L2 CP: 256kB L3 CP: 1024kB

Fig. 16: Multi-core simulation results for mixes of SPEC2017

benchmarks. We use the number of committed instructions by

the benchmarks as the weights for the average IPC. The legend

shows CP sizes for L2 and L3 caches.

degradation is observed for mix-2 and mix-4, where even in the

smallest configuration they have 26.4% and 28% performance

loss respectively. However, when a 256KB CP is allocated

in the L2 cache and 512KB is allocated in the L3 cache (a

quarter of the total both cache sizes) per enclave, all of the

benchmarks experience slowdowns lower than 3%. This shows

that TEE-SHirT can be implemented with modest slowdowns

even for large workloads.

E. Area Overhead

Table II shows the LUTs and FFs utilized for several

possible configurations of TEE-SHirT. Each row corresponds

with a separate hardware synthesis run. The CPT

Configuration values are in the format (x, y), where

there are x CPTs for each L2 and y CPTs in the LLC.

Each CPT has 16 entries, and half the ways of each cache

are allocable to enclaves. With a (1, 4) configuration, the

modifications incur only 0.7% additional LUTs and 1.3%

additional FFs. Though this configuration can support fewer

concurrently executing enclaves (i.e., one enclave using

the L2 and four using the LLC), it requires less hardware

overhead than a (4, 16) configuration (1.4%-3.7%). CPTC

virtualization enables the use of low-area configurations such

as (1, 4) or (2, 8) with minimal performance impact.

TABLE II: Area estimates for TEE-SHirT configurations
CPT Configuration Total LUTs Total FFs

Baseline 209972 (100%) 151304 (100%)

(1, 4) 211476 (+0.7%) 153299 (+1.3%)

(2, 8) 211986 (+1.0%) 154475 (+2.1%)

(4, 16) 212798 (+1.4%) 156851 (+3.7%)

(8, 32) 214297 (+2.1%) 161500 (+6.7%)

Notably, the additional FFs required to implement more

CPTs outpace the additional LUTs. This is expected due to

the register-related components of the CPT being structurally

12

assigned to FFs. Hence, for our largest configuration, (8,

32), TEE-SHirT causes a 6.7% increase in FFs, but only a

2.1% increase in LUTs. The increased LUT and FF utilization

overhead both track the exponential spacing of the number of

CPTs, thus maintaining a near-linear relationship. Note that the

cache’s data and metadata are stored in Block RAMs, which

have separate utilization figures that are not affected by our

implementation.

VII. RELATED WORK

Recent research efforts addressed cache side-channel leak-

age using primarily two approaches: partitioning [20], [21],

[23], [41], [44], [63], [66], [67] and randomization [8], [9],

[22], [53], [54], [68], [69]. While both lines of research

produced insightful defenses, randomization-based approaches

have several limitations. First, security guarantees of random-

ization schemes are often probabilistic and even advanced

schemes are not immune from elaborate attacks [3], [60].

Second, randomization-based schemes can be susceptible to

attacks using low-resolution channels such as cache occupancy

attacks [59]. In contrast, partitioning schemes that completely

isolate applications from one another in the cache provide

more robust security guarantees, and can even be backed up

by formal security guarantees [63].

Existing efforts in cache partitioning for security mostly

targeted single cache levels, either private caches or a shared

LLC. Not all of these schemes can be trivially applied to

multiple cache levels; some rely on the support of trusted

system software, and some have high partitioning granularity

that impedes their scalability. DAWG [41] and CATalyst [44]

rely on the OS to participate in partitioning decisions, which

is problematic for TEE-based systems. NoMo [23] is a way-

based partitioning scheme that does not rely on software

support altogether, but the high granularity of allocations does

not make it applicable to LLCs because of scalability and

susceptibility to multi-threaded attacks. In addition, as some

cache ways are shared in NoMo, leakage can occur if the

victim’s accesses spill into the shared portion of the cache.

Other partitioning schemes, like Intel’s CAT [37], [55], [57],

[71], were designed for quality of service and do not guarantee

isolation between processes occupying different partitions.

Some partitioning approaches divide caches by sets through

page coloring [10], [18], [40], [58]; however, in this case,

large regions of data may need to be moved around in memory

when allocating cache sets since the set allocation is bound to

physical addresses.

HybCache [20] provides soft cache partitions for codes

requiring isolated execution protection. HybCache requires a

fully associative search within the subcache ways - this is

expensive and may not easily scale to large LLCs. Moreover,

HybCache does not enforce strict isolation, as normal pro-

grams can still access the entire cache. CURE [5] proposed

a customizable architecture for securing enclaves from side-

channel attacks. However, cache partitioning is also done at the

way granularity. Bespoke Cache Enclaves is a set-based cache

partitioning scheme where the cache space is divided into

non-overlapping clusters composed of multiple consecutive

sets [56]. A similar principle is used in Chunked-Cache [21]

- a design for trusted execution environments that allows each

program to have its own dedicated cache sets. Composable

Cachelets [63] introduced the concept of cachelets at the LLC

level, and partitioned LLC across both ways and sets.

