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Abstract

We relate the mixed Hodge structure on the cohomology of open positroid varieties
(in particular, their Betti numbers over C and point counts over Fy) to Khovanov—
Rozansky homology of associated links. We deduce that the mixed Hodge polyno-
mials of top-dimensional open positroid varieties are given by rational q,t-Catalan
numbers. Via the curious Lefschetz property of cluster varieties, this implies the q,t-
symmetry and unimodality properties of rational q, t-Catalan numbers. We show that
the q,t-symmetry phenomenon is a manifestation of Koszul duality for category O,
and discuss relations with open Richardson varieties and extension groups of Verma

modules.
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Introduction

The binomial coefficients (Z) have natural g-analogues [Z] , known as Gaussian
q

polynomials. On the other hand, the rational Catalan numbers Cy ¢ := +(7)
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(defined for ged(k,n) = 1) have two different well-studied g-analogues: the area
generating function ) PeDycky g q**(®) of rational Dyck paths (see [18]), and the

polynomial ﬁ [Z]q going back to [88].

The Poincaré polynomial of the complex Grassmannian Gr(k, n), and the number
of points of Gr(k, n) over a finite field F,, are both well known to be given by [Z]q. We
give a Catalan analogue of this statement by considering the top-dimensional positroid
variety Hz’n C Gr(k, n), introduced in [77] building on the results of [103]. The space
[T}, , is the subspace of Gr(k,n) where all cyclically consecutive Pliicker coordinates
are ’nonvanishing. We show that, up to a simple factor, the mixed Hodge polynomial
P (H,‘Z,n ;g.t) coincides with the rational ¢, f-Catalan number Ci_,— (g, t) introduced
in [86] in the study of Macdonald polynomials (see [50], [63]). It follows that the
Poincaré polynomial of II} =~ equals > PeDycky s q**(P)while the point count
#I1;, (Fy) equals ﬁ [Z]q, both up to a simple factor.

The coincidence of the Poincaré polynomial and the point count of Gr(k,n) is
reflected in the purity of the mixed Hodge structure on the cohomology of Gr(k,n).
Purity holds for many spaces of interest in combinatorics, for example, for com-
plements of hyperplane arrangements. By contrast, the mixed Hodge structure on
H '(H,‘z,n) is not pure, and simultaneously yields both of the natural g-analogues of
rational Catalan numbers discussed above.

Our proof proceeds via relating both sides to Khovanov—Rozansky knot homol-
ogy (see [74]-[76]). Our main result connects the cohomology of arbitrary open
positroid varieties, and more generally open Richardson varieties in generalized flag
varieties, to knot homology.

Connections between knot invariants and Macdonald theory have received an
enormous amount of attention in recent years (see, e.g., [22], [34], [60], [61], [64],
[69], [92], [98]). In particular, Khovanov—Rozansky homology of torus knots and
links was computed in [34], [68], [69], and [92]. For torus knots, the answer is given
by the rational ¢, #-Catalan numbers.

Our main results are described in detail in the next section. We start by highlight-
ing some consequences of our approach from several points of view.

Combinatorics

The coefficients of the Gaussian polynomial [Z]q are well known to form a unimodal
palindromic sequence. A geometric explanation for this phenomenon is the hard Lef-
schetz theorem for the cohomology of Gr(k,n). It follows from the results of [46]
and [83] that the cohomology of HZ, ,, satisfies the curious Lefschetz property which,
combined with our main result, yields a geometric proof that Cy ,—x(q.?) is q,¢-
symmetric and unimodal. Furthermore, our work produces a whole family of ¢, -
symmetric and unimodal polynomials, which includes Ci ,—x(g.t) as a special case.



POSITROIDS, KNOTS, AND ¢, t-CATALAN NUMBERS 2119

We discuss their ¢ =t = 1 specialization in Section 9 where we obtain a new combi-
natorial interpretation for rational Catalan numbers in terms of certain kinds of pipe
dreams (see Figure 5).

Knot theory

We introduce a class of Richardson links, which are closures of braids of the form
B(w)-B(v)~! for pairs of permutations v, w € S, such that v < w in the Bruhat order.
We give a geometric interpretation of the top a-degree coefficient' of Khovanov—
Rozansky (KR) homology and of the HOMFLY polynomial (see [42], [104]) for such
links. When a Richardson link is a knot, we show that the associated ¢, -polynomial
is g, t-symmetric. Our investigations suggest that KR homology may have hitherto
unstudied unimodality and Lefschetz-type properties. Our results generalize equally
well to other Dynkin types.

Representation theory
We show that the ¢, r-symmetry property is a consequence of the Koszul duality phe-
nomenon (see [11], [15]) in the derived category of the flag variety.

The computation of the extension groups Ext*(M,, M,,) between Verma mod-
ules in the principal block O of the Bernstein—Gelfand—Gelfand category O (see,
e.g., [70]) is a classical, still open problem. We show that these extension groups
are isomorphic to knot-homology groups. Along the same vein, we show that the R-
polynomials of Kazhdan and Lusztig [72], [73] are certain coefficients of the HOM-
FLY polynomial.

Algebraic geometry

Our results provide evidence for a P = W conjecture relating the weight filtration
of Hz’n with the perverse filtration of the compactified Jacobian Ji ,_ (see Sec-
tion 1.12.2).

1. Main results

We give a detailed description of our main results. The historical context and moti-
vation for our work is delayed to Section 1.12. We give the full background on the
objects below in the main body of the paper.

"The top a-degree coefficient encodes the zeroth Hochschild cohomology (1.17) which sometimes corresponds
to the bottom a-degree in the literature. Our conventions are chosen so that the a-degree in KR homology
matches the a-degree in the HOMFLY polynomial.
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Figure 1. (Color online) Computing the rational ¢, #-Catalan number C3 5(q, ).

1.1. Rational q,t-Catalan numbers

Let @ and b be coprime positive integers. The rational q,t-Catalan number
C,.p(q.t) € N[g,t] was introduced by Loehr and Warrington [86] (see also [58], [59]),
generalizing the work of Garsia and Haiman [50]. It is defined as

Ca,b(q,t) = Z qarea(P)ldinv(P), (1.1)
PGDkaa.b

where Dyck, , is the set of lattice paths P inside a rectangle of height @ and width
b that stay above the diagonal, area(P) is the number of unit squares fully contained
between P and the diagonal, and dinv(P) is the number of pairs (&, v) satisfying
the following conditions: / is a horizontal step of P, v is a vertical step of P that
appears to the right of /, and there exists a line of slope a /b (parallel to the diagonal)
intersecting both 4 and v. For example,

Cis(q.t) =q* + @t + ¢*t* + g%t + qt> + qt* + 1%, (1.2)

as shown in Figure 1.

1.2. Positroid varieties in the Grassmannian

The Grassmannian Gr(k,n) is the space of k-dimensional linear subspaces of C”.
Building on Postnikov’s cell decomposition in [103] of its totally nonnegative part,
Knutson, Lam, and Speyer [77] constructed a stratification

Gr(k.n)= | | 1%, (1.3)

S€B

where the (open) positroid varieties Hj, are defined as the nonempty intersections
of cyclic rotations of n Schubert cells. These varieties also arise in Poisson geometry
(see [16]) and in the study of scattering amplitudes (see [5]). Open positroid varieties
are indexed by a finite set By , of bounded affine permutations, and for f € By,
the reduction of f modulo n is a permutation f € Sp. (See Section 4.1 for further
background.)

Let fin € Bk, be the bounded affine permutation given by fx ,(i) =i + k.
The positroid stratification (1.3) contains a unique open stratum, the fop-dimensional



POSITROIDS, KNOTS, AND ¢, t-CATALAN NUMBERS 2121

positroid variety T} = H‘}k . which can be described explicitly as

Hz,n = {V € Gr(k,n) \ Ao, k(V), Aos, k+1(V), ...,
Ani,. k=1 (V) #0}, (1.4)

consisting of subspaces whose cyclically consecutive Pliicker coordinates are nonva-
nishing.

For each f € By ,, the space Hj, is a smooth algebraic variety. Two basic ques-
tions one can ask are:
(1) What is the number of points in 1'[‘} (Fy) over a finite field I, with g elements?
2) What are the Betti numbers of H‘} considered as a complex manifold?

These two questions are related by the mixed Hodge structure (see [29]) on coho-
mology. The cohomology ring H ‘(H‘}) = H*(I1°%, C) of an open positroid variety
is of Hodge-Tate type, and we have a Deligne splitting

H*(T%,C) = @ H* P (115, C). (1.5)
DPEZL

Since Hj, is smooth, we have that H*:(?-P) yanishes unless k /2 < p <k. We view
(1.5) as a bigrading on H‘(H;) and let e7"(1'[°f;q,l‘) be the suitably renormalized
(see (4.6)) Poincaré polynomial of this bigraded vector space, called the mixed Hodge
polynomial.

We are ready to state the most important special case of our main result.

THEOREM 1.1
Assume that gcd(k,n) = 1. Then

PL,:q.0) = (% +12)" " Crnmie(q,1). (1.6)

The equality (1.6) arises as a conjecture from the works [114] and [115], and we
thank Vivek Shende for drawing our attention to the conjecture (see Section 1.12.2
for further discussion). We generalize Theorem 1.1 to all positroid varieties in Theo-
rem 1.17 below.

Let us discuss the specializations of Theorem 1.1 that give answers to questions
(1) and (2) above. Denote

g :=1+q+-+q"""  [nlg!=[1g[2lg - [nq.

n| [n]g!
k . ERGRTE
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COROLLARY 1.2
The Poincaré polynomial and point count of Iy , are

PR ,:q)=(q+ D" Cenr(g® 1), (1.7)
o I I
#113,(Fy) = (g — 1) [n]q[k]q. (1.8)

Our proof of Theorem 1.1 involves a number of ingredients, including Khovanov—
Rozansky knot homology and derived categories of flag varieties. The point count
specialization (1.8) requires less advanced machinery and we give a quicker elemen-
tary proof in Section 2. Associating a link ﬁ # to each positroid variety H (Sec-

tion 1.5), we compare the point count #H‘}(Fq) to the HOMFLY polynomlal of ﬁ 7
(Section 1.6). The HOMFLY polynomial is categorified by Khovanov—Rozansky knot
homology, and our proof of Theorem 1.1 may be considered a “categorification” of
the point count computation.

We have the following elegant but baffling corollary.

COROLLARY 1.3
Let ged(k,n) = 1. Then the probability that a uniformly random k-dimensional sub-
space of (F4)" belongs to T13, , (Fy) is given by

g—D"

Prob(V e TIg ,(F,)) = prE

The probability (q 1) does not depend on k. We do not have a direct explanation
for this phenomenon

1.3. Cluster structure and the curious Lefschetz theorem

Since the work of Scott [111], positroid varieties have been expected to admit a natural
cluster algebra (see [40]) structure arising from Postnikov diagrams. We recently
proved this conjecture building on the results of [85], [97], and [112].

THEOREM 1.4 ([46])
The coordinate ring of each positroid variety Hc} is isomorphic to the associated
cluster algebra.

This result allows one to study H‘} as a cluster variety, and for such spaces
the mixed Hodge structure can be explored using the machinery developed by Lam
and Speyer [83], whose work implies the following properties of the mixed Hodge
polynomials ?(H;;q, t).
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THEOREM 1.5 ([46], [83])

For each f € By ,, the mixed Hodge polynomial {P(H‘};q, t) e N[q%,t%] has the

following properties:

(1) q,t-symmetry: ?(H‘};q,t) = P1%;¢,9);

(i)  g.t-unimodality: for each d, the coefficients of P (I1%:q.t) at q%t% g9 111,

.., q°t? form a unimodal sequence;

(ii) P (I1%;1,q?) equals the Poincaré polynomial of H‘} (considered as a variety
over C);

(iv) ¢ 3 dimI1% {P(H‘} iq, t)|t equals the point count #H‘} (Fy).

1 1
2=—q 2

See Example 1.9 below.
Parts (i) and (ii) are consequences of the curious Lefschetz property, formalized
in [67] and proved to hold for certain cluster varieties in [83] (see Section 4.3).

1.4. The Catalan variety

Let T = (C*)"~! be the group of diagonal matrices in PGL,, (C): it is the quotient of
the group of diagonal n x n matrices by the group of scalar matrices. The group T
acts on Gr(k,n) preserving the positroid stratification. For u € §,,, let

¢(u) := the number of cycles of u, (1.9)

and let B,cfnl ={f €Brn| ¢(f)=1). The following observation is proved in Sec-
tion 4.2.

PROPOSITION 1.6
The action of T on H‘} is free if and only if the permutation f is a single cycle.

For f € B]Cfnl, the quotient X} = H‘} /T is again a smooth affine variety that
we call a positroid configuration space (see also [6]). It is a cluster variety (with no

frozen variables, since the T'-action on the frozen variables of I1 r is free), and thus
Theorem 1.5 applies to it.

PROPOSITION 1.7
For f € Bfnl, the mixed Hodge polynomials of H} and X} are related by:

PG :q.0) = (g2 + 1371 P(X5:q.1). (1.10)

When ged(k,n) =1, we have f; , € Bfnl. The quotient X} , =TIy /T satis-
fies
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P(XZ p3q:1) = Chn—k(q, 1), (1.11)

and we refer to X7, as the Catalan variety. Let dy, := (k — 1)(n —k — 1) =
dim(X7} , ). We obtain the following as a consequence of Theorem 1.5.

COROLLARY 1.8

Assume that gcd(k,n) = 1. We have:

i) gq,t-symmetry: Cg n—k(q,t) = Cg n—k(t,9);

(i)  q.t-unimodality: for each d, the coefficients of Ci n—(q,t) at ¢91°, g4~ 't,
.., q°t? form a unimodal sequence;

(iii)  the Poincaré polynomial of X;,n is given by

d .. - o
Zq2 dim H %.n d(xk,n) = Cikn—k(q. 1)
d

= Y g™, (1.12)

P EDkak.nfk

(iv)  the number of F4-points of X, is given by

1
#X;’n (Fq) = E{

n 1
J =q2% - Ceper(q.1/9). (113)
q

While part (i) is known, the remaining parts of Corollary 1.8 appear to be new (see
Section 1.12.1). Note also that the odd Betti numbers of in vanish, a phenomenon
that we do not have a direct explanation for. Parts (iii)—(iv) may be deduced directly
from Corollary 1.2 using Proposition 1.6.

Example 1.9

Let k =3 and n = 8. The coordinate ring of X3 ¢ is a cluster algebra of type Eg
(with no frozen variables). The associated mixed Hodge table is given in Table |
(see [83, Table 5]). The grading conventions (4.6) are chosen so that the first row
contributes g* + g3t + q%t? + qt> + t* while the second row contributes g%t +
qt? to P (X3 g:4.1). Note that all odd cohomology groups vanish, which is why all

Table 1. The mixed Hodge table recording the dimensions of H-(7:P) (X3 ) for the cluster
algebra of type Eg (see [83, Table 5]). The dimensions agree with the coefficients of C3,5(q.t)
(see Example 1.9).

HF¥ HO [ H' [ H2 [ H3 | H* | HS> | HS | HT | HB
k—p=0| 1 0 1 0 1 0 1 0 1
k—p=1 1 0 1




POSITROIDS, KNOTS, AND ¢, t-CATALAN NUMBERS 2125

monomials have integer powers of ¢ and ¢. Comparing the result with (1.2), we find
P(X34:9.1) = C3,5(q,1), in agreement with Theorem 1.1.

The polynomial C3 5(g,¢) given in (1.2) is indeed ¢, t-symmetric. It is also g, ¢-
unimodal: fixing the total degree of ¢ and ¢, it splits into polynomials g% + ¢3¢ +
q*t? + qt3 + t* and g2t + gt?, both of which have unimodal coefficient sequences,
corresponding to the rows of Table 1. We also have C35(q,1) = ¢* + ¢ + 2¢* +
2¢ + 1; the coefficient of g%/2 is equal to dim H%.n—¢ (T15 g) for each d (these
coefficients are column sums in Table 1). This agrees with (1.12).

1.5. Links associated to positroid varieties

Let us say that a permutation w € S, is k-Grassmannian if w™'(1) <w™1(2) <--- <
wl(k)and w™(k +1) <--- <w™!(n). We denote by “<” the (strong) Bruhat order
on S,. Let Qg , denote the set of pairs (v, w) of permutations such that v < w and w
is k-Grassmannian. The following result is well known (see Proposition 4.2).

PROPOSITION 1.10 ([77])
There exists a bijection (v,w) = fy between Qg , and By , such that for every
f = fow €Bpn, we have f =wv™L.

For example, when f = fi ,, we have v = id and the permutation w = f sends
i i+ k modulo n for all i € [r]. The dimension of H‘} equals £y 1= L(w) —£(v),
where £(u) is the number of inversions of u € S,,.

The group S, is generated by simple transpositions s; = (i,i + 1) for 1 <i <
n — 1. Similarly, let B, be the braid group on n strands, generated by o1, ...,0,—1
with relations 0;0;410; = 0;410;0;+1 and 0;0; = 0;0; for |[i — j| > 1. Connecting
the corresponding endpoints of a braid 8 gives rise to a link called the closure ﬂA of B
(see Figure 2).

For each element u € S, let 8(u) denote the corresponding braid, obtained by
choosing a reduced word u = s;, 5i, -+ Si,,, for u and then replacing each s; with o;.

1 1

B(w) = oaai0302  B) Tt =070 ; /// ;

1 — 1 T ,,114

2 N——2 5 /\ \" 5

N,— A / OO :

8 / s / 7 / 7

4 N—u4 - 8 8
braid By = B(w) - B(v) 7! closure 3¢ of By By, for k=3,n=38

Figure 2. (Color online) Braids and links associated to positroid varieties.
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Definition 1.11
For f = fu,w €Bg n, we set

By :=Bw) B)". (1.14)

We refer to the closure ﬁ 7 as the link associated to f . See Figure 2 for an example.

The link ,3 £ is aknot (i.e., has one connected component) if and only if f € Bfnl
(see Proposition 1.6).

1.6. HOMFLY polynomial
The HOMFLY polynomial P(L) = P(L;a,z) of an (oriented) link L is defined by
the skein relation

aP(Ly)—a 'P(L_)=zP(Ly) and P(Q)=1. (1.15)

where O denotes the unknot and L, L_, L are three links whose planar diagrams

locally differ as follows:
L L_ Lo

Example 1.12
For n = 2, we may take L4 to be the closure of oy, in which case L_ is the closure
of 01_1 and Lo = @) is the 2-component unlink. Applying (1.15), we find P(Lg) =

a—a~!

z

Surprisingly, the HOMFLY polynomial computes the number of IF;-points of any
positroid variety.

