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Abstract—With the proliferation of Beyond 5G (B5G) commu-
nication systems and heterogeneous networks, mobile broadband
users are generating massive volumes of data that undergo fast
processing and computing to obtain actionable insights. While
analyzing this huge amount of data typically involves machine
and deep learning-based data-driven Artificial Intelligence (AI)
models, a key challenge arises in terms of providing privacy
assurances for user-generated data. Even though data-driven
techniques have been widely utilized for network traffic analysis
and other network management tasks, researchers have also
identified that applying AI techniques may often lead to severe
privacy concerns. Therefore, the concept of privacy-preserving
data-driven learning models has recently emerged as a hot
area of research to facilitate model training on large-scale
datasets while guaranteeing privacy along with the security
of the data. In this paper, we first demonstrate the research
gap in this domain, followed by a tutorial-oriented review
of data-driven models, which can be potentially mapped to
privacy-preserving techniques. Then, we provide preliminaries
of a number of privacy-preserving techniques (e.g., differential
privacy, functional encryption, Homomorphic encryption, secure
multi-party computation, and federated learning) that can be
potentially adopted for emerging communication networks. The
provided preliminaries enable us to showcase the subset of data-
driven privacy-preserving models, which are gaining traction in
emerging communication network systems. We provide a number
of relevant networking use cases, ranging from the B5G core and
Radio Access Networks (RANs) to semantic communications,
adopting privacy-preserving data-driven models. Based on the
lessons learned from the pertinent use cases, we also identify
several open research challenges and hint toward possible solu-
tions.

Index Terms—Privacy preservation, machine learning, deep
learning, data-driven models, communication networks, feder-
ated learning.
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I. INTRODUCTION

The field of privacy-preserving data-driven learning models
(data-driven models in short) for emerging communication
networks is a new area of research that focuses on creating ma-
chine learning (ML) models that can learn from sensitive data
without compromising the privacy of the individuals in the
data. This observation is particularly applicable to emerging
communication networks, e.g., cell-free networks [1], space-
air-ground integrated networks [2], and Internet of Things
(IoT) systems [3], where the data flow across multiple users
and devices, and the data sharing may not be possible or
even appropriate because of security, privacy or regulatory
policies. To effectively deal with this challenge, privacy-
preserving technologies (e.g., differential privacy (DP) [4],
Homomorphic encryption (HE) [5], secure multi-party com-
putation (SMPC) [6], and federated learning (FL) [7]) are
being increasingly adopted in learning models exploiting large-
scale, decentralized datasets. For instance, DP is capable of
controlled insertion of noise into data so as to protect user
privacy while permitting data mining and statistical analysis
along with developing ML models [4]. On the other hand,
HE and SMPC, which are based on cryptographic techniques,
allow secure computations and learning on encrypted data [6].
Particularly in the case of SMPC, a number of parties can
compute a function over their private inputs in tandem without
having to share their respective input data with others [6].
Such techniques can be regarded as highly useful in emerging
communication networks due to their ability to facilitate
both the secrecy and data privacy of participating users. On
the other hand, FL, a decentralized learning framework, has
recently garnered much research attention in both academia
and industry since it allows users to train local models based
on their private data and share only the model parameters
with a centralized server that aggregates model weights to
converge to a global model [7]. Variants of FL have emerged
based on the varied needs of different communication network
scenarios, which range from Beyond 5G (B5G) cellular net-
works to Unmanned Aerial Vehicles (UAVs) or drones-assisted
networks [8]-[11]. Furthermore, there is a growing focus on
exploiting semantic communication system models with data-
driven models, such as task-oriented semantic communication
network (TOSCN) [12], DeepSC-ST (Deep Learning Enabled
Semantic Communications with Speech Recognition and Syn-
thesis) [13], and DeepJSCC-V (Deep Learning (DL)-based
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Joint Source-Cchannel Coding with Variable code length) [14],
with a primary focus on attaining improved network sum rate.
Some researchers further assessed the need and conceptualized
techniques for incorporating privacy via FL frameworks for
semantic communication-enabled networks [15].