In summary, [5], [21], [56], [63] only address security of

shared last-level cache through various partitioning schemes

as described above. In contrast, the key contribution of TEE-

SHirT is in coordinated partitioning of shared and private

cache levels. Our design addresses non-trivial issues of co-

herence and scalability that arise as an effect of implementing

partitioning in private caches (such as level-2 caches in our

experimental framework). Specifically, from the scalability

standpoint, we demonstrated how partitioning metadata can

be naturally integrated into the context of an enclave using

existing SGX structures (supporting scalability at low hard-

ware complexity). From the coherence standpoint, we showed

how existing cache coherence mechanisms can be augmented

to properly work with partitioned multi-level caches. We also

offered a formal security model of a multi-level partitioned

cache system.

The TEE-SHirT formal system is complementary to existing

formal cache models designed for single-level cache units. For

example, the multi-level cache =⇒ relation is unique to our

model, defined over the single-level cache −→ relation deferred

to the appendix. We hope this modular formal development

can serve as the first step for a framework to reason about

a large family of cache designs against side-channel attacks.

Compared with formalisms on single-level cache [63], our

formal system is also unique in its support of context switches

and cache coherence; both are non-trivial features critical

for multi-level caches. More broadly, formal systems exist to

reveal and defend against side-channels, such as those in the

presence of speculation [14], [15], [32], [48].

VIII. CONCLUDING REMARKS

This paper demonstrates the importance of considering the

entire cache hierarchy when reasoning about side-channel pro-

tection. TEE-SHirT is a novel design that allows the creation

of arbitrary small isolated cache partitions across L3/L2 caches

to support leakage-free execution of security-sensitive code,

making caches a first-class citizen in the TEE ecosystem

and eliminating cache side channels by design. TEE-SHirT is

seamlessly integrated with existing Intel SGX data structures

to support enclave context switching that preserves the TEE-

SHirT state. TEE-SHirT is accompanied by a formal model to

rigorously reason about the security guarantee of partitioning

solutions across multiple cache levels with the support of cache

coherence.

ACKNOWLEDGEMENTS

We would like to thank anonymous reviewers and the

shepherd for their insightful feedback. This research was

supported in part by NSF Awards CNS-2053391 and CNS-

2053383.

13

REFERENCES

[1] https://www.mail-archive.com/gem5-users@gem5.org/msg19592.html.

[2] Wolfssl. https://github.com/wolfSSL/wolfssl, 2013.

[3] Andreas Abel and Jan Reineke. Reverse engineering of cache replace-
ment policies in intel microprocessors and their evaluation. In 2014

IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS), pages 141–142, 2014.

[4] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innova-
tive technology for cpu based attestation and sealing. In Proceedings of

the 2nd international workshop on hardware and architectural support

for security and privacy, volume 13. ACM New York, NY, USA, 2013.

[5] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig,
Matthias Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf.
{CURE}: A security architecture with customizable and resilient en-
claves. In 30th {USENIX} Security Symposium ({USENIX} Security

21), 2021.

[6] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The
parsec benchmark suite: Characterization and architectural implications.
Technical Report TR-811-08, Princeton University, January 2008.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH

computer architecture news, 39(2):1–7, 2011.

[8] Rahul Bodduna, Vinod Ganesan, Patanjali Slpsk, Chester Rebeiro, and
V Kamakoti. Brutus: Refuting the security claims of the cache timing
randomization countermeasure proposed in ceaser. IEEE Computer

Architecture Letters, 2020.

[9] Thomas Bourgeat, Jules Drean, Yuheng Yang, Lillian Tsai, Joel Emer,
and Mengjia Yan. Casa: End-to-end quantitative security analysis of
randomly mapped caches. In 2020 53rd Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 1110–1123, 2020.

[10] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, Srinivas
Devadas, et al. Mi6: Secure enclaves in a speculative out-of-order
processor. In Proceedings of the 52nd Annual IEEE/ACM International

Symposium on Microarchitecture, pages 42–56. ACM, 2019.

[11] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure:
Sgx cache attacks are practical. arXiv preprint arXiv:1702.07521,
page 33, 2017.

[12] James Bucek, Klaus-Dieter Lange, and Jóakim V Kistowski. Spec
cpu2017: Next-generation compute benchmark. ICPE: ACM/SPEC

International Conference on Performance Engineering, pages 41–42,
2018.

[13] Thomas Burd, Wilson Li, James Pistole, Srividhya Venkataraman,
Michael McCabe, Timothy Johnson, James Vinh, Thomas Yiu, Mark
Wasio, Hon-Hin Wong, Daryl Lieu, Jonathan White, Benjamin Munger,
Joshua Lindner, Javin Olson, Steven Bakke, Jeshuah Sniderman, Carson
Henrion, Russell Schreiber, Eric Busta, Brett Johnson, Tim Jackson,
Aron Miller, Ryan Miller, Matthew Pickett, Aaron Horiuchi, Josef
Dvorak, Sabeesh Balagangadharan, Sajeesh Ammikkallingal, and Pankaj
Kumar. Zen3: The amd 2nd-generation 7nm x86-64 microprocessor
core. In 2022 IEEE International Solid- State Circuits Conference

(ISSCC), volume 65, pages 1–3, 2022.

[14] Sunjay Cauligi, Craig Disselkoen, Klaus von Gleissenthall, Dean M.
Tullsen, Deian Stefan, Tamara Rezk, and Gilles Barthe. Constant-time
foundations for the new spectre era. In Proceedings of the 41st ACM

SIGPLAN International Conference on Programming Language Design

and Implementation, PLDI 2020, London, UK, June 15-20, 2020, pages
913–926. ACM, 2020.