THEOREM 1.13
For all | € By, let le,f)p(q) be obtained from the top a-degree term of P(Br;a,z)

by substituting a := q_% and z 1= q% - q_%. Then

#I15(Fg) = (¢ — 1"~ P77 (). (1.16)

Remark 1.14

When ged(k,n) =1, we have fi, € Bi;l, and the associated knot Bz, is the
(k,n — k)-torus knot (see Figure 2 (right)). The value of P(By, ,;a,z) was com-
puted in [71], and its relationship with Catalan numbers was clarified in [54]. Thus,
(1.8) follows from Theorem 1.13 as a direct corollary.
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Example 1.15
For k = 3, n = 8, one calculates (e.g., using Sage”) that

s 28482842124 +2122+7 64+ 7z4 + 142248 22 +2
P(ﬂfk.n’a’z) = aS - alO a12

28482042124 4212247
8
a

1.
2 1nto

andzzzq%—q

Nl—

Substituting a := g~ , we get

PR =+ + ¢ +¢* + >+ +1=4"Cs5(q.1/9).

This agrees with (1.13) and (1.16).

1.7. Richardson varieties

Let G be a complex semisimple algebraic group of adjoint type, and choose a pair
B, B_ C G of opposite Borel subgroups. Let T := B N B_ be the maximal torus, and
let W := Ng(T)/T be the associated Weyl group. We have Bruhat decompositions
G =|lyew BwB =| |,cy B-vB, and the intersection BwB N B_vB is nonempty
if and only if v < w in the Bruhat order on W. For v < w, we denote by Rg,w =
(BwB N B_vB)/B an open Richardson variety inside the (generalized) complete
flag variety G/ B. The varieties Ry ,, form a stratification of G/B.

Now suppose that G = PGL,(C). We have W = §,,, the subgroups B, B_ C G
consist of upper and lower triangular matrices, and T = (C*)"~! is the group of
diagonal matrices modulo scalar matrices. In this case, we denote the generalized flag
variety G/B by Fl(n). By Proposition 1.10, positroid varieties correspond to pairs
v < w of permutations such that w is k-Grassmannian. The projection map Fl(n) —
Gr(k, n) restricts to an isomorphism Ry ,, = 1'[‘;r for every permutation f = f, , €
By . (see Proposition 4.3). Thus, positroid varieties are special cases of Richardson
varieties. One can similarly associate a braid B, 4, := B(w)-B(v)~! to any pair v < w
in S, and consider its closure ,3 v,w- We refer to links of the form Bv,w as Richardson
links.

The point count #Ry ,,(Fy) is given by the Kazhdan—Lusztig R-polynomial (see
[72], [73]), and both the statement and the proof of Theorem 1.13 generalize to this
setting (for G of arbitrary type); see Theorems 2.1 and 2.3.

1.8. Main result: Ordinary cohomology

Our results for the positroid variety H,‘;n are special cases of a statement which
applies to open Richardson varieties in arbitrary Dynkin type. This includes all
positroid varieties H‘} for f € Bg,, where the number of cycles c( f) can be
arbitrary. We start with the nonequivariant version of our result.

Zhttps://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html.
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Let h := Lie(T) be the Cartan subalgebra of Lie(G) corresponding to 7', and
denote R := C[h] = Symch*. The ring R is graded so that the elements of h* C R
have polynomial degree 2. For G = PGL, (C), R = Cl[yy,..., y»—1] is the polyno-
mial ring. Since W is a Coxeter group, we can consider the category SBim of Soergel
bimodules (see [35], [118]). Each object B € SBim is a graded R-bimodule, and we
will be interested in its R-invariants, which by definition form the zeroth Hochschild
cohomology of B:

HH®(B):={be B |rb=brforallr € R}. (1.17)
Thus, HH®(B) is a graded R-module. Denote
HHQ(B) := HH®(B) ®& C, (1.18)

where C = R/(h*) is the R-module on which h* acts by zero. While the functor
HH  involves Soergel bimodules, the functor HH(g involves Soergel modules instead
(see Corollary 3.6).

To any element u € W, Rouquier [110] associates two cochain complexes F*(u)
and F*(u)~" of Soergel bimodules. For a braid 8, = f(w)-f(v) ™", weset Fy, 1=
F*(w) ®g F*(v)~!. Applying the functor HH(g to each term of this complex yields
a complex HH(g(F;’w) of graded R-modules. Taking its cohomology

HHHQ(F; ) := H*(HHX(F;,)). (1.19)
we get a bigraded vector space. Explicitly, we have

HHHY(F},) = €D HY (HH(F],,),
k,peZ
where H*(P)(HHQ(F} ) is the polynomial degree-2p part of H¥(HH2(F} ).
Recall from (1.5) that we have a bigrading on H°®(Rj ,,) coming from the
Deligne splitting.

THEOREM 1.16
Forallv<we W and k, p € Z, we have

HEPP(R? )= HP) (HHQ(F) ). (1.20)
See Tables 2 and 3 for examples.

1.9. Main result: Equivariant cohomology
The spaces HHH(F; ) and HHHQ(F, ) are closely related. By Theorem 1.16,
HHHQ(F; ) yields the cohomology of Rj . It turns out that HHH(F; ) yields
the torus-equivariant cohomology of Ry ,,.
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Table 2. Summary of examples computed in Sections 3.6 and 4.6, illustrating Theorems 1.16
and 1.17. The last four columns list all values of k, p for which the corresponding bigraded
component is nonzero (in each case, it is 1-dimensional). We have f> 4 = 52515352 and

2,5 = 535251545352.

Title n | v w Low Bow R, ) HEPP (RS ,) HN (HHX(F3 ) [ HYP (HHO(F3,)
Unknot-I 1 id id 0 O pt k=0.p=0 k=0.p=0 k=0,p=0 k=0.p=0
Unknott | 2 | id | s ! O | m. Kz (1’ "z ! k=1.p=0 = f’,)::‘)] k=0.p=0

2cptunlink | 2 | s 51 0 @) nt k=0.p=0 k=2p,p€i=o k=0,p=0 k=0,peiz
Trefoilknot | 5 | id | fas 6 (9) g, Table 3 2 :Z' Z zg Table 3 A":fz” :202

Table 3. Comparing the mixed Hodge tables of TI5 , and T3 5 (top) to HHH(g of the associated
links (bottom).

[ #* THOTHTTHZ &3] HA ] [ B [HOTA'[R? & [H 4% [HC)
[k=p=0] 1 [ 3 [ 43 1] [k=p=0] 1 [ 4 ] 7 [ 817 [ 4]1]
Hk.(ﬂ‘ﬁ)(ng 2 Hk.(p‘p)(ng 5
Hk H A H3[H2Z[H T[HO Hk H e[ H3[H A3 2 1T]H"]
[k+p=0] 1 ] 3 4 [ 3 [ v ] [k+p=0] 1 | 4 7 | 8 7 | 4 [ 1]

HE DY HHA(F* B 1,y 1)) HE Y HHA(F* (B 7, o))

o
v,w?

consider its T'-equivariant cohomology with compact support, denoted Hyp. .(Rj ).
It is equipped with an action of the ring H7.(pt) = R. Similarly to (1.5), H7 .(R7 ;)
admits a second grading via the mixed Hodge structure and is therefore a bigraded
R-module.

The algebraic torus 7" acts on each Richardson variety R and thus we can

THEOREM 1.17
For all v <w € W, we have an isomorphism of bigraded R-modules

H7 (R} ) = HHH’(F} ). (1.21)
For each k, p € Z, it restricts to a vector space isomorphism
KU w ka B o L]
HT,(; +2p+k,(p,p) (Rv’w) o~ Hk,(p) (HHO(Fv,w)), (122)

where £y = £(w) —£(v) =dim Ry ..

See Table 2 for examples. We explain how Theorems 1.1 and 1.16 follow from
Theorem 1.17 in Sections 4.4 and 8.1, respectively.

Observe that the grading conventions in (1.20) and (1.22) are quite different. In
fact, the two statements are related by an application of the g, f-symmetry (1.23), as
we now explain.
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1.10. Koszul duality and q,t-symmetry

For any f € Bfnl, the positroid variety X} is a cluster variety (see [46]), so the
polynomial J’(H‘};q, t) is g, t-symmetric by Corollary 1.8(i). Richardson varieties
are not yet known to admit cluster structures (see [85]), and in particular, the curi-
ous Lefschetz theorem of [83] cannot yet be applied to conclude that (R 5 9,1)
is g, t-symmetric for arbitrary v < w € §,. In Section 8.2, we show that the g, -
symmetry phenomenon for positroid and Richardson varieties is a manifestation of
Koszul duality for the derived category of Schubert-constructible sheaves on the flag
variety (see [4], [11], [15]).

THEOREM 1.18
Forallv<weW and k, p € Z, we have an isomorphism

Hk’(p’p)(RZ,w,C) ~ Hﬁv.w+k—2p,(€v.w—plv,w—l7)(RO 0) (1.23)

v,w?

of vector spaces. In other words, the polynomial e?)(Rl‘j,w 1q,t) is q,t-symmetric.

This gives a new proof of the ¢, z-symmetry of Cg ,—x(q,t) for ged(k,n) = 1.

We now explain the connection to link invariants. Given a Richardson link
Bv,w, one can consider the bigraded vector spaces HHH®(F*(By.)) and
HHH(g(F *(Bv,w)), and their suitably renormalized bigraded Hilbert series, denoted
P (Byw:q.t) and ?It{(g;c(ﬁv,w;q, 1), respectively (see (3.15)—(3.16)).

The polynomial Py (By.w:¢.1) is the top a-degree coefficient (see the footnote
in the introduction) of the celebrated Khovanov—Rozansky homology (see [74]-[76])
of ﬁv,w, which is a link invariant, that is, depends only on the closure ﬂAU,w of Buw
(see Section 3.5).

Our results imply (see Section 8.1) that when ,BAv,w is a knot, we have

PR (Bow:q.1) = Pimc(Bowig.t)  and (1.24)
o 11 5
PR,/ Tiq.t) = (q2t2)XPo) PEP (B, 1 q.1), (1.25)

where y(Byw) = M (see (3.12)). More generally, Theorem 1.16 implies
that for any v < w € S, one can relate 5)185;@(/31),% q.1) o P(R; ,54.1) by a sim-
ple transformation. As we show in Corollary 3.13, (1.24) holds more generally for

arbitrary knots ,3
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For a general link ,3, the question of whether J’,iolf (,3 ;q,1) is g, t-symmetric has
been a major open problem’ going back to [33]. For Richardson links, we show that
it also amounts to applying Koszul duality.

COROLLARY 1.19
For any v < w € S, we have

o]t((;S(C 181) wiq,t) = O]t((g)(c(ﬂv,w;tsq)-
Consequently, by (1.24), if ,BAv,w is a knot, then

Omp(ﬁv wiq,t) = omp(ﬁv wil,q).

1.11. Extensions of Verma modules
The above theorems have representation-theoretic applications to Verma modules,
which are certain infinite-dimensional modules over the Lie algebra g of G. Consider
the principal block O of the Bernstein—Gelfand—Gelfand category O, and let M,, be
the Verma module with highest weight w(p) — p, where p is half the sum of positive
roots of the root system of g. We also denote by L, the corresponding simple mod-
ule. The graded dimensions of Ext®* (M, L) famously coincide with the coefficients
of the Kazhdan—Lusztig P -polynomials Py, (q) (see, e.g., [11, Theorem 3.11.4]).
On the other hand, computing extension groups Ext®*(M,,, M,,) is an important open
problem (see, e.g., [32], [90]).

A graded version of Oy was introduced by Beilinson, Ginzburg, and Soergel [11].
They constructed the (essentially unique) graded lifts of Verma modules M, (see also
[124]), thus endowing the space Ext®*(M,, M,,) with a second grading:

Ext®(My. My) = @) Ext*072 (M, M,,).
k,rez

These Ext-groups can be related to the cohomology of open Richardson varieties
using the localization theorem of [9] and [17]. In the case of Kazhdan—Lusztig poly-
nomials, the groups Ext®(M,, Ly, ) are “pure”: the two gradings agree. On the other
hand, the bigrading on Ext®(M,, M,,) turns out to be quite nontrivial. As a corollary
to our approach, we obtain the following result.*

3 At the final stages of the preparation of this manuscript, we learned that the g, f-symmetry of r’mp(ﬂ q,t)
for the case when /3 is a knot has been established in a very recent preprint [99]. (Note added in 2023: see also
[56].).

4We remark that Soergel’s original work [117] directly relates Ext-groups in category @ and Hom-groups in
SBim (see also (3.9)).
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THEOREM 1.20
Forallv<weW andk,r € Z, we have

dim Ext*- (=002 (A1, M) = dim H* /2 (HHO(F} ).

(In particular, both sides are zero for odd r.)

Thus, while Ext®*(M,, Ly, ) gives the Kazhdan—Lusztig polynomials, Ext®(M,,
M,,) gives the rational ¢, ¢-Catalan numbers for v =id and w = f; ,.

1.12. Notes
We collect the historical background and several remarks on the above results.

1.12.1. Symmetry and unimodality

The symmetry and unimodality of the Gaussian polynomial [Z]q are consequences of
the hard Lefschetz theorem for H*®(Gr(k,n)). Whereas symmetry is apparent from
the combinatorial definition of [Z]q (see [122, Proposition 1.7.3]), unimodality is
notoriously difficult to see combinatorially. Unimodality was first proved by Sylvester
[126], the relation to hard Lefschetz observed by Stanley [121], and a combinatorial
proof given by O’Hara [100].

When a =n and b =n + 1, C, (g, 1) recovers the famous ¢, ¢-Catalan num-
bers Cy,(q,t) of Garsia and Haiman [50] studied extensively in, for example, [49],
[58], [59], [62], and [63]. The fact that Cy (g, 1) is g,¢-symmetric and ¢, ¢-unimodal
follows from the results of Haiman [65], [66]. For arbitrary a, b, an explanation
for the g, t-symmetry property was given by the rational shuffle conjecture of [60],
proved recently in [19] and [91]. The specialization g 2 9. Crm—k(q,1/q) = ﬁ [Z]q
in (1.13) is also a consequence of the rational shuffle conjecture. To our knowledge,
the g, t-unimodality of Ci ,— (g, t) in Corollary 1.8(ii) is a new result. See also [125,
Section 2.2], which includes a specialization of our unimodality result.

1.12.2. Compactified Jacobians and the P = W conjecture

We explain the original motivation coming from the results of [114] and [115] that
led to the statement of Theorem 1.1. The compactified Jacobian J, 5 of the plane
curve singularity x¢ = y? (with ged(a,b) = 1) is a compact, singular variety with
a long history of connections to Catalan theory. Beauville [7] showed that the Euler
characteristic of J, 5 is the rational Catalan number C, 5 and Piontkowski [102] (see
also Lusztig and Smelt [87]) showed that the Poincaré polynomial and point count
are given by the g-analogue ) p eDyck ik g% (P)Gorsky and Mazin [58], [59] first
suggested the relation between J, , and ¢, #-Catalan numbers and since then there has
been an explosion of developments relating compactified Jacobians and knot invari-
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ants (see, e.g., [24], [60], [61]). Our work provides evidence for the following con-
jecture, arising from the works [114] and [115] (see [27] for the original P = W
conjecture).

CONJECTURE 1.21

There is a deformation retraction from the torus quotient X,‘;,n to the compactified
Jacobian Jy ,—x sending the weight filtration of H '(X,Z’n) to the perverse filtration
of H* (J—i) (see [89], [94]).

Conjecture 1.21 is motivated by the isomorphism, discovered in [114], between
open positroid varieties and moduli spaces of constructible sheaves associated to Leg-
endrian knots (see [115]). We thank Vivek Shende for explaining a conjectural wild
non-abelian Hodge correspondence in that setting.

More generally, when a Richardson link is algebraic (i.e., arising as the link of a
singularity), one may expect a statement similar to Conjecture 1.21 for the compacti-
fied Jacobian of the singularity. See Remark 4.24 for related discussion.

Remark 1.22

After discovering the proof of (1.8) via the HOMFLY polynomial, we found that it
can also be deduced from the results of [114] and [115]. Our proof is new and yields a
generalization (Theorem 1.13) of (1.8) to arbitrary open positroid varieties, and more
generally to open Richardson varieties in generalized flag varieties.

1.12.3. Plabic graph links

In Section 1.5, we associated a link ,é # to each positroid variety H°f. Two other (more
complicated) ways of assigning a Legendrian/transverse link to a positroid variety
have appeared recently in [37] and [ 14], stated in the language of Postnikov’s plabic
graphs (see [103]). Conjecturally, the links of [37] and [114] are isotopic to our links
,3 #- We hope to return to this question in future work [47] (see also [21]).

1.12.4. Geometric interpretations and other Dynkin types

A geometric interpretation of the full triply-graded KR homology was given by Web-
ster and Williamson [129]. Our approach yields a different geometric interpretation of
the (doubly-graded) top a-degree part of KR homology. Our geometric interpretation
in addition holds for Dynkin types outside type A. The analogue of the HOMFLY
polynomial in other Dynkin types (as a trace on the Hecke algebra; cf. Section 2.2)
was introduced in [52] (see also [109]). For related discussion of knot invariants in
other types, see, for example, [127] and [128]; see also [14], [20], [25], [26], and [93]
for related results.
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1.12.5. Odd cohomology vanishing

It follows from the results of [69] and [92] that KR homology of any (positive) torus
knot or link is concentrated in even degrees. It is tempting to conjecture that the
same property holds for all Richardson knots or links. However, this is not the case:
see Examples 4.21, 4.22, and 4.23. (See Remark 4.24 for a discussion of the closely
related class of algebraic knots.)

1.12.6. Complements of hyperplane arrangements

The top positroid variety IT7 | may be considered “the complement of a hyperplane
arrangement in the Grassmannian”: it is obtained from Gr(k, n) by removing n hyper-
surfaces, each given by a linear equation in the Pliicker coordinates on Gr(k,n). More
general “Grassmannian hyperplane arrangements” appear naturally in the study of
amplituhedra and Grassmann polytopes (see [45], [81]).

The cohomology of complements of hyperplane arrangements in projective space
is very well studied: both the Poincaré polynomial and the point count are simple
specializations of the characteristic polynomial. The coincidence is a manifestation
of the purity of the mixed Hodge structure (see [113]), a property that also holds for
the Grassmannian Gr(k,n).

1.12.7. Recurrence relations

Our results associate a g, t-polynomial to each positroid variety. One possible advan-
tage of this approach is a recurrence for these polynomials, arising from the recur-
rence for positroid varieties developed by Muller and Speyer [97]. For instance, their
results allow one to compute the point counts recursively (cf. [47]). To compute the
Poincaré or the mixed Hodge polynomials, the recurrence of [97] yields a long exact
sequence for the cohomology. It seems plausible that in favorable cases (e.g., when
the odd cohomology vanishes), this sequence may be used to calculate the mixed
Hodge polynomials of special families of links as was done in [34], [69], and [92].
We remark that the latter recurrences pass through complexes of Soergel bimodules
which do not come from any braids; an interesting open problem is to understand the
positroid/Richardson interpretation of such complexes.

