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Abstract
We relate the mixed Hodge structure on the cohomology of open positroid varieties
(in particular, their Betti numbers over C and point counts over Fq) to Khovanov–
Rozansky homology of associated links. We deduce that the mixed Hodge polyno-
mials of top-dimensional open positroid varieties are given by rational q; t -Catalan
numbers. Via the curious Lefschetz property of cluster varieties, this implies the q; t -
symmetry and unimodality properties of rational q; t -Catalan numbers. We show that
the q; t -symmetry phenomenon is a manifestation of Koszul duality for category O,
and discuss relations with open Richardson varieties and extension groups of Verma
modules.
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Introduction
The binomial coefficients

�
n
k

�
have natural q-analogues

�
n
k

�
q
, known as Gaussian

polynomials. On the other hand, the rational Catalan numbers Ck;n�k WD 1
n

�
n
k

�
DUKE MATHEMATICAL JOURNAL
Vol. 173, No. 11, © 2024 DOI 10.1215/00127094-2023-0049
Received 26 August 2021. Revision received 12 August 2023.
2020 Mathematics Subject Classification. Primary 14M15; Secondary 14F05, 05A15, 57K18.

2117

https://doi.org/10.1215/00127094-2023-0049
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


2118 GALASHIN and LAM

(defined for gcd.k; n/ D 1) have two different well-studied q-analogues: the area
generating function

P
P 2Dyckk;n�k

qarea.P / of rational Dyck paths (see [18]), and the

polynomial 1
Œn�q

�
n
k

�
q

going back to [88].
The Poincaré polynomial of the complex Grassmannian Gr.k; n/, and the number

of points of Gr.k; n/ over a finite field Fq , are both well known to be given by
�

n
k

�
q
. We

give a Catalan analogue of this statement by considering the top-dimensional positroid
variety …ı

k;n
� Gr.k; n/, introduced in [77] building on the results of [103]. The space

…ı
k;n

is the subspace of Gr.k; n/ where all cyclically consecutive Plücker coordinates
are nonvanishing. We show that, up to a simple factor, the mixed Hodge polynomial
P .…ı

k;n
Iq; t/ coincides with the rational q; t -Catalan number Ck;n�k.q; t/ introduced

in [86] in the study of Macdonald polynomials (see [50], [63]). It follows that the
Poincaré polynomial of …ı

k;n
equals

P
P 2Dyckk;n�k

qarea.P /, while the point count

#…ı
k;n

.Fq/ equals 1
Œn�q

�
n
k

�
q
, both up to a simple factor.

The coincidence of the Poincaré polynomial and the point count of Gr.k; n/ is
reflected in the purity of the mixed Hodge structure on the cohomology of Gr.k; n/.
Purity holds for many spaces of interest in combinatorics, for example, for com-
plements of hyperplane arrangements. By contrast, the mixed Hodge structure on
H �.…ı

k;n
/ is not pure, and simultaneously yields both of the natural q-analogues of

rational Catalan numbers discussed above.
Our proof proceeds via relating both sides to Khovanov–Rozansky knot homol-

ogy (see [74]–[76]). Our main result connects the cohomology of arbitrary open
positroid varieties, and more generally open Richardson varieties in generalized flag
varieties, to knot homology.

Connections between knot invariants and Macdonald theory have received an
enormous amount of attention in recent years (see, e.g., [22], [34], [60], [61], [64],
[69], [92], [98]). In particular, Khovanov–Rozansky homology of torus knots and
links was computed in [34], [68], [69], and [92]. For torus knots, the answer is given
by the rational q; t -Catalan numbers.

Our main results are described in detail in the next section. We start by highlight-
ing some consequences of our approach from several points of view.

Combinatorics
The coefficients of the Gaussian polynomial

�
n
k

�
q

are well known to form a unimodal
palindromic sequence. A geometric explanation for this phenomenon is the hard Lef-
schetz theorem for the cohomology of Gr.k; n/. It follows from the results of [46]
and [83] that the cohomology of …ı

k;n
satisfies the curious Lefschetz property which,

combined with our main result, yields a geometric proof that Ck;n�k.q; t/ is q; t -
symmetric and unimodal. Furthermore, our work produces a whole family of q; t -
symmetric and unimodal polynomials, which includes Ck;n�k.q; t/ as a special case.
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We discuss their q D t D 1 specialization in Section 9 where we obtain a new combi-
natorial interpretation for rational Catalan numbers in terms of certain kinds of pipe
dreams (see Figure 5).

Knot theory
We introduce a class of Richardson links, which are closures of braids of the form
ˇ.w/ �ˇ.v/�1 for pairs of permutations v;w 2 Sn such that v � w in the Bruhat order.
We give a geometric interpretation of the top a-degree coefficient1 of Khovanov–
Rozansky (KR) homology and of the HOMFLY polynomial (see [42], [104]) for such
links. When a Richardson link is a knot, we show that the associated q; t -polynomial
is q; t -symmetric. Our investigations suggest that KR homology may have hitherto
unstudied unimodality and Lefschetz-type properties. Our results generalize equally
well to other Dynkin types.

Representation theory
We show that the q; t -symmetry property is a consequence of the Koszul duality phe-
nomenon (see [11], [15]) in the derived category of the flag variety.

The computation of the extension groups Ext�.Mv;Mw/ between Verma mod-
ules in the principal block O0 of the Bernstein–Gelfand–Gelfand category O (see,
e.g., [70]) is a classical, still open problem. We show that these extension groups
are isomorphic to knot-homology groups. Along the same vein, we show that the R-
polynomials of Kazhdan and Lusztig [72], [73] are certain coefficients of the HOM-
FLY polynomial.

Algebraic geometry
Our results provide evidence for a P D W conjecture relating the weight filtration
of …ı

k;n
with the perverse filtration of the compactified Jacobian Jk;n�k (see Sec-

tion 1.12.2).

1. Main results
We give a detailed description of our main results. The historical context and moti-
vation for our work is delayed to Section 1.12. We give the full background on the
objects below in the main body of the paper.

1The top a-degree coefficient encodes the zeroth Hochschild cohomology (1.17) which sometimes corresponds
to the bottom a-degree in the literature. Our conventions are chosen so that the a-degree in KR homology
matches the a-degree in the HOMFLY polynomial.
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Figure 1. (Color online) Computing the rational q; t -Catalan number C3;5.q; t/.

1.1. Rational q; t -Catalan numbers
Let a and b be coprime positive integers. The rational q; t -Catalan number
Ca;b.q; t/ 2 NŒq; t � was introduced by Loehr and Warrington [86] (see also [58], [59]),
generalizing the work of Garsia and Haiman [50]. It is defined as

Ca;b.q; t/ WD
X

P 2Dycka;b

qarea.P /tdinv.P /; (1.1)

where Dycka;b is the set of lattice paths P inside a rectangle of height a and width
b that stay above the diagonal, area.P / is the number of unit squares fully contained
between P and the diagonal, and dinv.P / is the number of pairs .h; v/ satisfying
the following conditions: h is a horizontal step of P , v is a vertical step of P that
appears to the right of h, and there exists a line of slope a=b (parallel to the diagonal)
intersecting both h and v. For example,

C3;5.q; t/ D q4 C q3t C q2t2 C q2t C qt3 C qt2 C t4; (1.2)

as shown in Figure 1.

1.2. Positroid varieties in the Grassmannian
The Grassmannian Gr.k; n/ is the space of k-dimensional linear subspaces of Cn.
Building on Postnikov’s cell decomposition in [103] of its totally nonnegative part,
Knutson, Lam, and Speyer [77] constructed a stratification

Gr.k; n/ D
G

f 2Bk;n

…ı
f ; (1.3)

where the (open) positroid varieties …ı
f

are defined as the nonempty intersections
of cyclic rotations of n Schubert cells. These varieties also arise in Poisson geometry
(see [16]) and in the study of scattering amplitudes (see [5]). Open positroid varieties
are indexed by a finite set Bk;n of bounded affine permutations, and for f 2 Bk;n

the reduction of f modulo n is a permutation Nf 2 Sn. (See Section 4.1 for further
background.)

Let fk;n 2 Bk;n be the bounded affine permutation given by fk;n.i/ D i C k.
The positroid stratification (1.3) contains a unique open stratum, the top-dimensional
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positroid variety …ı
k;n

WD …ı
fk;n

, which can be described explicitly as

…ı
k;n WD

®
V 2 Gr.k; n/

ˇ̌
�1;2;:::;k.V /;�2;3;:::;kC1.V /; : : : ;

�n;1;:::;k�1.V / ¤ 0
¯
; (1.4)

consisting of subspaces whose cyclically consecutive Plücker coordinates are nonva-
nishing.

For each f 2 Bk;n, the space …ı
f

is a smooth algebraic variety. Two basic ques-
tions one can ask are:
(1) What is the number of points in …ı

f
.Fq/ over a finite field Fq with q elements?

(2) What are the Betti numbers of …ı
f

considered as a complex manifold?
These two questions are related by the mixed Hodge structure (see [29]) on coho-

mology. The cohomology ring H �.…ı
f

/ D H �.…ı
f

;C/ of an open positroid variety
is of Hodge–Tate type, and we have a Deligne splitting

H k.…ı
f ;C/ Š

M
p2Z

H k;.p;p/.…ı
f ;C/: (1.5)

Since …ı
f

is smooth, we have that H k;.p;p/ vanishes unless k=2 � p � k. We view
(1.5) as a bigrading on H �.…ı

f
/ and let P .…ı

f
Iq; t/ be the suitably renormalized

(see (4.6)) Poincaré polynomial of this bigraded vector space, called the mixed Hodge
polynomial.

We are ready to state the most important special case of our main result.

THEOREM 1.1
Assume that gcd.k; n/ D 1. Then

P .…ı
k;nIq; t/ D .q

1
2 C t

1
2 /n�1Ck;n�k.q; t/: (1.6)

The equality (1.6) arises as a conjecture from the works [114] and [115], and we
thank Vivek Shende for drawing our attention to the conjecture (see Section 1.12.2
for further discussion). We generalize Theorem 1.1 to all positroid varieties in Theo-
rem 1.17 below.

Let us discuss the specializations of Theorem 1.1 that give answers to questions
(1) and (2) above. Denote

Œn�q WD 1 C q C � � � C qn�1; Œn�qŠ WD Œ1�qŒ2�q � � � Œn�q;"
n

k

#
q

WD
Œn�qŠ

Œk�qŠŒn � k�qŠ
:
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COROLLARY 1.2
The Poincaré polynomial and point count of …ı

k;n
are

P .…ı
k;nIq/ D .q C 1/n�1 � Ck;n�k.q2; 1/; (1.7)

#…ı
k;n.Fq/ D .q � 1/n�1 �

1

Œn�q

"
n

k

#
q

: (1.8)

Our proof of Theorem 1.1 involves a number of ingredients, including Khovanov–
Rozansky knot homology and derived categories of flag varieties. The point count
specialization (1.8) requires less advanced machinery and we give a quicker elemen-
tary proof in Section 2. Associating a link Ǒ

f to each positroid variety …ı
f

(Sec-

tion 1.5), we compare the point count #…ı
f

.Fq/ to the HOMFLY polynomial of Ǒ
f

(Section 1.6). The HOMFLY polynomial is categorified by Khovanov–Rozansky knot
homology, and our proof of Theorem 1.1 may be considered a “categorification” of
the point count computation.

We have the following elegant but baffling corollary.

COROLLARY 1.3
Let gcd.k; n/ D 1. Then the probability that a uniformly random k-dimensional sub-
space of .Fq/n belongs to …ı

k;n
.Fq/ is given by

Prob
�
V 2 …ı

k;n.Fq/
�

D
.q � 1/n

qn � 1
:

The probability .q�1/n

qn�1
does not depend on k. We do not have a direct explanation

for this phenomenon.

1.3. Cluster structure and the curious Lefschetz theorem
Since the work of Scott [111], positroid varieties have been expected to admit a natural
cluster algebra (see [40]) structure arising from Postnikov diagrams. We recently
proved this conjecture building on the results of [85], [97], and [112].

THEOREM 1.4 ([46])
The coordinate ring of each positroid variety …ı

f
is isomorphic to the associated

cluster algebra.

This result allows one to study …ı
f

as a cluster variety, and for such spaces
the mixed Hodge structure can be explored using the machinery developed by Lam
and Speyer [83], whose work implies the following properties of the mixed Hodge
polynomials P .…ı

f
Iq; t/.
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THEOREM 1.5 ([46], [83])
For each f 2 Bk;n, the mixed Hodge polynomial P .…ı

f
Iq; t/ 2 NŒq

1
2 ; t

1
2 � has the

following properties:
(i) q; t -symmetry: P .…ı

f
Iq; t/ D P .…ı

f
I t; q/;

(ii) q; t -unimodality: for each d , the coefficients of P .…ı
f

Iq; t/ at qd t0, qd�1t1,

. . . , q0td form a unimodal sequence;
(iii) P .…ı

f
I1; q2/ equals the Poincaré polynomial of …ı

f
(considered as a variety

over C);

(iv) q
1
2 dim …ı

f � P .…ı
f

Iq; t/j
t

1
2 D�q

� 1
2

equals the point count #…ı
f

.Fq/.

See Example 1.9 below.
Parts (i) and (ii) are consequences of the curious Lefschetz property, formalized

in [67] and proved to hold for certain cluster varieties in [83] (see Section 4.3).

1.4. The Catalan variety
Let T Š .C�/n�1 be the group of diagonal matrices in PGLn.C/: it is the quotient of
the group of diagonal n � n matrices by the group of scalar matrices. The group T

acts on Gr.k; n/ preserving the positroid stratification. For u 2 Sn, let

c.u/ WD the number of cycles of u; (1.9)

and let BcD1
k;n

WD ¹f 2 Bk;n j c. Nf / D 1º. The following observation is proved in Sec-
tion 4.2.

PROPOSITION 1.6
The action of T on …ı

f
is free if and only if the permutation Nf is a single cycle.

For f 2 BcD1
k;n

, the quotient Xı
f

WD …ı
f

=T is again a smooth affine variety that
we call a positroid configuration space (see also [6]). It is a cluster variety (with no
frozen variables, since the T -action on the frozen variables of …ı

f
is free), and thus

Theorem 1.5 applies to it.

PROPOSITION 1.7
For f 2 BcD1

k;n
, the mixed Hodge polynomials of …ı

f
and Xı

f
are related by:

P .…ı
f Iq; t/ D .q

1
2 C t

1
2 /n�1 � P .Xı

f Iq; t/: (1.10)

When gcd.k; n/ D 1, we have fk;n 2 BcD1
k;n

. The quotient Xı
k;n

WD …ı
k;n

=T satis-
fies
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P .Xı
k;nIq; t/ D Ck;n�k.q; t/; (1.11)

and we refer to Xı
k;n

as the Catalan variety. Let dk;n WD .k � 1/.n � k � 1/ D

dim.Xı
k;n

/. We obtain the following as a consequence of Theorem 1.5.

COROLLARY 1.8
Assume that gcd.k; n/ D 1. We have:
(i) q; t -symmetry: Ck;n�k.q; t/ D Ck;n�k.t; q/;
(ii) q; t -unimodality: for each d , the coefficients of Ck;n�k.q; t/ at qd t0, qd�1t1,

. . . , q0td form a unimodal sequence;
(iii) the Poincaré polynomial of Xı

k;n
is given by

X
d

q
d
2 dim H dk;n�d .Xı

k;n/ D Ck;n�k.q; 1/

D
X

P 2Dyckk;n�k

qarea.P /I (1.12)

(iv) the number of Fq-points of Xı
k;n

is given by

#Xı
k;n.Fq/ D

1

Œn�q

"
n

k

#
q

D q
1
2 dk;n � Ck;n�k.q; 1=q/: (1.13)

While part (i) is known, the remaining parts of Corollary 1.8 appear to be new (see
Section 1.12.1). Note also that the odd Betti numbers of Xı

k;n
vanish, a phenomenon

that we do not have a direct explanation for. Parts (iii)–(iv) may be deduced directly
from Corollary 1.2 using Proposition 1.6.

Example 1.9
Let k D 3 and n D 8. The coordinate ring of Xı

3;8 is a cluster algebra of type E8

(with no frozen variables). The associated mixed Hodge table is given in Table 1
(see [83, Table 5]). The grading conventions (4.6) are chosen so that the first row
contributes q4 C q3t C q2t2 C qt3 C t4 while the second row contributes q2t C

qt2 to P .Xı
3;8Iq; t/. Note that all odd cohomology groups vanish, which is why all

Table 1. The mixed Hodge table recording the dimensions of H k;.p;p/.Xı
3;8/ for the cluster

algebra of type E8 (see [83, Table 5]). The dimensions agree with the coefficients of C3;5.q; t/

(see Example 1.9).

H k H 0 H 1 H 2 H 3 H 4 H 5 H 6 H 7 H 8

k � p D 0 1 0 1 0 1 0 1 0 1

k � p D 1 1 0 1
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monomials have integer powers of q and t . Comparing the result with (1.2), we find
P .Xı

3;8Iq; t/ D C3;5.q; t/, in agreement with Theorem 1.1.
The polynomial C3;5.q; t/ given in (1.2) is indeed q; t -symmetric. It is also q; t -

unimodal: fixing the total degree of q and t , it splits into polynomials q4 C q3t C

q2t2 C qt3 C t4 and q2t C qt2, both of which have unimodal coefficient sequences,
corresponding to the rows of Table 1. We also have C3;5.q; 1/ D q4 C q3 C 2q2 C

2q C 1; the coefficient of qd=2 is equal to dim H dk;n�d .…ı
3;8/ for each d (these

coefficients are column sums in Table 1). This agrees with (1.12).

1.5. Links associated to positroid varieties
Let us say that a permutation w 2 Sn is k-Grassmannian if w�1.1/ < w�1.2/ < � � � <

w�1.k/ and w�1.k C1/ < � � � < w�1.n/. We denote by “�” the (strong) Bruhat order
on Sn. Let Qk;n denote the set of pairs .v;w/ of permutations such that v � w and w

is k-Grassmannian. The following result is well known (see Proposition 4.2).

PROPOSITION 1.10 ([77])
There exists a bijection .v;w/ 7! fv;w between Qk;n and Bk;n such that for every
f D fv;w 2 Bk;n, we have Nf D wv�1.

For example, when f D fk;n, we have v D id and the permutation w D Nf sends
i 7! i Ck modulo n for all i 2 Œn�. The dimension of …ı

f
equals `v;w WD `.w/�`.v/,

where `.u/ is the number of inversions of u 2 Sn.
The group Sn is generated by simple transpositions si D .i; i C 1/ for 1 � i �

n � 1. Similarly, let Bn be the braid group on n strands, generated by �1; : : : ; �n�1

with relations �i�iC1�i D �iC1�i�iC1 and �i�j D �j �i for ji � j j > 1. Connecting
the corresponding endpoints of a braid ˇ gives rise to a link called the closure Ǒ of ˇ

(see Figure 2).
For each element u 2 Sn, let ˇ.u/ denote the corresponding braid, obtained by

choosing a reduced word u D si1si2 � � � si`.u/
for u and then replacing each si with �i .

Figure 2. (Color online) Braids and links associated to positroid varieties.
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Definition 1.11
For f D fv;w 2 Bk;n, we set

ˇf WD ˇ.w/ � ˇ.v/�1: (1.14)

We refer to the closure Ǒ
f as the link associated to f . See Figure 2 for an example.

The link Ǒ
f is a knot (i.e., has one connected component) if and only if f 2 BcD1

k;n

(see Proposition 1.6).

1.6. HOMFLY polynomial
The HOMFLY polynomial P.L/ D P.LIa; z/ of an (oriented) link L is defined by
the skein relation

aP.LC/ � a�1P.L�/ D zP.L0/ and P. / D 1; (1.15)

where denotes the unknot and LC, L�, L0 are three links whose planar diagrams
locally differ as follows:

LC L� L0

Example 1.12
For n D 2, we may take LC to be the closure of �1, in which case L� is the closure
of ��1

1 and L0 D is the 2-component unlink. Applying (1.15), we find P.L0/ D
a�a�1

z
.

Surprisingly, the HOMFLY polynomial computes the number of Fq-points of any
positroid variety.

THEOREM 1.13
For all f 2 Bk;n, let P

top
f

.q/ be obtained from the top a-degree term of P. Ǒ
f Ia; z/

by substituting a WD q� 1
2 and z WD q

1
2 � q� 1

2 . Then

#…ı
f .Fq/ D .q � 1/n�1 � P

top
f

.q/: (1.16)

Remark 1.14
When gcd.k; n/ D 1, we have fk;n 2 BcD1

k;n
, and the associated knot Ǒ

fk;n
is the

.k; n � k/-torus knot (see Figure 2 (right)). The value of P. Ǒ
fk;n

Ia; z/ was com-
puted in [71], and its relationship with Catalan numbers was clarified in [54]. Thus,
(1.8) follows from Theorem 1.13 as a direct corollary.
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Example 1.15
For k D 3, n D 8, one calculates (e.g., using Sage2) that

P. Ǒ
fk;n

Ia; z/ D
z8 C 8z6 C 21z4 C 21z2 C 7

a8
�

z6 C 7z4 C 14z2 C 8

a10
C

z2 C 2

a12
:

Substituting a WD q� 1
2 and z WD q

1
2 � q� 1

2 into z8C8z6C21z4C21z2C7
a8 , we get

P
top
f

.q/ D q8 C q6 C q5 C q4 C q3 C q2 C 1 D q4 � C3;5.q; 1=q/:

This agrees with (1.13) and (1.16).