[15] Kevin Cheang, Cameron Rasmussen, Sanjit A. Seshia, and Pramod
Subramanyan. A formal approach to secure speculation. In Proceedings

of the Computer Security Foundations Symposium (CSF), 2019.

[16] Pat Conway, Nathan Kalyanasundharam, Gregg Donley, Kevin Lepak,
and Bill Hughes. Cache hierarchy and memory subsystem of the amd
opteron processor. IEEE Micro, 30(2):16–29, 2010.

[17] Victor Costan and Srinivas Devadas. Intel sgx explained, 2016.

[18] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In 25th {USENIX}
Security Symposium ({USENIX} Security 16), pages 857–874, 2016.

[19] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin,
Nadia Heninger, Ahmad Moghimi, and Yuval Yarom. Cachequote:
Efficiently recovering long-term secrets of sgx epid via cache attacks.

IACR Transactions on Cryptographic Hardware and Embedded Systems,
2018(2):171–191, May 2018.

[20] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. Hyb-
cache: Hybrid side-channel-resilient caches for trusted execution envi-
ronments. 2020.

[21] Ghada Dessouky, Alexander Gruler, Pouya Mahmoody, Ahmad-Reza
Sadeghi, and Emmanuel Stapf. Chunked-cache: On-demand and scalable
cache isolation for security architectures. The Network and Distributed

Systems Security Symposium, 2022.

[22] Peter W. Deutsch, Weon Taek Na, Thomas Bourgeat, Joel S. Emer, and
Mengjia Yan. Metior: A comprehensive model to evaluate obfuscating
side-channel defense schemes. ISCA ’23, New York, NY, USA, 2023.
Association for Computing Machinery.

[23] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and
Dmitry Ponomarev. Non-monopolizable caches: Low-complexity miti-
gation of cache side channel attacks. ACM Transactions on Architecture

and Code Optimization (TACO), 8(4):35, 2012.

[24] Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius Mandelblat,
Anirudha Rahatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin, and
Adi Yoaz. Inside 6th-generation intel core: New microarchitecture code-
named skylake. IEEE Micro, 37(2):52–62, 2017.

[25] S. J. Eggers and R. H. Katz. Evaluating the performance of four
snooping cache coherency protocols. SIGARCH Comput. Archit. News,
17(3):2–15, apr 1989.

[26] Tom Feist. Xilinx WP416 Vivado Design Suite, 2012.

[27] Cobham Gaisler. Leon3. www.gaisler.com/index.php/products/
processors/leon3.

[28] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time
protection: The missing os abstraction. In Proceedings of the Fourteenth

EuroSys Conference 2019, EuroSys ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[29] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller.
Cache attacks on intel sgx. In Proceedings of the 10th European

Workshop on Systems Security, EuroSec’17, New York, NY, USA, 2017.
Association for Computing Machinery.

[30] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the line: Practical cache attacks on the MMU.
In 24th Annual Network and Distributed System Security Symposium,

NDSS 2017, San Diego, California, USA, February 26 - March 1, 2017.
The Internet Society, 2017.

[31] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: Automating attacks on inclusive Last-Level caches. In 24th

USENIX Security Symposium (USENIX Security 15), pages 897–912,
Washington, D.C., August 2015. USENIX Association.

[32] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and
Andrés Sánchez. SPECTECTOR: principled detection of speculative
information flows. CoRR, abs/1812.08639, 2018.

[33] Part Guide. Intel® 64 and ia-32 architectures software developer’s
manual. Volume 3B: System programming Guide, Part, 2(11), 2011.

[34] M. Guthaus, T. Austin, D. Ernst, R. Brown, T. Mudge, and J. Rin-
genberg. Mibench: A free, commercially representative embedded
benchmark suite. In Workload Characterization, Annual IEEE Inter-

national Workshop, pages 3–14, Los Alamitos, CA, USA, dec 2001.
IEEE Computer Society.

[35] Per Hammarlund, Alberto J. Martinez, Atiq A. Bajwa, David L. Hill,
Erik Hallnor, Hong Jiang, Martin Dixon, Michael Derr, Mikal Hunsaker,
Rajesh Kumar, Randy B. Osborne, Ravi Rajwar, Ronak Singhal, Reynold
D’Sa, Robert Chappell, Shiv Kaushik, Srinivas Chennupaty, Stephan
Jourdan, Steve Gunther, Tom Piazza, and Ted Burton. Haswell: The
fourth-generation intel core processor. IEEE Micro, 34(2):6–20, 2014.

[36] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade,
and Juan Del Cuvillo. Using innovative instructions to create trustworthy
software solutions. HASP@ ISCA, 11, 2013.

[37] CAT Intel. Improving real-time performance by utilizing cache alloca-
tion technology. Intel Corporation, April, 2015.

[38] Ronald Kalla and Balaram Sinharoy. Power7: Ibm’s next generation
server processor. In 2009 IEEE Hot Chips 21 Symposium (HCS), pages
1–12, 2009.

[39] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer
Jaleel. A high-resolution side-channel attack on last-level cache. In
Proceedings of the 53rd Annual Design Automation Conference, page 72.
ACM, 2016.