Structure of the paper

In Section 2, we study the relationship between the point count and the HOMFLY
polynomial, and prove Theorem 1.13 and its generalization (Theorem 2.3) to open
Richardson varieties. In Sections 3 and 4, we discuss background on KR homology
and cohomology of positroid varieties, respectively. We deduce Theorem 1.1 from
Theorem 1.17 in Section 4.4. In Section 5, we recast our results in the language of
equivariant derived categories, and split the main result (Theorem 1.17) into two state-
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ments, Propositions 5.3 and 5.4. These statements are proved in Sections 6 and 7,
respectively, thereby completing the proof of Theorem 1.17. In Section 8, we deduce
the rest of our results (Theorems 1.16, 1.18, and 1.20) from Theorem 1.17. Finally,
in Section 9, we study analogues of Catalan numbers associated to arbitrary positroid
varieties.

2. Point count and the HOMFLY polynomial

2.1. Type A

Let W = S, and G = PGL, (C). Recall from [72, Lemmas A3 and A4] that the
number of Fg-points of a Richardson variety Ry, is given by the Kazhdan—Lusztig
R-polynomial Ry, (q). When v £ w, we have Ry 4, (¢) = 0 and Ry, = 9, and for
v = w, we have Ry (q) =1and Ry, =pt. For v <w € W, Ry, (g) can then be
computed by a recurrence relation (see [72, Section 2]):

Ryw(q) = Rsy sw(q) if sv < v and sw < w, @D
v,w = ) .
(¢ — D Rsp.w(q) + qRsy sw(q) if sv > v and sw < w.

Here, s = s; for some 1 <i <n — 1 is a simple transposition satisfying sw < w.
Recall from Section 1.7 that we associate an n-strand braid By, = f(w) -
B(v)~! to any pair v, w € S, of permutations. For a Laurent polynomial P = P(a, z),
we denote by degg)p(P) € 7 the maximal degree of a in P, and for k € Z, we let
[a“]P € C[z*!] be the coefficient of a* in P. For v,w € S,, recall that we set

£yw :=L(w) —£(v). Denote
Kpw:=n—1—4Lyy and Pyw=Pyyla,z):= P(,BAv,w;a,Z), 2.2)

where P(ﬁv,w ;a, z) is the HOMFLY polynomial defined in Section 1.6. The goal of
this section is to show the following strengthening of Theorem 1.13.

THEOREM 2.1

Letv,w e S,.

() Ifv£w, then degg®(Pyw) < Kyw-

(i)  Ifv<w, then degy’(Py.w) = Ky .-

(ili)  Forany v,w € Sy, let P,ﬁ?ﬂ, (q) be obtained from a*v-w - ([a*v-w] Py ) by sub-
stituting a 1= q_% and z 1= q% — q_%. Then

Ryw(q)=(q—1""" P (q). (2.3)
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Proof

We start by recalling the following result, which states that the (lower) Morton—
Franks—Williams inequality (see [41], [96]) is not sharp for negative braids. It may
be alternatively deduced from (2.10) below.

LEMMA 2.2 ([53, Proposition 2.1])
Let v € S,, be a nonidentity permutation, and let B := B(v)~! be the associated neg-
ative braid. Then’

degP(P(B;a,z)) <n —14L(v). (2.4)
We now prove all parts of Theorem 2.1 by induction on £(w). Consider the base

case £(w) = 0. Then (i) is the content of (2.4). For (ii), we observe that £(w) = 0

implies v = w = id, and iterating Example 1.12, we get Py, = (%)”‘1. Thus,
top

deg, (Pyw) =n —1 =y, for v=w = id. For (iii), if v ﬁ w, then by (i), we
get [a¥vw] Py =0, so Py (q) = 0, in agreement with R, 4, (q) = 0. If v < w,
then v = w = id, @ - [avw]| Py = (a/2)""1, so Pyh(q) = (g — )™V, in
agreement with (2.3). We have shown the base case for each part.

For the induction step, suppose that £(w) > 0. Choose some 1 <i <n — 1 such
that s; w < w, and let s := s; and 0 := o;. If sv < v, then the links ﬁv,w and ﬁsv,sw
are isotopic since By = 0Psv.sw0 ', and thus Py = Pgy sy . We also have ky 4y =
Ksv,sw»>and thus Pzﬁ?& (q9) = Psl(l))l,)sw (9).-By (2.1), Rv,w(q) = Rsv,sw (¢). So in the case
sv < v, the induction step holds trivially for each of the three parts.

Assume now that we have sw < w and sv > v. In this case, we have f,,, =
ofsw)B(sv)~'o ~ Blsw)B(sv)~ 02, Busw = Blsw)B(sv)'o, and Bsysuw =
B(sw)B(sv)~!, where ~ relates conjugate braids. Applying (1.15) with

Ly := ,Bv,w» Lo:= ﬁv,sws L_:= ﬁSU,SUH
we get aPyy —a ! Py sw = 2Py 5w, and thus

z _
Pv,w = ng,sw +a 2Psv,sw- (2.5)

Note that ky s = Ky, + 1 and Ksy sw = ky,w + 2. Let us show (i). We have v ﬁ
w, sw < w, and sv > v, and thus clearly v £ sw and sv £ sw. By the induction
hypothesis, we have degg)p(Pv,sw) < Ky sy and degg)p(Psv,sw) < Kgv,sw- By (2.5), we
get degg)p(Pv,w) < Ky,w, finishing the proof of (i). In particular, we have shown that
(2.3) holds for all v £ w.

Now assume that v < w. We show (ii) and (iii) simultaneously. By the induc-
tion hypothesis, we have degy® (Py.su) < Kp.sw» dege’ (Psy.sw) < Ksy.sw (Whether

3Our conventions for P(/§; a, z) differ from those of [53] by changing a a-l.
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the equality holds depends on whether v < sw and sv < sw). Thus, by (2. 5)
dega (Py,w) < ky,w. The links LO = ﬁv sw and ﬁsv w are 1sotop1c since Bsyw =
oB(sw)B(sv)™" ~ B(sw)B(sv)7'0 = Busw, 50 Pusw = Psvw- Applying  the
map P +— a*vw . ([a¥v-*v]P) to both sides of (2.5) and substituting a := g~ 2 and
z ::q% —q 2,we get

P (q) = (g — D PP, (@) + qPyFs, ().

Combining this with the induction hypothesis and (2.1), we get Ry, (q) = (¢ —
1"~ . Py (¢). In particular, the coefficient of a**» in P,, is nonzero, so
degtOP(Pv,w) = ky,w. Thus, we have completed the induction step for both (ii)

and (iii). O

2.2. Arbitrary type

The above connection between point counts and the HOMFLY polynomial can be
generalized to arbitrary Weyl groups as follows. Let # be the Hecke algebra of W':
it is generated over C[g*!] by the elements {7y }scs satisfying the braid relations as
well as the Hecke relation

(Ts+¢q)(Tg—1)=0 forsesS. (2.6)

The algebra # admits a linear basis {7y, }wew indexed by the elements of W: we set

Ty =TT, Ty, for any reduced word w = 5152 - S¢(w)- The standard trace

€: H — C[g*!] is the C[g*!]-linear map defined by

1 ifw=id,
e(Ty) = { 2.7

0 otherwise.

THEOREM 2.3
For any v,w € W, we have

Ryw(q) =q"e(T,'Ty). (2.8)

For W = §,,, in view of the well-known relation between traces and the HOM-
FLY polynomial (going back to [71]), Theorem 2.3 specializes to Theorem 2.1.

Proof
First, we state a simple consequence of (2.6): for any v € W and s € S, we have

Tsv if sv > v,
TsTy = ] (2.9)
A—-q)Ty +qTs, if sv <.
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Next, we claim that for any u,v € W, we have

1

>

g‘®  ify =v"
) (2.10)
0 otherwise.

e(TuTy) = {

We prove (2.10) by induction on £(u). The base case £(u) = 0 is clear. Otherwise,
choose s € S such that u = xs with x < xs. If v < sv, then T,,T, = Ty T, and we
are done by induction. Thus, assume that v > sv. By (2.9), we get

e(TuTy) = (1 —q)e(TxTy) + qe(Tx Tsy). (2.11)

We have u = v~! if and only if x = (sv)~!, in which case by induction we find
e(T,Ty) = q*@ . If u # v~ then the right-hand side of (2.11) is zero unless x =
v~ But x = v™! contradicts our assumptions x < xs and v > sv. This completes
the proof of (2.10).

It is well known that T, ! € Span{Ty },<y - Thus, by (2.10), €(T,; ' T})) = O unless
v < w. We now proceed to prove (2.8) by induction on £, ,,. For v = w, the result
again follows from (2.10). For v < w, we choose s € S such that sw < w and then

calculate using T, ' = ¢~ ' T + (1 — ¢~ !) that

1 T T, if sv < v and sw < w,
T-\T, =
v g T Ty + (1 —g HT T, if sv>vandsw < w.

Applying € and multiplying both sides by gv-», the result matches perfectly with
(2.1). O

Remark 2.4

Theorem 2.3 may also be deduced from Theorem 1.17 by taking the Euler charac-
teristic: Soergel bimodules categorify the Hecke algebra, with Rouquier complexes
F*(w) corresponding to the elements 7,, and the zeroth Hochschild cohomology
functor HH? categorifies the trace .

3. Soergel bimodules, Rouquier complexes, and Khovanov-Rozansky homology
In this section, we review Khovanov—Rozansky (KR) link homology. A friendly intro-
duction to most of this material can be found in the excellent recent book [35].

3.1. Soergel bimodules

Let R := C[b] be as in Section 1.9. It is a graded ring where we set deg(y) = 2 for
vy € b*. We refer to deg(y) as the polynomial degree (as opposed to the cohomological
degree introduced later on). The Weyl group W acts naturally on R. Denote by [ the
indexing set of simple roots of R, and thus W is generated by the simple reflections
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S ={si}ier. When G = PGL, (C), recall that R = C[y1, ..., yn—1] is the polynomial

ring and S = {s1,...,8,—1} is the set of simple transpositions in W = S,,. The action
of S, on R is obtained by restricting the permutation action on C[xy, x3,..., Xs]
to R C C[xy,Xx2,...,X,], where we identify y; = x; — x;41 for 1 <i <n — 1. For
example,

s1(y1) = =1, s2(y1) = y1 + ya2, s3(y1) =-=sp—1(y1) =y1. 3.1

Soergel bimodules are special kinds of graded R-bimodules, that is, graded C-
vector spaces equipped with a left and a right graded action of R. For a graded R-
bimodule B = P); B' and m € Z, we denote by B{m/2} := ; B'~™ the polyno-
mial grading shift by m on B. Thus, y € h* has degree 2 as an element of R but has
degree 0 as an element of R{—1}.

Let us introduce the “building blocks” of Soergel bimodules.

Definition 3.1
Fors € S,let R®:={r € R|sr =r}. Define

B; .= R®pgs R. (3.2)
For a sequence u = (si,,$i,, ..., Si,) of elements of S, let

By = Bsil ®R Bsiz ®R - ®r Bs;, =R ® geiy R QgSiz *** ORSim R. (3.3)

Sim

Both By and By, are naturally graded R-bimodules, called Bott—Samelson bimod-
ules, where R acts on the leftmost and the rightmost terms of the tensor product by
multiplication.

We let SBim denote the category of Soergel bimodules. By definition, its objects
are graded shifts of direct summands of Bott—Samelson bimodules B,,, where u runs
over all finite sequences of elements in S. The morphisms in SBim are given by
degree-0 maps of R-bimodules. The indecomposable objects {Sy, }wew of SBim are
indexed by the elements of W': for each w € W and any reduced word w for w, By,
contains a unique indecomposable summand S, that is not contained in B, for any
v < u and any reduced word v for v. Up to isomorphism, the bimodule S, depends
only on w and not on the choice of w.

3.2. Rougquier complexes

We let K°SBim denote the homotopy category of SBim. Its objects are bounded
cochain complexes C®* = (---— C~! - C% — C! — ...) of Soergel bimodules, and
morphisms are homotopy classes of maps of complexes. When depicting a complex,
we usually omit some of the zeros and underline the object that is in cohomological
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degree 0. For example, a complex with only two nonzero entries may be written as
(C° = CY oras (0> C°— C'). We denote by [m] the cohomological shift on
KPSBim. It shifts each cochain complex m steps to the left: C*[1] = (- — C~! —
Cl=Cl—...).

The tensor product C* ® g D*® of two cochain complexes is the total complex
of a double complex whose entries are C' @ g D/ for i, j € Z. The sign of the map
C' ®@gr D/ — C* @ D’*! is the negation of the obvious one for all even i; the
differential of the resulting total complex squares to zero.

Since (W, S) is a Coxeter system, we can consider the associated Artin braid
group By generated by {o; };<s. The following construction is due to Rouquier [110].

Definition 3.2
For s = s; € S and 0 = 03, define the Rouquier complexes

F*(0):= (Bs — R), F*(0™"):= (R — Bs{-1}), (3.4)

where the first map sends f ® g — fg and the second map sends 1 — (s ® 1 +
1 ® ag). Here oy € ™ is the simple root corresponding to s. Note that both 1 €
R and (0 ® 1 + 1 ® a5) € Bs{—1} have polynomial degree 0. For a braid f =
0§, 0iy *++ 04, € B, we set
F*(B) := F*(0i,) ®r F*(0i,) ®r - ®r F*(0i,).
F*(B7") = F*(B) :=F*(0;,)) ®r - ®r F*(0;,") @& F*(0;]").
We also let F*(id) := (0 > R — 0).

A priori, the complex F* () depends on the choice of the word (03, , 045, . ... 0,,).
However, modulo homotopy, it does not.

PROPOSITION 3.3 ([110, Section 3])
If 0i,0i, -+ 0y, = 01 0y ++- 03y in By, then
F*(0i,) ®R F*(01,) ®R -+ ®r F*(0,)
= F.(Ui;) Qr F.(Uié) ®r---®r F*(0y,)
in K°’SBim.
For example, one can check that F*(0;) ®g F*(0;” 1y >~ F*(id). It follows that

the functors (—) ®g F*(0;) and (—) ®g F*(0;!) are mutually inverse biadjoint
equivalences of categories: for complexes C*, D*® € K°SBim, we have
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Homgogpin (C*, D® ®g F*(0)) = Homyogpin (C* ®r F*(0;71),D%), (3.5)
Homyogpin (C*, D° @ F*(0;")) = Homgogpin (C* ®& F*(07), D°). (3.6)

Proposition 3.3 allows one to define F*(8) € KPSBim unambiguously for any
braid B € By . Recall that we are interested in the braid 8,,, = B(w)-B(v)~1, which
corresponds to the complex

Fy = F*(Bow) = F*(B(w)) ®r F*(B)7). (3.7)

3.3. KR homology
Recall from (1.17) that the functor HH° sends a graded R-bimodule B to the graded
R-module HH°(B) of its R-invariants. Alternatively, it can be expressed as

HH°(B) = @) Homggim (R. B{-r/2}). (3.8)

rez

Remark 3.4

The R-module HH?(B) is free for any Bott—Samelson bimodule B. One can make
explicit combinatorial computations with this R-module (including finding a basis
and computing the maps in the Rouquier complexes) using the diagrammatic calculus
developed by Elias and Williamson [36].

Remark 3.5

Higher Hochschild cohomology functors HH", which give the full (triply-graded)
KR homology, are the right derived functors of HH. They can be computed using a
Koszul resolution of R (see, e.g., [74], [92]).

Applying the functor HH° to a complex C* of Soergel bimodules yields a com-
plex HH(C*®) of graded R-modules. In particular, for each k € Z, the cohomol-
ogy H¥(HH(C*)) of this complex is a graded R-module. For r € Z, we denote by
H5U/2 (HHO(C*)) its graded piece of polynomial degree r. It is not hard to check
that we have

H*C2D(HH(C*®)) = Homgoggim (R, C[k]{—1/2}). (3.9)

For any B € Bw, F*(B) is concentrated in even polynomial degrees, and thus
H*0/2 (HHO(F*(B))) vanishes when r is odd. Similarly to (1.19), we denote

HHH®(F*(B)) :== @ H*P (HH®(F*(B))). (3.10)

k,peZ
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The complex FJ,, is concentrated in cohomological degrees —{(w),—{(w) +

.,£(v), and thus Hk’(p)(HHO(FJ,w)) = 0 unless —£(w) < k < £(v), and the
index p € Z is bounded from below.

The functor HH(g admits a similar description. Recall that C is considered an R-
bimodule on which h* acts by zero on both sides. Any Soergel bimodule B € SBim
gives rise to a Soergel module B ® g C, which is a graded R-module. We let SMod
denote the category of Soergel modules (with morphisms being maps of polynomial
degree 0). By a result of Soergel [118] (see [35, Proposition 15.27]), for any B, B’ €
SBim, we have a natural isomorphism

Homggim(B. B') ® g C — Homgyoa(B ®r C, B’ @ C).

Applying this to the case B = R, we get the following result.

COROLLARY 3.6
For any Soergel bimodule B € SBim, we have

HHY(B) = Homgpod(C, B ®k C).

3.4. Link components and R-module structure
For this section, we assume that W = S,,. Let 8 be a braid, and let u € S,, be the image
of B. Let R denote the polynomial ring C[xy, x5, ..., Xx,], and let F*(B) denote the
Rouquier complex using R instead of R (cf. (3.1)). Thus, F*(B) is a reduced version
of F*(B). The complex F*(B) is an (R ® R)-module, and it is known (see [55], [105])
that the action of x; ® 1 is homotopic to the action of 1 ® x,,(;). Indeed, it follows from
[55, Proposition 2.11, Theorem 2.18] that there exist cochain maps &; (of polynomial
degree 2 and cohomological degree —1) called dot-sliding homotopies such that
(D d& +&d=x;®1—-1Q x,) fori =1,2,...,n,and
(2) "g‘iéj—i—jg'j";‘,-=Of0ri,j=1,2,...,n
In HHO(F*(B)), the two R-actions are equalized, so d§; + &d = x; — Xy()-
Thus, the actions of x; and x; on HHH O(F*(B)) agree when i and j belong to the
same component of the link /§ Working instead with the smaller polynomial ring R =
Clx1—x2,...,Xp—1—xn] C R, we deduce that x; — Xj acts as Zero on HHHO(F (B))
when i, j belong to the same component of the link ,3 In particular, if ,B is a knot,
then the action of R on HHH °(F*(p)) factors through the natural map R — C.
Suppose now that ,3 is a knot. Denote z; 1= x; — xy) for i =1,2,...,n
Thus, R = C[z1,...,2zy—1]. Recall that HH®(F*(B)) is a complex of graded, free
(cf. Remark 3.4) R-modules. Let a € HH?(F*(B)) be a nonzero element satisfy-
ing d(a) = 0. Using the relation d§; + &d = z;, one can show by induction on
k=0,1,...,n—1thatforall 1 <i; <ip <---<iy <n—1, we have



POSITROIDS, KNOTS, AND ¢, t-CATALAN NUMBERS 2143

k

d€ipeic (@ =)D 7216 L (@) 31D

i=1

where &;,;,..5, = §&;,&i, -+ &, , and fj denotes omission of %‘,-j . We therefore obtain a
subcomplex K*®(a) of HH®(F*(p)) given by

R €@ == Y R @) =

1<ij<-<ig<n-—1

- Y R-&()—R-a.