1.7. Richardson varieties
Let G be a complex semisimple algebraic group of adjoint type, and choose a pair
B;B� � G of opposite Borel subgroups. Let T WD B \ B� be the maximal torus, and
let W WD NG.T /=T be the associated Weyl group. We have Bruhat decompositions
G D

F
w2W BwB D

F
v2W B�vB , and the intersection BwB \ B�vB is nonempty

if and only if v � w in the Bruhat order on W . For v � w, we denote by Rı
v;w WD

.BwB \ B�vB/=B an open Richardson variety inside the (generalized) complete
flag variety G=B . The varieties Rı

v;w form a stratification of G=B .
Now suppose that G D PGLn.C/. We have W D Sn, the subgroups B;B� � G

consist of upper and lower triangular matrices, and T Š .C�/n�1 is the group of
diagonal matrices modulo scalar matrices. In this case, we denote the generalized flag
variety G=B by Fl.n/. By Proposition 1.10, positroid varieties correspond to pairs
v � w of permutations such that w is k-Grassmannian. The projection map Fl.n/ !

Gr.k; n/ restricts to an isomorphism Rı
v;w Š …ı

f
for every permutation f D fv;w 2

Bk;n (see Proposition 4.3). Thus, positroid varieties are special cases of Richardson
varieties. One can similarly associate a braid ˇv;w WD ˇ.w/ �ˇ.v/�1 to any pair v � w

in Sn and consider its closure Ǒ
v;w . We refer to links of the form Ǒ

v;w as Richardson
links.

The point count #Rı
v;w.Fq/ is given by the Kazhdan–Lusztig R-polynomial (see

[72], [73]), and both the statement and the proof of Theorem 1.13 generalize to this
setting (for G of arbitrary type); see Theorems 2.1 and 2.3.

1.8. Main result: Ordinary cohomology
Our results for the positroid variety …ı

k;n
are special cases of a statement which

applies to open Richardson varieties in arbitrary Dynkin type. This includes all
positroid varieties …ı

f
for f 2 Bk;n, where the number of cycles c. Nf / can be

arbitrary. We start with the nonequivariant version of our result.

2https://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html.

https://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html
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Let h WD Lie.T / be the Cartan subalgebra of Lie.G/ corresponding to T , and
denote R WD CŒh� D Sym

C
h�. The ring R is graded so that the elements of h� � R

have polynomial degree 2. For G D PGLn.C/, R D CŒy1; : : : ; yn�1� is the polyno-
mial ring. Since W is a Coxeter group, we can consider the category SBim of Soergel
bimodules (see [35], [118]). Each object B 2 SBim is a graded R-bimodule, and we
will be interested in its R-invariants, which by definition form the zeroth Hochschild
cohomology of B :

HH 0.B/ WD ¹b 2 B j rb D br for all r 2 Rº: (1.17)

Thus, HH 0.B/ is a graded R-module. Denote

HH 0
C

.B/ WD HH 0.B/ ˝R C; (1.18)

where C D R=.h�/ is the R-module on which h� acts by zero. While the functor
HH 0 involves Soergel bimodules, the functor HH 0

C
involves Soergel modules instead

(see Corollary 3.6).
To any element u 2 W , Rouquier [110] associates two cochain complexes F �.u/

and F �.u/�1 of Soergel bimodules. For a braid ˇv;w D ˇ.w/ �ˇ.v/�1, we set F �
v;w WD

F �.w/ ˝R F �.v/�1. Applying the functor HH 0
C

to each term of this complex yields
a complex HH 0

C
.F �

v;w/ of graded R-modules. Taking its cohomology

HHH 0
C

.F �
v;w/ WD H �

�
HH 0

C
.F �

v;w/
�
; (1.19)

we get a bigraded vector space. Explicitly, we have

HHH 0
C

.F �
v;w/ D

M
k;p2Z

H k;.p/
�
HH 0

C
.F �

v;w/
�
;

where H k;.p/.HH 0
C

.F �
v;w// is the polynomial degree-2p part of H k.HH 0

C
.F �

v;w//.
Recall from (1.5) that we have a bigrading on H �.Rı

v;w/ coming from the
Deligne splitting.

THEOREM 1.16
For all v � w 2 W and k;p 2 Z, we have

H k;.p;p/.Rı
v;w/ Š H �k;.p/

�
HH 0

C
.F �

v;w/
�
: (1.20)

See Tables 2 and 3 for examples.

1.9. Main result: Equivariant cohomology
The spaces HHH 0.F �

v;w/ and HHH 0
C

.F �
v;w/ are closely related. By Theorem 1.16,

HHH 0
C

.F �
v;w/ yields the cohomology of Rı

v;w . It turns out that HHH 0.F �
v;w/ yields

the torus-equivariant cohomology of Rı
v;w .
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Table 2. Summary of examples computed in Sections 3.6 and 4.6, illustrating Theorems 1.16
and 1.17. The last four columns list all values of k, p for which the corresponding bigraded
component is nonzero (in each case, it is 1-dimensional). We have f2;4 D s2s1s3s2 and
f2;5 D s3s2s1s4s3s2.

Title n v w `v;w
Ǒ

v;w Rı
v;w H k;.p;p/.Rı

v;w / H
k;.p;p/

T;c .Rı
v;w / H k;.p/ .HH 0

C .F �
v;w // H k;.p/ .HH 0 .F �

v;w //

Unknot-I 1 id id 0 pt k D 0, p D 0 k D 0, p D 0 k D 0, p D 0 k D 0, p D 0

Unknot-II 2 id s1 1 …ı
1;2

k D 0, p D 0

k D 1, p D 1
k D 1, p D 0

k D 0, p D 0

k D �1, p D 1
k D 0, p D 0

2-cpt. unlink 2 s1 s1 0 pt k D 0, p D 0 k D 2p, p 2 Z�0 k D 0, p D 0 k D 0, p 2 Z�0

Hopf link 4 id f2;4 4 …ı
2;4 Table 3

k D 4, p D 0

k D 2 C 2p, p 2 Z�2

Table 3
k D 0, p D 0

k D �2, p 2 Z�2

Trefoil knot 5 id f2;5 6 …ı
2;5 Table 3

k D 6, p D 0

k D 8, p D 2
Table 3

k D 0, p D 0

k D �2, p D 2

Table 3. Comparing the mixed Hodge tables of …ı
2;4 and …ı

2;5 (top) to HHH 0
C

of the associated
links (bottom).

Hk H0 H1 H2 H3 H4

k � p D 0 1 3 4 3 1

Hk H0 H1 H2 H3 H4 H5 H6

k � p D 0 1 4 7 8 7 4 1

Hk;.p;p/.…ı
2;4

/ Hk;.p;p/.…ı
2;5

/

Hk H�4 H�3 H�2 H�1 H0

k C p D 0 1 3 4 3 1

Hk H�6 H�5 H�4 H�3 H�2 H�1 H0

k C p D 0 1 4 7 8 7 4 1

Hk;.p/HH0
C

.F �.ˇf2;4
// Hk;.p/HH0

C
.F �.ˇf2;5

//

The algebraic torus T acts on each Richardson variety Rı
v;w , and thus we can

consider its T -equivariant cohomology with compact support, denoted H �
T;c.Rı

v;w/.
It is equipped with an action of the ring H �

T .pt/ Š R. Similarly to (1.5), H �
T;c.Rı

v;w/

admits a second grading via the mixed Hodge structure and is therefore a bigraded
R-module.

THEOREM 1.17
For all v � w 2 W , we have an isomorphism of bigraded R-modules

H �
T;c.Rı

v;w/ Š HHH 0.F �
v;w/: (1.21)

For each k;p 2 Z, it restricts to a vector space isomorphism

H
`v;wC2pCk;.p;p/

T;c .Rı
v;w/ Š H k;.p/

�
HH 0.F �

v;w/
�
; (1.22)

where `v;w D `.w/ � `.v/ D dim Rı
v;w .

See Table 2 for examples. We explain how Theorems 1.1 and 1.16 follow from
Theorem 1.17 in Sections 4.4 and 8.1, respectively.

Observe that the grading conventions in (1.20) and (1.22) are quite different. In
fact, the two statements are related by an application of the q; t -symmetry (1.23), as
we now explain.
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1.10. Koszul duality and q; t -symmetry
For any f 2 BcD1

k;n
, the positroid variety Xı

f
is a cluster variety (see [46]), so the

polynomial P .…ı
f

Iq; t/ is q; t -symmetric by Corollary 1.8(i). Richardson varieties
are not yet known to admit cluster structures (see [85]), and in particular, the curi-
ous Lefschetz theorem of [83] cannot yet be applied to conclude that P .Rı

v;w Iq; t/

is q; t -symmetric for arbitrary v � w 2 Sn. In Section 8.2, we show that the q; t -
symmetry phenomenon for positroid and Richardson varieties is a manifestation of
Koszul duality for the derived category of Schubert-constructible sheaves on the flag
variety (see [4], [11], [15]).

THEOREM 1.18
For all v � w 2 W and k;p 2 Z, we have an isomorphism

H k;.p;p/.Rı
v;w ;C/ Š H `v;wCk�2p;.`v;w�p;`v;w�p/.Rı

v;w ;C/ (1.23)

of vector spaces. In other words, the polynomial P .Rı
v;w Iq; t/ is q; t -symmetric.

This gives a new proof of the q; t -symmetry of Ck;n�k.q; t/ for gcd.k; n/ D 1.
We now explain the connection to link invariants. Given a Richardson link

Ǒ
v;w , one can consider the bigraded vector spaces HHH 0.F �.ˇv;w// and

HHH 0
C

.F �.ˇv;w//, and their suitably renormalized bigraded Hilbert series, denoted
P

top
KR .ˇv;w Iq; t/ and P

top
KRIC.ˇv;w Iq; t/, respectively (see (3.15)–(3.16)).

The polynomial P
top
KR .ˇv;w Iq; t/ is the top a-degree coefficient (see the footnote

in the introduction) of the celebrated Khovanov–Rozansky homology (see [74]–[76])
of Ǒ

v;w , which is a link invariant, that is, depends only on the closure Ǒ
v;w of ˇv;w

(see Section 3.5).
Our results imply (see Section 8.1) that when Ǒ

v;w is a knot, we have

P
top
KR . Ǒ

v;w Iq; t/ D P
top
KRIC.ˇv;w Iq; t/ and (1.24)

P .Rı
v;w=T Iq; t/ D .q

1
2 t

1
2 /�.ˇv;w/P

top
KR . Ǒ

v;w Iq; t/; (1.25)

where �.ˇv;w/ WD
`v;w�nCc.f /

2
(see (3.12)). More generally, Theorem 1.16 implies

that for any v � w 2 Sn, one can relate P
top
KRIC.ˇv;w Iq; t/ to P .Rı

v;w Iq; t/ by a sim-
ple transformation. As we show in Corollary 3.13, (1.24) holds more generally for
arbitrary knots Ǒ.
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For a general link Ǒ, the question of whether P
top
KR . ǑIq; t/ is q; t -symmetric has

been a major open problem3 going back to [33]. For Richardson links, we show that
it also amounts to applying Koszul duality.

COROLLARY 1.19
For any v � w 2 Sn, we have

P
top
KRIC.ˇv;w Iq; t/ D P

top
KRIC.ˇv;w I t; q/:

Consequently, by (1.24), if Ǒ
v;w is a knot, then

P
top
KR . Ǒ

v;w Iq; t/ D P
top
KR . Ǒ

v;w I t; q/:

1.11. Extensions of Verma modules
The above theorems have representation-theoretic applications to Verma modules,
which are certain infinite-dimensional modules over the Lie algebra g of G. Consider
the principal block O0 of the Bernstein–Gelfand–Gelfand category O, and let Mw be
the Verma module with highest weight w.�/ � �, where � is half the sum of positive
roots of the root system of g. We also denote by Lw the corresponding simple mod-
ule. The graded dimensions of Ext�.Mv;Lw/ famously coincide with the coefficients
of the Kazhdan–Lusztig P -polynomials Pv;w.q/ (see, e.g., [11, Theorem 3.11.4]).
On the other hand, computing extension groups Ext�.Mv;Mw/ is an important open
problem (see, e.g., [32], [90]).

A graded version of O0 was introduced by Beilinson, Ginzburg, and Soergel [11].
They constructed the (essentially unique) graded lifts of Verma modules Mw (see also
[124]), thus endowing the space Ext�.Mv;Mw/ with a second grading:

Ext�.Mv;Mw/ D
M

k;r2Z

Extk;.r=2/.Mv;Mw/:

These Ext-groups can be related to the cohomology of open Richardson varieties
using the localization theorem of [9] and [17]. In the case of Kazhdan–Lusztig poly-
nomials, the groups Ext�.Mv;Lw/ are “pure”: the two gradings agree. On the other
hand, the bigrading on Ext�.Mv;Mw/ turns out to be quite nontrivial. As a corollary
to our approach, we obtain the following result.4

3At the final stages of the preparation of this manuscript, we learned that the q; t -symmetry of P
top
KR . Ǒ Iq; t/

for the case when Ǒ is a knot has been established in a very recent preprint [99]. (Note added in 2023: see also
[56].).
4We remark that Soergel’s original work [117] directly relates Ext-groups in category O and Hom-groups in
SBim (see also (3.9)).
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THEOREM 1.20
For all v � w 2 W and k; r 2 Z, we have

dim Extk;..r�`v;w/=2/.Mv;Mw/ D dim H k�r;.r=2/
�
HH 0

C
.F �

v;w/
�
:

(In particular, both sides are zero for odd r .)

Thus, while Ext�.Mv;Lw/ gives the Kazhdan–Lusztig polynomials, Ext�.Mv;

Mw/ gives the rational q; t -Catalan numbers for v D id and w D fk;n.

1.12. Notes
We collect the historical background and several remarks on the above results.

1.12.1. Symmetry and unimodality
The symmetry and unimodality of the Gaussian polynomial

�
n
k

�
q

are consequences of
the hard Lefschetz theorem for H �.Gr.k; n//. Whereas symmetry is apparent from
the combinatorial definition of

�
n
k

�
q

(see [122, Proposition 1.7.3]), unimodality is
notoriously difficult to see combinatorially. Unimodality was first proved by Sylvester
[126], the relation to hard Lefschetz observed by Stanley [121], and a combinatorial
proof given by O’Hara [100].

When a D n and b D n C 1, Ca;b.q; t/ recovers the famous q; t -Catalan num-
bers Cn.q; t/ of Garsia and Haiman [50] studied extensively in, for example, [49],
[58], [59], [62], and [63]. The fact that Cn.q; t/ is q; t -symmetric and q; t -unimodal
follows from the results of Haiman [65], [66]. For arbitrary a, b, an explanation
for the q; t -symmetry property was given by the rational shuffle conjecture of [60],
proved recently in [19] and [91]. The specialization q

1
2 dk;nCk;n�k.q; 1=q/ D 1

Œn�q

�
n
k

�
q

in (1.13) is also a consequence of the rational shuffle conjecture. To our knowledge,
the q; t -unimodality of Ck;n�k.q; t/ in Corollary 1.8(ii) is a new result. See also [125,
Section 2.2], which includes a specialization of our unimodality result.

1.12.2. Compactified Jacobians and the P D W conjecture
We explain the original motivation coming from the results of [114] and [115] that
led to the statement of Theorem 1.1. The compactified Jacobian Ja;b of the plane
curve singularity xa D yb (with gcd.a; b/ D 1) is a compact, singular variety with
a long history of connections to Catalan theory. Beauville [7] showed that the Euler
characteristic of Ja;b is the rational Catalan number Ca;b and Piontkowski [102] (see
also Lusztig and Smelt [87]) showed that the Poincaré polynomial and point count
are given by the q-analogue

P
P 2Dyckk;n�k

qdinv.P /. Gorsky and Mazin [58], [59] first
suggested the relation between Ja;b and q; t -Catalan numbers and since then there has
been an explosion of developments relating compactified Jacobians and knot invari-
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ants (see, e.g., [24], [60], [61]). Our work provides evidence for the following con-
jecture, arising from the works [114] and [115] (see [27] for the original P D W

conjecture).

CONJECTURE 1.21
There is a deformation retraction from the torus quotient Xı

k;n
to the compactified

Jacobian Jk;n�k sending the weight filtration of H �.Xı
k;n

/ to the perverse filtration
of H �.Jk;n�k/ (see [89], [94]).

Conjecture 1.21 is motivated by the isomorphism, discovered in [114], between
open positroid varieties and moduli spaces of constructible sheaves associated to Leg-
endrian knots (see [115]). We thank Vivek Shende for explaining a conjectural wild
non-abelian Hodge correspondence in that setting.

More generally, when a Richardson link is algebraic (i.e., arising as the link of a
singularity), one may expect a statement similar to Conjecture 1.21 for the compacti-
fied Jacobian of the singularity. See Remark 4.24 for related discussion.

Remark 1.22
After discovering the proof of (1.8) via the HOMFLY polynomial, we found that it
can also be deduced from the results of [114] and [115]. Our proof is new and yields a
generalization (Theorem 1.13) of (1.8) to arbitrary open positroid varieties, and more
generally to open Richardson varieties in generalized flag varieties.

1.12.3. Plabic graph links
In Section 1.5, we associated a link Ǒ

f to each positroid variety …ı
f

. Two other (more
complicated) ways of assigning a Legendrian/transverse link to a positroid variety
have appeared recently in [37] and [114], stated in the language of Postnikov’s plabic
graphs (see [103]). Conjecturally, the links of [37] and [114] are isotopic to our links
Ǒ
f . We hope to return to this question in future work [47] (see also [21]).

1.12.4. Geometric interpretations and other Dynkin types
A geometric interpretation of the full triply-graded KR homology was given by Web-
ster and Williamson [129]. Our approach yields a different geometric interpretation of
the (doubly-graded) top a-degree part of KR homology. Our geometric interpretation
in addition holds for Dynkin types outside type A. The analogue of the HOMFLY
polynomial in other Dynkin types (as a trace on the Hecke algebra; cf. Section 2.2)
was introduced in [52] (see also [109]). For related discussion of knot invariants in
other types, see, for example, [127] and [128]; see also [14], [20], [25], [26], and [93]
for related results.
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1.12.5. Odd cohomology vanishing
It follows from the results of [69] and [92] that KR homology of any (positive) torus
knot or link is concentrated in even degrees. It is tempting to conjecture that the
same property holds for all Richardson knots or links. However, this is not the case:
see Examples 4.21, 4.22, and 4.23. (See Remark 4.24 for a discussion of the closely
related class of algebraic knots.)

1.12.6. Complements of hyperplane arrangements
The top positroid variety …ı

k;n
may be considered “the complement of a hyperplane

arrangement in the Grassmannian”: it is obtained from Gr.k; n/ by removing n hyper-
surfaces, each given by a linear equation in the Plücker coordinates on Gr.k; n/. More
general “Grassmannian hyperplane arrangements” appear naturally in the study of
amplituhedra and Grassmann polytopes (see [45], [81]).

The cohomology of complements of hyperplane arrangements in projective space
is very well studied: both the Poincaré polynomial and the point count are simple
specializations of the characteristic polynomial. The coincidence is a manifestation
of the purity of the mixed Hodge structure (see [113]), a property that also holds for
the Grassmannian Gr.k; n/.

1.12.7. Recurrence relations
Our results associate a q; t -polynomial to each positroid variety. One possible advan-
tage of this approach is a recurrence for these polynomials, arising from the recur-
rence for positroid varieties developed by Muller and Speyer [97]. For instance, their
results allow one to compute the point counts recursively (cf. [47]). To compute the
Poincaré or the mixed Hodge polynomials, the recurrence of [97] yields a long exact
sequence for the cohomology. It seems plausible that in favorable cases (e.g., when
the odd cohomology vanishes), this sequence may be used to calculate the mixed
Hodge polynomials of special families of links as was done in [34], [69], and [92].
We remark that the latter recurrences pass through complexes of Soergel bimodules
which do not come from any braids; an interesting open problem is to understand the
positroid/Richardson interpretation of such complexes.

Structure of the paper
In Section 2, we study the relationship between the point count and the HOMFLY
polynomial, and prove Theorem 1.13 and its generalization (Theorem 2.3) to open
Richardson varieties. In Sections 3 and 4, we discuss background on KR homology
and cohomology of positroid varieties, respectively. We deduce Theorem 1.1 from
Theorem 1.17 in Section 4.4. In Section 5, we recast our results in the language of
equivariant derived categories, and split the main result (Theorem 1.17) into two state-
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ments, Propositions 5.3 and 5.4. These statements are proved in Sections 6 and 7,
respectively, thereby completing the proof of Theorem 1.17. In Section 8, we deduce
the rest of our results (Theorems 1.16, 1.18, and 1.20) from Theorem 1.17. Finally,
in Section 9, we study analogues of Catalan numbers associated to arbitrary positroid
varieties.