While the aforementioned techniques are associated with
unique advantages to enforce privacy preservation in data-
driven learning models, they are not without shortcomings.
For instance, data leakage is a key challenge in these privacy-
preserving algorithms that train ML/deep learning (DL) mod-
els whereby unauthorized disclosure of sensitive information
may take place. Data leakage may be observed when the
parameters of a model, which is trained on sensitive data,
are exposed to adversaries or unintended parties that were not
supposed to. Another common issue of ML/DL techniques,
referred to as model overfitting, also appears as a performance
bottleneck for privacy-preserving learning algorithms. In such
cases, the trained model memorizes the training data in such
a manner that it fails to perform when it confronts unseen
data. On the other hand, model stealing, i.e., unauthorized
access or replication of the model, is another issue with
privacy-preserving learning models whereby the models are
shared/deployed in a public setting.

In this paper, we address the aforementioned challenges of
privacy-preserving data-driven models in the context of emerg-
ing communication networks and investigate their unique
requirements and characteristics. The roadmap of our work
is illustrated in Fig. 1. For interested readers, we first provide
the two enabling technologies, i.e., data-driven models and
privacy-preserving technologies pertinent to communication
networks. This tutorial-oriented approach sets the stage for
the core survey to connect the enabling technologies in various
network scenarios.

The key contributions of our paper are outlined below.

o We identify the actual research gap in terms of existing
privacy-preserving data-driven models and their use in
communication networks to protect the data. To the best
of our knowledge, there is no joint treatment of these two
domains, whereas there have been a number of research
works addressing each domain in a separate manner [16]—
[38].

o We provide detailed discussions on the different types of
data that are typically carried by these networks and the
privacy challenges that are associated with them. Over-
all, this paper provides a comprehensive survey of the
research area of privacy-preserving data-driven learning
models for emerging communication networks and aims
to serve as a useful resource for researchers, practitioners,
and policymakers working in this field.

o We also provide state-of-the-art privacy-preserving data-
driven learning models for emerging communication net-
works, highlighting the main challenges and open prob-
lems and providing some insights into future research
directions in this area. We delineate the various com-
munication network scenarios, including cyber-physical
systems, [oT, and semantic communications [15], that
have recently started to derive the benefit of applying
data-driven and privacy-preserving techniques in tandem.
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The structure of the paper is shown in Fig. 3. The remainder
of this paper is structured as follows. We present a background
on this research topic and delineate the exact research gap in
the existing literature in Section II. Then, in Section III, we
provide the preliminaries of data-driven models in communi-
cation networks. Next, Section IV contains a brief overview
of privacy-preserving methods. These preliminaries enable us
to offer Section V, which presents privacy-preserving data-
driven models for various communication network scenarios
along with the lessons learned in the respective network
settings. Section VI discusses open research issues followed
by potential research directions. Finally, Section VII concludes
the paper.

II. BACKGROUND AND RESEARCH GAP

Intelligent network functions are regarded as a desired
feature in next-generation communication systems and net-
works. Network intelligence appears as a critical requirement
that is anticipated to be seamlessly integrated into B5G
and 6G network systems across various levels, ranging from
the physical to application layers. In particular, data-driven
learning emerged as a revolutionary solution for addressing
complex computational problems in emerging networks. While
for traditional networks, the network management tasks could
be computed locally in network nodes, the growing size
of both wired and wireless networks and the exponentially
growing traffic volume, coupled with diverse traffic types and
ultra-high user mobility, contributed to much higher network
dynamism. Conventional optimization and decision-making
algorithms often demonstrate that it is difficult to obtain a
high-quality solution within a short period of time. In such
scenarios, data-driven learning techniques, particularly ML
and DL models, emerged as alternative solutions that provide
reasonable solutions with regard to standard benchmarks. The
underlying algorithms of these models depend on finding
specific patterns with non-linear relationships within the data.
However, a key issue remains in this conventional ML/DL
paradigm, which is the plain-text nature of the input data.
In other words, both raw and pre-processed data used to
train these learning models are traditionally non-encrypted.
When they are encrypted with state-of-the-art cryptography,
the patterns contained within the data are not the same, and
the data-driven models can no longer be effectively trained.
While there has been a number of research works among the
ML community to devise an effective solution to encrypt the
data to preserve the privacy of data and still be able to train Al
models, network practitioners are yet to systematically address
this issue in various types of communication networks. There
are some scattered research works in the literature that aim to
protect the privacy of the input data of the data-driven mod-
els [25]-[37]. However, they are not systematically surveyed.
To the best of our knowledge, there is no comprehensive
survey in the existing literature that identifies this prevalent
research gap as demonstrated in Table I. In this paper, we
address this research gap of privacy-preserving data-driven
learning models for emerging communication networks as
demonstrated in Fig. 4. The figure outlines the desired proper-
ties of emerging communication network systems, focusing on
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Roadmap of this paper