1<i<n—1

Definition 3.7

Let a € HHO(F*(B)) be such that d(a) = 0. We say that K*(a) is a Koszul subcom-
plex if the set {&;,..;, (@) |0 <k <n—1,1<i; <--- <ix <n—1} can be extended
to a free R-module basis of HH?(F*(B)).

It follows from (3.11) that we have a natural cochain map ®7;11 (R N R) —
HH°(F*(B)) with image K*(a), and this map is an isomorphism when K*®(a) is a
Koszul subcomplex.

Our next goal is to show that HH °(F*(B)) admits a filtration by Koszul subcom-
plexes and contractible subcomplexes of the form R SR

Definition 3.8
We say that a complex (C*®,d) of finite rank, free, graded R-modules admits a /\-
action if there exist endomorphisms &1, &>, ..., &,—1 of cohomological degree —1 and

polynomial degree 2 satisfying d§; + &§;d = z; and §§; +&£;& =0, forall i, j =
1,2,...,n—1.

We thank the anonymous referee for suggesting to us that the following statement
may be deduced from the results of [55].

PROPOSITION 3.9

Suppose that (C*,d) admits a /\-action. Then C* has a filtration by Koszul com-
plexes and trivial complexes R =~ R. That is, there exists a family of subcomplexes
0=F; CF’C--CF=C"® suchthat forall j =1,2,...,t, C'/Fj'_1 is free,
admits a )\-action, and F j' /F j.—l is either a Koszul subcomplex of C*/F j'_l ora

trivial subcomplex isomorphic to R SR
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Proof

Let C%(P/2) denote the subspace of C* of cohomological degree k and polynomial
degree p. Assuming that C* is nonzero, let D®* C C*® be the sum of those nonzero
pieces C%(P/2) where k 4+ p/2 is minimal.

Suppose that a € D*® satisfies d(a) = 0. Then for any iy,...,i;, we have that
&i,i; (a) € D*. Any linearly independent (over C) elements in D*® can be extended
to a free R-module basis of C*®. Thus, using (3.11), one can show by induction on
k=0,1,...,n—1 thatthe elements {§;,..;, (a) | 1 <i; <--- <i <n—1} arelinearly
independent. It follows that K*®(a) is a Koszul subcomplex of C*, and furthermore
that the quotient by this complex is again free and admits a /\ -action.

Repeating this, we may assume that d|pe is injective. We claim that for any
nonzero element b € D°®, d(b) may be completed to a free basis of C*®. Suppose
that b € D¥~1, We proceed by inverse induction on k. For the base case, if Dk = 0,
then d(b) is a C-linear combination of free basis elements, so the statement follows.
For the induction step, suppose that b € D¥~! satisfies d(b) € R - D¥. Write d(b) =
Z:’;ll yie;, and let i be such that ¢; # 0. By the induction hypothesis, f := d(e;)
may be extended to a free basis of C k+1 and we find that the coefficient of Vi f
in d2(b) is nonzero, which is a contradiction. Thus, d(b) ¢ R - D¥. Comparing the
polynomial degree of d(b) to that of DX, we get that d(b) can be extended to an
R-basis of C*.

A subcomplex R 5 Rin C* is called splittable if the quotient by this subcom-
plex again consists of free R-modules. Let k be the smallest index such that D¥ £ 0,
and let a; € D* be a nonzero element. We have shown above that ag := d(a;) may
be completed to a free basis of C*, and thus a; and a( generate a splittable sub-
complex S°® = (R = R).Forany 1 <i <n— 1, we have £ (a;) € D¥~! = 0. Using
d& + &d = z;, we get z;a; = &;ag. Thus, the subcomplex S*® is closed under the

action of &1,...,&,_1. Using Gaussian elimination (see [35, Exercise 19.12]), one
can check that in this case, the quotient complex C*/S*® admits a /\-action.
Repeating the above procedure, we obtain the desired filtration. O

Recall that the Koszul resolution of the R-module C by free R-modules yields a
2"~1_dimensional complex TorX(C,C) =~ (C LA C)®n-1),

COROLLARY 3.10

Suppose that (C*,d) admits a )\-action. Let (C&,dc) be the complex of C-vector
spaces obtained by setting y; = y» = -+ = yp—1 = 0. Thus, C%:= C* @r C as in
(1.18). Then

H*(CQ) = TorX(C,H*(C*)) = H*(C*) ® (@ﬂ)g)éb(n—l)
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(as complexes of graded C-vector spaces with zero differentials).

Proof

It is clear that the filtration constmcted in Proposition 3.9 induces an injection
H*® (F / 1) — H*(C* / ? 1), and a similar statement holds after setting
Vi =Yy =--= Y1 =0. Thus each Koszul complex K*®(a) appearing in the
filtration contributes a 1-dimensional subcomplex to H*(C*®). In view of (3.11),
K*(a) contributes to H*(C2) a 2" !-dimensional subcomplex isomorphic to

(ng)@i(n—l)' 0

3.5. Link invariant

For this section, we continue to assume that W = S,,. The above construction may be

turned into a link invariant as we now explain. We follow the conventions of [69].
For a braid 8 € Bs, = B,, let e(B) denote the exponent sum of B:

B=oflol o = e(B)=ateat o ten.

Thus, e(By.w) = Ly,w = £(w) — £(v). Next, define

e(B) —n+c(p)

x(B) = >

(3.12)

where ¢(f) is the number of components of the link ,BAv,w, which equals the number
of cycles of the corresponding permutation (obtained from the group homomorphism
Bs, — Sp sending o; > s; for each 1 <i <n — 1). It is easy to check that y(B) is
always an integer. Define

Per(Bia.q.1) = (1 — )PV (g2~ 2472)xB)

x 3 (~D)igE Pt E TG dim HRP) (HHY (F*(B))).
k,p,heZ

Let {/’I?lf (B:q,t) be its top a-degree coefficient:
PR (Biq.1) = a2’ P B) Py (B), (3.13)

THEOREM 3 11 74D
Pxr and P, R are link invariants: if p € Bgs,, B’ € Bs,, are two braids such that the
corresponding links /3 >~ ,B’ are isotopic, then

Prr(Bia.q.t) = Pxr(Bia.q.t)  and  Pr(Biq.t) = Pn(Biq.1).
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Thus, it makes sense to write Pkr(B:a.q.1) := Pxr(Bia.q.t) and P (B:
q.t) = Pgr(Biq.t). Both F KR(ﬂ a.q.t) and PX(B:q.1) have been recently
shown to be ¢, r-symmetric when ,3 is a knot (see [99]).

It is well known that & KR(,3 a,q.t) specializes to the HOMFLY polynomial of

A

B:

= )P /ay P P(Bra2)| _ (3.14)

Per(B)ly_

1
q 2

D=

—42—
Note that y(B) is not a link invariant, but (—1)X®) and ¢(B) are link invariants.
Clearly, for any braid B, we have degy” (Pxr(B)) < —2x(B). Let v < w € S,,.
Comparing (3.12) with (2.2), we find k3 4 = —2)(Bv,w) + ¢(Bv,w) — 1, and thus the
coefficient of a=2XBv.w) jn Pxr(Bv,w) is nonzero, by (3.14) combined with Theo-
rem (ii). Therefore degg’p(?KR(,Bv,w)) = —2x(By.w), and we get the following result.

PROPOSITION 3.12
Forv<wes,, J "’mp(ﬂu w) = [a_ZX(ﬂv w)]J KR(ﬁv w) is given by
OtOP('BU i, l) — (] t)c(ﬁv w)— l(qzt z)X(Igv w)
k 4k . k,(p) 0f e (3.15)
x > q7tPT3 dim HYP) (HHO (F* (Bv.w))).
k,peZ

Let us also define the analogous polynomial in the nonequivariant case (cf. Sec-
tion 1.8). For 8 € Bg,,, set
(¢ 1 t~2 )x(ﬂ)

otOP _
t
KR(C(:B q.t) = (U+q- 2;2)n—C(ﬂ)

X Z q%lp+%dimHk’(p)(HH(g(F.(ﬂ)))' (3.16)
k,p€eZ

The denominator (1 4+ ¢~ 3 2)” (B) in (3.16) is chosen in view of the discussion in
Section 3.4: when f is a link with ¢(f) components, a filtration analogous to the one
in Proposition 3.9 would involve complexes with 27 ~¢(8) terms.

The following result is a consequence of Corollary 3.10.

COROLLARY 3.13
Assume that ,3 is a knot such that Olt(olf c(Biq.t) #0. Then

PR (B:d4.1) = Pic(Big.1).

In Section 8.1, we give an alternative proof for knots of the form ﬂAv,w forv <
weS,.
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3.6. Examples

We compute HHH®(F*(B)) and Per(B:q.1), as well as HHHO(F*(B)) and
Oggc(ﬂ q,t), for a few braids B. Throughout, we assume that G = PGL,(C),
in which case recall that R = C[yy,..., yp—1] is a polynomial ring. These examples
are summarized in Table 2. We abbreviate ® g by ®.

Example 3.14 (Unknot-I)

Let n =1, v =1id, w = id, and thus c(By,») = 1 and x(Byw) = 0. We have
F*(Byw) = (0 - R — 0) and R = C. Thus, the only nonzero term is
H*O(HHO(Fy ) = H*O(HHY(F} ) = C. We have

Omp(ﬂv wiq,t) = O]iolgc(,év,wﬂ],[) =1

Note that any (1, b)-torus knot is isotopic to the unknot, and we have Cy p(q.¢) = 1.

Example 3.15 (Unknot-II)

Letn =2, v =id, w = s1, and thus ¢(By,») = 1 and y(By,w) = 0. We have F7,, =
(Bs;, — R). It is easy to see that HH®(Bs,) is a free R-module spanned by (y; ®
1 +1® y1), and thus HH®(B;,) =~ R{1}, and HHO(FU',w = (R{1} — R), with
the map sending 1 > 2y;. The only nonzero term is H%© (HH®(F},)) = C. Ten-

soring with C, we get HH((C’ (Fy ) = (C{1} 5 ©), so there are two nonzero terms:
H"O(HHX(F} ) = H""W(HHQ(Fy,,)) = C. Therefore,

NI'—
~—

Il

—_—

Py Bowiqg.)=1 and PR (Bowiq.t)= (1+q 2t

I\)I'—'
Nl—=

1+qg 2t

Let us also consider an example of Bv,w forv £ w.

Example 3.16 (Unknot-11I)

Let n =2, v =s1, w = id, and thus c(wv™!) =1 and x(By.w) =—1. We have
F}, = (R— By {~1}), HH’(F},) = (R = R), and HH2(F;,) = (C = C) so
the right-hand sides of (3.15) and (3.16) are zero:

[az]?KR(,BAv,w;aaq7t)=O and OIt(Olg(C(ﬂU qu t)_

This is consistent with the fact that J KR(ﬂv w) is a link invariant satisfying
KR(O) = 1; therefore, by (3.13), we have Py¥(By.w) = 1. (For a computation
of HH'(F*(Bv,w)), see [92].)



2148 GALASHIN and LAM

In the next two examples, we have c(8) > 1. We start with the case of the 2-
component unlink (()). It is the closure of id € Bs,, but we consider the representa-
tive Bs,,s, = 0107 ! instead.

Example 3.17 (2-component unlink)
Letn =2, v =sy, w=s1, and thus c(wv™!) =2 and y(By.w) = 0. We have

F.(IBU,w) = (le - (R S (le ® BS] {_1})) g BS] {_1})

We apply the well-known (see, e.g., [57, Example 3.12]) Soergel bimodule isomor-
phism By, ® By, = By, {1} ® By, ,sending 1®1® 1~ (0,1®1)and 1@ y; ® 1 —
(1 ® 1,0). Next, we use Gaussian elimination (see [35, Exercise 19.12]) to obtain
F*(By.w) = F*(id) in K’SBim, in agreement with Proposition 3.3. We have R =
Cly1l, HH°(R) = R, and HH2(R) = C. (More generally, recall from Remark 3.4
that the R-module HH°(B) is always free.) Therefore, the only nonzero terms are
HOP) (HHO(F},,)) = Cfor p=0,1,2,...,and H*©(HHQ(Fy,,)) = C. We find

P Bowiqgt) =(A=0)(1+t+1>+--)=1  and

?Ii(g);c(ﬂv,w;q’t) =1

The Hopf link ,é = () consists of two linked unknots. It is isotopic to ﬁ fr.40 @S
well as to the closure of (01)? € Bs,.

Example 3.18 (Hopf link)
Letn =2, B = (01)?, and thus ¢(B) = 2 and y(B) = 1. We have

F.(,B) = (le ® BS[ - BS] @ BS] _)B)
Using Gaussian elimination as in Example 3.17, we obtain
F*(B) = (Bs1 {1} — By, _>B)

Here, the first map sends 1 ® 1 — y; ® 1 — 1 ® y1, and the second map sends 1 @ 1
1. Taking R-invariants (cf. Remark 3.4), we find

HHO(F*(8)) = (R{2} > R{1} 225 R). (3.17)
We get H®© (HHO(F*(B))) = C and H 2(HH (F*(B))) = R{2}. In other words,

H>O(HH(F*(B))) = C.H > (HH"(F*(B)))
~C forp=2.3.4..... (3.18)
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Sending y; — 0in (3.17), we find

C if(k,p)e{0,0),(-1,1),(-2,2)},
0 otherwise.
Thus,
PEBig.) =1 —0)q2 173 (1 +1/q(1 +1 + 12 +--))
LU | _11
:qZ[ 2 2[2 +q 2[2’
PR (B 1) = g2t E(1+q 212 +1/q) =q317 3 + 1 +¢ 312,
Remark 3.19

Since J’lg{)(ﬁ; q,t) is alink invariant andﬁ o ,32’4 (with X(ﬁ) = X(BZA))a we see that
HHH(F*(B)) =~ HHH®(F*®(fB,.4)) as bigraded vector spaces. Using an elaborate
computation, one can also check that & KR(C(,B q,t) = "’Kolg c(B2,4:q,1). However,
observe that (3.16) has (1 + q_it 2)” <) in the denominator, where n = 2 for 8
and n = 4 for B, 4. Thus, HHH(g(F'(ﬁzA)) differs from HHH(S(F‘(,B)) by “multi-

plication by (1 +¢~2¢2)2.” and the actual bigraded dimensions of HHH2(F*(B2,4))
are given in Table 3 (bottom left).

Remark 3.20

We have a resolution of C by free R-modules: 0 — R LR C o Thus,
Tor®(C,C) = ((Cg C). Noting that Tor®(C, R) = C, we see that HHH(S(F’(ﬂ)) >~
TorR(C, HHH®(F*(B))). We conjecture that this holds more generally for all links
(see (8.7)).

As we explained in Remark 1.14, for k =2 and n = 5, ,BAfk.n is the (2, 3)-torus

knot, which is isotopic to the trefoil knot: ,3 fen = &- It can be alternatively obtained
as the closure of the braid (07)> € B,.

Example 3.21 (Trefoil knot)
Letn =2, 8 = (01)3, and thus ¢(8) = 1 and x(B) = 1. We have

F*(B) = (BE> ->3BZ*> - 3B, — R).

Here 3351’2 denotes the direct sum of three copies of By, ® By, , and so on. Applying
Gaussian elimination as in Example 3.17, we arrive at a simplified complex

F.(IB) = (Bs1 {2} — By, {1} — By, — E)



2150 GALASHIN and LAM

with the three maps given by 1@ 1y 1 +1®y1, 11—y 1 —-1® yy,
and 1 ® 1 — 1, respectively. Taking R-invariants, we find

HO(F*(8)) = (R(3} 25 R{2} S R{1} 225 R).
We find that the only nonzero terms are
HOO(HH(F*(B))) = H >@(HH (F*(B))) = C
Sending y; — 0, we also compute Hk’(P)(HHO(F'(/S))), which leads to

PEBrq.t) = PR (Big. ) =q317% + ¢~

1
tz.

D=

The corresponding ¢, t-Catalan number is C» 3(q,¢) = ¢ +1 = q%t% lOp(,3 q.1),
in agreement with (4.9).

Remark 3.22

We have f =~ By, for v=1id, w = fo5 € S5, and y(B8) = x(Bv,w) = 1; thus,
PE(B) = P (Bo.w). Similarly to Remark 3.19, we may compute that P (B:
q,t) = KR;C(,Bz,s,q,t), and thus HHH(S(F (B2,5)) is given in Table 3 (bottom
right).

4. Cohomology of positroid and Richardson varieties
We briefly review background on positroid varieties, Richardson varieties, and the
various versions of cohomology that we will be using.

4.1. Positroid varieties

Recall from Section 1.2 that the Grassmannian Gr(k, n) is identified with the space of
k x n matrices modulo row operations. Given a k x n matrix A, we let RowSpan(A4) €
Gr(k,n) denote its row span and let Ay, Az,..., A, be its columns. We extend this to
a sequence (A4 ;) jez by requiring

Ajyn=A; forall j €Z.

Definition 4.1 ([77])

A bijection f :7Z — Z is called a (k, n)-bounded affine permutation if it satisfies
* f(j+n)=f(j)+nforall j €Z,

° Y i1 (f(j)—Jj)=kn,and

° J<f(j)<j+nforaljeZ.

Alternatively, the second condition can be replaced with k =#{j € [n] | f(j) >

n}.
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We let By, denote the (finite) set of (k,n)-bounded affine permutations. For a
full rank k x n matrix A, we let f4 : Z — Z be given by

fa(i)=min{j >i| A; € Span(4;+1, Ai42,....Aj)} fori €Z. 4.1)

For example, if A; is a zero column, then f4(i) =i, and if A; is not in the span
of other columns, then f4(i) =i + n. It is known (see [77]) that f4 is a (k,n)-
bounded affine permutation which depends only on the row span of A. The positroid
stratification of Gr(k,n) is given by

Gr(k,n) = I_l Hf, where Hf {RowSpan(A) eGr(k,n) | fa= f}
feBk.n

We extend any permutation u € S, to a bijection # : Z — Z satisfying ti(j +n) =
i(j) + n for all n. We introduce a (k,n)-bounded affine permutation t ,, : Z — Z,
determined by

) ]+n ifl1<j<k,
Tn(J) =
” iftk+1<j<n.