2. Point count and the HOMFLY polynomial

2.1. Type A

Let W D Sn and G D PGLn.C/. Recall from [72, Lemmas A3 and A4] that the
number of Fq-points of a Richardson variety Rı

v;w is given by the Kazhdan–Lusztig
R-polynomial Rv;w.q/. When v � w, we have Rv;w.q/ D 0 and Rı

v;w D ;, and for
v D w, we have Rv;w.q/ D 1 and Rı

v;w D pt. For v � w 2 W , Rv;w.q/ can then be
computed by a recurrence relation (see [72, Section 2]):

Rv;w.q/ D

´
Rsv;sw.q/ if sv < v and sw < w,

.q � 1/Rsv;w.q/ C qRsv;sw.q/ if sv > v and sw < w.
(2.1)

Here, s D si for some 1 � i � n � 1 is a simple transposition satisfying sw < w.
Recall from Section 1.7 that we associate an n-strand braid ˇv;w WD ˇ.w/ �

ˇ.v/�1 to any pair v;w 2 Sn of permutations. For a Laurent polynomial P D P.a; z/,
we denote by degtop

a .P / 2 Z the maximal degree of a in P , and for � 2 Z, we let
Œa� �P 2 CŒz˙1� be the coefficient of a� in P . For v;w 2 Sn, recall that we set
`v;w WD `.w/ � `.v/. Denote

�v;w WD n � 1 � `v;w and Pv;w D Pv;w.a; z/ WD P. Ǒ
v;w Ia; z/; (2.2)

where P. Ǒ
v;w Ia; z/ is the HOMFLY polynomial defined in Section 1.6. The goal of

this section is to show the following strengthening of Theorem 1.13.

THEOREM 2.1
Let v;w 2 Sn.
(i) If v � w, then degtop

a .Pv;w/ < �v;w .
(ii) If v � w, then degtop

a .Pv;w/ D �v;w .
(iii) For any v;w 2 Sn, let P

top
v;w.q/ be obtained from a�v;w � .Œa�v;w �Pv;w/ by sub-

stituting a WD q� 1
2 and z WD q

1
2 � q� 1

2 . Then

Rv;w.q/ D .q � 1/n�1 � P top
v;w.q/: (2.3)
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Proof
We start by recalling the following result, which states that the (lower) Morton–
Franks–Williams inequality (see [41], [96]) is not sharp for negative braids. It may
be alternatively deduced from (2.10) below.

LEMMA 2.2 ([53, Proposition 2.1])
Let v 2 Sn be a nonidentity permutation, and let ˇ WD ˇ.v/�1 be the associated neg-
ative braid. Then5

degtop
a

�
P. ǑIa; z/

�
< n � 1 C `.v/: (2.4)

We now prove all parts of Theorem 2.1 by induction on `.w/. Consider the base
case `.w/ D 0. Then (i) is the content of (2.4). For (ii), we observe that `.w/ D 0

implies v D w D id, and iterating Example 1.12, we get Pv;w D .a�a�1

z
/n�1. Thus,

degtop
a .Pv;w/ D n � 1 D �v;w for v D w D id. For (iii), if v � w, then by (i), we

get Œa�v;w �Pv;w D 0, so P
top
v;w.q/ D 0, in agreement with Rv;w.q/ D 0. If v � w,

then v D w D id, a�v;w � Œa�v;w �Pv;w D .a=z/n�1, so P
top
v;w.q/ D .q � 1/�.n�1/, in

agreement with (2.3). We have shown the base case for each part.
For the induction step, suppose that `.w/ > 0. Choose some 1 � i � n � 1 such

that si w < w, and let s WD si and � WD �i . If sv < v, then the links Ǒ
v;w and Ǒ

sv;sw

are isotopic since ˇv;w D �ˇsv;sw��1, and thus Pv;w D Psv;sw . We also have �v;w D

�sv;sw , and thus P
top
v;w.q/ D P

top
sv;sw.q/. By (2.1), Rv;w.q/ D Rsv;sw.q/. So in the case

sv < v, the induction step holds trivially for each of the three parts.
Assume now that we have sw < w and sv > v. In this case, we have ˇv;w D

�ˇ.sw/ˇ.sv/�1� � ˇ.sw/ˇ.sv/�1�2, ˇv;sw D ˇ.sw/ˇ.sv/�1� , and ˇsv;sw D

ˇ.sw/ˇ.sv/�1, where � relates conjugate braids. Applying (1.15) with

LC WD Ǒ
v;w ; L0 WD Ǒ

v;sw ; L� WD Ǒ
sv;sw ;

we get aPv;w � a�1Psv;sw D zPv;sw , and thus

Pv;w D
z

a
Pv;sw C a�2Psv;sw : (2.5)

Note that �v;sw D �v;w C 1 and �sv;sw D �v;w C 2. Let us show (i). We have v �
w, sw < w, and sv > v, and thus clearly v � sw and sv � sw. By the induction
hypothesis, we have degtop

a .Pv;sw/ < �v;sw and degtop
a .Psv;sw/ < �sv;sw . By (2.5), we

get degtop
a .Pv;w/ < �v;w , finishing the proof of (i). In particular, we have shown that

(2.3) holds for all v � w.
Now assume that v � w. We show (ii) and (iii) simultaneously. By the induc-

tion hypothesis, we have degtop
a .Pv;sw/ � �v;sw , degtop

a .Psv;sw/ � �sv;sw (whether

5Our conventions for P. Ǒ Ia;z/ differ from those of [53] by changing a 7! a�1 .
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the equality holds depends on whether v � sw and sv � sw). Thus, by (2.5),
degtop

a .Pv;w/ � �v;w . The links L0 D Ǒ
v;sw and Ǒ

sv;w are isotopic since ˇsv;w D

�ˇ.sw/ˇ.sv/�1 � ˇ.sw/ˇ.sv/�1� D ˇv;sw , so Pv;sw D Psv;w . Applying the
map P 7! a�v;w � .Œa�v;w �P / to both sides of (2.5) and substituting a WD q� 1

2 and
z WD q

1
2 � q� 1

2 , we get

P top
v;w.q/ D .q � 1/P top

sv;w.q/ C qP top
sv;sw.q/:

Combining this with the induction hypothesis and (2.1), we get Rv;w.q/ D .q �

1/n�1 � P
top
v;w.q/. In particular, the coefficient of a�v;w in Pv;w is nonzero, so

degtop
a .Pv;w/ D �v;w . Thus, we have completed the induction step for both (ii)

and (iii).

2.2. Arbitrary type
The above connection between point counts and the HOMFLY polynomial can be
generalized to arbitrary Weyl groups as follows. Let H be the Hecke algebra of W :
it is generated over CŒq˙1� by the elements ¹Tsºs2S satisfying the braid relations as
well as the Hecke relation

.Ts C q/.Ts � 1/ D 0 for s 2 S . (2.6)

The algebra H admits a linear basis ¹Twºw2W indexed by the elements of W : we set
Tw WD Ts1

Ts2
� � �Ts`.w/

for any reduced word w D s1s2 � � � s`.w/. The standard trace
� W H ! CŒq˙1� is the CŒq˙1�-linear map defined by

�.Tw/ WD

´
1 if w D id,

0 otherwise.
(2.7)

THEOREM 2.3
For any v;w 2 W , we have

Rv;w.q/ D q`v;w �.T �1
w Tv/: (2.8)

For W D Sn, in view of the well-known relation between traces and the HOM-
FLY polynomial (going back to [71]), Theorem 2.3 specializes to Theorem 2.1.

Proof
First, we state a simple consequence of (2.6): for any v 2 W and s 2 S , we have

TsTv D

´
Tsv if sv > v,

.1 � q/Tv C qTsv if sv < v.
(2.9)
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Next, we claim that for any u;v 2 W , we have

�.TuTv/ D

´
q`.v/ if u D v�1,

0 otherwise.
(2.10)

We prove (2.10) by induction on `.u/. The base case `.u/ D 0 is clear. Otherwise,
choose s 2 S such that u D xs with x < xs. If v < sv, then TuTv D TxTsv and we
are done by induction. Thus, assume that v > sv. By (2.9), we get

�.TuTv/ D .1 � q/�.TxTv/ C q�.TxTsv/: (2.11)

We have u D v�1 if and only if x D .sv/�1, in which case by induction we find
�.TuTv/ D q`.v/. If u ¤ v�1, then the right-hand side of (2.11) is zero unless x D

v�1. But x D v�1 contradicts our assumptions x < xs and v > sv. This completes
the proof of (2.10).

It is well known that T �1
w 2 Span¹Tuºu�w . Thus, by (2.10), �.T �1

w Tv/ D 0 unless
v � w. We now proceed to prove (2.8) by induction on `v;w . For v D w, the result
again follows from (2.10). For v < w, we choose s 2 S such that sw < w and then
calculate using T �1

s D q�1Ts C .1 � q�1/ that

T �1
w Tv D

´
T �1

sw Tsv if sv < v and sw < w,

q�1T �1
sw Tsv C .1 � q�1/T �1

sw Tv if sv > v and sw < w.

Applying � and multiplying both sides by q`v;w , the result matches perfectly with
(2.1).

Remark 2.4
Theorem 2.3 may also be deduced from Theorem 1.17 by taking the Euler charac-
teristic: Soergel bimodules categorify the Hecke algebra, with Rouquier complexes
F �.w/ corresponding to the elements Tw , and the zeroth Hochschild cohomology
functor HH 0 categorifies the trace �.

3. Soergel bimodules, Rouquier complexes, and Khovanov–Rozansky homology
In this section, we review Khovanov–Rozansky (KR) link homology. A friendly intro-
duction to most of this material can be found in the excellent recent book [35].

3.1. Soergel bimodules
Let R WD CŒh� be as in Section 1.9. It is a graded ring where we set deg.y/ D 2 for
y 2 h�. We refer to deg.y/ as the polynomial degree (as opposed to the cohomological
degree introduced later on). The Weyl group W acts naturally on R. Denote by I the
indexing set of simple roots of R, and thus W is generated by the simple reflections
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S D ¹siºi2I . When G D PGLn.C/, recall that R D CŒy1; : : : ; yn�1� is the polynomial
ring and S D ¹s1; : : : ; sn�1º is the set of simple transpositions in W D Sn. The action
of Sn on R is obtained by restricting the permutation action on CŒx1; x2; : : : ; xn�

to R � CŒx1; x2; : : : ; xn�, where we identify yi D xi � xiC1 for 1 � i � n � 1. For
example,

s1.y1/ D �y1; s2.y1/ D y1 C y2; s3.y1/ D � � � D sn�1.y1/ D y1: (3.1)

Soergel bimodules are special kinds of graded R-bimodules, that is, graded C-
vector spaces equipped with a left and a right graded action of R. For a graded R-
bimodule B D

L
i B i and m 2 Z, we denote by B¹m=2º WD

L
i B i�m the polyno-

mial grading shift by m on B . Thus, y 2 h� has degree 2 as an element of R but has
degree 0 as an element of R¹�1º.

Let us introduce the “building blocks” of Soergel bimodules.

Definition 3.1
For s 2 S , let Rs WD ¹r 2 R j sr D rº. Define

Bs WD R ˝Rs R: (3.2)

For a sequence u D .si1 ; si2 ; : : : ; sim/ of elements of S , let

Bu WD Bsi1
˝R Bsi2

˝R � � � ˝R Bsim
D R ˝

R
si1

R ˝
R

si2
� � � ˝R

sim R: (3.3)

Both Bs and Bu are naturally graded R-bimodules, called Bott–Samelson bimod-
ules, where R acts on the leftmost and the rightmost terms of the tensor product by
multiplication.

We let SBim denote the category of Soergel bimodules. By definition, its objects
are graded shifts of direct summands of Bott–Samelson bimodules Bu, where u runs
over all finite sequences of elements in S . The morphisms in SBim are given by
degree-0 maps of R-bimodules. The indecomposable objects ¹Swºw2W of SBim are
indexed by the elements of W : for each w 2 W and any reduced word w for w, Bw

contains a unique indecomposable summand Sw that is not contained in Bv for any
v < u and any reduced word v for v. Up to isomorphism, the bimodule Sw depends
only on w and not on the choice of w.

3.2. Rouquier complexes
We let KbSBim denote the homotopy category of SBim. Its objects are bounded
cochain complexes C � D .� � � ! C �1 ! C 0 ! C 1 ! � � � / of Soergel bimodules, and
morphisms are homotopy classes of maps of complexes. When depicting a complex,
we usually omit some of the zeros and underline the object that is in cohomological



2140 GALASHIN and LAM

degree 0. For example, a complex with only two nonzero entries may be written as
.C 0 ! C 1/ or as .0 ! C 0 ! C 1/. We denote by Œm� the cohomological shift on
KbSBim. It shifts each cochain complex m steps to the left: C �Œ1� D .� � � ! C �1 !

C 0 ! C 1 ! � � � /.
The tensor product C � ˝R D� of two cochain complexes is the total complex

of a double complex whose entries are C i ˝R Dj for i; j 2 Z. The sign of the map
C i ˝R Dj ! C i ˝R Dj C1 is the negation of the obvious one for all even i ; the
differential of the resulting total complex squares to zero.

Since .W;S/ is a Coxeter system, we can consider the associated Artin braid
group BW generated by ¹�iºi2I . The following construction is due to Rouquier [110].

Definition 3.2
For s D si 2 S and � D �i , define the Rouquier complexes

F �.�/ WD .Bs ! R/; F �.��1/ WD
�
R ! Bs¹�1º

�
; (3.4)

where the first map sends f ˝ g 7! fg and the second map sends 1 7! .˛s ˝ 1 C

1 ˝ ˛s/. Here ˛s 2 h� is the simple root corresponding to s. Note that both 1 2

R and .˛s ˝ 1 C 1 ˝ ˛s/ 2 Bs¹�1º have polynomial degree 0. For a braid ˇ D

�i1�i2 � � ��im 2 BW , we set

F �.ˇ/ WD F �.�i1/ ˝R F �.�i2/ ˝R � � � ˝R F �.�im/;

F �.ˇ�1/ D F �.ˇ/�1 WD F �.��1
im

/ ˝R � � � ˝R F �.��1
i2

/ ˝R F �.��1
i1

/:

We also let F �.id/ WD .0 ! R ! 0/.

A priori, the complex F �.ˇ/ depends on the choice of the word .�i1 ; �i2 ; : : : ; �im/.
However, modulo homotopy, it does not.

PROPOSITION 3.3 ([110, Section 3])
If �i1�i2 � � ��im D �i 0

1
�i 0

2
� � � �i 0

m
in BW , then

F �.�i1/ ˝R F �.�i2/ ˝R � � � ˝R F �.�im/

Š F �.�i 0
1
/ ˝R F �.�i 0

2
/ ˝R � � � ˝R F �.�i 0

m
/

in KbSBim.

For example, one can check that F �.�i / ˝R F �.��1
i / Š F �.id/. It follows that

the functors .�/ ˝R F �.�i / and .�/ ˝R F �.��1
i / are mutually inverse biadjoint

equivalences of categories: for complexes C �;D� 2 KbSBim, we have
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HomKbSBim

�
C �;D� ˝R F �.�i /

�
Š HomKbSBim

�
C � ˝R F �.��1

i /;D�
�
; (3.5)

HomKbSBim

�
C �;D� ˝R F �.��1

i /
�

Š HomKbSBim

�
C � ˝R F �.�i /;D

�
�
: (3.6)

Proposition 3.3 allows one to define F �.ˇ/ 2 KbSBim unambiguously for any
braid ˇ 2 BW . Recall that we are interested in the braid ˇv;w D ˇ.w/ �ˇ.v/�1, which
corresponds to the complex

F �
v;w WD F �.ˇv;w/ D F �

�
ˇ.w/

�
˝R F �

�
ˇ.v/�1

�
: (3.7)

3.3. KR homology
Recall from (1.17) that the functor HH 0 sends a graded R-bimodule B to the graded
R-module HH 0.B/ of its R-invariants. Alternatively, it can be expressed as

HH 0.B/ D
M
r2Z

HomSBim
�
R;B¹�r=2º

�
: (3.8)

Remark 3.4
The R-module HH 0.B/ is free for any Bott–Samelson bimodule B . One can make
explicit combinatorial computations with this R-module (including finding a basis
and computing the maps in the Rouquier complexes) using the diagrammatic calculus
developed by Elias and Williamson [36].

Remark 3.5
Higher Hochschild cohomology functors HH h, which give the full (triply-graded)
KR homology, are the right derived functors of HH 0. They can be computed using a
Koszul resolution of R (see, e.g., [74], [92]).

Applying the functor HH 0 to a complex C � of Soergel bimodules yields a com-
plex HH 0.C �/ of graded R-modules. In particular, for each k 2 Z, the cohomol-
ogy H k.HH 0.C �// of this complex is a graded R-module. For r 2 Z, we denote by
H k;.r=2/.HH 0.C �// its graded piece of polynomial degree r . It is not hard to check
that we have

H k;.r=2/
�
HH 0.C �/

�
Š HomKbSBim

�
R;C �Œk�¹�r=2º

�
: (3.9)

For any ˇ 2 BW , F �.ˇ/ is concentrated in even polynomial degrees, and thus
H k;.r=2/.HH 0.F �.ˇ/// vanishes when r is odd. Similarly to (1.19), we denote

HHH 0
�
F �.ˇ/

�
WD

M
k;p2Z

H k;.p/
�
HH 0

�
F �.ˇ/

��
: (3.10)
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The complex F �
v;w is concentrated in cohomological degrees �`.w/;�`.w/ C

1; : : : ; `.v/, and thus H k;.p/.HH 0.F �
v;w// D 0 unless �`.w/ � k � `.v/, and the

index p 2 Z is bounded from below.
The functor HH 0

C
admits a similar description. Recall that C is considered an R-

bimodule on which h� acts by zero on both sides. Any Soergel bimodule B 2 SBim
gives rise to a Soergel module B ˝R C, which is a graded R-module. We let SMod
denote the category of Soergel modules (with morphisms being maps of polynomial
degree 0). By a result of Soergel [118] (see [35, Proposition 15.27]), for any B;B 0 2

SBim, we have a natural isomorphism

HomSBim.B;B 0/ ˝R C
�
�! HomSMod.B ˝R C;B 0 ˝R C/:

Applying this to the case B D R, we get the following result.

COROLLARY 3.6
For any Soergel bimodule B 2 SBim, we have

HH 0
C

.B/ Š HomSMod.C;B ˝R C/:

3.4. Link components and R-module structure
For this section, we assume that W D Sn. Let ˇ be a braid, and let u 2 Sn be the image
of ˇ. Let QR denote the polynomial ring CŒx1; x2; : : : ; xn�, and let QF �.ˇ/ denote the
Rouquier complex using QR instead of R (cf. (3.1)). Thus, F �.ˇ/ is a reduced version
of QF �.ˇ/. The complex QF �.ˇ/ is an . QR˝ QR/-module, and it is known (see [55], [105])
that the action of xi ˝1 is homotopic to the action of 1˝xu.i/. Indeed, it follows from
[55, Proposition 2.11, Theorem 2.18] that there exist cochain maps 	i (of polynomial
degree 2 and cohomological degree �1) called dot-sliding homotopies such that
(1) d	i C 	id D xi ˝ 1 � 1 ˝ xu.i/ for i D 1; 2; : : : ; n, and
(2) 	i	j C 	j 	i D 0 for i; j D 1; 2; : : : ; n.

In HH 0. QF �.ˇ//, the two R-actions are equalized, so d	i C 	id D xi � xu.i/.
Thus, the actions of xi and xj on HHH 0. QF �.ˇ// agree when i and j belong to the
same component of the link Ǒ. Working instead with the smaller polynomial ring R D

CŒx1 �x2; : : : ; xn�1 �xn� � QR, we deduce that xi �xj acts as zero on HHH 0.F �.ˇ//

when i , j belong to the same component of the link Ǒ. In particular, if Ǒ is a knot,
then the action of R on HHH 0.F �.ˇ// factors through the natural map R ! C.

Suppose now that Ǒ is a knot. Denote zi WD xi � xu.i/ for i D 1; 2; : : : ; n.
Thus, R D CŒz1; : : : ; zn�1�. Recall that HH 0.F �.ˇ// is a complex of graded, free
(cf. Remark 3.4) R-modules. Let a 2 HH 0.F �.ˇ// be a nonzero element satisfy-
ing d.a/ D 0. Using the relation d	i C 	id D zi , one can show by induction on
k D 0; 1; : : : ; n � 1 that for all 1 � i1 < i2 < � � � < ik � n � 1, we have
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d	i1i2���ik .a/ D

kX
j D1

.�1/j �1zij 	
i1���Oij ���ik

.a/; (3.11)

where 	i1i2���ik WD 	i1	i2 � � � 	ik , and Oij denotes omission of 	ij . We therefore obtain a
subcomplex K�.a/ of HH 0.F �.ˇ// given by

R � 	12���n�1.a/ ! � � � !
X

1�i1<���<ik�n�1

R � 	i1���ik .a/ ! � � �

!
X

1�i�n�1

R � 	i .a/ ! R � a:

Definition 3.7
Let a 2 HH 0.F �.ˇ// be such that d.a/ D 0. We say that K�.a/ is a Koszul subcom-
plex if the set ¹	i1���ik .a/ j 0 � k � n � 1; 1 � i1 < � � � < ik � n � 1º can be extended
to a free R-module basis of HH 0.F �.ˇ//.

It follows from (3.11) that we have a natural cochain map
Nn�1

iD1.R
zi

�! R/ !