[40] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. Stealthmem:
System-level protection against cache-based side channel attacks in the

14

cloud. In Proceedings of the 21st USENIX Conference on Security Sym-

posium, Security’12, pages 11–11, Berkeley, CA, USA, 2012. USENIX
Association.

[41] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas De-
vadas, and Joel Emer. Dawg: A defense against cache timing attacks
in speculative execution processors. Proceedings of the 51st Annual

IEEE/ACM International Symposium on Microarchitecture, 2018.

[42] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. Spectre attacks: Exploiting speculative execution.
arXiv preprint arXiv:1801.01203, 2018.

[43] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, et al. Meltdown: Reading kernel memory from user space. In
27th USENIX Security Symposium (USENIX Security 18), pages 973–
990, 2018.

[44] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas,
Gernot Heiser, and Ruby B Lee. Catalyst: Defeating last-level cache side
channel attacks in cloud computing. In High Performance Computer

Architecture (HPCA), 2016 IEEE International Symposium on, pages
406–418. IEEE, 2016.

[45] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee.
Last-level cache side-channel attacks are practical. In 2015 IEEE

Symposium on Security and Privacy, pages 605–622, 2015.

[46] Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni,
Joseph Zuckerman, Emilio G. Cota, Michele Petracca, Christian Pilato,
and Luca P. Carloni. Agile soc development with open esp. In
Proceedings of the 39th International Conference on Computer-Aided

Design, ICCAD ’20, New York, NY, USA, 2020. Association for
Computing Machinery.

[47] Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni,
Joseph Zuckerman, Emilio G. Cota, Michele Petracca, Christian Pilato,
and Luca P. Carloni. Agile soc development with open esp. In
Proceedings of the 39th International Conference on Computer-Aided

Design, ICCAD ’20, New York, NY, USA, 2020. Association for
Computing Machinery.

[48] Ross McIlroy, Jaroslav Sevcı́k, Tobias Tebbi, Ben L. Titzer, and Toon
Verwaest. Spectre is here to stay: An analysis of side-channels and
speculative execution. CoRR, abs/1902.05178, 2019.

[49] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. Inno-
vative instructions and software model for isolated execution. HASP@

ISCA, 10, 2013.

[50] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cachezoom:
How sgx amplifies the power of cache attacks. In International

Conference on Cryptographic Hardware and Embedded Systems, pages
69–90. Springer, 2017.

[51] Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk Sunar.
Memjam: A false dependency attack against constant-time crypto imple-
mentations. International Journal of Parallel Programming, 47:538–570,
2019.

[52] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Ange-
los D. Keromytis. The spy in the sandbox: Practical cache attacks in
javascript and their implications. CCS ’15, page 1406–1418, New York,
NY, USA, 2015. Association for Computing Machinery.

[53] Antoon Purnal, Giner Lukas, Daniel Gruss, and Ingrid Verbauwhede.
Systematic analysis of randomization-based protected cache architec-
tures. In IEEE Symposium on Security and Privacy, pages 469–486,
2021.

[54] Moinuddin K. Qureshi. New attacks and defense for encrypted-address
cache. In Proceedings of the 46th International Symposium on Computer

Architecture, ISCA ’19, pages 360–371, New York, NY, USA, 2019.
ACM.

[55] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache par-
titioning: A low-overhead, high-performance, runtime mechanism to
partition shared caches. In Proceedings of the 39th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO 39, pages 423–
432, Washington, DC, USA, 2006. IEEE Computer Society.

[56] Gururaj Saileshwar, Sanjay Kariyappa, and Moinuddin Qureshi. Be-
spoke cache enclaves: Fine-grained and scalable isolation from cache
side-channels via flexible set-partitioning. In 2021 International Sym-

posium on Secure and Private Execution Environment Design (SEED),
pages 37–49. IEEE, 2021.

[57] Daniel Sanchez and Christos Kozyrakis. Vantage: scalable and efficient
fine-grain cache partitioning. In ACM SIGARCH Computer Architecture

News, volume 39, pages 57–68. ACM, 2011.

[58] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. Limiting cache-
based side-channel in multi-tenant cloud using dynamic page coloring.
In Proceedings of the 2011 IEEE/IFIP 41st International Conference

on Dependable Systems and Networks Workshops, DSNW ’11, pages
194–199, Washington, DC, USA, 2011. IEEE Computer Society.

[59] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser,
Prateek Mittal, Yossef Oren, and Yuval Yarom. Robust website fin-
gerprinting through the cache occupancy channel. In USENIX Security

Symposium, 2019.

[60] Wei Song, Boya Li, Zihan Xue, Zhenzhen Li, Wenhao Wang, and Peng
Liu. Randomized last-level caches are still vulnerable to cache side-
channel attacks! but we can fix it. In 2021 IEEE Symposium on Security

and Privacy (SP), pages 955–969. IEEE, 2021.

[61] David Suggs, Mahesh Subramony, and Dan Bouvier. The amd “zen 2”
processor. IEEE Micro, 40(2):45–52, 2020.

[62] P. Sweazey and A. J. Smith. A class of compatible cache consistency
protocols and their support by the ieee futurebus. In Proceedings of

the 13th Annual International Symposium on Computer Architecture,
ISCA ’86, page 414–423, Washington, DC, USA, 1986. IEEE Computer
Society Press.