Introduction and
motivation

>

Identifies the research gap and
justifies the survey topic

Tutorial component not holistically covered in existing surveys
that are required for communication networks M

Reviews data-driven models potentially
mappable to privacy-preserving techniques

Reviews privacy-preserving techniques potentially
mappable to communication networks

Sets up the stage for the actual survey to connect all the
pieces together and provide a holistic context to readers -

> Core survey: >

> What is next?

Systematically surveys various network scenarios
with data-driven privacy-preserving techniques

Open research aspects
along with future scope with

Fig. 1. The road map in this paper is composed of a balanced tutorial of the enabling technologies followed by a survey of those technologies in emerging

communication network scenarios.

Quality of Service (QoS), tunable policy, security, and privacy.
It highlights the traditional focus on optimizing Al-based
QoS and security for dependable communication, considering
privacy with legacy methods. This also depicts our shifted
focus in this paper to privacy-preserving, data-driven models
atop secure QoS by reevaluating ML/DL models for potential
privacy leaks, integrating privacy-preserving techniques with
data-driven models, and employing FL for privacy in mobile
edge and cloud computing. The research gap is currently being
considered by a number of researchers through their efforts in
conceptualizing privacy-preserving ML/DL models [25]-[37]
in the context of communication networks [38].

III. TAXONOMY OF DATA-DRIVEN MODELS WITH VIABLE
PRIVACY-PRESERVING MAPPING
FOR COMMUNICATION NETWORK SYSTEMS

Recent research work in communication networks is wit-
nessing a sharp increase in data-driven, predictive models,
from physical and medium access control (MAC) layers of
wireless, cellular, and mobile radio access networks to ap-
plication layers in the backhaul/core networks. ML and DL
techniques are currently popular among researchers, in both
their vanilla and customized/hybrid forms, to improve each
individual block of the communication system or to perform
joint optimization of the entire transmitter or receiver nodes.
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Data-driven models have gained momentum in the areas of
signal detection [42], channel estimation and modeling [43],
resource allocation [44], end-to-end communication [16], se-
mantic communications [45], and so forth [46]. It is difficult
to enumerate all the communication system/network areas
where data-driven models were employed to improve network
performance. However, it is possible to narrow down the
prominent ML/DL techniques that have been applied to these
communication systems to formulate and solve various prob-
lems ranging from spectral efficiency maximization [47] to
quality of service provisioning [48]. In this section, we present
a taxonomy of these enabling data-driven modeling techniques
in communication network systems that have been or could
be potentially applicable to privacy-preserving communication
systems and networks.

Fig. 5 presents our proposed taxonomy for data-driven ap-
proaches having the capability of (or the potential for) integra-
tion with privacy-preserving technologies. As depicted in the
figure, we broadly categorize the privacy-preserving-capable
data-driven approaches from three perspectives, namely learn-
ing approaches, prediction features, and performance mea-
sures, respectively. In the remainder of this section, we sum-
marize these learning approaches.