HH 0.F �.ˇ// with image K�.a/, and this map is an isomorphism when K�.a/ is a
Koszul subcomplex.

Our next goal is to show that HH 0.F �.ˇ// admits a filtration by Koszul subcom-
plexes and contractible subcomplexes of the form R

�
�! R.

Definition 3.8
We say that a complex .C �; d / of finite rank, free, graded R-modules admits a

V
-

action if there exist endomorphisms 	1; 	2; : : : ; 	n�1 of cohomological degree �1 and
polynomial degree 2 satisfying d	i C 	id D zi and 	i	j C 	j 	i D 0, for all i; j D

1; 2; : : : ; n � 1.

We thank the anonymous referee for suggesting to us that the following statement
may be deduced from the results of [55].

PROPOSITION 3.9
Suppose that .C �; d / admits a

V
-action. Then C � has a filtration by Koszul com-

plexes and trivial complexes R Š R. That is, there exists a family of subcomplexes
0 D F �

0 � F �
1 � � � � � F �

t D C � such that for all j D 1; 2; : : : ; t , C �=F �
j �1 is free,

admits a
V

-action, and F �
j =F �

j �1 is either a Koszul subcomplex of C �=F �
j �1 or a

trivial subcomplex isomorphic to R
�
�! R.
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Proof
Let C k;.p=2/ denote the subspace of C � of cohomological degree k and polynomial
degree p. Assuming that C � is nonzero, let D� � C � be the sum of those nonzero
pieces C k;.p=2/ where k C p=2 is minimal.

Suppose that a 2 D� satisfies d.a/ D 0. Then for any i1; : : : ; ik , we have that
	i1���ik .a/ 2 D�. Any linearly independent (over C) elements in D� can be extended
to a free R-module basis of C �. Thus, using (3.11), one can show by induction on
k D 0; 1; : : : ; n�1 that the elements ¹	i1���ik .a/ j 1 � i1 < � � � < ik � n�1º are linearly
independent. It follows that K�.a/ is a Koszul subcomplex of C �, and furthermore
that the quotient by this complex is again free and admits a

V
-action.

Repeating this, we may assume that d jD� is injective. We claim that for any
nonzero element b 2 D�, d.b/ may be completed to a free basis of C �. Suppose
that b 2 Dk�1. We proceed by inverse induction on k. For the base case, if Dk D 0,
then d.b/ is a C-linear combination of free basis elements, so the statement follows.
For the induction step, suppose that b 2 Dk�1 satisfies d.b/ 2 R � Dk . Write d.b/ DPn�1

iD1 yi ei , and let i be such that ei ¤ 0. By the induction hypothesis, f WD d.ei /

may be extended to a free basis of C kC1, and we find that the coefficient of yif

in d 2.b/ is nonzero, which is a contradiction. Thus, d.b/ … R � Dk . Comparing the
polynomial degree of d.b/ to that of Dk , we get that d.b/ can be extended to an
R-basis of C k .

A subcomplex R
�
�! R in C � is called splittable if the quotient by this subcom-

plex again consists of free R-modules. Let k be the smallest index such that Dk ¤ 0,
and let a1 2 Dk be a nonzero element. We have shown above that a0 WD d.a1/ may
be completed to a free basis of C �, and thus a1 and a0 generate a splittable sub-
complex S� Š .R

�
�! R/. For any 1 � i � n � 1, we have 	i .a1/ 2 Dk�1 D 0. Using

d	i C 	id D zi , we get zia1 D 	ia0. Thus, the subcomplex S� is closed under the
action of 	1; : : : ; 	n�1. Using Gaussian elimination (see [35, Exercise 19.12]), one
can check that in this case, the quotient complex C �=S� admits a

V
-action.

Repeating the above procedure, we obtain the desired filtration.

Recall that the Koszul resolution of the R-module C by free R-modules yields a

2n�1-dimensional complex TorR
� .C;C/ Š .C

0
�! C/˝.n�1/.

COROLLARY 3.10
Suppose that .C �; d / admits a

V
-action. Let .C �

C
; dC/ be the complex of C-vector

spaces obtained by setting y1 D y2 D � � � D yn�1 D 0. Thus, C �
C

WD C � ˝R C as in
(1.18). Then

H �.C �
C

/ Š TorR
�

�
C;H �.C �/

�
Š H �.C �/ ˝ .C

0
�! C/˝.n�1/
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(as complexes of graded C-vector spaces with zero differentials).

Proof
It is clear that the filtration constructed in Proposition 3.9 induces an injection
H �.F �

j =F �
j �1/ ,! H �.C �=F �

j �1/, and a similar statement holds after setting
y1 D y2 D � � � D yn�1 D 0. Thus, each Koszul complex K�.a/ appearing in the
filtration contributes a 1-dimensional subcomplex to H �.C �/. In view of (3.11),
K�.a/ contributes to H �.C �

C
/ a 2n�1-dimensional subcomplex isomorphic to

.C
0
�! C/˝.n�1/.

3.5. Link invariant
For this section, we continue to assume that W D Sn. The above construction may be
turned into a link invariant as we now explain. We follow the conventions of [69].

For a braid ˇ 2 BSn
D Bn, let e.ˇ/ denote the exponent sum of ˇ:

ˇ D �
�1

i1
�

�2

i2
� � ���m

im
H) e.ˇ/ WD �1 C �2 C � � � C �m:

Thus, e.ˇv;w/ D `v;w D `.w/ � `.v/. Next, define

�.ˇ/ WD
e.ˇ/ � n C c.ˇ/

2
; (3.12)

where c.ˇ/ is the number of components of the link Ǒ
v;w , which equals the number

of cycles of the corresponding permutation (obtained from the group homomorphism
BSn

! Sn sending �i 7! si for each 1 � i � n � 1). It is easy to check that �.ˇ/ is
always an integer. Define

PKR.ˇIa; q; t/ WD .1 � t /c.ˇ/�1.q
1
2 t� 1

2 a�2/�.ˇ/

�
X

k;p;h2Z

.�1/hq
k
2 tpC k

2 Cha�2h dim H k;.p/
�
HH h

�
F �.ˇ/

��
:

Let P
top
KR .ˇIq; t/ be its top a-degree coefficient:

P
top
KR .ˇIq; t/ WD Œadeg

top
a .PKR.ˇ//�PKR.ˇ/: (3.13)

THEOREM 3.11 ([74])
PKR and P

top
KR are link invariants: if ˇ 2 BSn

, ˇ0 2 BSn0 are two braids such that the

corresponding links Ǒ Š Ǒ0 are isotopic, then

PKR.ˇIa; q; t/ D PKR.ˇ0Ia; q; t/ and P
top
KR .ˇIq; t/ D P

top
KR .ˇ0Iq; t/:
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Thus, it makes sense to write PKR. ǑIa; q; t/ WD PKR.ˇIa; q; t/ and P
top
KR . ǑI

q; t/ WD P
top
KR .ˇIq; t/. Both PKR. ǑIa; q; t/ and P

top
KR . ǑIq; t/ have been recently

shown to be q; t -symmetric when Ǒ is a knot (see [99]).
It is well known that PKR. ǑIa; q; t/ specializes to the HOMFLY polynomial of

Ǒ:

PKR. Ǒ/j
t

1
2 D�q

� 1
2

D .�1/�.ˇ/.z=a/c.ˇ/�1P. ǑIa; z/j
zDq

1
2 �q

� 1
2

: (3.14)

Note that �.ˇ/ is not a link invariant, but .�1/�.ˇ/ and c.ˇ/ are link invariants.
Clearly, for any braid ˇ, we have degtop

a .PKR.ˇ// � �2�.ˇ/. Let v � w 2 Sn.
Comparing (3.12) with (2.2), we find �v;w D �2�.ˇv;w/ C c.ˇv;w/ � 1, and thus the
coefficient of a�2�.ˇv;w/ in PKR.ˇv;w/ is nonzero, by (3.14) combined with Theo-
rem (ii). Therefore degtop

a .PKR.ˇv;w// D �2�.ˇv;w/, and we get the following result.

PROPOSITION 3.12
For v � w 2 Sn, P

top
KR . Ǒ

v;w/ D Œa�2�.ˇv;w/�PKR. Ǒ
v;w/ is given by

P
top
KR . Ǒ

v;w Iq; t/ D .1 � t /c.ˇv;w/�1.q
1
2 t� 1

2 /�.ˇv;w/

�
X

k;p2Z

q
k
2 tpC k

2 dim H k;.p/
�
HH 0

�
F �.ˇv;w/

��
:

(3.15)

Let us also define the analogous polynomial in the nonequivariant case (cf. Sec-
tion 1.8). For ˇ 2 BSn

, set

P
top
KRIC.ˇIq; t/ D

.q
1
2 t� 1

2 /�.ˇ/

.1 C q� 1
2 t

1
2 /n�c.ˇ/

�
X

k;p2Z

q
k
2 tpC k

2 dim H k;.p/
�
HH 0

C

�
F �.ˇ/

��
: (3.16)

The denominator .1 C q� 1
2 t

1
2 /n�c.ˇ/ in (3.16) is chosen in view of the discussion in

Section 3.4: when ˇ is a link with c.ˇ/ components, a filtration analogous to the one
in Proposition 3.9 would involve complexes with 2n�c.ˇ/ terms.

The following result is a consequence of Corollary 3.10.

COROLLARY 3.13
Assume that Ǒ is a knot such that P

top
KRIC.ˇIq; t/ ¤ 0. Then

P
top
KR .ˇIq; t/ D P

top
KRIC.ˇIq; t/:

In Section 8.1, we give an alternative proof for knots of the form Ǒ
v;w for v �

w 2 Sn.
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3.6. Examples
We compute HHH 0.F �.ˇ// and P

top
KR . ǑIq; t/, as well as HHH 0

C
.F �.ˇ// and

P
top
KRIC.ˇIq; t/, for a few braids ˇ. Throughout, we assume that G D PGLn.C/,

in which case recall that R D CŒy1; : : : ; yn�1� is a polynomial ring. These examples
are summarized in Table 2. We abbreviate ˝R by ˝.

Example 3.14 (Unknot-I)
Let n D 1, v D id, w D id, and thus c.ˇv;w/ D 1 and �.ˇv;w/ D 0. We have
F �.ˇv;w/ D .0 ! R ! 0/ and R D C. Thus, the only nonzero term is
H 0;.0/.HH 0.F �

v;w// Š H 0;.0/.HH 0
C

.F �
v;w// Š C. We have

P
top
KR . Ǒ

v;w Iq; t/ D P
top
KRIC. Ǒ

v;w Iq; t/ D 1:

Note that any .1; b/-torus knot is isotopic to the unknot, and we have C1;b.q; t/ D 1.

Example 3.15 (Unknot-II)
Let n D 2, v D id, w D s1, and thus c.ˇv;w/ D 1 and �.ˇv;w/ D 0. We have F �

v;w D

.Bs1
! R/. It is easy to see that HH 0.Bs1

/ is a free R-module spanned by .y1 ˝

1 C 1 ˝ y1/, and thus HH 0.Bs1
/ Š R¹1º, and HH 0.F �

v;w/ D .R¹1º ! R/, with
the map sending 1 7! 2y1. The only nonzero term is H 0;.0/.HH 0.F �

v;w// Š C. Ten-

soring with C, we get HH 0
C

.F �
v;w/ D .C¹1º

0
�! C/, so there are two nonzero terms:

H 0;.0/.HH 0
C

.F �
v;w// Š H �1;.1/.HH 0

C
.F �

v;w// Š C. Therefore,

P
top
KR . Ǒ

v;w Iq; t/ D 1 and P
top
KRIC. Ǒ

v;w Iq; t/ D
1

1 C q� 1
2 t

1
2

.1 C q� 1
2 t

1
2 / D 1:

Let us also consider an example of Ǒ
v;w for v � w.

Example 3.16 (Unknot-III)
Let n D 2, v D s1, w D id, and thus c.wv�1/ D 1 and �.ˇv;w/ D �1. We have

F �
v;w D .R ! Bs1

¹�1º/, HH 0.F �
v;w/ D .R

�
�! R/, and HH 0

C
.F �

v;w/ D .C
�
�! C/ so

the right-hand sides of (3.15) and (3.16) are zero:

Œa2�PKR. Ǒ
v;w Ia; q; t/ D 0 and P

top
KRIC.ˇv;w Iq; t/ D 0:

This is consistent with the fact that PKR. Ǒ
v;w/ is a link invariant satisfying

PKR. / D 1; therefore, by (3.13), we have P
top
KR . Ǒ

v;w/ D 1. (For a computation
of HH 1.F �.ˇv;w//, see [92].)
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In the next two examples, we have c.ˇ/ > 1. We start with the case of the 2-
component unlink . It is the closure of id 2 BS2

, but we consider the representa-
tive ˇs1;s1

D �1��1
1 instead.

Example 3.17 (2-component unlink)
Let n D 2, v D s1, w D s1, and thus c.wv�1/ D 2 and �.ˇv;w/ D 0. We have

F �.ˇv;w/ D
�
Bs1

!
�
R ˚

�
Bs1

˝ Bs1
¹�1º

��
! Bs1

¹�1º
�
:

We apply the well-known (see, e.g., [57, Example 3.12]) Soergel bimodule isomor-
phism Bs1

˝ Bs1
Š Bs1

¹1º ˚ Bs1
, sending 1 ˝ 1 ˝ 1 7! .0; 1 ˝ 1/ and 1 ˝ y1 ˝ 1 7!

.1 ˝ 1; 0/. Next, we use Gaussian elimination (see [35, Exercise 19.12]) to obtain
F �.ˇv;w/ Š F �.id/ in KbSBim, in agreement with Proposition 3.3. We have R D

CŒy1�, HH 0.R/ Š R, and HH 0
C

.R/ Š C. (More generally, recall from Remark 3.4
that the R-module HH 0.B/ is always free.) Therefore, the only nonzero terms are
H 0;.p/.HH 0.F �

v;w// Š C for p D 0; 1; 2; : : : , and H 0;.0/.HH 0
C

.F �
v;w// Š C. We find

P
top
KR . Ǒ

v;w Iq; t/ D .1 � t /.1 C t C t2 C � � � / D 1 and

P
top
KRIC.ˇv;w Iq; t/ D 1:

The Hopf link Ǒ D consists of two linked unknots. It is isotopic to Ǒ
f2;4

, as
well as to the closure of .�1/2 2 BS2

.

Example 3.18 (Hopf link)
Let n D 2, ˇ D .�1/2, and thus c.ˇ/ D 2 and �.ˇ/ D 1. We have

F �.ˇ/ D .Bs1
˝ Bs1

! Bs1
˚ Bs1

! R/:

Using Gaussian elimination as in Example 3.17, we obtain

F �.ˇ/ Š
�
Bs1

¹1º ! Bs1
! R

�
:

Here, the first map sends 1˝1 7! y1 ˝1�1˝y1, and the second map sends 1˝1 7!

1. Taking R-invariants (cf. Remark 3.4), we find

HH 0
�
F �.ˇ/

�
D
�
R¹2º

0
�! R¹1º

2y1
��! R

�
: (3.17)

We get H 0;.0/.HH 0.F �.ˇ/// Š C and H �2.HH 0.F �.ˇ/// Š R¹2º. In other words,

H 0;.0/
�
HH 0

�
F �.ˇ/

��
Š C;H �2;.p/

�
HH 0

�
F �.ˇ/

��
Š C for p D 2; 3; 4; : : : . (3.18)
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Sending y1 ! 0 in (3.17), we find

H k;.p/
�
HH 0

C

�
F �.ˇ/

��
Š

´
C if .k;p/ 2 ¹.0; 0/; .�1; 1/; .�2; 2/º,

0 otherwise.

Thus,

P
top
KR . ǑIq; t/ D .1 � t /q

1
2 t� 1

2

�
1 C t=q.1 C t C t2 C � � � /

�
D q

1
2 t� 1

2 � q
1
2 t

1
2 C q� 1

2 t
1
2 ;

P
top
KRIC.ˇIq; t/ D q

1
2 t� 1

2 .1 C q� 1
2 t

1
2 C t=q/ D q

1
2 t� 1

2 C 1 C q� 1
2 t

1
2 :

Remark 3.19
Since P

top
KR . ǑIq; t/ is a link invariant and Ǒ Š Ǒ

2;4 (with �. Ǒ/ D �. Ǒ
2;4/), we see that

HHH 0.F �.ˇ// Š HHH 0.F �.ˇ2;4// as bigraded vector spaces. Using an elaborate
computation, one can also check that P

top
KRIC.ˇIq; t/ D P

top
KRIC.ˇ2;4Iq; t/. However,

observe that (3.16) has .1 C q� 1
2 t

1
2 /n�c.ˇ/ in the denominator, where n D 2 for ˇ

and n D 4 for ˇ2;4. Thus, HHH 0
C

.F �.ˇ2;4// differs from HHH 0
C

.F �.ˇ// by “multi-

plication by .1Cq� 1
2 t

1
2 /2,” and the actual bigraded dimensions of HHH 0

C
.F �.ˇ2;4//

are given in Table 3 (bottom left).

Remark 3.20
We have a resolution of C by free R-modules: 0 ! R

y1
�! R ! C ! 0. Thus,

TorR
� .C;C/ D .C

0
�! C/. Noting that TorR

� .C;R/ D C, we see that HHH 0
C

.F �.ˇ// Š

TorR
� .C;HHH 0.F �.ˇ///. We conjecture that this holds more generally for all links

(see (8.7)).

As we explained in Remark 1.14, for k D 2 and n D 5, Ǒ
fk;n

is the .2; 3/-torus

knot, which is isotopic to the trefoil knot: Ǒ
fk;n

Š . It can be alternatively obtained
as the closure of the braid .�1/3 2 B2.

Example 3.21 (Trefoil knot)
Let n D 2, ˇ D .�1/3, and thus c.ˇ/ D 1 and �.ˇ/ D 1. We have

F �.ˇ/ D .B˝3
s1

! 3B˝2
s1

! 3Bs1
! R/:

Here 3B˝2
s1

denotes the direct sum of three copies of Bs1
˝ Bs1

, and so on. Applying
Gaussian elimination as in Example 3.17, we arrive at a simplified complex

F �.ˇ/ Š
�
Bs1

¹2º ! Bs1
¹1º ! Bs1

! R
�
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with the three maps given by 1 ˝ 1 7! y1 ˝ 1 C 1 ˝ y1, 1 ˝ 1 7! y1 ˝ 1 � 1 ˝ y1,
and 1 ˝ 1 7! 1, respectively. Taking R-invariants, we find

HH 0
�
F �.ˇ/

�
D
�
R¹3º

2y1
��! R¹2º

0
�! R¹1º

2y1
��! R

�
:

We find that the only nonzero terms are

H 0;.0/
�
HH 0

�
F �.ˇ/

��
Š H �2;.2/

�
HH 0

�
F �.ˇ/

��
Š C:

Sending y1 ! 0, we also compute H k;.p/.HH 0
C

.F �.ˇ///, which leads to

P
top
KR . ǑIq; t/ D P

top
KRIC.ˇIq; t/ D q

1
2 t� 1

2 C q� 1
2 t

1
2 :

The corresponding q; t -Catalan number is C2;3.q; t/ D q C t D q
1
2 t

1
2 � P

top
KR . ǑIq; t/,

in agreement with (4.9).

Remark 3.22
We have Ǒ Š Ǒ

v;w for v D id, w D f2;5 2 S5, and �.ˇ/ D �.ˇv;w/ D 1; thus,
P

top
KR . Ǒ/ D P

top
KR . Ǒ

v;w/. Similarly to Remark 3.19, we may compute that P
top
KRIC.ˇI

q; t/ D P
top
KRIC.ˇ2;5Iq; t/, and thus HHH 0

C
.F �.ˇ2;5// is given in Table 3 (bottom

right).

4. Cohomology of positroid and Richardson varieties
We briefly review background on positroid varieties, Richardson varieties, and the
various versions of cohomology that we will be using.

4.1. Positroid varieties
Recall from Section 1.2 that the Grassmannian Gr.k; n/ is identified with the space of
k �n matrices modulo row operations. Given a k �n matrix A, we let RowSpan.A/ 2

Gr.k; n/ denote its row span and let A1;A2; : : : ;An be its columns. We extend this to
a sequence .Aj /j 2Z by requiring

Aj Cn D Aj for all j 2 Z.

Definition 4.1 ([77])
A bijection f W Z ! Z is called a .k; n/-bounded affine permutation if it satisfies
� f .j C n/ D f .j / C n for all j 2 Z,
�

Pn
j D1.f .j / � j / D kn, and

� j � f .j / � j C n for all j 2 Z.

Alternatively, the second condition can be replaced with k D #¹j 2 Œn� j f .j / >

nº.
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We let Bk;n denote the (finite) set of .k; n/-bounded affine permutations. For a
full rank k � n matrix A, we let fA W Z ! Z be given by

fA.i/ D min
®
j � i j Ai 2 Span.AiC1;AiC2; : : : ;Aj /

¯
for i 2 Z. (4.1)

For example, if Ai is a zero column, then fA.i/ D i , and if Ai is not in the span
of other columns, then fA.i/ D i C n. It is known (see [77]) that fA is a .k; n/-
bounded affine permutation which depends only on the row span of A. The positroid
stratification of Gr.k; n/ is given by

Gr.k; n/ D
G

f 2Bk;n

…ı
f ; where …ı

f WD
®
RowSpan.A/ 2 Gr.k; n/ j fA D f

¯
:

We extend any permutation u 2 Sn to a bijection Qu W Z ! Z satisfying Qu.j Cn/ D

Qu.j / C n for all n. We introduce a .k; n/-bounded affine permutation 
k;n W Z ! Z,
determined by


k;n.j / D

´
j C n if 1 � j � k,

j if k C 1 � j � n.