[63] Daniel Townley, Kerem Arıkan, Yu David Liu, Dmitry Ponomarev, and
Oguz Ergin. Composable cachelets: Protecting enclaves from cache
side-channel attacks. In 2022 USENIX Security Symposium, 2022.

[64] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
intel {SGX} kingdom with transient out-of-order execution. In 27th

{USENIX} Security Symposium ({USENIX} Security 18), pages 991–
1008, 2018.

[65] Daimeng Wang, Ajaya Neupane, Zhiyun Qian, Nael B. Abu-Ghazaleh,
Srikanth V. Krishnamurthy, Edward J. M. Colbert, and Paul L. Yu. Un-
veiling your keystrokes: A cache-based side-channel attack on graphics
libraries. Proceedings 2019 Network and Distributed System Security

Symposium, 2019.

[66] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C. Myers, and
G. Edward Suh. Secdcp: Secure dynamic cache partitioning for efficient
timing channel protection. In Proceedings of the 53rd Annual Design

Automation Conference, DAC ’16, pages 74:1–74:6, New York, NY,
USA, 2016. ACM.

[67] Zhenghong Wang and Ruby B Lee. New cache designs for thwarting
software cache-based side channel attacks. In ACM SIGARCH Computer

Architecture News, volume 35, pages 494–505. ACM, 2007.

[68] Zhenghong Wang and Ruby B Lee. A novel cache architecture with
enhanced performance and security. In Proceedings of the 41st annual

IEEE/ACM International Symposium on Microarchitecture, pages 83–
93. IEEE Computer Society, 2008.

[69] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz,
Daniel Gruss, and Stefan Mangard. Scattercache: thwarting cache attacks
via cache set randomization. In 28th {USENIX} Security Symposium

({USENIX} Security 19), pages 675–692, 2019.

[70] Johannes Wikner and Kaveh Razavi. RETBLEED: Arbitrary speculative
code execution with return instructions. In 31st USENIX Security

Symposium (USENIX Security 22), pages 3825–3842, Boston, MA,
August 2022. USENIX Association.

[71] Yuejian Xie and Gabriel H. Loh. Pipp: Promotion/insertion pseudo-
partitioning of multi-core shared caches. In Proceedings of the 36th

Annual International Symposium on Computer Architecture, ISCA ’09,
pages 174–183, New York, NY, USA, 2009. ACM.

[72] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher,
Roy Campbell, and Josep Torrellas. Attack directories, not caches:
side-channel attacks in a non-inclusive world. In Proceedings of IEEE

Symposium on Security and Privacy. IEEE, 2019.

[73] Mengjia Yan, Jen-Yang Wen, Christopher W. Fletcher, and Josep Torrel-
las. Secdir: A secure directory to defeat directory side-channel attacks.
ISCA ’19, page 332–345, New York, NY, USA, 2019. Association for
Computing Machinery.

[74] Yuval Yarom and Katrina Falkner. Flush+ reload: A high resolution, low
noise, l3 cache side-channel attack. In USENIX Security Symposium,
pages 719–732, 2014.

15

APPENDIX

In this appendix, we present additional definition elided in

the main text, and formally state the theorems presented in the

paper. A detailed full proof can be found online 1.

A. Runtime State Details

Program Store and Enclave State Program store Ã is a

mapping from thread IDs to thread states. Specifically, each

thread state is a triple: its enclave state (ϵ), its program counter

(l), and the CPU core it resides on (q).

As each thread may create multiple enclaves, the enclave

state keeps track of both the active enclave — the enclave

whose access is currently under execution — and all enclave-

private memory regions (E). When no enclave is active, we

set e as §. We further use metavariable ε for this special form

of enclave state.

We define Ω|p as the longest sequence om where ïp; oið and

i = [1, ..m] appears in Ω, and for any 1 f i < j f m, ïp; oið
appears before ïp; ojð in Ω.

B. Cache Replacement

Cache Replacement Structures

R ::= s 7→ T set-indexed PLRU

T ::= ïς; e;T ;T ð|A PLRU tree

A ::= ïw; eð PLRU leaf

ς ::= LMRU | RMRU selection bit

Function replace(T, e) computes the way to be evicted for

enclave e given the current state of the PLRU tree T . Function

update(T,w, e) computes the updated PLRU tree given the

original one being T . Both functions have been defined in the

CC paper, so we defer it to the online supplementary material

here. With these definitions, the cache lookup given an acesss

descriptor is defined in Fig. 22.

C. Cache Coherence

In this section, we define relevant definitions related to

MOESI cache coherence. For MOESI, the transitions related

to state bit setting upon a CPU request is defined in Fig. 23.

The transitions related to state bit setting upon a bus request

is defined in Fig. 24. To support write-back, we extend the

coherence bit with label B, which can be viewed as a form of

invalid state (I) before cache line write-back. The label change

from B to I will be handled by the write-back relation which

we will show in a later subsection.

The behavior of a single cache unit in the presence of a CPU

request is defined in Fig. 25. The behavior of a single cache

unit in the presence of a bus request is defined in Fig. 26. The

behavior of all cache units on a single level in the presence

of a bus request is defined in Fig. 27.

Finally, the behavior of a cache unit responding to a CPU

request by coordinating all cache units on the same level —

in conformance of MOESI — is defined in Fig. 28.