Learning approaches adopted for trust, privacy, as well as
security in computing and communications aspects of network
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Machine Learning (ML) models

Linear regression, logistic regression,
random forest, support vector machine,
k-Nearest Neighbors, AdaBoost,

Gradient Boosting Machines, Knowledge Graph, etc

Data-driven +
PPM models
pertinent to

Data-driven
models

networks

Deep Learning (DL) models

Convolutional Neural Network (CNN), Recurrent

Neural Network (RNN), Long Short-Term Memory

(LSTM), Autoencoders, Transformers, Generative

Adversarial Network (GAN), Deep Belief Network
(DBN), Graph Neural Network, etc

communication
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Pure PPM models
Not all PPMs use data-driven models, such as
Homomorphic Encryption, Functional Encryption,
etc

Privacy-
Preserving
Models
(PPM)

Our focus

Data-driven PPM models

Federated learning (FL)frameworks, Homomorphic
Encryption for Machine Learning (HEML),
Secure Multiparty Computation (SMC)-based deep
learning, Semantic communication with federated learning

Fig. 2. Targeted focus of our work is on the intersection of data-driven and PPM models that are relevant to emerging communication networks. Note that
some of the pure ML/DL/PPM concepts are not used. Some technologies are at the intersection of PPM and data-driven models and only those are elaborated

in the core survey in Section V.

TABLE I
COMPARATIVE FEATURES OF EXISTING SURVEYS TO DEMONSTRATE THE RESEARCH GAP AND NEED FOR A NEW SURVEY IN THE AREA OF
PRIVACY-PRESERVING DATA-DRIVEN LEARNING MODELS FOR EMERGING COMMUNICATION NETWORKS. NOTATIONS: PRIVACY-PRESERVING (PP),
MACHINE LEARNING (ML), DEEP LEARNING (DL), AND FEDERATED LEARNING (FL).

Reference Objective PP | Classic ML | DL | pp+pL | Communication networks
use-cases considered

Tanuwidjaja Privacy-preserving deep learning on machine

. > v X v v X
et al. [25] learning as a service
Podschwadt Deep learning architectures for privacy-preserving v % v v %
et al. [26] machine learning with fully Homomorphic encryption
Falcetta Privacy-preserving deep learning with Homomorphic

. v X v v X
et al. [27] encryption
Lee Privacy-preserving machine learning with v % v v %
et al. [28] fully Homomorphic encryption for deep neural network
Zhang Review of privacy-preserving deep learning v « v v %
et al. [29] based on multiparty secure computation (MPC)
Sun A survey on machine learning and privacy parameters v v v N v
et al. [30] in 6G environment
Guo A survey on space-air-ground-sea integrated v % % % %
et al. [39] network security in 6G
Al-Garadi A survey of machine and deep learning methods % v v % v
et al. [40] for internet of things (IoT) security
Soykan A survey and guideline on privacy enhancing v % % - (FL) %
et al. [41] technologies for collaborative machine learning
. Survey on privacy-preserving data-driven

Our work (this paper) (machine learning) and deep learning models v v v v v

systems, are inspired by ML [49]. While ML impacted various
application domains, such as computer vision and signal
processing, its theoretical foundations on discovering patterns
in network data streams, protocol behavior, misconfiguration,
and patterns of malicious activity have been instrumental
in addressing the communication parameters, as well as the
privacy/security parameters. Despite the usefulness of ML
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methods for privacy and trust in communication systems, the
topic of jointly addressing both ML for communication and
privacy/security parameters has not been explicitly addressed
in the literature. Therefore, it is important to review the
enabling ML technologies, which already have the capability
of (or may have the potential for integration) with privacy-
preserving algorithms. The ML solutions in the communica-
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Structure of
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— II. Background and Research Gap
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— IV. Privacy-preserving Methods With Potential Applications for Emerging Communication Systems and Networks

i
I } ! I }

A. Cryptographic B. Differential C. Confidential D. Combining Privacy-preserving E. Distributed
Techniques Privacy (DP) Computing (CC) Algorithms and Machine Learning Learning
|
l ! |
Homomorphic Encryption Functional Encryption Secure Multi-party Computation (SMPC)

— V. Privacy-preserving Data-Driven Models for Emerging Communication Networks

— A. 5G and Beyond Open Core Network Systems — G. Cloud Computing Networks

|_, B. Open and Reconfigurable Radio Access — H. Edge Computing Networks

Networks (RANS)
— I. Digital Twin Network Systems for Smart

— C. IoT Systems and Networks Communities

— D. Software-Defined Networks (SDNs) L Semantic Communication and Privacy-

. . preserving Deep Learning Models
— E. Intelligent Vehicular Networks

— K. S :C t Stat d Chall
— F. Networked Cyber-Physical Systems SR Kl

— VI. Open Research Issues and Future Directions

| A. Privacy-preserving Model Training and | F. Challenges on Optimal Privacy-preserving
Resource Issues in Emerging Networks Hybrid Model Selection and Training
B. Quantum Computing-resilient Privacy- |, G. Challenges Associated With Privacy-preserving
preserving Data-driven Models Data-driven Models in the Entire Ecosystem