Recall that Qk;n WD ¹.v;w/ 2 Sn � Sn j v � w and w is k-Grassmannianº. The
following result explains the bijection .v;w/ 7! fv;w introduced in Proposition 1.10.

PROPOSITION 4.2 ([77, Proposition 3.15])
For every f 2 Bk;n, there exists a unique pair .v;w/ 2 Qk;n such that f D Qw ı 
k;n ı

Qv�1.

Here, “ı” denotes the usual composition of bijections Z ! Z. We thus define
fv;w WD Qw ı 
k;n ı Qv�1. Furthermore, we have the following relationship between
positroid and Richardson varieties.

PROPOSITION 4.3 ([77, Theorem 5.9])
Let G D PGLn.C/. For each f D fv;w 2 Bk;n, the natural projection map Fl.n/ !

Gr.k; n/ restricts to an isomorphism Rı
v;w Š …ı

f
. Thus, open positroid varieties are

special cases of open Richardson varieties.

4.2. Torus action and Richardson varieties
The goal of this section is to prove Proposition 1.6. We start by generalizing one direc-
tion to Richardson varieties of arbitrary type; the type A specialization is discussed
below. Let G be a complex semisimple algebraic group of adjoint type and of rank r ,
and let PG denote the simply-connected group of the same Dynkin type. We use the
notation PT , PB , PU for the corresponding subgroups of PG.
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Let us give a convenient well-known description (see [16, Theorem 2.3], [85,
Lemma 2.2], or [46, Lemma 3.1]) of Rı

v;w as an explicit affine variety. For v 2 W D

N PG. PT /= PT , let Pv 2 PG denote an arbitrary fixed representative. For v � w, denote

N ı
v;w WD Pv PU� \ PU� Pv \ PBw PB: (4.2)

Observe that the set PBw PB does not depend on the choice of a representative for w.

LEMMA 4.4
The map g 7! g PB= PB provides an isomorphism

N ı
v;w

�
�! Rı

v;w : (4.3)

For u 2 W , let �.u/ denote the dimension of the eigenspace with eigenvalue 1

for u acting on h�. We say that u 2 W is elliptic if �.u/ D 0.
Let P denote the weight lattice of the root system of G (i.e., the character lattice

of PG), and let Q � P denote the root lattice (i.e., the character lattice of G). We let
!1; : : : ;!r 2 P denote the fundamental weights. For u 2 W , we note that .u� id/P 	

Q.
For �; ı 2 P , let ��;ı denote the corresponding generalized minor (see [12], [39])

for PG. The condition that g 2 PBw PB implies that

�w!i ;!i
.g/ ¤ 0 for i D 1; 2; : : : ; r . (4.4)

Indeed, by [39, Definition 1.4], we have �w!i ;!i
.g/ D �!i ;!i

.w�1g/ for a certain

representative w�1 2 G of w�1, so (4.4) follows from [39, Proposition 2.9, Corol-
lary 2.5].

PROPOSITION 4.5
Suppose that vw�1 is elliptic and .vw�1 � id/P D Q. Then T acts freely on Rı

v;w

and we have a T -equivariant isomorphism

Rı
v;w Š .Rı

v;w=T / � T:

Proof
Define

N ı;�D1
v;w WD

®
x 2 N ı

v;w

ˇ̌
�!i ;w!i

.g/ D 1 for i D 1; 2; : : : ; r
¯
:

We will show that N
ı;�D1
v;w Š Rı

v;w=T and Rı
v;w Š N

ı;�D1
v;w � T .

The action of PT on Rı
v;w corresponds to the action t � g WD tg Pv�1t�1 Pv for t 2

PT and g 2 N ı
v;w . Let �! D �!;! W PT ! C denote the character corresponding to a

weight ! 2 P . Then
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�w!i ;!i
.tg Pv�1t�1 Pv/ D �w!i

.t/�!i
. Pv�1t�1 Pv/�w!i ;!i

.g/:

Since �!i
. Pv�1t�1 Pv/ D �v!i

.t�1/, the weight of this generalized minor is .w �

v/!i D �v.id � v�1w/!i . The condition �.vw�1/ D 0 implies that id � v�1w is
invertible. The condition .vw�1 � id/P D Q implies that .id � v�1w/!1; .id �

v�1w/!2; : : : ; .id � v�1w/!r form a Z-basis of Q. Since Q is the character lattice
of T , it follows that the action of T on N ı

v;w is free and that the functions �w!i ;!i
,

i D 1; 2; : : : ; r , can be simultaneously set to 1 by a unique element t 2 T . It follows
that N

ı;�D1
v;w Š Rı

v;w=T and Rı
v;w Š N

ı;�D1
v;w � T .

Remark 4.6
It would be interesting to classify elliptic elements u 2 W satisfying the condition
.u � id/P D Q, which depends only on the conjugacy class of u. It is not satisfied
for all elliptic elements. For example, in type D4, the longest element w0 acts by �id
on h�, but we have 2P � Q since ˛i

2
… P for any i 2 I .

PROPOSITION 4.7
Suppose that c 2 W is a Coxeter element. Then c is elliptic and satisfies .c � id/P D

Q.

Proof
We may assume that c is a standard Coxeter element. That is, c D s1s2 � � � sr where si

are simple generators corresponding to positive simple roots ˛1; : : : ; ˛r . Define roots
ˇ1 D ˛1, ˇ2 D s1˛2, : : : ; ˇr D s1s2 � � � sr�1˛r . By [82, Lemma 10.2], c is elliptic. By
[82, Proposition 10.5], we have .id � c/!i D ˇi 2 ˛i C

P
j <i Z˛j . It follows that

.c � id/P D
Lr

iD1 Z˛i D Q.

Let us now consider the type A case, where G D PGLn.C/ and PG D SLn.C/. For
a permutation u 2 Sn, any of the following conditions are equivalent: (i) u is a single
cycle, (ii) u is an elliptic element, and (iii) u is a Coxeter element. Each generalized
minor �!i ;u!i

W PG ! C is the usual matrix minor with row set ¹1; 2; : : : ; iº and col-
umn set ¹u.1/;u.2/; : : : ; u.i/º. The representative Pv in (4.2) may be chosen to be a
signed permutation matrix of v. In the next result, c.�/ denotes the number of cycles
of a permutation (cf. (1.9); as opposed the Coxeter element c considered above).

COROLLARY 4.8
For all v � w 2 Sn such that c.wv�1/ D 1, the T -action on Rı

v;w is free and we have
a T -equivariant isomorphism

Rı
v;w Š .Rı

v;w=T / � T:
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Remark 4.9
When Rı

v;w Š …ı
f

(see Proposition 4.3), the functions �Œ1;i�;wŒ1;i� on N ı
v;w Š Rı

v;w

coincide with the Plücker coordinates on …ı
f

corresponding to the Grassmann neck-
lace of f (see the proof of [46, Lemma 4.7]). In particular, for f D fk;n, these are
the cyclically consecutive maximal minors as in (1.4).

Proof of Proposition 1.6
If c. Nf / D 1, then T acts freely on …ı

f
by Corollary 4.8. We prove the converse. For

f 2 Bk;n, let us construct a particular representative Xmin
f

2 …ı
f

. If f .i/ D i for some
i 2 Z, then the corresponding column is zero, so we may assume that f .i/ ¤ i for all
i . Let us write Nf in cycle notation:

Nf D .a1a2 � � � am1
/.am1C1am1C2 � � �am2

/ � � � .amr C1 � � �an/

so that the minimal index of each cycle comes first. We label these indices left to
right: set 
.a1/ WD 1, and for i D 1; 2; : : : ; n � 1, set 
.aiC1/ D 
.ai / if ai < aiC1

and they belong to the same cycle, and 
.aiC1/ D 
.ai / C 1 otherwise. It is easy to
check that 
.an/ D k. The element Xmin

f
is the row span of the k � n matrix M D

.mi;j / whose only nonzero entries are m�.ai /;ai
D 1. One checks using (4.1) that

Xmin
f

2 …ı
f

. Furthermore, rescaling all columns that belong to a single cycle of Nf by

the same value preserves the element Xmin
f

. Therefore when c. Nf / > 1, the T -action
on …ı

f
is not free.

4.3. Mixed Hodge structure
We follow the conventions of [83] (see [29] and [101] for further background). The
results of [83] apply to cluster varieties. It was shown in [46] that open positroid
varieties …ı

f
, f 2 Bk;n are cluster varieties. By [46, Lemma 3.6], setting the functions

�w!i ;!i
to 1 as we did in the proof of Proposition 4.5 corresponds to setting the frozen

variables to 1 in the cluster structure on …ı
f

. Thus, for f 2 BcD1
k;n

, …ı
f

=T is a cluster
variety with no frozen variables.

Consider a smooth complex algebraic variety Y of dimension d . By [101,
Lemma-Definition 3.4], the cohomology H k.Y;C/ and the compactly supported
cohomology H k

c .Y;C/ are endowed with a Deligne splitting

H k.Y;C/ D
M

p;q2Z

H k;.p;q/.Y;C/ and H k
c .Y;C/ D

M
p;q2Z

H k;.p;q/
c .Y;C/:

This splitting is functorial and satisfies the Poincaré duality (see [101, Theorem
6.23]):

H k;.p;q/.Y;C/ Š H 2d�k;.d�p;d�q/
c .Y;C/ for all k;p; q 2 Z: (4.5)
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We say that the cohomology of Y is of Hodge–Tate type if H k;.p;q/.Y;C/ D 0

whenever p ¤ q. The notions of mixed Hodge structure and Hodge–Tate type also
apply to equivariant cohomology.

Definition 4.10
Let Y be a d -dimensional complex variety whose cohomology is of Hodge–Tate type.
Define its mixed Hodge polynomial P .Y Iq; t/ 2 NŒq

1
2 ; t

1
2 � by

P .Y Iq; t/ WD
X

k;p2Z

qp� k
2 t

d�k
2 dim H k;.p;p/.Y;C/: (4.6)

We have H k;.p;p/.Y;C/ D 0 for p > k. By convention, we set H k;.r;r/.Y;C/ WD

0 for r … Z.
It is convenient to record the dimensions of the spaces H k;.p;p/.Y;C/ in a mixed

Hodge table: the columns are labeled by H 0;H 1; : : : ;H d , while the rows are labeled
by k �p D 0; 1; 2; : : : . Thus, an entry in a column labeled by H k and in a row labeled
by k � p encodes the dimension of H k;.p;p/.Y;C/. Examples of mixed Hodge tables
are given in Tables 1 and 3, and in [83, Section 6]. For instance, we see from (4.6)
that the two rows of Table 1 yield

P .…ı
3;8=T Iq; t/ D .q4 C q3t C q2t2 C qt3 C t4/ C .q2t C qt2/;

confirming the computation in Example 1.9.
We say that a polynomial P .q; t/ 2 NŒq

1
2 ; t

1
2 � is q; t -symmetric if P .q; t/ D

P .t; q/. We say that P is q, t -unimodal if for each a; b 2 1
2
Z, the coefficients

.Œqa�ktbCk�P /k2Z form a unimodal sequence.6 Recall that Theorem 1.18, proved
in Section 8.2, states that the polynomial P .Rı

v;w Iq; t/ is q; t -symmetric for all
v � w 2 W .

A special case of Theorem 1.18 for positroid varieties follows from the curious
Lefschetz theorem proved in [83, Theorem 8.3]. We say that a 2d -dimensional com-
plex algebraic variety Y of Hodge–Tate type satisfies the curious Lefschetz theorem
if there is a class � 2 H 2;.2;2/.Y;C/ inducing isomorphisms

^ �d�p W H pCs;.p;p/.Y;C/ Š H 2d�pCs;.2d�p;2d�p/.Y;C/: (4.7)

As explained in [83], for cluster varieties, one can choose � to be the Gekhtman–
Shapiro–Vainshtein form in [51]. In the case that …ı

f
is odd-dimensional, the product

…ı
f

�C� will satisfy (4.7), and using the Künneth theorem, unimodality and symme-
try for P .…ı

f
Iq; t/ can be deduced.

6This property is sometimes called parity unimodality since the terms with integer degrees and with half-integer
degrees are required to form separate unimodal sequences.
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The curious Lefschetz theorem for positroid varieties relies on the fact that they
admit cluster structures (see [46]), which is not yet available for Richardson varieties.
Another consequence of the curious Lefschetz property is that P .…ı

f
Iq; t/ is q; t -

unimodal. The question of whether P .Rı
v;w I q; t/ is q; t -unimodal for arbitrary v �

w 2 W remains open.

4.4. Proof of Theorem 1.1 from Theorem 1.17
Let G D PGLn.C/ and f D fv;w 2 BcD1

k;n
; thus, we have Rı

v;w D …ı
f

. We set

`v;w D `.w/ � `.v/ D dim.Rı
v;w/ D dim.…ı

f /;

df WD dim.Xı
f / D `v;w � n C 1:

Since c.f / D 1, we have df D 2�.ˇf / by (3.12), and the T -action on …ı
f

is free by
Proposition 1.6. In this case, we have

H
kCn�1;.p;p/
T;c .…ı

f / Š H k;.p;p/
c .Xı

f / Š H 2df �k;.df �p;df �p/.Xı
f /; (4.8)

where the first isomorphism is Lemma 4.14 below, and the second isomorphism is the
Poincaré duality (4.5).

Therefore, (1.22) yields

P .Xı
f Iq; t/ D .q

1
2 t

1
2 /�.ˇf /P

top
KR . Ǒ

f Iq; t/: (4.9)

This is a special case of (1.24), which is proved in a similar way in Section 8.1. In
the case f D fk;n and gcd.k; n/ D 1, Remark 1.14 implies that Ǒ

f is a torus knot,
for which the right-hand side of (4.9) was shown by Mellit [92] to coincide with
Ck;n�k.q; t/. Thus, Theorem 1.1 follows from Theorem 1.17.

4.5. Mixed Hodge structures of open Richardson varieties

THEOREM 4.11
For any v � w 2 W , the cohomology H �.Rı

v;w ;C/, the compactly supported coho-
mology H �

c .Rı
v;w ;C/, and the compactly supported T -equivariant cohomology

H �
T;c.Rı

v;w ;C/ of Rı
v;w are of Hodge–Tate type.

We have omitted equivariant cohomology H �
T .Rı

v;w ;C/ from Theorem 4.11
because the statement of Poincaré duality in the equivariant setting is considerably
more complicated than for ordinary cohomology.
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LEMMA 4.12
Let Y be a complex algebraic variety, let U � Y be an open subvariety, and let
Z WD Y n U . Suppose that the compactly supported cohomologies of U and Z are of
Hodge–Tate type. Then the same is true for Y .

The same statement holds for compactly supported T -equivariant cohomology
with the assumption that U , Z are T -stable.

Proof
We have a Gysin long exact sequence for the triple .Y;Z;U / (see, e.g., [101, (B-15)]):

� � � ! H k
c .U;C/ ! H k

c .Y;C/ ! H k
c .Z;C/ ! H kC1

c .U;C/ ! � � � ; (4.10)

the maps of which respect the mixed Hodge structure (see [28, Theorem 4.1]).
Taking the .p; q/ piece of the Deligne splitting, we have

� � � ! H k;.p;q/
c .U;C/ ! H k;.p;q/

c .Y;C/ ! H k;.p;q/
c .Z;C/ ! � � � :

By assumption, when p ¤ q, we have H
k;.p;q/
c .U;C/ D 0 D H

k;.p;q/
c .Z;C/. Thus,

H
k;.p;q/
c .Y;C/ D 0. The same proof applies in compactly supported equivariant coho-

mology.

Proof of Theorem 4.11
Since Rı

v;w is smooth, by (4.5) it suffices to show that the compactly supported coho-
mology and the compactly supported equivariant cohomology are of Hodge–Tate
type.

We will prove the statement by induction on `v;w D dim.Rı
v;w/. The statement

clearly holds if `v;w D 0, for then Rı
v;w is a point. We will use a recursion for the

varieties Rı
v;w from [106]. By [106, Lemma 4.3.1, Proof of Proposition 4.3.6], for any

open Richardson Y D Rı
v;w with w > v, we can find a decomposition Y D U t Z,

where U � Y is open and Z � Y is closed, and we have isomorphisms

Z Š Y 0 �CU Š Y 00 �C�; (4.11)

where Y 0, Y 00 are open Richardson varieties of lower dimension, and Z is possi-
bly empty. Furthermore, U , Z are T -stable and the isomorphisms (4.11) are torus-
equivariant, for certain linear actions of T on C, C�. By the Künneth formula, the
Hodge–Tate type property is preserved under products. By the inductive hypothesis,
the compactly supported (equivariant) cohomology of U and of Z (when nonempty)
are therefore of Hodge–Tate type. It follows that the same statement holds for Y .

The following corollary of Theorem 4.11 also follows from combining [83, The-
orem 8.3] and [46].
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COROLLARY 4.13
For all f 2 Bk;n, the cohomology of …ı

f
is of Hodge–Tate type. If c. Nf / D 1, then the

cohomology of …ı
f

=T is also of Hodge–Tate type.

Proof
For the second statement, we note that T acts freely on …ı

f
by Corollary 4.8. Thus,

H �
T .…ı

f
;C/ Š H �.…ı

f
=T;C/ is of Hodge–Tate type by Theorem 4.11.

When computing examples in the next section, we shall repeatedly use the fol-
lowing result.

LEMMA 4.14
Suppose that T acts freely on a complex algebraic variety Y , and let d WD dimC.T /.
Then we have an isomorphism of mixed Hodge structures

H
kCd;.p;q/
T;c .Y;C/ Š H k;.p;q/

c .Y=T;C/ for all k;p; q 2 Z,

and the action of H �
T .pt;C/ on H �

T;c.Y;C/ is trivial (i.e., factors through the map
H �

T .pt;C/ ! H 0
T .pt;C/ Š C).

Proof
Suppose that T D .C�/d , and let Em WD .Cm n ¹0º/d be a finite-dimensional approx-
imation to a contractible space ET where T acts freely. Then by definition

H k
T;c.Y / D lim

m!1
H k

c .Y �T Em/

D lim
m!1

H k
c .Y=T � Em/

D lim
m!1

M
j

H k�j
c .Y=T / ˝ H j

c .Em/ by the Künneth formula

D H k�d
c .Y=T /:

We have used the fact that H �
c .Cm n ¹0º/ is C in dimensions 1 and 2m and van-

ishes in other dimensions. Since H 1
c .Cm n ¹0º/ is of type .0; 0/, the isomorphism is

compatible with mixed Hodge structures.

4.6. Examples
We compute the compactly supported torus-equivariant cohomology of some open
Richardson varieties, corresponding to the examples computed in Section 3.6. As in
Section 3.6, we label each example by the link associated to the Richardson variety.
Using Table 2, one can compare the examples below with the ones in Section 3.6
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and observe that the computations agree with our main results, Theorems 1.16 and
1.17.

Recall that we say that the action of R D CŒh� is trivial if h� acts by zero. We
identify R with H �

T .pt;C/.

Example 4.15 (Unknot-I)
Let n D 1 and v D w D id, and thus `v;w D 0. Then Rı

v;w Š T Š pt, and the T -action
is free. The only nonzero terms in the cohomology are

H 0;.0;0/.pt/ Š H 0;.0;0/
c .pt/ Š H

0;.0;0/
T;c .pt/ Š C: (4.12)

As in Example 3.14, the R D C-module structure on H �
T;c.pt/ is trivial (since T acts

freely).

Example 4.16 (Unknot-II)
Let n D 2, v D id, and w D s1, and thus `v;w D 1. Then Rı

v;w Š …ı
1;2 � Gr.1; 2/ and

we have Rı
v;w Š T Š C�. The T -action is free and Rı

v;w=T Š pt. Using Poincaré
duality (4.5) and Lemma 4.14, we find that the only nonzero terms are

H 0;.0;0/.C�/ Š H 1;.1;1/.C�/ Š C;

H 2;.1;1/
c .C�/ Š H 1;.0;0/

c .C�/ Š C; and (4.13)

H
1;.0;0/
C�;c .C�/ Š C:

As in Example 3.15, the R D CŒy1�-module structure on H �
T;c.Rı

v;w/ is trivial (since
T acts freely).

Example 4.17 (2-component unlink)
Let n D 2, v D s1, and w D s1, and thus `v;w D 0. We have Rı

v;w Š pt and T Š C�.
The T -action is not free. We have already computed H �.pt/ and H �

T;c.pt/ in (4.12).
The nonzero terms of H �

T;c.Rı
v;w/ Š H �

C�;c.pt/ are given by

H
2p;.p;p/
T;c .pt/ Š C for p D 0; 1; 2; : : : .

As in Example 3.17, we have H �
T;c.Rı

v;w/ Š H �
T;c.pt/ Š R as an R-module.