Recall that Qg , := {(v.w) € S, x S, | v < w and w is k-Grassmannian}. The
following result explains the bijection (v, w) — f, ., introduced in Proposition 1.10.

PROPOSITION 4.2 ([77, Proposition 3.15])

For every [ € By, there exists a unique pair (v, w) € Qg , such that f =wotg,o
~—1
v

Here, “o” denotes the usual composition of bijections Z — Z. We thus define
Jow =wWoTE,00D ~1. Furthermore, we have the following relationship between
positroid and Richardson varieties.

PROPOSITION 4.3 ([77, Theorem 5.9])

Let G = PGL,(C). For each f = fyw € Bk, the natural projection map Fl(n) —
Gr(k, n) restricts to an isomorphism Ry ,, = H°f Thus, open positroid varieties are
special cases of open Richardson varieties.

4.2. Torus action and Richardson varieties

The goal of this section is to prove Proposition 1.6. We start by generalizing one direc-
tion to Richardson varieties of arbitrary type; the type A specialization is discussed
below. Let G be a complex semisimple algebraic group of adjoint type and of rank r,

and let G denote the simply-connected group of the same Dynkin type. We use the
notation 7', B, U for the corresponding subgroups of G.
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Let us give a convenient well-known description (see [16, Theorem 2.3], [85,
Lemma 2.2], or [46, Lemma 3.1]) of jow as an explicit affine variety. For v e W =
Ng(T)/T, let v € G denote an arbitrary fixed representative. For v < w, denote

Ny, :=dU-NU-% N BwB. (4.2)

Observe that the set Bw B does not depend on the choice of a representative for w.

LEMMA 4.4
The map g +— gB / B provides an isomorphism

N3 w— R, 4.3)

For u € W, let u(u) denote the dimension of the eigenspace with eigenvalue 1
for u acting on h*. We say that u € W is elliptic if u(u) = 0.

Let P denote the weight lattice of the root system of G (i.e., the character lattice
of G), and let Q C P denote the root lattice (i.e., the character lattice of G). We let
1, ...,or € P denote the fundamental weights. For u € W, we note that (u —id) P €
0.

Fory,8 € P,let A, s denote the corresponding generalized minor (see [12], [39])
for G. The condition that g € Bw B implies that

Awow; 0, () #0 fori=1,2,...,r. 4.4)

Indeed, by [39, Definition 1.4], we have Ay, 0, (&) = Aw, o; (w™1g) for a certain

representative w—! € G of w™L, so (4.4) follows from [39, Proposition 2.9, Corol-
lary 2.5].

PROPOSITION 4.5
Suppose that vw™ is elliptic and (vw™' —id)P = Q. Then T acts freely on Ry
and we have a T -equivariant isomorphism

ow = (R, /T) xT.
Proof
Define
Nyt i={x € Ny | Ay wer (§) =1fori =1,2,....r}.
. o,A=1 ° ° o,A=1

We will show that Ny, = Ry ,,/T and Ry ,, = Ny xT.

The action of 7" on Ry ,, corresponds to the action 7 - g := tgv~ 171 fort €
T and g € Ny w-Let Yo =Apw: T — C denote the character corresponding to a

weight w € P. Then
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Aww,—,w,— (tgi}_lt_li}) = Xwo; ([)Xwi (b_lt_ll})Aww,-,wi (&)-

Since xo; (V11710) = yye; (171), the weight of this generalized minor is (w —
v)w; = —v(id — v~ 'w)w;. The condition w(vw™') = 0 implies that id — v~ w is
invertible. The condition (vw™! —id)P = Q implies that (id — v™'w)w;, (id —
v ')y, ..., (id — v 'w)w, form a Z-basis of Q. Since Q is the character lattice
of T, it follows that the action of 7 on N;,w is free and that the functions Ay, o,
i =1,2,...,r, can be simultaneously set to 1 by a unique element ¢ € T. It follows
that Nyw =" = RS, /T and RS, = Nyop =" x T. 0
Remark 4.6

It would be interesting to classify elliptic elements u € W satisfying the condition
(u —id) P = @, which depends only on the conjugacy class of u. It is not satisfied
for all elliptic elements. For example, in type D4, the longest element wg acts by —id

on h*, but we have 2P C Q since & ¢ P foranyi € I.

PROPOSITION 4.7
Suppose that ¢ € W is a Coxeter element. Then c is elliptic and satisfies (¢ —id) P =

0.

Proof

We may assume that ¢ is a standard Coxeter element. That is, ¢ = 515, - -5, where s;
are simple generators corresponding to positive simple roots a1, . .., ®,. Define roots
B1 =01, B2 =512, ..., 0r =81852---Sr—1&;. By [82, Lemma 10.2], ¢ is elliptic. By
[82, Proposition 10.5], we have (id — ¢)w; = B; € o; + qu Zoj. 1t follows that
(c—id)P =P;_, Za; = Q. O

Let us now consider the type A case, where G = PGL,,(C) and G = SL,(C). For
a permutation u € S,, any of the following conditions are equivalent: (i) u is a single
cycle, (i1) u is an elliptic element, and (iii) u is a Coxeter element. Each generalized
minor Ay, uew; : G — C is the usual matrix minor with row set {1,2,...,i} and col-
umn set {u(1),u(2),...,u(i)}. The representative ¥ in (4.2) may be chosen to be a
signed permutation matrix of v. In the next result, c(-) denotes the number of cycles
of a permutation (cf. (1.9); as opposed the Coxeter element ¢ considered above).

COROLLARY 4.8
Forall v <w € Sy, such that c(wv~") = 1, the T-action on Ry ., is free and we have
a T -equivariant isomorphism

RS, = (RS, /T)xT.
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Remark 4.9
When Ry, = IT% (see Proposition 4.3), the functions Apy,ijw(1,i] on Ny, = Ry,

coincide with the Pliicker coordinates on H‘j’, corresponding to the Grassmann neck-
lace of f (see the proof of [46, Lemma 4.7]). In particular, for f = fi ,, these are
the cyclically consecutive maximal minors as in (1.4).

Proof of Proposition 1.6

If ¢(f) =1, then T acts freely on H;, by Corollary 4.8. We prove the converse. For
Jf €Bg . letus construct a particular representative X }“i“ € H;. If f(i) =i for some
i € Z, then the corresponding column is zero, so we may assume that f(i) # i for all
i.Let us write f_ in cycle notation:

S =(a1az2--am ) @m;+1am 42 Amy) -+ (Am,+1+*aAn)

so that the minimal index of each cycle comes first. We label these indices left to
right: set A(a;) :=1,and fori =1,2,...,n — 1, set A(a;+1) = Aa;) if a; < ajqq
and they belong to the same cycle, and A(a;+1) = A(a;) + 1 otherwise. It is easy to
check that A(a,) = k. The element X }‘i“ is the row span of the k x n matrix M =
(m;,j) whose only nonzero entries are m)(4,;),q; = 1. One checks using (4.1) that
X }‘i“ € H‘}. Furthermore, rescaling all columns that belong to a single cycle of f by
the same value preserves the element X }nin. Therefore when ¢( f) > 1, the T-action
on H} is not free. O

4.3. Mixed Hodge structure
We follow the conventions of [83] (see [29] and [101] for further background). The
results of [83] apply to cluster varieties. It was shown in [46] that open positroid
varieties l'[‘j’(, f € By, are cluster varieties. By [46, Lemma 3.6], setting the functions
Aww; w; to 1 as we did in the proof of Proposition 4.5 corresponds to setting the frozen
variables to 1 in the cluster structure on H'}. Thus, for f € Bi;l, H‘} /T is a cluster
variety with no frozen variables.

Consider a smooth complex algebraic variety Y of dimension d. By [101,
Lemma-Definition 3.4], the cohomology H k(y,C) and the compactly supported
cohomology H, Ck (Y, C) are endowed with a Deligne splitting

HY(Y.C)= @ H*P9¥.C) and  HF(Y.C)= @ HF P9 (Y,0).
P.4€L D.q€L

This splitting is functorial and satisfies the Poincaré duality (see [101, Theorem
6.23]):

H*PD(y,C) =~ H247*@=Pd=0)(y C) forall k, p.q € Z. (4.5)
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We say that the cohomology of Y is of Hodge—Tate type if H*?-9(Y,C) =0
whenever p # ¢. The notions of mixed Hodge structure and Hodge-Tate type also
apply to equivariant cohomology.

Definition 4.10
Let Y be a d-dimensional complex variety whose cohomology is of Hodge—Tate type.
Define its mixed Hodge polynomial # (Y ;q,t) € N[g 3, t%] by

P(Yiq.0):= Y ¢~ 5F dim HFPP(v.0). (4.6)
k,peZ

We have H*(:P)(Y,C) = 0 for p > k. By convention, we set H*"") (Y, C) :=
0 forr ¢ Z.

It is convenient to record the dimensions of the spaces H*(7-?) (Y, C) in a mixed
Hodge table: the columns are labeled by H O H! . H d, while the rows are labeled
by k—p =0,1,2,.... Thus, an entry in a column labeled by H* and in a row labeled
by k — p encodes the dimension of H*:(7-P)(Y, C). Examples of mixed Hodge tables
are given in Tables |1 and 3, and in [83, Section 6]. For instance, we see from (4.6)
that the two rows of Table 1 yield

PM5e/T:q.1) = (q* + ¢t + ¢*t* + qt° +1*) + (¢°1 + q1?),

confirming the computation in Example 1.9.

We say that a polynomial P(q,t) € N[q%,t%] is g, t-symmetric if P(q,t) =
P(t,q). We say that P is ¢, t-unimodal if for each a,b € %Z, the coefficients
([¢% %12 +%)P) ez form a unimodal sequence.” Recall that Theorem 1.18, proved
in Section 8.2, states that the polynomial & (R q,t) is q,t-symmetric for all
v<weW.

A special case of Theorem 1.18 for positroid varieties follows from the curious
Lefschetz theorem proved in [83, Theorem 8.3]. We say that a 2d -dimensional com-
plex algebraic variety Y of Hodge—Tate type satisfies the curious Lefschetz theorem
if there is a class y € H?®2) (Y, C) inducing isomorphisms

o .
v,w?

— yd=P . grsr)(y C) = g2-pts2d=p2d=p)(y (). 4.7)

As explained in [83], for cluster varieties, one can choose y to be the Gekhtman—
Shapiro—Vainshtein form in [51]. In the case that er is odd-dimensional, the product
H‘} x C* will satisfy (4.7), and using the Kiinneth theorem, unimodality and symme-
try for !P(H};q, t) can be deduced.

This property is sometimes called parity unimodality since the terms with integer degrees and with half-integer
degrees are required to form separate unimodal sequences.
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The curious Lefschetz theorem for positroid varieties relies on the fact that they
admit cluster structures (see [46]), which is not yet available for Richardson varieties.
Another consequence of the curious Lefschetz property is that ?(H};q, t)is q,t-
unimodal. The question of whether & (Ry ,,;¢,1) is g, ¢-unimodal for arbitrary v <
w € W remains open.

4.4. Proof of Theorem 1.1 from Theorem 1.17
Let G =PGL,(C) and f = fyu € Bi,znl; thus, we have R}, = H‘}. We set

byw = L(w) —€(v) = dim(R} ) = dim(TT%),
df :=dim(X%) =Ly —n + 1.

Since ¢(f) =1, wehave dr =2y(B ) by (3.12), and the T -action on H;, is free by
Proposition 1.6. In this case, we have

H;,tn—l,(P,P)(H?) ~ Hf,(p,p)(x;) ~ H2df_k’(df_p’df —p)(x;)’ (48)

where the first isomorphism is Lemma 4.14 below, and the second isomorphism is the
Poincaré duality (4.5).
Therefore, (1.22) yields

P(X5:q.1) = (2D LB riq.1). (4.9)

This is a special case of (1.24), which is proved in a similar way in Section 8.1. In
the case f = fi, and ged(k,n) =1, Remark 1.14 implies that ,3 £ is a torus knot,
for which the right-hand side of (4.9) was shown by Mellit [92] to coincide with
Ci.n—k(g.t). Thus, Theorem 1.1 follows from Theorem 1.17.

4.5. Mixed Hodge structures of open Richardson varieties

THEOREM 4.11
For any v < w € W, the cohomology H*(Ry ,,,
mology H?(R; ,,.C), and the compactly supported T-equivariant cohomology

v,w?

Hp (R} ,,.C) of Ry ,, are of Hodge-Tate type.

v,w’

C), the compactly supported coho-

We have omitted equivariant cohomology H7(Rj; ,,,C) from Theorem 4.11
because the statement of Poincaré duality in the equivariant setting is considerably

more complicated than for ordinary cohomology.
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LEMMA 4.12
Let Y be a complex algebraic variety, let U C Y be an open subvariety, and let
Z =Y \ U. Suppose that the compactly supported cohomologies of U and Z are of
Hodge—Tate type. Then the same is true for Y .

The same statement holds for compactly supported T -equivariant cohomology
with the assumption that U, Z are T -stable.

Proof
We have a Gysin long exact sequence for the triple (Y, Z, U) (see, e.g., [101, (B-15)]):

= HNU,C) > H¥(Y,C) > H}(z,C) > HF Y (U, C) > -, (4.10)

the maps of which respect the mixed Hodge structure (see [28, Theorem 4.1]).
Taking the (p, g) piece of the Deligne splitting, we have

e Hc{c,(p,q)(U’ C) —> Hck,(p,q)(K C) - Hck’(”’Q)(Z,(C) N

By assumption, when p # ¢, we have H*®? (U, C) = 0 = HF?9(Z,C). Thus,
Hck (p.a) (Y, C) = 0. The same proof applies in compactly supported equivariant coho-
mology. O

Proof of Theorem 4.11

Since Ry ,, is smooth, by (4.5) it suffices to show that the compactly supported coho-
mology and the compactly supported equivariant cohomology are of Hodge—Tate
type.

We will prove the statement by induction on £y,,, = dim(Ry ,,). The statement
clearly holds if £y, = 0, for then Ry ,, is a point. We will use a recursion for the
varieties Rﬁ’w from [106]. By [106, Lemma 4.3.1, Proof of Proposition 4.3.6], for any
open Richardson Y = R}, with w > v, we can find a decomposition ¥ = U U Z,
where U C Y isopenand Z C Y is closed, and we have isomorphisms

Z>=Y' xCU=Y"xC*, 4.11)

where Y’, Y” are open Richardson varieties of lower dimension, and Z is possi-
bly empty. Furthermore, U, Z are T-stable and the isomorphisms (4.11) are torus-
equivariant, for certain linear actions of 7 on C, C*. By the Kiinneth formula, the
Hodge-Tate type property is preserved under products. By the inductive hypothesis,
the compactly supported (equivariant) cohomology of U and of Z (when nonempty)
are therefore of Hodge—Tate type. It follows that the same statement holds for Y. [

The following corollary of Theorem 4.11 also follows from combining [83, The-
orem 8.3] and [46].



2158 GALASHIN and LAM

COROLLARY 4.13
Forall f € By p, the cohomology of H‘j’, is of Hodge-Tate type. If c(f) = 1, then the
cohomology of H‘} /T is also of Hodge—Tate type.

Proof
For the second statement, we note that 7" acts freely on 1'[;’r by Corollary 4.8. Thus,
Hp(I1%,C) = H'(I'I‘}/ T, C) is of Hodge-Tate type by Theorem 4.11. O

When computing examples in the next section, we shall repeatedly use the fol-
lowing result.

LEMMA 4.14
Suppose that T acts freely on a complex algebraic variety Y, and let d := dim¢(T).
Then we have an isomorphism of mixed Hodge structures

HyH PO (y,C) = HEPD(Y/T.C) forallk.p.q <,
and the action of Hy (pt,C) on H}, (Y. C) is trivial (i.e., factors through the map
Hy (pt.C) — H2(pt,C) = C).

Proof
Suppose that 7 = (C*)¢, and let E,, := (C™ \ {0})¢ be a finite-dimensional approx-
imation to a contractible space ET where T acts freely. Then by definition

Hf(Y) = lim HE(Y x1 Ep)
= lim H*(Y/T x Ep,)
m—00

= lim @ HS/(Y/T)® H/(En) by the Kiinneth formula
m—00 -
J

= H9(Y/T).

We have used the fact that H(C™ \ {0}) is C in dimensions 1 and 2m and van-
ishes in other dimensions. Since H}!(C™ \ {0}) is of type (0, 0), the isomorphism is
compatible with mixed Hodge structures. O

4.6. Examples

We compute the compactly supported torus-equivariant cohomology of some open
Richardson varieties, corresponding to the examples computed in Section 3.6. As in
Section 3.6, we label each example by the link associated to the Richardson variety.
Using Table 2, one can compare the examples below with the ones in Section 3.6
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and observe that the computations agree with our main results, Theorems 1.16 and
1.17.

Recall that we say that the action of R = C[b] is #rivial if h* acts by zero. We
identify R with H7 (pt,C).

Example 4.15 (Unknot-I)
Letn = 1and v = w = id, and thus £, ,, = 0. Then Rg,w =~ T = pt, and the T -action
is free. The only nonzero terms in the cohomology are

HOCOpt) = £ (o) = 1O (p) = C. 4.12)

As in Example 3.14, the R = C-module structure on H;, - (pt) is trivial (since T acts
freely).

Example 4.16 (Unknot-II)
Letn =2, v =1id, and w = 51, and thus £, ,, = 1. Then Ry, = Hcf,z C Gr(1,2) and
we have R}, = T =~ C*. The T-action is free and R} , /T = pt. Using Poincaré

duality (4.5) and Lemma 4.14, we find that the only nonzero terms are
HO%©0C*) = L) ~C,
HXOD(C*) = FHO9(C*)~C,  and (4.13)
OO =C.

As in Example 3.15, the R = C[y;]-module structure on Hy. .(Ry ) is trivial (since

T acts freely).

Example 4.17 (2-component unlink)

Letn =2, v =s;, and w = 51, and thus £, ,, = 0. We have Rs’w ~ptand T = C*.
The T'-action is not free. We have already computed H ®(pt) and H;, () in (4.12).
The nonzero terms of Hy. .(Ry ) = H{. . (pt) are given by

H%f;’(p’p)(pt) ~C forp=0,1,2,....

As in Example 3.17, we have Hy. (R} ) = H7 .(pt) = R as an R-module.