H. Challenges on Embedding Privacy-preserving
— Data-driven Models with Cell-free Communication
Networks

C. Privacy-preserving Data-Driven Model
— Challenges in Social Networks and Crowd-sourced
Data Networks

|, L. Compatibility Issues of Privacy-preserving Data-

|, D. Challenges on Deploying Privacy-preserving driven Models with Blockchain-Based Networks

Data-driven Models in the Edge
J. Challenges on Guaranteeing Freshness of Data-
|, E.Challenges on Incorporating Privacy- '— driven Models due to Model Decay and Privacy
preservation as a QoS Metric Leakage

— VII. Conclusion

Fig. 3. The structure of this paper.

tion domain of our interest, similar to other disciplines, can in Fig. 5. The supervised learning paradigm typically facil-
be categorized into supervised, unsupervised, semi-supervised, itates learning from labeled network system data in large
self-supervised, reinforcement, and active learning, as depicted network traffic datasets comprising a massive number of traffic
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— Desired properties of emerging
communication network systems

Tunable policy
Quality of
Service
(Qos)

 —

Secure and dependable
communication

Secure QoS

 —

Trustworthiness
via data privacy guarantee

Traditional focus:

Optimization and Al-based QoS/security

- Balance QoS and security parameters
for dependable communication

- Ongoing network standardization
(5G+) with embedded intelligence for
QoS, security, energy issues

- Privacy is implicitly considered with
legacy authentication and access
control methods

_ Our focus: privacy-preserving data- _
driven models on top of secure QoS

- Rethinking ML/DL models and how
they may leak privacy

- Jointly consider privacy-preserving
techniques and algorithms with data-
driven models

- Federated learning-based privacy-
preservation for mobile edge and
cloud computing

Fig. 4. Our focus in this paper is shown in terms of the prevalent research gap of the overlooked intersection of privacy-preserving foundational techniques
and data-driven models with regard to emerging communication systems and networks.

flows. However, localization and mobility patterns of users, in
addition to user anonymization, are key privacy elements that
may be revealed through such data-driven models. Therefore,
contemporary supervised learning techniques for regression
and classification tasks need to be carefully integrated with
such privacy considerations to construct effective privacy-
preserving models based on the training dataset. While su-
pervised models may appear straightforward in carrying out
network analytics, the underlying assumptions may or may not
hold. For example, Naive Bayes (NB) classification is a simple
ML model, which works on some fundamental assumptions
with regard to the underlying dataset [S0]. If the assump-
tions are not valid in practice, Naive Bayes classification
should not be considered even if its performance appears
to be efficient. The need for making valid assumptions for
such supervised models is further emphasized for facilitating
physical layer privacy and security [51]. Some other notable
examples of supervised learning methods in modern network
communication settings include linear regression (e.g., for
network flow prediction with privacy [52], network throughput
prediction [53], and other privacy-preserving network activity
prediction tasks [54]-[57]), Logistic Regression (LR) (e.g.,
for malicious traffic detection [58]), Support Vector Machines
(SVMs) (e.g., for wireless transceiver classification [59], wire-
less signal processing [60], predicted decoupling of WiFi and
Long Term Evolution (LTE) in unlicensed spectrum [61]).
Decision trees, which are non-linear ML models with sim-
ple yet effective decision-based branch and bound approach,
are also abundant in the networking literature, with recent
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research efforts exerted toward secure and scalable edge com-
puting [62], secure and privacy-preserving smart cities [63],
and so forth. Random Forests (RFs), which are typically built
upon a large number of Decision Trees (DTs), have been
applied for network flow classification in both classical and
emerging softwarized communication systems [64]-[67] and
also for advanced privacy-preserving networking tasks [68]-
[71].