Example 4.18 (Hopf link)
Let n D 4, v D id, w D f2;4 D s2s1s3s2, and thus `v;w D 4. We have Y WD Rı

v;w Š

…ı
2;4 � Gr.2; 4/, an open positroid variety of dimension 4. It is isomorphic to

Y Š

²�
1 0 a b

0 1 c d

�ˇ̌̌
ˇ.a; b; c; d/ 2 C4 W a ¤ 0;d ¤ 0; ad � bc ¤ 0

³
:
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The action of T Š .C�/3 on Y is not free: T acts by rescaling rows and columns
in such a way that the first two columns form the identity matrix. There exists a 2-
dimensional torus T 0 � T that acts freely on Y ; for example, one can always rescale
columns 3 and 4 uniquely (since a;d ¤ 0) to force the minors �2;3 and �1;4 to be
equal to 1:

Y=T 0 Š

²�
1 0 �1 �y

0 1 x 1

�ˇ̌̌
ˇ.x; y/ 2 C2 W xy ¤ 1

³
:

The quotient Y=T 0 can be identified with the 2-dimensional A1-cluster variety (with
one frozen variable; cf. [83, Section 6.1]). We denote it by

U WD Y=T 0 Š
®
.x; y/ 2 C2 j xy ¤ 1

¯
� C2:

The action of T=T 0 can be identified with the action of C� on U with 
 � .x; y/ D

.
x;
�1y/ for 
 2 C� and .x; y/ 2 C2. Forgetting this torus action, it was shown in
[83, Corollary 7.2] that U is homotopy equivalent7 to a pinched torus:

Therefore the Betti numbers of U are .1; 1; 1/, and moreover we have (see [83, Sec-
tion 6.1])

H 0;.0;0/.U / Š H 1;.1;1/.U / Š H 2;.2;2/.U / Š C:

We have Y Š U � .C�/2, which corresponds to multiplying the mixed Hodge poly-
nomial of U by .q

1
2 C t

1
2 /2. The resulting mixed Hodge table of Y , whose sole row

contains the coefficients of the polynomial .q C q
1
2 t

1
2 C t / � .q

1
2 C t

1
2 /2, is given in

Table 3 (top left).
Let us return to computing the C�-equivariant cohomology of U . Denote W WD

C2, and let Z WD W n U be the hyperbola ¹.x; y/ j xy D 1º. We first compute the
compactly supported equivariant cohomologies H �

C�;c.Y / and H �
C�;c.Z/. Set R WD

H �
C�.pt/.

First, suppose that C� acts on Cm linearly in any way. Then it follows directly
from the definitions that H �

C�;c.Cm/ is a free R-module with generator in degree 2m.
Specifically, all nonzero terms are given by

7We caution the reader that neither the compactly supported cohomology nor the mixed Hodge structure are
preserved by homotopy equivalences.
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H
2.mCk/;.mCk;mCk/
C�;c .Cm/ Š C for k D 0; 1; 2; : : : . (4.14)

Next, observe that the variety Z is C�-equivariantly isomorphic to the variety C�

on which C� acts freely. By (4.14),

H
1;.0;0/
C�;c .Z/ Š C: (4.15)

Now we compute H �
C�;c.U /. The Gysin sequence (4.10) for the triple .W;Z;U /

gives

0 ! H 0
C�;c.U / ! H 0

C�;c.W / ! H 0
C�;c.Z/

! H 1
C�;c.U / ! H 1

C�;c.W / ! H 1
C�;c.Z/ ! � � � :

Applying (4.14)–(4.15), we get

0 ! H 0
C�;c.U / ! 0 ! 0 ! H 1

C�;c.U / ! 0 ! C ! H 2
C�;c.U / ! 0 ! 0

! H 3
C�;c.U / ! 0 ! 0 ! H 4

C�;c.U / ! C ! 0 ! H 5
C�;c.U / ! 0 ! 0 ! � � � :

We conclude that the nonzero terms of H �
C�;c.U / are given by

H
2;.0;0/
C�;c .U / Š C and H

4C2k;.2Ck;2Ck/
C�;c .U / Š C for k D 0; 1; 2; : : : .

By the same computation as in the proof of Lemma 4.14, we have H
kC2;.p;q/
T;c .Y / Š

H
k;.p;q/
C�;c .U /. Thus, the nonzero terms of H �

T;c.Y / are

H
4;.0;0/
T;c .Y / Š C and

H
6C2k;.2Ck;2Ck/
T;c .Y / Š C for k D 0; 1; 2; : : : .

(4.16)

Recall that `v;w D 4. In view of (1.22), the dimensions in (4.16) match perfectly with
those computed in (3.18) from the Soergel bimodule perspective.

Remark 4.19
We observe that the R D CŒy1�-module structure on H �

T;c.Y / also agrees with that
computed in (3.18). More generally, for W D Sn, Corollary 4.8 can be extended to
arbitrary open Richardson varieties Rı

v;w : we have a subtorus T 0 � T of dimension
n � c.ˇ/ acting freely on Rı

v;w , and H �
T;c.Rı

v;w/ Š H �
T=T 0;c

.Rı
v;w=T 0/. Recall from

Section 3.4 that we may therefore view both sides of (1.21) as graded modules over
a polynomial ring R in c.ˇ/ � 1 variables, and we expect that these R-modules are
isomorphic under the grading change (1.22).

It would be interesting to combine Example 4.18 with [83] to obtain a description
of the equivariant cohomology of more general cluster varieties.
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Example 4.20 (Trefoil knot)
Let n D 5, v D id, w D f2;5 D s3s2s1s4s3s2, and thus `v;w D 6. We have Rı

v;w Š

…ı
2;5, on which the torus T Š .C�/5 acts freely. As explained in Remark 4.9, the

quotient is obtained by fixing the cyclically consecutive maximal minors to 1. An
explicit parameterization can be chosen as follows:

…ı
2;5=T Š

´ 
1 0 �1 �y 1Cy

1�xy

0 1 x xy � 1 1

!ˇ̌̌
ˇ̌.x; y/ 2 C2 W xy ¤ 1

μ

t

²�
1 0 �1 1 z

0 1 �1 0 1

�ˇ̌̌
ˇz 2 C

³
:

Observe that the point count therefore equals .q2 � q C 1/ C q D q2 C 1 D q �

C2;3.q; 1=q/. The variety …ı
2;5=T is a 2-dimensional cluster variety of type A2 with

no frozen variables. Its cohomology was computed in [83, Section 6.2]: the nonzero
terms are

H 0;.0;0/.…ı
2;5=T / Š H 2;.2;2/.…ı

2;5=T / Š C:

Multiplying the mixed Hodge polynomial by .q
1
2 C t

1
2 /4, we see that the mixed

Hodge table of …ı
2;5 is given in Table 3 (top right). By (4.5) and Lemma 4.14, we

find

H 2;.0;0/
c .…ı

2;5/ Š H 4;.2;2/
c .…ı

2;5/ Š C and

H
6;.0;0/
T;c .…ı

2;5/ Š H
8;.2;2/
T;c .…ı

2;5/ Š C:

As in Example 3.21, the R-module structure on H �
T;c.Rı

v;w/ is trivial (since T acts
freely).

We now give three examples of Richardson and positroid knots with nonvanishing
odd cohomology, as promised in Section 1.12.5. Here by a positroid knot we mean a
knot of the form Ǒ

f for f 2 BcD1
k;n

.

Example 4.21 (Odd cohomology-I)
Let n D 5, v D s3, and w D s2s3s4s3s1s2s1, and thus `v;w D 6 and c.wv�1/ D 1. The
Richardson knot ˇv;w is the 3-twist knot, listed as 52 in Rolfsen’s table (see [108]).
By (2.3), the point count is given by

#.Rı
v;w=T /.Fq/ D q2 � q C 1:

The appearance of �q implies that the cohomology of Rı
v;w=T cannot be concen-

trated in even degrees.
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The following two examples of positroid knots were discovered by David Speyer
jointly with the second author.

Example 4.22 (Odd cohomology-II)
Let k D 7, n D 14, and let f D fv;w 2 BcD1

k;n
and v � w 2 Sn be given by

f D Œ3; 8; 9; 16; 7; 14; 15; 20; 12; 18; 13; 24; 19; 25�;

v D .2; 1; 8; 4; 6; 3; 11; 9; 10; 5; 7; 13; 14; 12/;

w D .8; 9; 10; 1; 11; 12; 2; 3; 13; 4; 14; 5; 6; 7/:

Here v and w are given in one-line notation, and f D Œf .1/; f .2/; : : : ; f .n/� is given
in window notation. The permutation w is 7-Grassmannian, and we have c. Nf / D 1,
`.v/ D 19, `.w/ D 40, and df D 8. The mixed Hodge table of Xı

f
is given by

H k H 0 H 1 H 2 H 3 H 4 H 5 H 6 H 7 H 8

k � p D 0 1 0 1 0 1 0 1 0 1

k � p D 1 1 1 1

In particular, H 5 is nonvanishing.

Example 4.23 (Odd cohomology-III)
Let k D 7, n D 14, and let f D fv;w 2 BcD1

k;n
and v � w 2 Sn be given by

f D Œ7; 4; 15; 13; 11; 8; 19; 16; 14; 12; 23; 20; 17; 24�;

v D .1; 3; 6; 9; 2; 5; 8; 12; 4; 7; 11; 14; 10; 13/;

w D .8; 9; 1; 10; 11; 12; 2; 3; 13; 14; 4; 5; 6; 7/:

Similarly, w is 7-Grassmannian, c. Nf / D 1, `.v/ D 19, `.w/ D 40, and df D 8. One
can easily compute (e.g., using Theorem 1.13) that the point count is given by

#Xı
f .Fq/ D q8 C q6 C 3q5 � q4 C 3q3 C q2 C 1:

Similarly to Example 4.21, this polynomial has a negative term, and therefore the odd
cohomology does not vanish.

Remark 4.24
Ivan Cherednik has suggested to us that one might expect odd cohomology vanishing
for algebraic knots (see [102] and [23, Section 3.4]). The knot 52 in Example 4.21 is
not algebraic. We thank the anonymous referee for pointing out to us that the positroid
knot in Example 4.22 is also not algebraic.
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5. Equivariant derived categories of flag varieties
Rather than working with mixed Hodge structures, our proof will be mostly stated in
the language of weights (see [30]) on étale cohomology.8 We assume that the reader
is familiar with derived categories of `-adic sheaves in the equivariant setting (see,
e.g., [10], [13], [84] for relevant background).

5.1. Conventions
Fix a prime power q. We shall consider schemes over the finite field Fq and its alge-
braic closure Fq . For an Fq-scheme Y , let Y

Fq
WD Y �Spec.Fq/ Spec.Fq/ denote the

base change to an Fq-scheme. We have the Frobenius automorphism Fr W Y
Fq

! Y
Fq

whose fixed points are exactly the points of Y
Fq

defined over Fq .

Fix a prime number ` different from the characteristic of Fq , and let k WD Q`. Let
H be an algebraic group acting on an Fq-variety Y . We consider the bounded derived
category Db

.H/
.Y;k/ of mixed H -constructible (i.e., constructible along H -orbits) k-

sheaves on Y , as well as the corresponding category Db
.H/

.Y
Fq

;k/ of H -constructible

k-sheaves on Y
Fq

(see [10]). We also let Db
H .Y;k/ and Db

H .Y
Fq

;k/ denote the cor-
responding H -equivariant bounded derived categories as in [13] (see also [130] for
a discussion of mixed derived categories in the equivariant setting). There are func-
tors For W Db

H .Y
Fq

;k/ ! Db
.H/

.Y
Fq

;k/ and For W Db
H .Y;k/ ! Db

.H/
.Y;k/ forgetting

the equivariant structure. There are also functors ! W Db
.H/

.Y;k/ ! Db
.H/

.Y
Fq

;k/ and

! W Db
H .Y;k/ ! Db

H .Y
Fq

;k/ obtained by extension of scalars from Fq to Fq .
The language of algebraic stacks [84] allows us to switch between ordinary and

equivariant derived categories at our convenience. For example, Db.ŒY=H�;k/ Š

Db
H .Y;k/.

We denote by Œm� the cohomological shift m steps to the left in a derived category
as in Section 3.2. For F ;G 2 Db

H .Y;k/ and k 2 Z, let

Extk.F ;G / D ExtkY .F ;G / WD HomDb
H

.Y
Fq

;k/

�
!F ;!G Œk�

�
for k 2 Z: (5.1)

The space HomDb
H

.Y
Fq

;k/.!F ;!G Œk�/ has a natural action of the Frobenius Fr.

Therefore, Ext�.F ;G / is a graded H �
H .pt;k/-module equipped with an action of

Fr, or in other words, an .H �
H .pt;k/; Fr/-module. The actual extension groups in

Db
H .Y;k/ are denoted by extk.F ;G /, and are related to Extk.F ;G / by the exact

sequence (see [10, (5.1.2.5)])

0 ! Exti�1.F ;G /Fr ! exti .F ; G / ! Exti .F ;G /Fr ! 0; (5.2)

8As pointed out to us by Wolfgang Soergel, our results could also be formulated using the language of equivariant
mixed Tate motives (see [120]).
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where Exti .F ;G /Fr and Exti�1.F ;G /Fr denote Frobenius invariants and coinvari-
ants, respectively. We denote by hom.F ;G / D ext0.F ;G / D HomDb

H
.Y;k/.F ;G / the

Hom groups in Db
H .Y;k/.

We fix an isomorphism k Š C and denote by j
j the norm of 
 2 k considered
as an element of C. If M is an Fr-module, then the weights of Fr on M are the real
numbers 2 log.
/= log.q/ for 
 an eigenvalue of the action of Fr. All weights we
consider will be integers: the cohomology sheaves of an object F 2 Db

.H/
.Y;k/ are

required to have punctual integer weights (see Section [10, 5.1.5]). We fix a square
root .1=2/ of the Tate twist, and for F 2 Db

H .Y;k/ and r 2 Z, we denote by F .r=2/

the corresponding Tate twist of F .
Recall (see [10, Section 5.1]) that F 2 Db

H .Y;k/ has weights at most r if for
each i the sheaf H i .F / has mixed punctual weights at most r C i . We say that
F 2 Db

H .Y;k/ has weights at least r if the Verdier dual DF has mixed punctual
weights at most �r . Finally, we say that F 2 Db

H .Y;k/ is pure of weight r if it has
weights at most r and weights at least r . If F is pure of weight r , then F Œ1� is pure
of weight r C 1, while F .1=2/ is pure of weight r � 1.

For an integer r 2 Z, we denote by Extk;.r=2/.F ;G / � Extk.F ;G / the general-
ized eigenspace for Fr of weight r . Thus,

Ext.F ;G / D
M

k;r2Z

Extk;.r=2/.F ;G /: (5.3)

For all F ;G 2 Db
H .Y;k/ and k;k0; r; r 0 2 Z, we have

Extk;.r=2/
�
F Œ�k0�.�r 0=2/;G

�
Š Extk;.r=2/

�
F ;G Œk0�.r 0=2/

�
Š ExtkCk0;..rCr 0/=2/.F ;G /:

(5.4)

5.2. Equivariant cohomology
For F 2 Db

H .Y;k/, the equivariant hypercohomology H�
H .F / D H�

H .Y;F / is
defined by

H�
H .F / WD Ext�.kY ;F /: (5.5)

In particular, we have Hk;.r=2/
H .F Œk0�.r 0=2// D HkCk0;..rCr 0/=2/

H .F /.
Let � W Y ! pt WD Spec.Fq/ be the projection to a point. By definition, the H -

equivariant cohomology H �
H .Y;k/ and the compactly supported H -equivariant coho-

mology H �
H;c.Y;k/ of Y are given by

H �
H .Y;k/ WD H�

H .Y;kY / D H�
H .pt; ��kY / and

H �
H;c.Y;k/ WD H�

H .pt; �ŠkY /:
(5.6)

Both H �
H .Y;k/ and H �

H;c.Y;k/ are graded .H �
H .pt;k/; Fr/-modules.
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5.3. Flag varieties
We fix a semisimple algebraic group G, split over Fq , and a maximal torus and a Borel
subgroup T � B � G. Let X D G=B be the flag variety over Fq , and let X

Fq
WD

X �Spec.Fq/ Spec.Fq/ be obtained by extending scalars. The variety X is stratified by

B-orbits
ı

Xw WD BwB=B (known as Schubert cells):

X D
G

w2W

ı

Xw :

Let R D H �
B.pt;k/ Š kŒh�.

Remark 5.1
We switch from working over R D CŒh� to R D kŒh�. The results in Section 3 do not
depend on the field as long as it is of characteristic zero. Therefore on the Soergel
bimodule side, one can freely switch between working over C and over k.

For w 2 W , we let iw W
ı

Xw ! X be the inclusion map. Introduce the standard
and costandard sheaves �w ;rw 2 Db

B.X;k/ defined by

�w WD iw;Šk ı
Xw

�
`.w/

��
`.w/=2

�
and rw WD iw;�k ı

Xw

�
`.w/

��
`.w/=2

�
:

Here, k ı
Xw

denotes the constant sheaf on
ı

Xw . The intersection cohomology sheaves

ICw 2 Db
B.X;k/ are defined using the intermediate extension functor iw;Š�:

ICw WD iw;Š�k ı
Xw

�
`.w/

��
`.w/=2

�
:

Since we have Db
B.X;k/ Š Db

B�B.G;k/, the equivariant cohomology H�
B.F /

is a graded .R ˝ R; Fr/-module. Furthermore, there is a restriction functor ResT;B W

Db
B.X;k/ ! Db

T .X;k/ (see [13]), and we also have the hypercohomology functor
H�

T W Db
T .X;k/ ! H �

T .pt/ � mod. It is well known that H �
B.pt;k/ Š R Š H �

T .pt;k/,
and furthermore we have

ResT;B W Db
B.pt;k/ Š Db

T .pt;k/ and

H�
B.X;F / Š H�

T .X; ResT;B F /
(5.7)

for F 2 Db
B.X;k/.

5.4. Equivariant cohomology of open Richardson varieties
We split the proof of our main result into two parts. We will focus on the equivariant
case (Theorem 1.17). The proof of its nonequivariant version (Theorem 1.16) will
follow as a byproduct, and will be discussed in Section 8.1.

Recall from Section 1.9 that our goal is to show the following result.
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THEOREM 5.2
For all v � w 2 W , we have an isomorphism of bigraded R-modules

HHH 0.F �
v;w/ Š H �

T;c.Rı
v;w/:

For all k;p 2 Z, it restricts to an isomorphism

H k;.p/
�
HH 0.F �

v;w/
�

Š H
`v;wC2pCk;.p;p/

T;c .Rı
v;w/

of vector spaces.

We will accomplish this in two steps. The first one is an equivariant version of
[106, Proposition 4.2.1].

PROPOSITION 5.3
For all v � w 2 W , we have an isomorphism of bigraded R-modules

H �
T;c.Rı

v;w/ Š Ext�.�v;�w/:

For all m;r 2 Z, it restricts to an isomorphism

H
`v;wCm;.r=2;r=2/

T;c .Rı
v;w/ Š Extm;..r�`v;w/=2/.�v;�w/

of vector spaces. (In particular, both sides are zero for odd r .)

The second step passes through the mixed equivariant derived category of [3]
and [4] and involves the degrading functor of [8] (see also [107]).

PROPOSITION 5.4
For all v � w 2 W , we have an isomorphism of bigraded R-modules

HHH 0.F �
v;w/ Š Ext�.�v;�w/:

For all k; r 2 Z, it restricts to an isomorphism

H k;.r=2/
�
HH 0.F �

v;w/
�

Š ExtrCk;..r�`v;w/=2/.�v;�w/ (5.8)

of vector spaces. (In particular, both sides are zero for odd r .)

5.5. From weights to the mixed Hodge numbers
We briefly explain the standard relation between the mixed Hodge structure of the
complex variety YC D .Rı

v;w/C and the étale cohomology of the variety Y
Fq

D

.Rı
v;w/

Fq
. First, by the comparison theorem (see [95, Theorem 21.1]) between Betti
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cohomology and étale cohomology of YC, we have an isomorphism H k
Betti.YC;k/ Š

H k
et .YC;k/ which preserves the weight filtration of both sides. Next, we find a discrete

valuation ring S � C with residue field Fq and construct the Richardson variety YS

over S . Then YC and Y
Fq

are obtained from YS via base change, and we obtain iso-
morphisms between the étale cohomologies H �.YC;k/ Š H �.YS ;k/ Š H �.Y

Fq
;k/,

compatibly with the weight filtrations (see [95, Section 20]). For H �.Y
Fq

;k/, the
weight filtration is obtained by taking sums of generalized eigenspaces of the Frobe-
nius Fr. Finally, the cohomology of YC is of Hodge–Tate type, so the weight filtration
is simply given by W 2r.H k.YC;C// D

L
p�r H k;.p;p/.YC;C/. (All these statements

hold also equivariantly.) Summing up, we have the following.

PROPOSITION 5.5
For all v � w 2 W and k;p 2 Z, we have the equalities

dimC H k;.p;p/
�
.Rı

v;w/C;C
�

D dimk H k;.p/
�
.Rı

v;w/
Fq

;k
�
;

dimC H
k;.p;p/
T;c

�
.Rı

v;w/C;C
�

D dimk H
k;.p/
T;c

�
.Rı

v;w/
Fq

;k
�
;

where H
k;.p/
T;c ..Rı

v;w/
Fq

;k/ D Hk;.p/
T .pt; �ŠkRı

v;w
/ D Extk;.p/.kpt; �ŠkRı

v;w
/ as in

(5.6).