Example 4.18 (Hopf link)
Letn =4, v =1id, w = f2 4 = 52515352, and thus £, ,, = 4. We have Y := Rs’w >~
I3 , C Gr(2,4), an open positroid variety of dimension 4. It is isomorphic to

1 0 a b
Y:{(Olcd)

(a,b,c,d)eC*:a#0,d #O,ad—bc;éo}.
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The action of 7 = (C*)3 on Y is not free: T acts by rescaling rows and columns
in such a way that the first two columns form the identity matrix. There exists a 2-
dimensional torus 7" C T that acts freely on Y'; for example, one can always rescale
columns 3 and 4 uniquely (since a,d # 0) to force the minors A, 3 and Ay 4 to be

L (1 0 =1 —y
Y/T={(01 x o1

The quotient Y/ T’ can be identified with the 2-dimensional A;-cluster variety (with
one frozen variable; cf. [83, Section 6.1]). We denote it by

equal to 1:

(x,y)eCz:xyyél}.

U:=Y/T ={(x,y)eC?|xy#1} CC>

The action of T/ T’ can be identified with the action of C* on U with A - (x,y) =
(Ax,A71y) for A € C* and (x, y) € C2. Forgetting this torus action, it was shown in
[83, Corollary 7.2] that U is homotopy equivalent’ to a pinched torus:

Therefore the Betti numbers of U are (1,1, 1), and moreover we have (see [83, Sec-
tion 6.1])

HOOOQU) ~ gD (U) = H*@D(U) ~C.

We have Y = U x (C*)2, which corresponds to multiplying the mixed Hodge poly-
nomial of U by (q% + t%)z. The resulting mixed Hodge table of Y, whose sole row
contains the coefficients of the polynomial (¢ + q%t% +1)- (q% + t%)z, is given in
Table 3 (top left).

Let us return to computing the C*-equivariant cohomology of U. Denote W :=
C2, and let Z := W \ U be the hyperbola {(x,y) | xy = 1}. We first compute the
compactly supported equivariant cohomologies H¢. (Y) and Hix (Z). Set R :=
HZ. (pt).

First, suppose that C* acts on C™ linearly in any way. Then it follows directly
from the definitions that H é*’ -(C™) is a free R-module with generator in degree 2m.
Specifically, all nonzero terms are given by

7We caution the reader that neither the compactly supported cohomology nor the mixed Hodge structure are
preserved by homotopy equivalences.
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2
HRm ARkt (cmy ~ € fork =0,1,2,.... (4.14)

Next, observe that the variety Z is C*-equivariantly isomorphic to the variety C*
on which C* acts freely. By (4.14),

HEOY(z) = . (4.15)

Now we compute H, '*’ -(U). The Gysin sequence (4.10) for the triple (W, Z,U)
gives

0— Hew o(U) = How o(W) = Hev o(2)
= Hee o(U) = Hee o (W) = Hee ((Z) =+
Applying (4.14)—(4.15), we get
0— H .(U)—>0—0— H¢e ((U) > 0—C— He. ,(U)>0—0
— H ((U)> 00— H ((U) > C—>0— Hee ((U)>0—>0—--
We conclude that the nonzero terms of H¢. .(U) are given by

HZOOWy=C  and  HIPZFCHOO@W)xC fork=0.1.2,....

By the same computation as in the proof of Lemma 4.14, we have Hr. k+2 P, q)(Y ) =

Hé*(f: q)(U ). Thus, the nonzero terms of Hy. .(Y') are

H; “’ Dy)~C  and
(4.16)

H;Jcrzk,(z+k,z+k>(y) ~C fork=01.2.....

Recall that £, ,, = 4. In view of (1.22), the dimensions in (4.16) match perfectly with
those computed in (3.18) from the Soergel bimodule perspective.

Remark 4.19

We observe that the R = C[y;]-module structure on Hy. .(Y) also agrees with that
computed in (3.18). More generally, for W = S, Corollary 4.8 can be extended to
arbitrary open Richardson varieties Rj ,,: we have a subtorus 7" C T of dimension
n —c(p) acting freely on Ry ,,, and Hy (Ry,,) = H}/T/,C(Rg,w/T’). Recall from
Section 3.4 that we may therefore view both sides of (1.21) as graded modules over
a polynomial ring R in ¢(f8) — 1 variables, and we expect that these R-modules are
isomorphic under the grading change (1.22).

It would be interesting to combine Example 4.18 with [83] to obtain a description
of the equivariant cohomology of more general cluster varieties.
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Example 4.20 (Trefoil knot)

Letn =5, v=id, w = f2,5 = §35251545352, and thus £, ,, = 6. We have Rv w =
I3 5, on which the torus 7" = (C*)? acts freely. As explained in Remark 4.9, the
quotient is obtained by fixing the cyclically consecutive maximal minors to 1. An
explicit parameterization can be chosen as follows:

10 -1 - Lt
M3 /T = yoow
’ 01 x xy—1 1

¥ 1 0 -1 1 z

01 -1 0 1
Observe that the point count therefore equals (¢> —q¢ +1) +g=¢*>+1=¢q -
C2,3(q,1/q). The variety I15 /T is a 2-dimensional cluster variety of type A» with

no frozen variables. Its cohomology was computed in [83, Section 6.2]: the nonzero
terms are

(x,y)e@z:xy#l}

ZE(C}.

HOOO(TS 5/ T) =~ H>®2(T15 5/T) = C

Multiplying the mixed Hodge polynomial by (q% + 15)4, we see that the mixed
Hodge table of II7 5 is given in Table 3 (top right). By (4.5) and Lemma 4.14, we
find

H2OOMS ) = HFCD(M5 )= C  and
HyO(115 ) = HEPP (115 5) = C.

As in Example 3.21, the R-module structure on Hz (Rj ,,) is trivial (since T acts
freely).

We now give three examples of Richardson and positroid knots with nonvanishing
odd cohomology, as promised in Section 1.12.5. Here by a positroid knot we mean a
knot of the form f s for f € B{S!.

Example 4.21 (0Odd cohomology-I)

Letn =5, v =s3,and w = 5253545351521, and thus £, ,, = 6 and c(wv™')=1.The
Richardson knot B, ,, is the 3-twist knot, listed as 5, in Rolfsen’s table (see [108]).
By (2.3), the point count is given by

#(Ry ,/T)VF) =q>—q + 1.

The appearance of —¢g implies that the cohomology of Ry ,,/T cannot be concen-
trated in even degrees.
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The following two examples of positroid knots were discovered by David Speyer
jointly with the second author.

Example 4.22 (Odd cohomology-I1)

Letk=7,n=14,andlet f = f, 4 € Bfnl and v < w € §, be given by
f=13,8,9,16,7,14,15,20,12,18, 13,24, 19, 25],
v=(2,1,8,4,6,3,11,9,10,5,7,13,14,12),
w=(8,9,10,1,11,12,2,3,13,4,14,5,6,7).

Here v and w are given in one-line notation, and f = [f(1), f(2),..., f(n)] is given

in window notation. The permutation w is 7-Grassmannian, and we have ¢( f ) =1,
£(v) =19, £(w) = 40, and d y = 8. The mixed Hodge table of X; is given by

Hk HY | H!' | H2 | H3 | H* | H5S | H® | H" | HB
k—p=0]| 1 0 1 0 1 0 1 0 1
k—p=1 1 1 1

5

In particular, H~ is nonvanishing.

Example 4.23 (Odd cohomology-III)

Letk =7,n=14,andlet f = f,» € B{ ! and v < w € S, be given by
f=1[7,4,1513,11,8,19,16,14,12,23,20, 17, 24],
v=(1,3,6,9,2,58,12,4,7,11, 14,10, 13),
w=(8,9,1,10,11,12,2,3,13,14,4,5,6,7).

Similarly, w is 7-Grassmannian, c(f) =1, L) =19, {(w) = 40, and dy =8.One

can easily compute (e.g., using Theorem 1.13) that the point count is given by
#X5F) =q° +q4°+3¢° —q¢* +3¢° + > + 1.

Similarly to Example 4.21, this polynomial has a negative term, and therefore the odd

cohomology does not vanish.

Remark 4.24

Ivan Cherednik has suggested to us that one might expect odd cohomology vanishing
for algebraic knots (see [102] and [23, Section 3.4]). The knot 5, in Example 4.21 is
not algebraic. We thank the anonymous referee for pointing out to us that the positroid
knot in Example 4.22 is also not algebraic.
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5. Equivariant derived categories of flag varieties

Rather than working with mixed Hodge structures, our proof will be mostly stated in
the language of weights (see [30]) on étale cohomology.® We assume that the reader
is familiar with derived categories of £-adic sheaves in the equivariant setting (see,
e.g., [10], [13], [84] for relevant background).

5.1. Conventions

Fix a prime power g. We shall consider schemes over the finite field I, and its alge-
braic closure Fq. For an F;-scheme Y, let YF,, =Y Xspec(Fy) Spec(Fq) denote the
base change to an F,-scheme. We have the Frobenius automorphism Fr : Yg, = 15,
whose fixed points are exactly the points of Y5, defined over Fy.

Fix a prime number £ different from the characteristic of F,, and let k := @g. Let
H be an algebraic group acting on an [F-variety Y. We consider the bounded derived
category Dt(’H) (Y, k) of mixed H -constructible (i.e., constructible along H -orbits) k-
sheaves on Y, as well as the corresponding category D?H)(Yﬁq ,k) of H -constructible
k-sheaves on Yg, (see [10]). We also let Dt}q (Y,k) and DE}I(YE,[k) denote the cor-
responding H -equivariant bounded derived categories as in [13] (see also [130] for
a discussion of mixed derived categories in the equivariant setting). There are func-
tors For : DY, (¥g,.l) — Dt()H)(YF,, ,k) and For : DY, (Y, k) — Dl(’H)(Y, k) forgetting
the equivariant structure. There are also functors w : Dl(’ H)(Y, k) — Dl(’ H)(YE, ,k) and
w: D'}I Y, k) — Dt}{(YFq , k) obtained by extension of scalars from [, to Fq.

The language of algebraic stacks [84] allows us to switch between ordinary and
equivariant derived categories at our convenience. For example, DP([Y/H], k) =~
DY, (Y, k).

We denote by [m] the cohomological shift m steps to the left in a derived category
as in Section 3.2. For #,9 € DY (Y. k) and k € Z, let

Ext*(¥.,6) =Ext}(F.9) := Homyy, (v 19 (0F w8lk]) forkeZ. (5.1)

The space HomD»}i ¥: (@F ,wg[k]) has a natural action of the Frobenius Fr.
.

Therefore, Ext®(F,%) is a graded H}, (pt,k)-module equipped with an action of

Fr, or in other words, an (H; (pt, k), Fr)-module. The actual extension groups in

Dt}_I(Y, k) are denoted by ext*(#,¢), and are related to Extk (7., 9) by the exact

sequence (see [10, (5.1.2.5)])

0— Ext"Y(F,9)m — ext' (F,8) —» Ext' (¥,6)" >0, (5.2)

8 As pointed out to us by Wolfgang Soergel, our results could also be formulated using the language of equivariant
mixed Tate motives (see [120]).
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where Ext! (¥,9)™ and Ext’ (¥ ,9)g denote Frobenius invariants and coinvari-
ants, respectively. We denote by hom(F , 9) = ext®(F,9) = HomDn;I . (F.9) the
Hom groups in DY, (Y, k).

We fix an isomorphism k 2 C and denote by |A| the norm of A € k considered
as an element of C. If M is an Fr-module, then the weights of Fr on M are the real
numbers 2log(1)/log(q) for A an eigenvalue of the action of Fr. All weights we
consider will be integers: the cohomology sheaves of an object ¥ € D'(’H)(Y, k) are
required to have punctual integer weights (see Section [10, 5.1.5]). We fix a square
root (1/2) of the Tate twist, and for ¥ € D, (Y, k) and r € Z, we denote by F (r/2)
the corresponding Tate twist of ¥ .

Recall (see [10, Section 5.1]) that ¥ € D'},(Y, k) has weights at most r if for
each i the sheaf H'(¥) has mixed punctual weights at most r + i. We say that
¥ € DY% (Y. k) has weights at least r if the Verdier dual DF has mixed punctual
weights at most —r. Finally, we say that ¥ € DY, (Y,k) is pure of weight r if it has
weights at most » and weights at least r. If ¥ is pure of weight r, then ¥[1] is pure
of weight 4 1, while ¥ (1/2) is pure of weight r — 1.

For an integer r € Z, we denote by Ext©*0/2(% €) c Ext*(#, ) the general-
ized eigenspace for Fr of weight 7. Thus,

Ext(7.9) = @ Ext*/2(7.9). (5.3)

k,rez
Forall ¥,8 € D'}{(Y, k) and k, k', r,r’ € Z, we have
Extt /D (F k(=1 /2), 8) = ExtP D (F [k /2))
~ Extk+k/,((r+r/)/2) (?" g)
5.2. Equivariant cohomology

For ¥ € DY%(Y.k), the equivariant hypercohomology HS}, (F) = H$, (Y, %) is
defined by

HS, (F) := Ext® (ky , 7). (5.5)

In particular, we have Hl;,(r/z) (FK')(r'/2) = H];;k/’((rﬂ/)/z)(?).

Let 7 : Y — pt:= Spec(F,) be the projection to a point. By definition, the H -
equivariant conomology H 7, (Y, k) and the compactly supported H -equivariant coho-
mology Hp; .(Y,k) of Y are given by

HI:I(Y’ Ik) = ;—I(Y’kY) = ;J(Pt, ﬂ*ky) and
Hyp (Y, k) := Hy (pt, mky).

Both Hp, (Y, k) and HI.I, (Y. k) are graded (H , (pt, k), Fr)-modules.

(5.6)
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5.3. Flag varieties
We fix a semisimple algebraic group G, split over I, and a maximal torus and a Borel
subgroup T C B C G. Let X = G/B be the flag variety over F,, and let XFq =

X Xspec(F,) SpeC (Fq) be obtained by extending scalars. The variety X is stratified by
B-orbits X, := BwB/B (known as Schubert cells):

X =] Xo.

weW

Let R = H 3 (pt. k) = k[b].

Remark 5.1

We switch from working over R = C[h] to R = k[h]. The results in Section 3 do not
depend on the field as long as it is of characteristic zero. Therefore on the Soergel
bimodule side, one can freely switch between working over C and over k.

For w € W, we let iy, : )Ew — X be the inclusion map. Introduce the standard
and costandard sheaves Ay, Vy, € D‘}g (X, k) defined by

Awi=inkp [(@)](E@)/2)  and Yy i=in kg [6w)](Lw)/2).

o
Here, k)? denotes the constant sheaf on Xy,. The intersection cohomology sheaves
w

J€, € Dl}; (X, k) are defined using the intermediate extension functor i, 1«:

JEy = iw’!*ki [£(w)](€(w)/2).

w

Since we have D'}g (X, k) = D'};X (G, k), the equivariant cohomology H% (¥)
is a graded (R ® R, Fr)-module. Furthermore, there is a restriction functor Rest p :
Dtl’; (X, k) —> Dl} (X,k) (see [13]), and we also have the hypercohomology functor
H : D'} (X,k) — Hyp(pt) —mod. It is well known that H 3 (pt, k) = R = H(pt, k),
and furthermore we have

Rest g : DY (pt.k) = Db (pt,k)  and
B(X, F) = H7(X.Res, F)

(5.7)

for ¥ € D% (X, k).

5.4. Equivariant cohomology of open Richardson varieties
We split the proof of our main result into two parts. We will focus on the equivariant
case (Theorem 1.17). The proof of its nonequivariant version (Theorem 1.16) will
follow as a byproduct, and will be discussed in Section 8.1.

Recall from Section 1.9 that our goal is to show the following result.
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THEOREM 5.2
For allv <w € W, we have an isomorphism of bigraded R-modules

HHH(F; ) = H7 (R} ).
For all k, p € Z, it restricts to an isomorphism

. Ly w+2p+k,(p, o
H*O (HHO(F},)) = Hyw 2P0 (ge )

of vector spaces.

We will accomplish this in two steps. The first one is an equivariant version of
[106, Proposition 4.2.1].

PROPOSITION 5.3
For all v <w € W, we have an isomorphism of bigraded R-modules

H}’C(Ri’w) >~ Ext®(Ay, Ay).
For all m,r € Z, it restricts to an isomorphism
Ly wtm,(r/2,r/2 o ~ S\\F—=Ly,w
Hyow ORI (Re |y o Ext b/ D (A, A)

of vector spaces. (In particular, both sides are zero for odd r.)

The second step passes through the mixed equivariant derived category of [3]
and [4] and involves the degrading functor of [8] (see also [107]).

PROPOSITION 5.4
For all v <w € W, we have an isomorphism of bigraded R-modules

HHH(F; ) = Ext*(Ay, Aw).
For all k,r € Z, it restricts to an isomorphism
HECD(HHO(F) ) = Extm Ho—bow)/D (A, Ay,) (5.8)

of vector spaces. (In particular, both sides are zero for odd r.)

5.5. From weights to the mixed Hodge numbers

We briefly explain the standard relation between the mixed Hodge structure of the
complex variety Y¢ = (Rjy ,)c and the étale cohomology of the variety Yg =
(R w)F, - First, by the comparison theorem (see [95, Theorem 21.1]) between Betti
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cohomology and étale cohomology of Y, we have an isomorphism Hé‘cm(YC, k) =~
H ekt (Y¢, k) which preserves the weight filtration of both sides. Next, we find a discrete
valuation ring S C C with residue field F, and construct the Richardson variety Y
over S. Then Y¢ and YF,, are obtained from Yy via base change, and we obtain iso-
morphisms between the étale cohomologies H®*(Yc,k) = H*(Ys, k) = H .(YFq LK),
compatibly with the weight filtrations (see [95, Section 20]). For H '(Yﬁq,lk), the
weight filtration is obtained by taking sums of generalized eigenspaces of the Frobe-
nius Fr. Finally, the cohomology of Y¢ is of Hodge—Tate type, so the weight filtration
is simply given by W2" (H¥ (Y, C)) = D)< H*@-P) (Y, C). (All these statements
hold also equivariantly.) Summing up, we have the following.

PROPOSITION 5.5
Forallv<we W and k, p € Z, we have the equalities

dime H*PP((R] ,,)c. C) = dim HEP (R} )5, k).
. k,(p, o . k, o
dime HE P ((RS,)e. ©) = dimy HE P ((RS,)5, . k).

where H’Ti’c(p)((Rs’w)Fq,k) = Hl}’(p)(pt, mkgs ) = Extk’(P)(kpt,mkRs‘w) as in
(5.6).

See also [ 106, Remark 7.1.4], where a comparison between derived categories of
flag varieties is given.

6. Proof of Proposition 5.3
We follow the steps in the proof of [106, Proposition 4.2.1]. Using (5.4) and the
adjunction (i1, i,ﬂ), we find

Extm’((r_év’w)/z)(Av, Ayp) = Ext™((—tv.w)/2) (iv,!k)? 5iw,!k§ [gv,w]((v’w/z))
=~ Ext" o (7/2) (iu,!k)gv , iw,!k);w)

= Ext" e O (ks ik ).
Note that iéiw,!k)?w € D%()?v, k). By (5.5) and (5.7), we have
Ext® (kg iyiv kg ) 2 Hy(Xy iy ke ) 2 HF (Xy. iy ke ).