1https://www.cs.binghamton.edu/∼davidl/papers/NDSS24-Long.pdf

È{c 7→ vb′}
△
= ïF ;V ;C[c 7→ ïvb′; t;D];Rð

È{c 7→ D′}
△
= ïF ;V ;C[c 7→ ïvb; t;D′];Rð

È{c, ¶ 7→ v}
△
= ïF ;V ;C[c 7→ ïvb; t;D[¶ 7→ v]];Rð

È{s 7→ T}
△
= ïF ;V ;C;R[s 7→ T]ð

È|e
△
= ïF ;V ′;C|ran(V ′);Rð
if V ′ = V |e

È#È′ △
= (dom(V) ∩ dom(V ′) = ∅)

'(dom(C) ∩ dom(C′) = ∅)
if È′ = ïF ′;V ′;C′;R′ð

Fig. 17: Functions on Physical Cache Unit. For all definitions,

È = ïF ;V ;C;Rð, and C(c) = ïvb; t;Dð

»{¼, c 7→ vb}
△
= »[¼ 7→ »(¼){c 7→ vb}]

»{¼, c 7→ D}
△
= »[¼ 7→ »(¼){c 7→ D}]

»|e
△
= ¼ 7→ È|e
if » = ¼ 7→ È

»#»′ △
= ∀ ¼ ∈ dom(») ∩ dom(»′).»(¼)#»′(¼)

Fig. 18: Functions on Multi-Level Cache

µ|E
△
= µ|ïl1;n1ð · · · ∪ µ|ïln;nnð

if E = [e1 7→ ïl1;n1ð, . . . , en 7→ ïln;nnð]

µ|ïl;nð
△
= µ|{l,l+1,...,l+n−1}

▽e

ϵµ
△
= µ{l 7→ 0} . . . {l + n− 1 7→ 0}
if ϵ = ïe;Eð, E(e) = ïl;nð

µ1#µ2
△
= dom(µ1) ∩ dom(µ2) = ∅

Fig. 19: Functions on Memory

ϵµ{e 7→ ïl;nð}
△
= ïe;E[e 7→ ïl;nð]ð
if ϵ = ïe;Eð, e /∈ dom(E),

µ{l} = µ{l + 1} . . . µ{l + n− 1} = 0

ïe′;Eð ◀ e
△
= ïe;Eð
if e ∈ dom(E) ∪ {§}

ïe;Eð − e

△
= ïe;E\eð

Fig. 20: Functions on Enclave

Σ[l 7→ n]
△
= ï»;µ{l 7→ n}; Ä;Ãð

Σ|p
△
= ï»|dom(E);µ|E ; Ä|p; p 7→ Ã(p)ð
if Ã(p) = ïϵ; l; qð, ϵ = ïe;Eð

Fig. 21: Convenience Functions on Runtime States. For all

definitions, Σ = ï»;µ; Ä;Ãð

Ä = ïl; a; ϵð
È = ïF ;V ;C;Rð ³(l) = ïb; ¶ð ´(b) = ïs; tð w ∈ C(ϵ)(s)

c = ïw; sð C(c) = ïvb; t;Dð T = update(R(s), w, ϵ)

È♢Ä
△
= (c, ¶, vb, D, È{s 7→ T})

Ä = ïl; a; ϵð È = ïF ;V ;C;Rð ³(l) = ïb; ¶ð
´(b) = ïs; tð ∀w ∈ C(ϵ)(s).t ̸= t

′
where C(ïw; sð) = ïvb; t

′
;D

′ð
w

′
= replace(R(s), ϵ) c = ïw′

; sð
C(c) = ïI; t′′;D′′ð for some t

′′
and D

′′
T = update(R(s), w

′
, ϵ)

È♢Ä
△
= (c, ¶, vb, ∅, È{s 7→ T})

Fig. 22: Location-Cache Lookup (In the first case, the location

l is already cached in È, within any of the MOESI state. In

the second case, the location l is not cached in È at all.)

We define peers(¼) as {¼′ | H(¼) = H(¼′), ¼′ ̸= ¼}. Note

16

that if ¼ represents an LLC, the function still works, except

that it computes ∅.

D. PCU Behavior

Structurally, a single-level physical cache unit consists of

the CPT (V), way-set cache (C), replacement logic (R), and

free list (F). Given a memory block ID b, we define a bijective

function ´ : BLOCK ⇌ SET×TAG to compute its set index

s and the tage value t.

Fig. 29 and Fig. 30 define CP allocation and deallocation

respectively, where

⟲ F
△
= ïw; sð where ∀ïw′; s′ð ∈ F.w′ >= w

we further define ⟲ ∅ as §.

E. TEE-SHirT Behavior

The definitions of TEE-SHirT allocation and deallocation

can be found in Fig. 31 and Fig. 32. The write-back reduction

is defined in Fig. 33.

F. Full Operational Semantics

The reduction rules are shown in Fig. 34. We use Σ
Ω
=⇒

∗

Σ′

to represent the reflexive and transitive closure of
Ω
=⇒, where Ω

is “concatenated”: (1) If Σ
Ω
=⇒ Σ′, then Σ

Ω
=⇒

∗

Σ′. (2) If Σ
Ω
=⇒

Σ′ and Σ′ Ω′

==⇒
∗

Σ′′, then Σ
Ω,Ω′

===⇒
∗

Σ′′. For convenience,

we further include an imaginary instruction NOP to take the

behavior of cache/memroy write-back. This instruction can be

inserted at any step of the reduction.