See also [106, Remark 7.1.4], where a comparison between derived categories of
flag varieties is given.

6. Proof of Proposition 5.3
We follow the steps in the proof of [106, Proposition 4.2.1]. Using (5.4) and the
adjunction .iv;Š; i

Š
v/, we find

Extm;..r�`v;w/=2/.�v;�w/ Š Extm;..r�`v;w/=2/
�
iv;Šk ı

Xv

; iw;Šk ı
Xw

Œ`v;w �.`v;w=2/
�

Š ExtmC`v;w ;.r=2/.iv;Šk ı
Xv

; iw;Šk ı
Xw

/

Š ExtmC`v;w ;.r=2/.k ı
Xv

; i Š
viw;Šk ı

Xw

/:

Note that i Š
viw;Šk ı

Xw

2 Db
B.

ı

Xv;k/. By (5.5) and (5.7), we have

Ext�.k ı
Xv

; i Š
viw;Šk ı

Xw

/ Š H�
B.

ı

Xv; i Š
viw;Šk ı

Xw

/ Š H�
T .

ı

Xv; i Š
viw;Šk ı

Xw

/:

We now switch to working with T -equivariant derived categories. First, we state
a T -equivariant version of [116, Proposition 1]. Let Z be a T -variety, and let q W X ,!

Z be an inclusion of a closed T -subvariety. An action Gm � Z ! Z contracts Z to
X if there is a commutative diagram
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Gm � Z
act

j

Z

A1 � Z
act0

Z

Z

i

p

X

q

where i , j are the obvious maps and p ıq D id, and all arrows are T -equivariant, with
T acting trivially on Gm and A1. Let � W Gm �Z ! Z be the projection, and suppose
that F 2 Db

T .Z/ is Gm-equivariant, that is, satisfies act�.F / Š ��.F / 2 Db
T .Gm �

Z/. There is a natural morphism qŠ ! pŠ of functors (obtained by composing the
adjunction morphism qŠq

Š ! id with pŠ) and we have the following.

PROPOSITION 6.1 (cf. [116, Proposition 1])
The map qŠF ! pŠF is an isomorphism.

Let a W
ı

Xv ! pt and b W Rı
v;w ! pt be the projections (cf. Figure 3 (right)). Our

next goal is to manipulate the object i Š
viw;Šk ı

Xw

, in order to establish the following

result.

LEMMA 6.2
We have i Š

viw;Šk ı
Xw

Š a�bŠkRı
v;w

in Db
T .

ı

Xv/.

Proof
Recall that

ı

Xw WD .BwB/=B . Denote
ı

X�
v WD .B�vB/=B , and thus Rı

v;w D
ı

Xw \
ı

X�
v . Let Xw WD

F
u�w

ı

Xu be the closure of
ı

Xw , and denote Rı
v;w WD Xw \

ı

X�
v . A

diagram of the various inclusions between the spaces
ı

Xw ,
ı

Xv , Xw , and X D G=B is

Figure 3. Three commutative diagrams from [106].
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given in Figure 3 (left). With this notation, we have isomorphisms

i Š
viw;Šk ı

Xw

Š i Š
v;w i

Š

w iw;Šjw;Šk ı
Xw

Š i Š
v;wjw;Šk ı

Xw

:

The first isomorphism follows from the usual composition rules for sheaf operations

(see, e.g., [13, Section 1.4.2]). The second isomorphism follows from i
Š

w iw;Š Š id.
Consider the commutative diagram in Figure 3 (middle). The map k is given by

k.zB=B/ D .vB=B; zB=B/ and � is the obvious projection map. The map j 0
w has

two components: the first one is the inclusion Rı
v;w ,! Rı

v;w , and the second one is

the identity map
ı

Xv
�
�!

ı

Xv . The map jw W
ı

Xw ,! Xw is the inclusion map as above. It
remains to define the maps j and j 0. They have been considered in [73, Section 1.4]
(see, e.g., [38] and [78] for further details). Observe that Rı

v;w � Rı
v;w �

ı

X�
v . The

maps j , j 0 are the restrictions of a map �v W
ı

X�
v �

ı

Xv ,! X defined as follows. Recall

that U � B and U� � B� are the unipotent radicals of B and B�. Any element of
ı

X�
v

can be written uniquely as xvB=B for an element x 2 U� \ vU�v�1. (These objects
do not depend on the choice of representative Pv of v.) Similarly, any element of

ı

Xv

can be written uniquely as yvB=B for an element y 2 U \ vU�v�1. We then define

�v.xvB=B;yvB=B/ WD yxvB=B:

It is not hard to see (using Gaussian decomposition) that the map �v is injective and
yields an isomorphism �v W

ı

X�
v �

ı

Xv
�
�! vB�B=B . Moreover, if xvB=B 2

ı

Xu for

some u 2 W , then we have yxvB=B 2
ı

Xu since y 2 U � B . Thus, �v restricts to
an inclusion Rı

v;u �
ı

Xv ,!
ı

Xu for each u 2 W . The map j 0 is this inclusion for the

special case u WD w. The map j is the restriction of �v to the union of Rı
v;u �

ı

Xv over
all u 2 W satisfying v � u � w.

The torus T acts on each space in each commutative diagram in Figure 3.
The action on the direct products Rı

v;w �
ı

Xv and Rı
v;w �

ı

Xv is given by t �

.aB=B;bB=B/ D .taB=B; tbB=B/ for t 2 T . Notice that conjugation by t pre-
serves each of the subgroups U , U�, and vU�v�1. Therefore for x 2 U� \ vU�v�1,
we have txvB=B D txt�1vB=B , where txt�1 2 U� \ vU�v�1, and similarly for
y 2 U \ vU�v�1. Thus, the map �v is T -equivariant:

�v.txvB=B; tyvB=B/ D tyxvB=B:

We conclude that all maps in Figure 3 are T -equivariant.
The maps j , j 0, jw , j 0

w in Figure 3 (middle) form a Cartesian square. We get the
following isomorphisms:

i Š
v;wjw;Šk ı

Xw

Š kŠj Šjw;Šk ı
Xw

Š kŠj �jw;Šk ı
Xw

Š kŠj 0
w;Šj

0�k ı
Xw

Š kŠj 0
w;ŠkRı

v;w�
ı

Xv

:



POSITROIDS, KNOTS, AND q; t -CATALAN NUMBERS 2171

The first and the last isomorphisms are trivial. The second isomorphism follows from
the fact that j is an open embedding (see [13, Section 1.4.5]). The third isomorphism
is the base change theorem (see [13, Section 1.4.6]).

We now apply Proposition 6.1 with q D k, and p D � , and F D j 0
w;ŠkRı

v;w�
ı

Xv

.

The Gm-action is the composition of the T -action with the cocharacter �_
	 W Gm ! T ,

where � is a strictly dominant coweight satisfying h�;˛i > 0 for any positive root ˛.
Since � is strictly dominant, this Gm-action extends to an A1-action by the same
argument as in [44, Section 8.2]. The A1-action is obviously compatible with the
T -action, and thus Proposition 6.1 applies.

We obtain

kŠj 0
w;ŠkRı

v;w�
ı

Xv

Š �Šj
0
w;ŠkRı

v;w�
ı

Xv

:

Applying base change to the Cartesian diagram in Figure 3 (right), we get

�Šj
0
w;ŠkRı

v;w�
ı

Xv

Š .� ı j 0
w/Šk

Rı
v;w�

ı
Xv

Š .� ı j 0
w/Šr

�kRı
v;w

Š a�bŠkRı
v;w

:

So far we have constructed an isomorphism

Extm;..r�`v;w/=2/.�v;�w/ Š HmC`v;w ;.r=2/

T .
ı

Xv; a�bŠkRı
v;w

/

Š HmC`v;w ;.r=2/

T .pt; a�a�bŠkRı
v;w

/:

(6.1)

Since
ı

Xv is an affine space that is T -equivariantly homotopy equivalent to a point
(cf. [116, Lemma 1]), the adjunction .a�; a�/ induces an isomorphism of functors
a�a� ! id, and thus

HmC`v;w ;.r=2/

T .pt; a�a�bŠkRı
v;w

/ Š HmC`v;w ;.r=2/

T .pt; bŠkRı
v;w

/; (6.2)

which equals to H
mC`v;w ;.r=2;r=2/

T;c .Rı
v;w/ by (5.6). All the isomorphisms are natural

(coming from sheaf operations) and thus (6.2) is compatible with the action of R on
both sides. This completes the proof of Proposition 5.3.

7. Proof of Proposition 5.4
Recall from Remark 5.1 that we switch to working with Soergel bimodules over k,
so that for example R D kŒh�. By definition, given a (graded) Soergel bimodule B DL

r Br , Fr acts diagonally on each Br by multiplication by qr .
Equivariant derived categories are identified with categories of dg-modules in the

work of Bernstein and Lunts [13]. By using the formalism of Yun [15, Appendix B],
we avoid explicit mention of dg-modules in the situation of interest to us.

An .R; Fr/-module is an R-module M equipped with an action of ZFr such
that Fr.r � x/ D Fr.r/ � Fr.x/ for x 2 M and r 2 R. The twist functor ¹m=2º
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sends a module M to the module M ¹m=2º where the action of Fr has been mul-
tiplied by qm=2. Let Dperf.R; Fr/ denote the full triangulated subcategory of the
derived category of .R; Fr/-modules generated by half-integer twists of R. Accord-
ing to [15, Corollary B.4.1], we have an equivalence of triangulated categories
Db

B.pt;k/ Š Dperf.R; Fr/. Similarly, we define Dperf.R ˝ R; Fr/ and have an equiva-
lence Db

B�B.pt;k/ Š Dperf.R ˝ R; Fr/.
Recall that HomSBim includes only bimodule morphisms of degree zero. We let

HomR˝R.B;B 0/ WD
M
r2Z

HomSBim
�
B;B 0¹�r=2º

�

denote the space of morphisms of arbitrary degree. Thus, HomR˝R.B;B 0/ is an
.R; Fr/-module. Given a complex C � 2 KbSBim, we regard HomR˝R.R;C �/

(obtained by applying HomR˝R.R;�/ termwise) as a complex of .R; Fr/-modules,
treated as an element of Dperf.R; Fr/.

Now, for F ;G 2 Db
B.X;k/, let RHom.F ;G / 2 Db

B.X;k/ denote the internal
derived hom. With � W G ! pt, we define

RHom.F ;G / D RHomX .F ;G / WD �� RHom.F ;G / 2 Db
B.pt;k/:

Thus, H�
B.RHom.F ;G // D Ext�.F ;G /. We shall establish the following strengthen-

ing of Proposition 5.4.

PROPOSITION 7.1
We have

RHomX

�
�v

�
�`.v/=2

�
;�w

�
�`.w/=2

��
Š HomR˝R.R;F �

v;w/

inside Dperf.R; Fr/.

Proposition 5.4 follows from Proposition 7.1 by taking cohomology HB W

Db
B.pt;k/ ! .Rgr; Fr/ � mod, where .Rgr; Fr/ � mod denotes (cohomologically)

graded R-modules equipped with an Fr-action. The cohomological degree r C k on
the right-hand side of (5.8) appears since the functor H W Dperf.R; Fr/ ! .Rgr; Fr/ �

mod sends the sum of the two gradings to the cohomological one (see [15, Corol-
lary B.4.1(1)]).

7.1. Realization functors
We record two results on realization functors taken from [1] (see also [8], [107]). For
a definition of a filtered version of a triangulated category, see [8, Definition A.1].
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PROPOSITION 7.2 ([1, Proposition 2.2])
Let T be a triangulated category that admits a filtered version QT , and let A � T be
a full additive subcategory that admits no negative self-extensions. Then there is a
functor of triangulated categories

real W KbA ! T

whose restriction to A is the inclusion functor.

PROPOSITION 7.3 ([1, Proposition 2.3])
Let T1 and T2 be triangulated categories admitting a filtered version, and let A1 � T1

and A2 � T2 be two full additive subcategories admitting no negative self-extensions.
Let F W T1 ! T2 be a triangulated functor that restricts to an additive functor F0 W

A1 ! A2. If F lifts to a functor QF W QT1 ! QT2, then the following diagram commutes
up to natural isomorphism:

KbA1

real

KbF0

T1

F

KbA2

real
T2

7.2. Semisimple complexes
Let SemisB.X/ � Db

B.X;k/ denote the additive subcategory generated by semisim-
ple complexes pure of weight 0. Thus, an object of SemisB.X/ is a direct sum of the
twisted intersection cohomology sheaves ICw Œn�.n=2/ for w 2 W and n 2 Z.

Recall from Section 3.1 that Sw � Bw denotes the indecomposable Soergel
bimodule indexed by w 2 W .

LEMMA 7.4
For F ;G 2 SemisB.X/, the Ext-group Exti .F ;G / is pure of weight i for all i 2 Z.

Proof
This follows from [15, Lemma 3.1.5].

PROPOSITION 7.5
The hypercohomology functor induces an equivalence of additive categories

HB W SemisB.X/ ! SBim;

enriched over R ˝ R, and sending ICw to the shifted Soergel bimodule Sw¹�`.w/º

and the twist Œn�.n=2/ to the change of grading ¹�n=2º.
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Proof
By a well-known result of Soergel [119] (see also [36, Section 1.3] or [35, Sec-
tion 16.1]), we have HB.ICw/ Š Sw¹�`.w/=2º as a graded .R ˝ R/-module. By
Lemma 7.4, the cohomological and weight gradings on HB.ICw/ agree, and further-
more ICw Œn�.n=2/ is sent to Sw¹�.`.w/ C n/=2º. The result can then be deduced
from [15, Proposition 3.1.6].

The following result is well known (see [2] and [15, Lemma B.1.1]).

LEMMA 7.6
For F ;G 2 SemisB.X/, the action of Fr on Ext�.F ;G / is semisimple. Furthermore,
we have

homDb
B

.X;k/.F ;G / Š Ext0.F ;G / Š Ext0;.0/.F ;G / (7.1)

and exti
Db

B
.X;k/

.F ;G / D 0 for i < 0.

7.3. The mixed derived category
Following [4], we define the mixed derived category

Dmix
B .X/ WD Kb

�
SemisB.X/

�
to be the homotopy category of cochain complexes in SemisB.X/. Define the Tate
twist of Dmix

B .X/ by

hni WD ¹�n=2ºŒ�n�;

where Œn� W Kb.SemisB.X// ! Kb.SemisB.X// is the cohomological shift functor,
and ¹n=2º W SemisB.X/ ! SemisB.X/ is the autoequivalence F 7! F Œ�n�.�n=2/.

By Proposition 7.5, we have an equivalence of triangulated categories

KbHB W Dmix
B .X/ ! KbSBim:

THEOREM 7.7
There exists a triangulated realization functor

real W Dmix
B .X/ ! Db

B.X;k/;

restricting to the inclusion on SemisB.X/, sending

Œn� ! Œn�; hni ! .n=2/; ¹n=2º ! Œ�n�.�n=2/;

such that the composition
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� WD ! ı real

satisfies

HomDmix
B

.X/

�
F ;G hni

�
Š Ext0;.n=2/.realF ; realG /; (7.2)M

n2Z

HomDmix
B

.X/

�
F ;G hni

�
Š Ext0.realF ; realG / D HomDb

B
.X;k/.�F ; �G /: (7.3)

Furthermore, all functors are compatible with the .R ˝ R/-action on the correspond-
ing Ext�-groups.

Proof
By Lemma 7.6, SemisB.G=B/ has no negative self-extensions. Since Db

B.X;k/

admits a filtered version (see [8]), we may apply Proposition 7.2 to obtain a realiza-
tion functor

real W Dmix
B .X/ ! Db

B.X;k/

that restricts to the inclusion on SemisB.G=B/. For F ;G 2 SemisB.X/, the iso-
morphism (7.3) follows from (7.1) while (7.2) follows from (7.1) and (7.3), since
hni W Dmix

B .X/ ! Dmix
B .X/ is sent to .n=2/ W Db

B.X;k/ ! Db
B.X;k/ by the realization

functor real. For F ;G 2 Kb SemisB.X/, (7.2)–(7.3) are proved by double induction
on the lengths of chain complexes representing F , G . (See [107, Section 4.1] for a
detailed argument.)

7.4. Standard objects and Rouquier complexes

PROPOSITION 7.8
The composition real ı H�1

B W KbSBim ! Db
B.X;k/ takes F �.w/ to �w.�`.w/=2/

and F �.v/�1 to rv.`.v/=2/.

Note that Proposition 5.4 follows nearly immediately from Proposition 7.8 and
(7.2)–(7.3): since the realization functor sends Œk�¹�r=2º to Œk C r�.r=2/, we have

H k;.r=2/
�
HH 0.F �

v;w/
�

Š HomKbSBim

�
R;F �

v;w Œk�¹�r=2º
�
/

Š ExtrCk;.r=2/
�
�e;�w

�
�`.w/=2

�
? rv

�
`.v/=2

��
Š ExtrCk;.r=2/

�
�v

�
�`.v/=2

�
;�w

�
�`.w/=2

��
Š ExtrCk;..r�`v;w/=2/.�v;�w/:

The second isomorphism above is obtained from the adjointness of the convolution
functors .�/ ? �v.�`.v=2// and .�/ ? rv.`.v/=2// to be presently explained (see
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Lemma 7.10 for a stronger statement; see also (3.5)–(3.6) for a similar statement on
the Soergel bimodule side).

Proof of Proposition 7.8
We prove the claim for F �.w/. The claim for F �.v/�1 is similar.

There is a monoidal structure ? W Db
B.X;k/ � Db

B.X;k/ ! Db
B.X;k/ obtained

by convolution (see, e.g., [15, Section 3.2] or [4, Section 4.3]). By [15, Proposi-
tion 3.2.5], the additive subcategory SemisB.X/ � Db

B.X;k/ is preserved by convo-
lution. According to [15, Proposition 3.2.1], convolution ? is sent by HB to the tensor
product operation on SBim. Note that the derived tensor product in [15] reduces to
the tensor product on SBim since all Soergel bimodules are free as left (or right)
R-modules.

For a simple generator s 2 S , let �s W X D G=B ! G=Ps denote the projec-
tion to the partial flag variety, where Ps 
 B denotes a minimal parabolic sub-
group, and let �s W Db

B.X;k/ ! Db
B.X;k/ denote the composition � D ��

s �s;�.
By [15, Lemma 3.2.7] (see also [4, Lemma 4.3]), we have a natural isomor-
phism of functors �s Š .�/ ? IC sŒ�1�.�1=2/, and �s restricts to an endofunctor
�s W SemisB.X/ ! SemisB.X/. It is well known (see [117, Korollar 2]) that the
equivalence HB W SemisB.X/ ! SBim takes the functor �s to the functor R ˝Rs .�/.

Now, there is a natural morphism of functors �s ! id arising from the adjunction
of ��

s and �s;�. The map Bs ! R in (3.4) arises by an analogous adjunction (see
[110, Section 3]). Now, ICe Š �e and HB.ICe/ D R, and the morphism �s ! id
applied to ICe fits into the distinguished triangle

IC sŒ�1�.�1=2/ ! ICe ! �s.�1=2/

in Db
B.X;k/ (see, e.g., [15, (C.4)] or [4, Lemma 4.1]). It follows that we have

real ıH�1
B

�
F �.s/

�
D �s.�1=2/: (7.4)

(See also [110, Proposition 5.3].) This establishes Proposition 7.8 in the case `.w/ D

1. We then obtain a natural isomorphism of functors�
.�/ ? �s.�1=2/

�
ı real ıH�1

B Š real ıH�1
B ı

�
.�/ ˝ F.s/

�
(7.5)

from KbSBim to Db
B.X;k/.

On the other hand, it is known (see [15, Lemma 3.2.2]) that if w D s1s2 � � � sl is a
reduced decomposition, then

�w Š �s1
? �s2

? � � � ? �sl

is in Db
B.X;k/. Combining (7.4) with (7.5), we find
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real ıH�1
B

�
F �.w/

�
Š real ıH�1

B

�
F �.s1/ ˝ � � � ˝ F �.s`/

�
Š �s1

.�1=2/ ? � � � ? �s`
.�1=2/ Š �w

�
�`.w/=2

�
:

7.5. Proof of Proposition 7.1

7.5.1
A functor F W Db.Y;k/ ! Db.Z;k/ is called geometric (see [2, Definition 6.6]) if
there is a natural transformation

RHomY .F ;G / ! RHomZ.F F ;F G /

for F ;G 2 Db.Y;k/. We shall apply the notion of a geometric functor for B-
equivariant derived categories.

LEMMA 7.9
The endofunctors .�/ ? �s.�1=2/; .�/ ? rs.1=2/ W Db

B.X;k/ ! Db
B.X;k/ are geo-

metric.

Proof
This is stated for the affine Grassmannian case in [2, Proposition 12.2]. The same
proof applies in the flag variety case.

LEMMA 7.10
We have

RHom.�v;�w/ D RHom.�e;�w ? rv/

inside Db
B.pt;k/.