We now switch to working with T -equivariant derived categories. First, we state
a T-equivariant version of [ 116, Proposition 1]. Let Z be a T -variety, and letg : X —
Z be an inclusion of a closed T -subvariety. An action G, x Z — Z contracts Z to
X if there is a commutative diagram
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act

Gux2Z —— Z

|

actp

AlxZ — > 7

where i, j are the obvious maps and p oq = id, and all arrows are T -equivariant, with
T acting trivially on G,, and A!. Let 7 : G,, x Z — Z be the projection, and suppose
that € DY (Z) is G —equlvanant that is, satisfies act™(¥) = 7*(¥) € D (G x
Z). There is a natural morphism ¢' — py of functors (obtained by composing the
adjunction morphism ¢i¢' — id with p1) and we have the following.

PROPOSITION 6.1 (cf. [116, Proposition 1])
The map q'F — p\¥ is an isomorphism.

Leta: X » — ptand b : Ry, — pt be the projections (cf. Figure 3 (right)). Our
next goal is to manipulate the object lvlw’!k)? , in order to establish the following
result. "

LEMMA 6.2
We have if)iw,;k)?w o~ a*bykRgAw in DbT(Xv).

Proof
Recall that Xy, := (BwB)/B Denote X, := (B_vB)/B, and thus Ry ,, = Xw

X‘ Let Xy = | X be the closure of Xw, and denote R°_ =Xp N X LA

diagram of the various inclusions between the spaces X wo X v, Xuw,and X = G/B is

u<w

/\ )

Xu(—> Xw(—>X )%u(—>XU- R(L)“ X X Ro
L4 TN S
X w X X (—> R07 X X’U v,w ‘)%'U . pt

e

Lﬂ

o

Figure 3. Three commutative diagrams from [106].
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given in Figure 3 (left). With this notation, we have isomorphisms
. Kk S - ok ol K
lvlw,!_)?w = lv,wlwle]'U,!—)?w = lv,w]w,!_§w~
The first isomorphism follows from the usual composition rules for sheaf operations
- -
(see, e.g., [13, Section 1.4.2]). The second isomorphism follows from i i1 = id.
Consider the commutative diagram in Figure 3 (middle). The map & is given by
k(zB/B) = (vB/B.zB/B) and r is the obvious projection map. The map j, has

two components: the first one is the inclusion Ry ,, <> Rﬁ = and the second one is

the identity map X v =X v- The map j, : X w X w 18 the inclusion map as above. It
remains to define the maps j and j’. They have been considered in [73, Sectgon 1.4]
(see, e.g., [38] and [78] for further details). Observe that Ry ,, C R;,w C X, . The

maps j, j’ are the restrictions of a map ¢y, : b's o X X v <> X defined as follows. Recall
that U C B and U_ C B_ are the unipotent radicals of B and B_. Any element of X o
can be written uniquely as xvB/ B for an element x € U_ N vU_v~!. (These objects
do not depend on the choice of representative v of v.) Similarly, any element of X v
can be written uniquely as yvB/B for an element y € U N vU_v~'. We then define

¢v(xvB/B,yvB/B) := yxvB/B.

It is not hard to see (using Gausszan decomposztzon) that the map ¢, is m]ectlve and
yields an isomorphism ¢, : X X X — vB B/B. Moreover, if xvB/B € X for
some u € W, then we have byva/B € Xu since y € U C B. Thus, ¢, restricts to
an inclusion Ry, x Xy <> X, for each u € W. The map j’ is this inclusion for the

special case u := w. The map j is the restriction of ¢, to the union of Ry ,, x X v over
all u € W satisfying v <u < w.

The torus 7 acts on each space in each commutative diagram in Figure 3.
The action on the direct products Ry, X Xv and Rz,w X XU is given by ¢ -
(aB/B,bB/B) = (taB/B,tbB/B) for t € T. Notice that conjugation by ¢ pre-
serves each of the subgroups U, U_, and vU_v~ 1. Therefore for x e U_ NvU_v7L,
we have txvB/B = txt~'vB/B, where txt~! € U_ N vU_v~!, and similarly for
y € U NvU_v~!. Thus, the map ¢, is T-equivariant:

¢v(txvB/B,tyvB/B) =tyxvB/B.

We conclude that all maps in Figure 3 are T -equivariant.
The maps j, j’, jw, Jj,, in Figure 3 (middle) form a Cartesian square. We get the
following isomorphisms:

Jw'[k°)—k] Jw'U<°JNkJ ]w’[k°}—kavJ/*[k°)Nka|_Ro Xy
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The first and the last isomorphisms are trivial. The second isomorphism follows from
the fact that j is an open embedding (see [13, Section 1.4.5]). The third isomorphism
is the base change theorem (see [13, Section 1.4.6]).

We now apply Proposition 6.1 with g =k, and p =7, and ¥ = jl/UJkRg xR
The Gy, -action is the composition of the T"-action with the cocharacter )(;j : (Gz,,; —-T,
where p is a strictly dominant coweight satisfying (p, @) > 0 for any positive root «.
Since p is strictly dominant, this G,,-action extends to an Al-action by the same
argument as in [44, Section 8.2]. The A!-action is obviously compatible with the
T -action, and thus Proposition 6.1 applies.

We obtain

k'jl ok o xmj k

WAERS X X SR Xy
Applying base change to the Cartesian diagram in Figure 3 (right), we get

o = (mwo jink o = (mwo juhr*kgs =a*bkge . O

./
bl k
'Jw’!_Rﬁvwva SRSy x Xy

So far we have constructed an isomorphism

Extm,((r—zvvw)/Z) (AU, Au)) ~ H’]’}‘f‘eu,ws(r/Z) ()?v, a*b!kRg w)
. ' (6.1)
~ H';+ ”'w’(r/z)(pt,a*a*b!klgg w).

Since X v 1s an affine space that is T -equivariantly homotopy equivalent to a point
(cf. [116, Lemma 1]), the adjunction (a*,a,) induces an isomorphism of functors
asa™ — id, and thus

HY;'FZD,U),("/Z) (Pt, a*a*b!kRg!w) o~ H?‘Fev.w,("/z) (pt, b!kRg'w)’ (62)
which equals to H}'f jev’w’(r/ 2rf 2)(R3,w) by (5.6). All the isomorphisms are natural

(coming from sheaf operations) and thus (6.2) is compatible with the action of R on
both sides. This completes the proof of Proposition 5.3. O

7. Proof of Proposition 5.4

Recall from Remark 5.1 that we switch to working with Soergel bimodules over k,
so that for example R = k[h]. By definition, given a (graded) Soergel bimodule B =
€, B”, Fr acts diagonally on each B” by multiplication by ¢".

Equivariant derived categories are identified with categories of dg-modules in the
work of Bernstein and Lunts [13]. By using the formalism of Yun [15, Appendix B],
we avoid explicit mention of dg-modules in the situation of interest to us.

An (R, Fr)-module is an R-module M equipped with an action of ZFr such
that Fr(r - x) = Fr(r) - Fr(x) for x € M and r € R. The twist functor {m/2}
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sends a module M to the module M {m/2} where the action of Fr has been mul-
tiplied by ¢™/2. Let Dperf(R, Fr) denote the full triangulated subcategory of the
derived category of (R, Fr)-modules generated by half-integer twists of R. Accord-
ing to [15, Corollary B.4.1], we have an equivalence of triangulated categories
D% (pt, k) = Dper(R, Fr). Similarly, we define Dpers(R ® R, Fr) and have an equiva-
lence D%XB(pt, k) = Dpert(R ® R, Fr).

Recall that Homggi, includes only bimodule morphisms of degree zero. We let

Homggr(B, B') := @ Homggim (B, B'{-r/2})

rez

denote the space of morphisms of arbitrary degree. Thus, Homggr (B, B’) is an
(R,Fr)-module. Given a complex C*® € K°SBim, we regard Homggr(R,C*®)
(obtained by applying Homggr (R, —) termwise) as a complex of (R, Fr)-modules,
treated as an element of Dperf(R, Fr).

Now, for .8 € Dtl’g (X,k), let RHom(F,9) € Dl}; (X,k) denote the internal
derived hom. With 7 : G — pt, we define

RHom(¥,9) = RHomy (¥, %) := m. R¥om(F,§) € Dy (pt, k).

Thus, Hy (RHom(F ', §)) = Ext*(¥,9). We shall establish the following strengthen-
ing of Proposition 5.4.

PROPOSITION 7.1
We have

RHomy (A, (—£(v)/2). Ay (—£(w)/2)) = Homggr(R. Fy )

inside Dperr(R, Fr).

Proposition 5.4 follows from Proposition 7.1 by taking cohomology Hp :
Dtl’; (pt,k) — (Rgr, Fr) — mod, where (Rg, Fr) — mod denotes (cohomologically)
graded R-modules equipped with an Fr-action. The cohomological degree r + k on
the right-hand side of (5.8) appears since the functor H : Dperr(R, Fr) — (Rgr, Fr) —
mod sends the sum of the two gradings to the cohomological one (see [15, Corol-
lary B.4.1(1)]).

7.1. Realization functors
We record two results on realization functors taken from [ 1] (see also [8], [107]). For
a definition of a filtered version of a triangulated category, see [8, Definition A.1].
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PROPOSITION 7.2 ([ 1, Proposition 2.2])

Let T be a triangulated category that admits a filtered version T, and let A C T be
a full additive subcategory that admits no negative self-extensions. Then there is a
functor of triangulated categories

real : K°A — T

whose restriction to 4 is the inclusion functor.

PROPOSITION 7.3 ([ 1, Proposition 2.3])

Let 71 and T3 be triangulated categories admitting a filtered version, and let A1 C Tq
and A, C T be two full additive subcategories admitting no negative self-extensions.
Let F : 71 — T, be a triangulated functor that restricts to an additive functor Fy :
A1 — Ay If F lifts to a functor F 7 — T5, then the following diagram commutes
up to natural isomorphism:

K® — T
KbFO \L F
real
KPA, —— T

7.2. Semisimple complexes

Let Semisg(X) C D% (X, k) denote the additive subcategory generated by semisim-

ple complexes pure of weight 0. Thus, an object of Semisp (X) is a direct sum of the

twisted intersection cohomology sheaves d €y, [n](n/2) for w € W and n € Z.
Recall from Section 3.1 that S,, C By, denotes the indecomposable Soergel

bimodule indexed by w € W.

LEMMA 7.4
For ¥ .6 € Semisg(X), the Ext-group Ext' (¥, §) is pure of weight i forall i € Z.

Proof
This follows from [15, Lemma 3.1.5]. O

PROPOSITION 7.5
The hypercohomology functor induces an equivalence of additive categories

Hp : Semisp(X) — SBim,

enriched over R ® R, and sending J'C, to the shifted Soergel bimodule Sy,{—¢(w)}
and the twist [n](n/2) to the change of grading {—n/2}.
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Proof

By a well-known result of Soergel [119] (see also [36, Section 1.3] or [35, Sec-
tion 16.1]), we have Hp(d€y) = Sy, {—£(w)/2} as a graded (R ® R)-module. By
Lemma 7.4, the cohomological and weight gradings on Hpg ({ €,,) agree, and further-
more d€y[n](n/2) is sent to Sy, {—(£(w) + n)/2}. The result can then be deduced
from [15, Proposition 3.1.6]. O

The following result is well known (see [2] and [15, Lemma B.1.1]).

LEMMA 7.6
For ¥ ,6 € Semisg(X), the action of Fr on Ext*(¥,8) is semisimple. Furthermore,
we have

homypy, (x 1(F.9) = Ext’(7.,¢) ~ Ext®>© (7, ¥) (7.1)

and extt

D%(X’[k)(?,ﬁ) =0 fori <0.

7.3. The mixed derived category
Following [4], we define the mixed derived category
D3™(X) := K*(Semis (X))

to be the homotopy category of cochain complexes in Semisg(X). Define the Tate
twist of D'*(X) by

(n) :={—n/2}[-n].

where [n] : KP(Semisp (X)) — K(Semisp (X)) is the cohomological shift functor,
and {n/2} : Semisp(X) — Semisg(X) is the autoequivalence ¥ +> F [—n](—n/2).
By Proposition 7.5, we have an equivalence of triangulated categories

K°Hp : D*(X) — K°SBim.

THEOREM 7.7
There exists a triangulated realization functor

real : D3*(X) — D% (X, k),
restricting to the inclusion on Semispg(X), sending
[n]— 1], (n)—>@®/2),  {n/2}—[-n](-n/2),

such that the composition
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K :=woreal
satisfies
HomDnéiX(X)(?’, 9 (n)) = Ext>"/? (real 7, real9), (7.2)

P Hompy x (7§ (n)) = Ext’(real ¥, real§) = Hompy (y 3o (K F . 65).  (7.3)

nez

Furthermore, all functors are compatible with the (R ® R)-action on the correspond-
ing Ext®-groups.

Proof

By Lemma 7.6, Semisp(G/B) has no negative self-extensions. Since D‘}; (X,k)
admits a filtered version (see [8]), we may apply Proposition 7.2 to obtain a realiza-
tion functor

real : D*(X) — D% (X, k)

that restricts to the inclusion on Semisp(G/B). For ¥,§ € Semisp(X), the iso-
morphism (7.3) follows from (7.1) while (7.2) follows from (7.1) and (7.3), since
(n) : DBX(X) — D*(X) is sent to (1/2) : D% (X, k) — D% (X, k) by the realization
functor real. For ¥,9 € K®Semisg(X), (7.2)—(7.3) are proved by double induction
on the lengths of chain complexes representing ¥, §. (See [107, Section 4.1] for a
detailed argument.) O

7.4. Standard objects and Rouquier complexes

PROPOSITION 7.8
The composition real o Hg' : K®SBim — D% (X, k) takes F*(w) 10 Ay (—€(w)/2)
and F* ()~ 1o Vy (£(v)/2).

Note that Proposition 5.4 follows nearly immediately from Proposition 7.8 and
(7.2)—(7.3): since the realization functor sends [k]{—r/2} to [k + r](r/2), we have
H*CI (HHO(F,)) = Homoggim (R. Fy, [k]1{=7/2}))
=~ Ext" PR072) (A, Ay (—L(w)/2) * Vi (£(v)/2))
= Ext" PR0/2 (A, (—L(v)/2), Aw (—L(w)/2))
~ Ext" PR (=tow)/2 (A AL).

The second isomorphism above is obtained from the adjointness of the convolution
functors (—) * Ay(—£(v/2)) and (=) » V,(£(v)/2)) to be presently explained (see
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Lemma 7.10 for a stronger statement; see also (3.5)—(3.6) for a similar statement on
the Soergel bimodule side).

Proof of Proposition 7.8
We prove the claim for F*(w). The claim for F*(v)~! is similar.

There is a monoidal structure * : D% (X, k) x DS’B (X, k) —> D% (X, k) obtained
by convolution (see, e.g., [15, Section 3.2] or [4, Section 4.3]). By [15, Proposi-
tion 3.2.5], the additive subcategory Semisp(X) C D% (X, k) is preserved by convo-
lution. According to [15, Proposition 3.2.1], convolution * is sent by Hp to the tensor
product operation on SBim. Note that the derived tensor product in [15] reduces to
the tensor product on SBim since all Soergel bimodules are free as left (or right)
R-modules.

For a simple generator s € S, let ny : X = G/B — G/ P denote the projec-
tion to the partial flag variety, where P; D B denotes a minimal parabolic sub-
group, and let 65 : D% (X,k) — D%(X,k) denote the composition § = 7}y .
By [I5, Lemma 3.2.7] (see also [4, Lemma 4.3]), we have a natural isomor-
phism of functors 05 =~ (—) x 4€5[—1](—1/2), and 6 restricts to an endofunctor
Os : Semisg (X) — Semisg(X). It is well known (see [117, Korollar 2]) that the
equivalence Hp : Semisg(X) — SBim takes the functor 65 to the functor R ® gs (—).

Now, there is a natural morphism of functors ; — id arising from the adjunction
of 7} and 75 «. The map By — R in (3.4) arises by an analogous adjunction (see
[110, Section 3]). Now, J€, = A, and Hp(d€,) = R, and the morphism 6y — id
applied to 4 €, fits into the distinguished triangle

JEs[—1](—1/2) > JE€, — As(—1/2)
in Dtl’; (X, k) (see, e.g., [15, (C.4)] or [4, Lemma 4.1]). It follows that we have
real o Hy' (F*(s)) = As(—1/2). (7.4)

(See also [110, Proposition 5.3].) This establishes Proposition 7.8 in the case £(w) =
1. We then obtain a natural isomorphism of functors

((=) * Ag(—1/2)) oreal o Hy' = real o Hyz' o ((—) ® F(s)) (7.5)

from K*SBim to D% (X, k).
On the other hand, it is known (see [15, Lemma 3.2.2]) that if w = s15,---5;is a
reduced decomposition, then

Ay = Agp x Agy %% Ay,

is in D% (X, k). Combining (7.4) with (7.5), we find
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real o Hz' (F*(w)) 2 real o Hz' (F*(s1) ® --- ® F*(s¢))
& Ay (=1/2) % % Ay (=1/2) 2 Ay (—L(w)/2). O

7.5. Proof of Proposition 7.1

7.5.1
A functor F : Db(Y,k) — D?(Z k) is called geometric (see [2, Definition 6.6]) if
there is a natural transformation

RHomy (¥,%) - RHomz(F ¥, F§)
for ¥, € D?(Y,k). We shall apply the notion of a geometric functor for B-

equivariant derived categories.

LEMMA 7.9
The endofunctors (—) x» As(—1/2), (=) x Vs(1/2) : D% (X, k) —> Dl}; (X, k) are geo-
metric.

Proof

This is stated for the affine Grassmannian case in [2, Proposition 12.2]. The same
proof applies in the flag variety case. |
LEMMA 7.10

We have

RHom(A,, Ay) = RHom(A., Ay * V)
inside D% (pt, k).
Proof
By Lemma 7.9, for ,§ € D% (X, k), we have a map
RHom(¥ ,9) — RHom(F * Vi, § x V) (7.6)
and a map
RHom(F * V5,8 x Vi) > RHom(F » Vs x Ag, 8 x Vg x Ay) (7.7)

inside Dtl’g (pt, k). Convolution is associative and Vs * Ay = A, ([4, Proposition 4.4]),
and also (=) x A, is the identity functor. So composing (7.6) and (7.7), we get
an automorphism RHom(¥,¥9) =~ RHom(¥,9) inside D% (pt, k). It follows that
RHom(¥,%) =~ RHom(F * V4,9 x V). Choosing ¥ = A, and § = Ay, and
repeatedly applying this, we obtain the required statement. O
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We remark that we could have defined RHom(A,, Ay ) and RHom(A,, Ay * Vy)
as objects in D%X g(pt. k), but Lemma 7.10 would not hold. The functors (—) * A;
and (—) * Vs “commute” with only one of the B-actions.