G. Properties

Definition A.1 (Enclave-Private Location). epriv(l, e, p,Σ)
hold iff Σ = ï»;µ; Ä;Ãð and Ã(p) = ïϵ; l′; qð and ϵ = ïe0;Eð
and E(e) = ïl0;n0ð and l0 f l < l0 + n0.

Theorem A.1 (Immunity Against Side-Channel Attacks).

Given Σ and some l, e, p s.t. epriv(l, e, p,Σ), some n1 ̸= n2,

p′ ̸= p, two reductions Σ[l 7→ ni]
Ωi==⇒

∗

»i, µi, Äi, Ãi where

Ãi(p
′) = ïϵi; •ð for i = 1, 2, then ϵ1 = ϵ2, Ω1|p′ = Ω2|p′ .

M
R
á M

.M
W
á M

O
R
á O

O
W
á M

E
R
á E

E
W
á M

S
R
á S

S
W
á M

Fig. 23: Cache Coherence State Transition with MOESI Pro-

tocol: Core Behavior (Relation vb1
a
á vb2 says that cache

coherence state vb1 transitions to cache coherence state vb2

when the CPU core itself encounters an event of a.)

M
R
â O

.M
W
â E

O
R
â B

O
W
â M

E
R
â S

E
W
â B

S
R
â S

S
W
â I

Fig. 24: Cache Coherence State Transition with MOESI Pro-

tocol: Bus Behavior (Relation vb1
a
â vb2 says that cache

coherence state vb1 transitions to cache coherence state vb2
when the bus transmits an event of a to the core.)

È♢Ä = (c, ¶, vb, D, È
′
) vb

W
á vb

′

È
D′,W,v,λ
↪−−−−−−→

ïW;c;λð
È

′{c 7→ D[¶ 7→ v]}{c 7→ vb
′}

È♢Ä = (c, ¶, vb, D, È
′
) vb

R
á vb

′
v = D(¶)

È
D′,R,v,λ
↪−−−−−−→

ïR;c;λð
È

′{c 7→ vb
′}

È♢Ä = (c, ¶, vb, D, È
′
) vb = I or B D

′ ̸= ∅

È
D′,W,v,λ
↪−−−−−−→

ïLM;c;λð
È

′{c 7→ D
′
[¶ 7→ v]}{c 7→ S}

È♢Ä = (c, ¶, vb, D, È
′
) vb = I or B D

′ ̸= ∅ v = D
′
(¶)

È
D,R,v,λ
↪−−−−−→
ïLM;c;λð

È
′{c 7→ S}

È♢Ä = (c, ¶, vb, D, È
′
) vb = I or B

È
∅,a,v,λ
↪−−−−−−→
ïGM;c;λð

È
′{c 7→ E}

Fig. 25: PCU Access when Request Comes from CPU

Ä = ïl; a; ϵð È♢Ä = (c, ¶, vb, D, È
′
) vb

a
â vb

′

È ¹ Ä
△
= (È

′{c 7→ vb
′}, vb, D)

È♢Ä = (c, ¶, vb, D, È
′
) vb = I or B

È ¹ Ä
△
= (È

′
, vb, ∅)

Fig. 26: PCU Access When Request Comes from Bus

È = {È1, . . . , Èn}
Èi ¹ Ä = (È

′
i, vbi, Di) ∃j ∈ [1..n].vbj = M,E, or O

È ¹ Ä
△
= (È′, Dj)

È = {È1, . . . , Èn} Èi ¹ Ä = (È
′
i, vbi, Di)

∄j ∈ [1..n].vbj = M,E, or O ∃k ∈ [1..n].vbk = S

È ¹ Ä
△
= (È′, Dk)

È = {È1, . . . , Èn}
Èi ¹ Ä = (È

′
i, vbi, Di) ∀j ∈ [1..n].vbj = I or B

È ¹ Ä
△
= (È′, ∅)

Fig. 27: Single Cache Level Access When Request Comes

from Bus

17

peers(¼) = ¼ »(¼) ¹ Ä = (È′, D)

»(¼)
D,a,v,λ
↪−−−−−→

o
È

»
λ,v,τ
−−−−→

{o}
»[¼ 7→ È][¼ 7→ È′]

Fig. 28: Single Cache Level Access

c =⟲ F e /∈ dom(V) c = ïw; sð T = update(R(s), w, e)

⇑n
e

ïF ;V ;C;Rð
△
=⇑n−1

e
ïF − c;V [e 7→ (s 7→ {w})];C;R[s 7→ T]ð

c =⟲ F
V (e) = L s /∈ dom(L) c = ïw; sð T = update(R(s), w, e)

⇑n
e

ïF ;V ;C;Rð
△
=⇑n−1

e
ïF − c;V [e 7→ L[s 7→ {w}]];C;R[s 7→ T]ð

c =⟲ F
V (e) = L L(s) = W c = ïw; sð T = update(R(s), w, e)