Proof
By Lemma 7.9, for F ;G 2 Db

B.X;k/, we have a map

RHom.F ;G / ! RHom.F ? rs;G ? rs/ (7.6)

and a map

RHom.F ? rs;G ? rs/ ! RHom.F ? rs ? �s;G ? rs ? �s/ (7.7)

inside Db
B.pt;k/. Convolution is associative and rs ? �s Š �e ([4, Proposition 4.4]),

and also .�/ ? �e is the identity functor. So composing (7.6) and (7.7), we get
an automorphism RHom.F ;G / Š RHom.F ;G / inside Db

B.pt;k/. It follows that
RHom.F ;G / Š RHom.F ? rs;G ? rs/. Choosing F D �v and G D �w and
repeatedly applying this, we obtain the required statement.
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We remark that we could have defined RHom.�v;�w/ and RHom.�e;�w ?rv/

as objects in Db
B�B.pt;k/, but Lemma 7.10 would not hold. The functors .�/ ? �s

and .�/ ? rs “commute” with only one of the B-actions.

7.5.2
Let �e W B ,! G be the inclusion, and let � W G=B ! ¹eº D pt be the projection. These
maps are B-equivariant. Now, the sheaf �e is supported on a single point ¹eº � G=B .
Thus, for any F 2 Db

B.X;k/, the object RHom.�e;F / 2 Db
B.X;k/ is also supported

on ¹eº. The pullback ��e and pushforward �e;� are inverse equivalences of categories
between Db

B.¹eº;k/ and the full subcategory of Db
B.X;k/ consisting of objects whose

cohomology sheaves are supported on ¹eº. Inside Db
B.¹eº;k/ D Db

B.pt;k/, we thus
have

RHomX .�e;F / Š �� RHomX .�e;F /

Š ��e RHomX .�e;F / D RHom¹eº.k; ��e F / D ��e F :
(7.8)

7.5.3
The equivalence Db

B.pt;k/ Š Dperf.R; Fr/ (resp., Db
B�B.pt;k/ Š Dperf.R ˝ R; Fr/)

sends objects pure of weight 0 to objects in Dperf.R; Fr/ (resp., Dperf.R ˝R; Fr/) con-
centrated in cohomological degree 0. For F 2 SemisB.X/, we thus view the Soergel
bimodule HB.F / as sitting inside Dperf.R ˝ R; Fr/ in cohomological degree 0, that
is, as an object in Mod.R ˝ R; Fr/.

LEMMA 7.11
For F 2 SemisB.G=B/, we have an isomorphism

��e F Š HomR˝R

�
R;HB.F /

�
inside Mod.R; Fr/.

Proof
For F 2 SemisB.G=B/, we have that ��e F D �ŠeF is again pure of weight 0. Thus,
��e F 2 Db

B.pt;k/ can be identified with an element of Mod.R; Fr/. By [15, Proposi-
tion 3.1.6] and (7.8), we have

HomR˝R

�
R;HB.F /

�
Š HB

�
RHom.�e;F /

�
Š HB.��e F /:

(Since ��e F is pure of weight 0, HB.��e F / is simply the corresponding object in
Mod.R; Fr/.) We conclude that ��e F Š HomR˝R.R;HB.F // inside Mod.R; Fr/ and
the result follows.
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We remark that HomR˝R.R;HB.F // is free as an R-module (cf. [15, Lem-
ma 3.1.5]; see also Remark 3.4).

7.5.4
Recall that we have a realization functor real W Kb SemisB.X/ ! Db

B.X;k/. We now
have two functors from Kb SemisB.X/ to Db

B.pt;k/. The functor

��e ı real W Kb SemisB.X/ ! Db
B.X;k/ ! Db

B.pt;k/ (7.9)

and the functor

Kb HomR˝R.R;�/ ı KbHB W Kb SemisB.X/ ! KbSBim ! Db
B.pt;k/: (7.10)

We explain the last functor Kb HomR˝R.R;�/ W KbSBim ! Db
B.pt;k/. Let

Free.R; Fr/ denote the category of finitely generated free R-modules equipped
with an action of Fr. The functor HomR˝R.R;�/ takes SBim to Free.R; Fr/,
and Kb HomR˝R.R;�/ takes KbSBim to Kb Free.R; Fr/. We have an inclusion
Free.R; Fr/ ! Db

B.pt;k/. Applying Proposition 7.2, we obtain a triangulated functor
real W Kb.Free.R; Fr// ! Db

B.pt;k/. Composing Kb HomR˝R.R;�/ with real, we
obtain Kb HomR˝R.R;�/ W KbSBim ! Db

B.pt;k/.
By Lemma 7.11, the two triangulated functors (7.9) and (7.10) agree on the

subcategory SemisB.X/ � Kb SemisB.X/, sending SemisB.X/ to Free.R; Fr/ �

Dperf.R; Fr/ Š Db
B.pt;k/. Denoting this restriction by L W SemisB.X/ ! Free.R; Fr/,

we apply Proposition 7.3 to deduce that both triangulated functors are isomorphic to

real ı KbL W Kb SemisB.X/ ! Kb Free.R; Fr/ ! Dperf.R; Fr/ Š Db
B.pt;k/:

Thus,

��e ı real Š Kb HomR˝R.R;�/ ı KbHB : (7.11)

Remark 7.12
The essential image of the realization functor Kb Free.R; Fr/ ! Db

perf.R; Fr/ is a sub-
category of Db

perf.R; Fr/ equivalent to the infinitesimal extension of Kb Free.R; Fr/, in
the sense of [2].

7.5.5. Conclusion
By (7.11) and Proposition 7.8, we have

��e
�
�w

�
�`.w/=2

�
? rv

�
`.v/=2

��
Š HomR˝R.R;F �

v;w/

inside Db
perf.R; Fr/. By Lemma 7.10 and (7.8), we find
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��e
�
�w

�
�`.w/=2

�
? rv

�
`.v/=2

��
Š RHomX

�
�v

�
�`.v/=2

�
;�w

�
�`.w/=2

��
:

This finishes the proof of Proposition 7.1, as well as of Proposition 5.4 and Theo-
rem 1.17.

8. Ordinary cohomology, Koszul duality, and Verma modules
The goal of this section is to prove Theorems 1.16, 1.18, and 1.20.

8.1. Ordinary cohomology
We have a forgetful functor For W Db

B.pt;k/ ! Db.pt;k/, and a commutative diagram
(see [13] and [15, Proposition B.3.1])

Db
B.pt;k/

For

Š

Db.pt;k/

Š

Db
perf.R; Fr/

˝L
R

k

Db.k; Fr/

(8.1)

Here, Db.k; Fr/ is the derived category of finite-dimensional k-vector spaces equipped
with an Fr-action with integer weights. Applying For to Proposition 7.1, we obtain the
following.

PROPOSITION 8.1
We have

RHomDb.X;k/

�
�.B/

v

�
�`.v/=2

�
;�.B/

w

�
�`.w/=2

��
Š HomR˝R.R;F �

v;w/ ˝R k

inside Db.k; Fr/.

Here, �
.B/
v D For.�v/ 2 Db

.B/
.X;k/ denotes the ordinary standard object in the

Borel-constructible derived category, and the derived tensor product ˝L
Rk is replaced

by the usual tensor product since HomR˝R.R;F �
v;w/ is free as an R-module. Taking

the hypercohomology of both sides of Proposition 8.1, we obtain the following.

COROLLARY 8.2
For all v � w 2 W , and all k; r 2 Z, we have an isomorphism

ExtrCk;..r�`v;w/=2/.�.B/
v ;�.B/

w / Š H k;.r=2/
�
HH 0

k .F �
v;w/

�
(8.2)

of k-vector spaces. (In particular, both sides are zero for odd r .)
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Here we set HH 0
k .B/ WD HH 0.B/ ˝R k, similarly to (1.18). For the shift in

cohomological degree, see the discussion after Proposition 7.1.

Proof of Theorem 1.16
The nonequivariant version of Proposition 5.3 is given in [106, Proposition 4.2.1].
Similarly to (6.1)–(6.2), we get

Extm;..r�`v;w/=2/.�.B/
v ;�.B/

w / Š H
mC`v;w ;.r=2/
c .Rı

v;w ;k/ for all m;r 2 Z.

Poincaré duality (4.5) allows one to translate the compactly supported cohomology
into the ordinary cohomology:

Extm;..r�`v;w/=2/.�.B/
v ;�.B/

w / Š H `v;w�m;.`v;w�r=2/.Rı
v;w ;k/: (8.3)

Combining (8.2)–(8.3) with Koszul duality (1.23) proved in the next section, and
switching from working over k to working over C via Remark 5.1 and Proposition 5.5,
we get

dimC H k;.r=2/
�
HH 0

C
.F �

v;w/
�

D dimC H `v;w�k�r;.`v;w�r=2;`v;w�r=2/.Rı
v;w ;C/

D dimC H �k;.r=2;r=2/.Rı
v;w ;C/:

Proof of (1.24)
By the Künneth formula and Corollary 4.8, we have

H �.Rı
v;w/ Š H �.Rı

v;w=T / ˝C H �.T /:

The space H �.T / is 2n�1-dimensional, and the mixed Hodge polynomials are related
as

P .Rı
v;w Iq; t/ D .q

1
2 C t

1
2 /n�1 � P .Rı

v;w=T Iq; t/: (8.4)

This implies (1.10). Next, we claim that

P .Rı
v;w=T Iq; t/ D .q

1
2 t

1
2 /�.ˇv;w/P

top
KRIC. Ǒ

v;w Iq; t/: (8.5)

First, combining Theorem 1.16 with Koszul duality (1.23) (to be proved below in
Section 8.2), we find

H k;.p;p/.Rı
v;w ;C/ Š H �`v;w�kC2p;.`v;w�p/

�
HH 0

C
.F �

v;w/
�
: (8.6)

Setting k0 WD �`v;w � k C 2p and p0 WD `v;w � p, we find p D `v;w � p0 and k D

`v;w � k0 � 2p0. Plugging this into (4.6) and applying (8.6), we get
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P .Rı
v;w Iq; t/ D

X
k;p2Z

qp� k
2 t

`v;w�k

2 dim H k;.p;p/.Rı
v;w ;C/

D
X

k0;p02Z

q
`v;wCk0

2 tp0C k0

2 H k0;.p0/
�
HH 0

C
.F �

v;w/
�
:

On the other hand, rewriting (3.16), we see that the right-hand side of (8.5) is given
by

.q
1
2 C t

1
2 /1�n

X
k0;p02Z

q
`v;wCk0

2 tp0C k0

2 dim H k0;.p0/
�
HH 0

C

�
F �.ˇ/

��
:

Together with (8.4), this finishes the proof of (8.5). Finally, (1.24) follows by com-
paring (8.5) with (the Richardson version of) (4.9).

Since the R-action on H �
T;c.Rı

v;w/ is trivial (i.e., h� acts by zero), by Theo-
rem 1.17, the R-action on HHH 0.F �

v;w/ is also trivial. Alternatively, for W D Sn

and any knot Ǒ, the R-action on HHH 0.F �.ˇ// is trivial by Corollary 3.10. It thus
follows that we have an isomorphism of bigraded C-modules

HHH 0
C

�
F �.ˇ/

�
Š TorR

�

�
C;HHH 0

�
F �.ˇ/

��
: (8.7)

We conjecture that (8.7) holds for all W and all ˇ 2 BW . This would follow from (8.1)
if HH 0.F �.ˇ// and HHH 0.F �.ˇ// were known to be equivalent in Db

perf.R; Fr/.

8.2. Koszul duality and q; t -symmetry
We prove Theorem 1.18. By [15, (5.2), Theorem 5.3.1, and Remark 5.3.2], for k; r 2

Z and v � w 2 W , we get an isomorphism

Extk;.r=2/.�.B/
v ;�.B/

w / Š Extk�r;.�r=2/.�
.B/

v�1 ;�
.B/

w�1/

of vector spaces. By (8.3) and Proposition 5.5, this implies that

H k;.r=2;r=2/.Rı
v;w ;C/ Š H `v;wCk�r;.`v;w�r=2;`v;w�r=2/.Rı

v�1;w�1 ;C/: (8.8)

The only difference between (8.8) and the desired result (1.23) is the appearance of
v�1 and w�1 on the right-hand side. In fact, it is not hard to see that the Richardson
varieties Rı

v;w and Rı
v�1;w�1 are isomorphic. Indeed, recall from Lemma 4.4 that we

have an isomorphism N ı
v;w Š Rı

v;w . The map g 7! g�1 restricts to an isomorphism
N ı

v;w Š N ı
v�1;w�1 (choosing Pv�1 as the representative for v�1). By (4.3), we get an

isomorphism Rı
v;w

�
�! Rı

v�1;w�1 .
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8.3. Extensions of Verma modules
We prove Theorem 1.20. First, we explain the bigrading on Ext�.Mv;Mw/. Out of the
several equivalent descriptions listed in [11], the most convenient one for us is given
in [11, Section 4.4]; the bigraded vector spaces Ext�.Mv;Mw/ and Ext�.�

.B/
v ;�

.B/
w /

are isomorphic (after changing the coefficients from C to k), and the bigrading on
Ext�.Mv;Mw/ comes from the bigrading on Ext�.�

.B/
v ;�

.B/
w / via Frobenius weights

(5.3):

Extk;.r=2/.Mv;Mw/ WD Extk;.r=2/.�.B/
v ;�.B/

w /:

See also [106, Equation (1.1.1)].
The result follows by combining (8.3) with Koszul duality (1.23).

9. Catalan numbers associated to positroid varieties
Our results give an embedding of the rational q; t -Catalan numbers Ck;n�k.q; t/ into a

family of q; t -polynomials P .Xı
f

Iq; t/ 2 NŒq
1
2 ; t

1
2 � (all of which are q; t -symmetric

and q; t -unimodal), indexed by f 2 BcD1
k;n

. The goal of this section is to give a com-
binatorial interpretation for a specialization of P .Xı

f
Iq; t/.

Definition 9.1
For f 2 BcD1

k;n
, define the f -Catalan number Cf 2 Z as the specialization

Cf WD P .Xı
f Iq; t/j

q
1
2 D1;t

1
2 D�1

:

Alternatively, Cf is the q D 1 specialization of the point count polynomial #Xı
f

.Fq/,

and we also have Cf D P
top
f

.1/, where the polynomial P
top
f

.q/ is defined in Theo-
rem 1.13.

In particular, Cfk;n
D Ck;n�k.1; 1/ D # Dyckk;.n�k/ is the usual rational Catalan

number when gcd.k; n/ D 1.
Recall from Proposition 1.10 that each f D fv;w 2 Bk;n corresponds to a pair

v � w 2 Sn such that w is k-Grassmannian. The set of k-Grassmannian permuta-
tions in Sn is well known to be in bijection with the set of Young diagrams that fit
inside a .k � .n � k//-rectangle. Let 
 be such a Young diagram. We are going to

consider fillings of boxes of 
 with crossings and elbows . An example is given
in Figure 4. Each such filling D gives rise to a permutation uD , obtained as fol-
lows. Consider paths labeled by 1; 2; : : : ; n entering from the southeast boundary of

, where the labels increase in the northeast direction. The paths follow crossings and
elbows until they exit through the northwest boundary of 
. Recording the positions
of outgoing edges, one obtains the permutation uD (cf. Figure 4).
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Figure 4. (Color online) For the two fillings on the left, we have 
 D .5; 4; 2/ and f D wv�1 D

35148276. The two fillings on the right do not satisfy the distinguished condition: the specific
elbow violating the condition is shaded.

Definition 9.2
Let 
 be a Young diagram fitting in a .k � .n � k//-rectangle. A Deogram (short for
Deodhar diagram9) of shape 
 is a filling D of the boxes of 
 with crossings and
elbows satisfying the following distinguished condition (see [31]): for any elbow in
D, the label of its bottom-left path is less than the label of its top-right path. In other
words, once two paths have crossed an odd number of times, they cannot form an
elbow (see Figure 4).

For example, any filling that consists either entirely of crossings or entirely
of elbows satisfies the distinguished condition. Observe that when a Deogram D

of shape 
 consists entirely of crossings, the permutation uD D w indeed is k-
Grassmannian: we have w�1.1/ < w�1.2/ < � � � < w�1.k/ and w�1.k C 1/ < � � � <

w�1.n/. We denote this correspondence by 
w WD 
.

Definition 9.3
Let f D fv;w 2 Bk;n. An f -Deogram is a Deogram D of shape 
w satisfying uD D

v. A maximal f -Deogram is an f -Deogram with the maximal possible number of
crossings among all f -Deograms.

We denote by Deof (resp., Deomax
f

) the set of all (resp., maximal) f -Deograms.

Remark 9.4
It is easy to see that any f -Deogram must have at least n � c. Nf / elbows. One can
also check that for each f 2 Bk;n, there exist f -Deograms with exactly n � c. Nf /

elbows.10

9The terminology Deodhar diagram is borrowed from [79].
10The same statement does not hold for Richardson varieties: for w D s1s2s3s2s1 and v D s2 in S4 , there are
no subexpressions for v inside w skipping exactly n � c.wv�1/ D 2 indices.



POSITROIDS, KNOTS, AND q; t -CATALAN NUMBERS 2185

PROPOSITION 9.5
Let f 2 BcD1

k;n
. Then Cf equals the number of maximal f -Deograms:

Cf D # Deomax
f : (9.1)

Proof
This is a simple consequence of the results of Deodhar [31]. Let v, w be such that
f D fv;w . By Proposition 4.3, we have #…ı

f
.Fq/ D #Rı

v;w.Fq/. Deodhar expressed
#Rı

v;w.Fq/ as a certain sum over distinguished subexpressions for v inside a reduced
word w D si1si2 � � � sil , where l D `.w/. Here, a subexpression for v is a way to write
v as a product v1v2 � � � vl , where vj 2 ¹sij ; idº for all j D 1; 2; : : : ; l . A subexpres-
sion is distinguished if for all j such that `.v1 � � � vj �1sij / < `.v1 � � �vj �1/, we have
vj D sij . Since w is k-Grassmannian, the terms in the product w D si1si2 � � � sil cor-
respond to the boxes of 
w . Each Deogram D 2 Deof gives rise to a distinguished
subexpression for v, so that the indices j such that vj D sij correspond to the cross-
ings in D. It is easy to see that this correspondence is bijective. Thus, the results of
[31] imply that

#…ı
f .Fq/ D

X
D2Deof

.q � 1/elb.D/q.xing.D/�`.v//=2; (9.2)

where elb.D/ and xing.D/ denote the number of elbows and crossings in D. By
Remark 9.4, each maximal f -Deogram contributes .q � 1/n�1q.`v;w�nC1/=2 to the
right-hand side of (9.2). (Note that xing.D/ C elb.D/ D `.w/ is constant.) It remains
to note that #Xı

f
.Fq/ is obtained by dividing #…ı

f
.Fq/ by #T .Fq/ D .q �1/n�1, and

that Cf is by definition the q D 1 specialization of #Xı
f

.Fq/.

Let us focus on the case f D fk;n with gcd.k; n/ D 1. Explicitly, a maximal
fk;n-Deogram is a way of placing n � 1 elbows in a .k � .n � k// rectangle and fill-
ing the rest with crossings so that (i) the resulting permutation obtained by following
the paths is the identity, and (ii) the distinguished condition in Definition 9.2 is sat-
isfied. By Proposition 9.5, the number # Deomax

fk;n
of such objects equals the number

# Dyckk;.n�k/ of Dyck paths inside a .k � .n � k//-rectangle.

Problem 9.6
Give a bijective proof of Proposition 9.5. That is, find a bijection between Deomax

fk;n

and Dyckk;.n�k/ for the case gcd.k; n/ D 1.

For instance, Figures 1 and 5 both have 7 objects in them, but it is unclear which
objects correspond to which. It would also be interesting to understand the area and
dinv statistics in the language of fk;n-Deograms.
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Figure 5. The sets Deomax
fk;n

and Dyckk;n�k have the same cardinality by Proposition 9.5. Com-
pare with Figure 1.

Figure 6. For n D 2k C 1, maximal fk;n-Deograms are in bijection with noncrossing alternating
trees (see Remark 9.7).

Remark 9.7
For the case n D 2kC1 of the standard Catalan numbers, the maximal fk;n-Deograms
are easily seen to be in bijection with noncrossing alternating trees on k C 1 vertices
(item 62 in [123]). Explicitly, given D 2 Deomax

fk;n
, we assign a vertex to each of the

k C 1 columns of D. One can show that every row of D must contain exactly two
elbows, and connecting the two corresponding vertices by an edge for each of the k

rows, one obtains a noncrossing alternating tree. The case k D 3, n D 7 is illustrated
in Figure 6.

Remark 9.8
A recursive proof of Proposition 9.5 for the case n D dk ˙ 1 (d � 2) was found by
David Speyer (private communication). It appears that when n D dk ˙ 1, the dis-
tinguished condition is automatically satisfied for any maximal fk;n-Deogram. How-
ever, this is not the case for instance when k D 5 and n D 12 (see Figure 4 (right)).
We were able to find a recursive proof of (9.1) for arbitrary k, n. This and some other
enumerative consequences of our results will appear in a separate paper [48].

Remark 9.9
A probabilistic interpretation of f -Deograms and their weights in (9.2) in terms of
the stochastic colored six-vertex model (see [80]) was recently discovered in [43].
In particular, a result closely related to Theorem 2.3 appears in [43, Lemma 7.1 and
Proposition 7.3].
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