7.5.2

Let t, : B < G be the inclusion, and let 7 : G/ B — {e} = pt be the projection. These
maps are B-equivariant. Now, the sheaf A, is supported on a single point {e¢} C G/B.
Thus, for any ¥ € D% (X, k), the object RH om(A,, F) € D% (X, k) is also supported
on {e}. The pullback ¢} and pushforward ¢, + are inverse equivalences of categories
between D% ({e}, k) and the full subcategory of D% (X, k) consisting of objects whose
cohomology sheaves are supported on {e}. Inside Dtl’; ({e}, k) = D% (pt, k), we thus
have

RHomy (A, ) = m RH omy (Ae, F)

(7.8)
~ (*RHomx (A, F) = RHomey (k.15 F) =15 F .

7.5.3

The equivalence D% (pt, k) 2 Dypers(R, Fr) (resp., D%, 5 (pt, k) = Dpers(R ® R, Fr))
sends objects pure of weight 0 to objects in Dperf(R, Fr) (resp., Dperf(R ® R, Fr)) con-
centrated in cohomological degree 0. For ¥ € Semisp (X ), we thus view the Soergel
bimodule Hpg (¥') as sitting inside Dperr(R ® R, Fr) in cohomological degree 0, that
is, as an object in Mod(R ® R, Fr).

LEMMA 7.11
For ¥ € Semisg(G/B), we have an isomorphism

;¥ ~Homggr(R.Hp(¥))

inside Mod(R, Fr).

Proof

For ¥ € Semisg(G/B), we have that (¥ =, ¥ is again pure of weight 0. Thus,
*F € DY (pt, k) can be identified with an element of Mod(R, Fr). By [15, Proposi-
tion 3.1.6] and (7.8), we have

HomR®R(R,HB(5‘7)) ~ Hp (RHom(Ae, ?)) = HB(LZ‘(F).

(Since ¢ ¥ is pure of weight 0, Hp(:;F) is simply the corresponding object in
Mod(R,Fr).) We conclude that ¢ ¥ =~ Homggr(R,Hp(¥)) inside Mod(R, Fr) and
the result follows. O
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We remark that Homrgr(R,Hp(F)) is free as an R-module (cf. [15, Lem-
ma 3.1.5]; see also Remark 3.4).

7.5.4
Recall that we have a realization functor real : K® Semisg(X) — D'jg (X, k). We now
have two functors from K° Semisp(X) to D% (pt, k). The functor

¥ oreal : K® Semis g (X) — D% (X, k) — D% (pt, k) (7.9)
and the functor
K®Homggr (R, —) o K’Hp : K® Semis g (X) — K"SBim — DY (pt,k).  (7.10)

We explain the last functor K®Homgggr(R,—) : K°SBim — DY%(pt.k). Let
Free(R,Fr) denote the category of finitely generated free R-modules equipped
with an action of Fr. The functor Homggr(R,—) takes SBim to Free(R,Fr),
and K"Homggr(R,—) takes K°SBim to K Free(R,Fr). We have an inclusion
Free(R,Fr) — D% (pt, k). Applying Proposition 7.2, we obtain a triangulated functor
real : KP(Free(R, Fr)) — Dl}; (pt.k). Composing K° Homggr(R,—) with real, we
obtain K® Homggr (R, —) : K®SBim — DY (pt. k).

By Lemma 7.11, the two triangulated functors (7.9) and (7.10) agree on the
subcategory Semisg(X) C K°Semisg(X), sending Semisp(X) to Free(R,Fr) C
Dperf(R, Fr) = D% (pt, k). Denoting this restriction by L : Semisp (X ) — Free(R, Fr),
we apply Proposition 7.3 to deduce that both triangulated functors are isomorphic to

real o K°L : K® Semis g (X) — K" Free(R, Fr) — Dyper(R, Fr) = D% (pt, k).
Thus,

(¥ oreal = K* Homggr(R, —) o K°"Hp. (7.11)

Remark 7.12

The essential image of the realization functor K® Free(R, Fr) — Dgerf(R, Fr) is a sub-
category of Dgerf(R, Fr) equivalent to the infinitesimal extension of K® Free(R, Fr), in
the sense of [2].

7.5.5. Conclusion
By (7.11) and Proposition 7.8, we have

15 (Aw (—€(w)/2) * Vy(£(v)/2)) = Homrer(R, F; )

inside Dgerf(R, Fr). By Lemma 7.10 and (7.8), we find
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15 (Aw (—€(w)/2) * Vy(£(v)/2)) = RHomy (Ay (—£(v)/2), Ay (—L(w)/2)).

This finishes the proof of Proposition 7.1, as well as of Proposition 5.4 and Theo-
rem [.17. U
O
O

8. Ordinary cohomology, Koszul duality, and Verma modules
The goal of this section is to prove Theorems 1.16, 1.18, and 1.20.

8.1. Ordinary cohomology
We have a forgetful functor For : D% (pt, k) — D°(pt, k), and a commutative diagram
(see [13] and [15, Proposition B.3.1])

For

D% (pt, k) DP(pt, k) (8.1)

l L \L
®kk

Dei(R, Fr) —— DP(K,Fr)

Here, D°(k, Fr) is the derived category of finite-dimensional k-vector spaces equipped
with an Fr-action with integer weights. Applying For to Proposition 7.1, we obtain the
following.

PROPOSITION 8.1
We have
RHomps(x 1) (AP (—£(v)/2). AP (—£(w)/2)) = Homggr(R. Fy,,) ®r k

inside D (k, Fr).

Here, AS,B) = For(Ay) € Dl(’B)(X ,k) denotes the ordinary standard object in the
Borel-constructible derived category, and the derived tensor product ®1L3U< is replaced
by the usual tensor product since Homggr (R, F; ) is free as an R-module. Taking

the hypercohomology of both sides of Proposition 8.1, we obtain the following.

COROLLARY 8.2
Forallv<w e W, and all k,r € Z, we have an isomorphism

Extr-i-k,((r—fv.w)/Z)(AgB)’ A{UB)) ~ Hgk(r/2) (HH[B(Fv.w)) (8.2)

of k-vector spaces. (In particular, both sides are zero for odd r.)
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Here we set HH?(B) := HH(B) ®g k, similarly to (1.18). For the shift in
cohomological degree, see the discussion after Proposition 7.1.

Proof of Theorem 1.16
The nonequivariant version of Proposition 5.3 is given in [106, Proposition 4.2.1].
Similarly to (6.1)—(6.2), we get

Ext™ (0.2 (AB) AB)) o prmtlow /D po 4y forall m,r € Z.

v,w’

Poincaré duality (4.5) allows one to translate the compactly supported cohomology
into the ordinary cohomology:

=Ly w B B)y ~ Ly w=—m,(ly w— °
Ext (=t D (AP AP  frlow—mbow=r/D(Re L), (8.3)

Combining (8.2)—(8.3) with Koszul duality (1.23) proved in the next section, and
switching from working over k to working over C via Remark 5.1 and Proposition 5.5,
we get

dime H*/?(HHQ(F} ) = dimg HYvw—*rtvw=r/2bow=r/2(ge ' C)

v,w’

= dim¢ H~*0/27/2(R? . C). O

Proof of (1.24)
By the Kiinneth formula and Corollary 4.8, we have

H*(R; ) = H*(RS,,/T) ®c H*(T).

The space H*(T) is 2"~ !-dimensional, and the mixed Hodge polynomials are related
as

1 1
PRy 3 q:1) = (g2 +12)" "1 P(Ry ,/ T:q,1). (8.4)
This implies (1.10). Next, we claim that
o 11 A
PR}/ T:q:0) = (@21 2P PR (Bowiq. ). 8.5)

First, combining Theorem 1.16 with Koszul duality (1.23) (to be proved below in
Section 8.2), we find

Hk,(p,p)(R;,w’ C) = H~tvw—k+2p.(v.w=p) (HHg(FJ,w))- (8.6)

Setting k" := —{yy —k +2p and p' :={y 4 — p, we find p =4y, — p' and k =
Lyw — k' —2p’. Plugging this into (4.6) and applying (8.6), we get
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RS ,iq0= Y g7 55 dim HEOD(R; . ©)
k,peZ

Kvw+k P
= Y ¢ O (HHE,).
k’,p'€Z

On the other hand, rewriting (3.16), we see that the right-hand side of (8.5) is given
by

(g +5)1 S Y dim HE0D (HHO(F*(B))).

Together with (8.4), this finishes the proof of (8.5). Finally, (1.24) follows by com-
paring (8.5) with (the Richardson version of) (4.9). U

Since the R-action on Hy (Ry,,) is trivial (i.e., b* acts by zero), by Theo-
rem 1.17, the R-action on HHH O(Fv.,w) is also trivial. Alternatively, for W = S,
and any knot /§ , the R-action on HHH°(F*(pB)) is trivial by Corollary 3.10. It thus
follows that we have an isomorphism of bigraded C-modules

HHHY(F*(B)) = TorX (C, HHH° (F*(B))). (8.7)

We conjecture that (8.7) holds for all W and all 8 € By . This would follow from (8.1)
if HH(F*(B)) and HHH(F*(f)) were known to be equivalent in D}, (R, Fr).

8.2. Koszul duality and q,t-symmetry
We prove Theorem 1.18. By [15, (5.2), Theorem 5.3.1, and Remark 5.3.2], for k,r €
Z and v < w € W, we get an isomorphism

Ext® (r/2)(A(B) A(B)) ~ Extk— r/2)(A(li)1 , A(B)l)
of vector spaces. By (8.3) and Proposition 5.5, this implies that

Hk’(r/z’r/z)(Rz 0 C) = Héu,w+k—r,(€v,w—r/2,€v,w—r/2)(RO Q). (8.8)

U_l ’w—l El
The only difference between (8.8) and the desired result (1.23) is the appearance of
v~1 and w™! on the right-hand side. In fact, it is not hard to see that the Richardson

varieties Ry, and RY_, _, are isomorphic. Indeed, recall from Lemma 4.4 that we

1

have an isomorphism Nv° w = Ry - The map g — g™ restricts to an isomorphism

Ny = N;_ ° w—1 (choosing v -1 as the representative for v=!). By (4.3), we get an

1s0m0rphlsm R‘v”w —R°_, p
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8.3. Extensions of Verma modules

We prove Theorem 1.20. First, we explain the bigrading on Ext®*(M,,, My,). Out of the
several equivalent descriptions listed in [11], the most convenient one for us is given
in [11, Section 4.4]; the bigraded vector spaces Ext®*(M,, M,,) and Ext'(Af)B), ASDB))
are isomorphic (after changing the coefficients from C to k), and the bigrading on
Ext®*(M,, My,) comes from the bigrading on Ext® (AS,B), A,(HB)) via Frobenius weights
(5.3):

Extt 072D (M,, My,) .= Extt 07D (AB) AB)),

See also [106, Equation (1.1.1)].
The result follows by combining (8.3) with Koszul duality (1.23).

9. Catalan numbers associated to positroid varieties

Our results give an embedding of the rational ¢, z-Catalan numbers Cy ,,—x (¢,¢) into a
family of ¢, z-polynomials J)(X;’,; q,t) € N[q% , t%] (all of which are ¢, t-symmetric
and ¢, r-unimodal), indexed by f € BC=1 The goal of this section is to give a com-
binatorial interpretation for a spec1ahzat10n of J (X %:1q,t).

Definition 9.1
For f € Bfnl, define the f-Catalan number C y € Z as the specialization

Cr:=J (qut)|% L

12=—1

Alternatively, C ¢ is the g = 1 specialization of the point count polynomial #X¢ (]Fq)

and we also have Cy = }Op(l), where the polynomial P;’p (g) is defined in Theo-
rem 1.13.

In particular, Cz, , = Cg n—k(1,1) = #Dycky (,_i) is the usual rational Catalan
number when ged(k,n) = 1.

Recall from Proposition 1.10 that each f = f,,, € B, corresponds to a pair
v <w € S, such that w is k-Grassmannian. The set of k-Grassmannian permuta-
tions in S, is well known to be in bijection with the set of Young diagrams that fit
inside a (k x (n — k))-rectangle. Let A be such a Young dlagram We are going to

consider fillings of boxes of A with crossings 7T and elbows \ An example is given
in Figure 4. Each such filling D gives rise to a permutation ¥ p, obtained as fol-
lows. Consider paths labeled by 1,2, ...,n entering from the southeast boundary of
A, where the labels increase in the northeast direction. The paths follow crossings and
elbows until they exit through the northwest boundary of A. Recording the positions

of outgoing edges, one obtains the permutation u p (cf. Figure 4).
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Figure 4. (Color online) For the two fillings on the left, we have A = (5,4,2) and f = wv~ ! =
35148276. The two fillings on the right do not satisfy the distinguished condition: the specific
elbow violating the condition is shaded.

Definition 9.2

Let A be a Young diagram fitting in a (k x (n — k))-rectangle. A Deogram (short for
Deodhar diagram®) of shape A is a filling D of the boxes of A with crossings and
elbows satisfying the following distinguished condition (see [31]): for any elbow in
D, the label of its bottom-left path is less than the label of its top-right path. In other
words, once two paths have crossed an odd number of times, they cannot form an
elbow (see Figure 4).

For example, any filling that consists either entirely of crossings or entirely
of elbows satisfies the distinguished condition. Observe that when a Deogram D
of shape A consists entirely of crossings, the permutation up = w indeed is k-
Grassmannian: we have w= (1) <w™!(2) <---<w M (k) and w ik +1) <--- <
w~!(n). We denote this correspondence by A, :=

Definition 9.3
Let f = fo,w €Bg . An f-Deogram is a Deogram D of shape A, satisfyingup =
v. A maximal f-Deogram is an f-Deogram with the maximal possible number of
crossings among all f-Deograms.

We denote by Deo ¢ (resp., Deo?ax) the set of all (resp., maximal) f-Deograms.

Remark 9.4

It is easy to see that any f-Deogram must have at least n — ¢(f) elbows. One can
also check that for each f € By ,, there exist f-Deograms with exactly n — c(f)
elbows.'”

9The terminology Deodhar diagram is borrowed from [79].
10The same statement does not hold for Richardson varieties: for w = 52535251 and v = 55 in Sy, there are
no subexpressions for v inside w skipping exactly n — c(wv ') = 2 indices.
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PROPOSITION 9.5
Let f € Bz:rll. Then C ¢ equals the number of maximal f-Deograms:

Cy = #DeoW™. 9.1)

Proof

This is a simple consequence of the results of Deodhar [31]. Let v, w be such that
f = fo,w- By Proposition 4.3, we have #H‘}(Fq) =#R; ,,(Fy). Deodhar expressed
#Ry ,, (Fy) as a certain sum over distinguished subexpressions for v inside a reduced
word w = sy, 84, -+ 8;,, where | = £(w). Here, a subexpression for v is a way to write
v as a product vivy---v;, where v; € {sij,id} forall j =1,2,...,]. A subexpres-
sion is distinguished if for all j such that £ (v, evjo18i;) < £(vy---vj—1), we have
vj =si;.Since w is k-Grassmannian, the terms in the product w = s;, 5, - 5j,
respond to the boxes of A,,. Each Deogram D € Deos gives rise to a distinguished
subexpression for v, so that the indices j such that v; =, correspond to the cross-
ings in D. It is easy to see that this correspondence is bijective. Thus, the results of
[31] imply that

Cor-

#H‘}(]Fq) — Z (q _ l)elb(D)q(xing(D)—((v))/Z, (92)
DeDeo s

where elb(D) and xing(D) denote the number of elbows and crossings in D. By
Remark 9.4, each maximal f-Deogram contributes (g — 1)"~1g®v.w=7+D/2 (o the
right-hand side of (9.2). (Note that xing(D) + elb(D) = £(w) is constant.) It remains
to note that #X° (F,) is obtained by dividing #I1° (IF )by #T (F,) = (¢ —1)""!, and

that Cy is by deﬁmtlon the ¢ = 1 specialization of #X< ¥ (Fy). O

Let us focus on the case f = fi, with ged(k,n) = 1. Explicitly, a maximal
Jx.n-Deogram is a way of placing n — 1 elbows in a (k x (n — k)) rectangle and fill-
ing the rest with crossings so that (i) the resulting permutation obtained by following
the paths is the identity, and (ii) the distinguished condition in Definition 9.2 is sat-

max

isfied. By Proposition 9.5, the number # Deo o of such objects equals the number

#Dycky (,—k) of Dyck paths inside a (k x (n — k)) -rectangle.

Problem 9.6
Give a bijective proof of Proposition 9.5. That is, find a bijection between Deo?‘”"7
and Dycky , ¢ for the case ged(k,n) = 1.

For instance, Figures 1 and 5 both have 7 objects in them, but it is unclear which
objects correspond to which. It would also be interesting to understand the area and
dinv statistics in the language of f; ,-Deograms.
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Figure 5. The sets Deo‘]‘};x and Dycky ,,_; have the same cardinality by Proposition 9.5. Com-
n ’
pare with Figure 1.
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Figure 6. For n = 2k + 1, maximal f; ,-Deograms are in bijection with noncrossing alternating
trees (see Remark 9.7).

(et

Remark 9.7

For the case n = 2k + 1 of the standard Catalan numbers, the maximal fj ,-Deograms
are easily seen to be in bijection with noncrossing alternating trees on k + 1 vertices
(item 62 in [123]). Explicitly, given D € Deorj‘}zf‘n, we assign a vertex to each of the
k + 1 columns of D. One can show that every row of D must contain exactly two
elbows, and connecting the two corresponding vertices by an edge for each of the k
rows, one obtains a noncrossing alternating tree. The case k = 3, n = 7 is illustrated
in Figure 6.

Remark 9.8

A recursive proof of Proposition 9.5 for the case n = dk = 1 (d > 2) was found by
David Speyer (private communication). It appears that when n = dk + 1, the dis-
tinguished condition is automatically satisfied for any maximal fi ,-Deogram. How-
ever, this is not the case for instance when k = 5 and n = 12 (see Figure 4 (right)).
We were able to find a recursive proof of (9.1) for arbitrary &, n. This and some other
enumerative consequences of our results will appear in a separate paper [48].

Remark 9.9

A probabilistic interpretation of f-Deograms and their weights in (9.2) in terms of
the stochastic colored six-vertex model (see [80]) was recently discovered in [43].
In particular, a result closely related to Theorem 2.3 appears in [43, Lemma 7.1 and
Proposition 7.3].
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