⇑n
e

ïF ;V ;C;Rð
△
=⇑n−1

e
ïF − c;V [e 7→ L[s 7→ W ∪ {w}]];C;R[s 7→ T]ð

⇑0
e
È

△
= È

Fig. 29: CP Allocation in a PCU

V (e) = L L(s) = W,w for some s, w c = ïw; sð
T = update(R(s), w, e) È = ïF, c;V [e 7→ L[s 7→ W − w]];C;Rð

óe ïF ;V ;C;Rð
△
=óe È{c 7→ I}{s 7→ T}

V (e) = L L(s) = ∅

óe ïF ;V ;C;Rð
△
=óe ïF ;V [e 7→ L\s];C;Rð

V (e) = ∅

óe ïF ;V ;C;Rð
△
= ïF ;V \e;C;Rð

Fig. 30: CP Deallocation in a PCU

n = n, n′ ⇑n
e
»(¼) = È »

′
= »[¼ 7→ È]

⇑ n

e

ï»;¼ð
△
= ⇑ n′

e

ï»′
;H(¼)ð

⇑ ∅

e

ï»;¦ð
△
= »

Fig. 31: TEE-SHirT Allocation

óe »(¼) = È »
′
= »[¼ 7→ È] ó

e
ï»′

;H(¼)ð = »
′′

ó
e
ï»;¼ð

△
= »

′′

ó
e
ï»;¦ð

△
= »

Fig. 32: TEE-SHirT Deallocation

H(¼1) = ¼2 »(¼i) = ïFi;Vi;Ci;Rið for i = 1, 2
Ci(ci) = ïvbi; t;Dið for i = 1, 2 and some t

ci = ïwi; sð for i = 1, 2 and some s vb1 = B

», µ →wb »{¼1, c1 7→ I}{¼2, c2 7→ B}{¼2, c2 7→ D1}, µ

H(¼) = ¦ »(¼) = ïF ;V ;C;Rð
C(c) = ïB; t;Dð c = ïw; sð µ(b) = D

′
´(b) = ïs; tð

», µ →wb »{¼, c 7→ I}, µ[b 7→ D]

Fig. 33: TEE-SHirT Write-Back

[LOAD]

Ä = ïl; R; ϵð », µ
H(q),v,τ
=======⇒

O
»
′
, µ

′

», µ, Ä, ϵ, LOAD l r
O

−−→
q,1

»
′
, µ

′
, Ä[r 7→ v], ϵ

[CREATE]
ϵ
′
= ϵµ{Ä(r1) 7→ ïÄ(r2); Ä(r3)ð}

», µ, Ä, ϵ, CREATE r1 r2 r3 r
∅

−−→
q,1

⇑ ρ(r)

ρ(r1)
(»,H(q)), µ, Ä, ϵ

′

[STORE]

Ä = ïl; W; ϵð », µ
H(q),ρ(r),τ
=========⇒

O
»
′
, µ

′

», µ, Ä, ϵ, STORE r l
O

−−→
q,1

»
′
, µ

′
, Ä, ϵ

[DESTROY]

», µ, Ä, ε, DESTROY r
∅

−−→
q,1

óρ(r)(»,H(q)),▽
ρ(r)
ε µ, Ä, ε− Ä(r)

[ENTER]

», µ, Ä, ε, ENTER r
∅

−−→
q,1

», µ, Ä, ε ◀ Ä(r)

[EXIT]

», µ, Ä, ϵ, EXIT
∅

−−→
q,1

», µ, Ä, ϵ ◀ §

[BRTRUE]
Ä(r) ̸= 0

», µ, Ä, ϵ, BR r r
′ ∅
−−−−−→
q,ρ(r′)

», µ, Ä, ϵ

[BRFALSE]
Ä(r) = 0

», µ, Ä, ϵ, BR r r
′ ∅
−−→
q,1

», µ, Ä, ϵ

[WB]
», µ →wb »

′
, µ

′

», µ, Ä, ϵ, NOP
∅

−−→
q,0

»
′
, µ

′
, Ä, ϵ

[NOP]

», µ, Ä, ϵ, NOP
∅

−−→
q,0

»
′
, µ

′
, Ä, ϵ

Fig. 34: Single-Process Operational Semantics

18

	Introduction
	Background and Threat Model
	Cache Hierarchies
	Partitioned Caches for Security
	Relevant Intel SGX Data Structures
	Threat Model

	A Case for Partitioning L2 Caches in Inclusive Hierarchies
	TEE-SHirT
	TEE-SHirT Design Overview
	Partition-Aware Context Switches and System Calls
	CPTC Virtualization
	Memory Layout Extensions for TEE-SHirT
	Partition-Aware Context Switches

	Multithreaded Enclaves with Partitioned Caches
	Challenge 1 - Inter-Core Data Sharing
	Challenge 2 - Intra-Core Data Sharing
	Considerations for directory-based coherence

	A Formal Security Analysis
	Definitions
	Observation and Observation Traces
	Operational Semantics
	Metatheory

	Evaluation
	Experimental Methodology
	Performance of CPTC Virtualization
	Performance of Cache Coherence Optimizations
	Overall Performance of TEE-SHirT
	Area Overhead

	Related Work
	Concluding Remarks
	References
	Appendix
	Runtime State Details
	Cache Replacement
	Cache Coherence
	PCU Behavior
	TEE-SHirT Behavior
	Full Operational Semantics
	Properties