A subset of ML techniques, namely the Neural Network
(NN)-based structures, also requires a detailed discussion
due to their effectiveness in solving a myriad of interesting
communication and networking problems, which do not scale
well with classical optimization techniques, such as linear
programming, convex optimization, stochastic geometry, and
geometric programming. The neural network-based learning
approaches can be broadly classified into three types, namely
artificial neural networks (ANNSs), graph neural networks
(GNNs), and recurrent neural networks (RNNs). The ANNs
cover various structures, such as autoencoders, convolutional
neural networks (CNNs), variational autoencoders (VAEs),
generative adversarial networks (GANSs), and deep belief net-
works (DBNs). ANN models, when trained with a networking
dataset, can capture non-linearities present in the data and
can be useful in terms of distinguishing various network
features, e.g., malicious vs normal traffic flows, private vs
public network flows in the core networks, and so forth. A
detailed discussion of these models, without the considera-
tion of privacy-preserving capability, was presented in the
coauthors’ earlier work in [72]. However, in recent times,
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Support Vector | | |Random Learning ¥ Network | Encrypted
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(Deep Learning) Policy Gradient (DDPG)
|
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| | 1
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ate - 5
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Autoencoder) | Computin ) PCA (Principal
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| | GAN (('}enerative LCA (Linear
Adversarial Network) Discriminant Analysis)
DBN (Deep Graph Neural NMF (Non-Negative
— Belief Network Matrix Factorization)
Network)

Fig. 5. Taxonomy of data-driven models with potential privacy-preserving integration capability for emerging communication systems and networks. Reconciling
with Fig. 2, it is worth noting that some techniques are at the intersection of PPM and data-driven models and only those are elaborated in the core survey
in Section V. Other techniques have been mentioned in the taxonomy for the sake of completeness.

there has been a growing trend toward incorporating or at
least mapping, the privacy-preserving requirements in many
of these ANN-based implementations with regard to network
communication systems. For instance, physical layer secret-
key generation has been utilized to provide both privacy and
security capability to mobile users via AutoEncoders (AEs)
in a recent work [73], [74]. The Variational AutoEncoder
(VAE), on the other hand, has been recently investigated for
privacy-aware communication over a wiretap channel with
demonstrated success [75].

IV. PRIVACY-PRESERVING METHODS WITH POTENTIAL
APPLICATIONS FOR EMERGING
COMMUNICATION SYSTEMS AND NETWORKS

The most important concern in the emergence of data-driven
learning models is privacy. Therefore, in this section, we
present an overview of various privacy-preserving techniques
for communication networks that can be broadly classified
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into cryptographic methods, DP, confidential computing, and
distributed/federated learning to provide privacy-preserving
functionality for data-driven and DL models.

A. Cryptographic Techniques

Cryptographic techniques involve mathematical methods
and algorithms that can secure communication and protect
data, such as text, voice, images, and video, from unauthorized
access [41]. These techniques aim to ensure the confiden-
tiality, integrity, and authenticity of information by using
encryption, digital signatures, and hash functions. Encryption
can be achieved using symmetric or asymmetric keys, while
digital signatures and Hash functions provide authenticity and
integrity [76]. These techniques are used in various applica-
tions, including securing online transactions, protecting email
communication, securing data stored in the cloud, etc. [25].

Furthermore, there exist alternative cryptographic methods
that allow for secure computations on encrypted data, as
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documented in [25], [77]-[79], such as DP, HE, SMPC, and
functional encryption (FE) [41]. When choosing a method
from this collection, many factors, including the algorithm
type of the ML model, the threat model, and the limits on
computation and communication overhead imposed by the use
case, must be considered. Hence, a comprehensive viewpoint is
necessary to determine the most privacy-enhancing resolution.

This section discusses privacy-enhancing technologies, in-
cluding HE, FE, and SMPC techniques [80]-[82]. These
technologies help protect users’ privacy and data from attacks.
The study focuses on secret sharing in the SMPC framework,
which is widely used. SMPC allows data processing while
remaining encrypted, while HE and FE systems enable com-
putational operations on ciphertext data without decryption.

1) Homomorphic Encryption

HE is a Paillier cryptosystem-based cryptographic technique
that performs computations on encrypted data without requir-
ing the decryption of the data [26], [83], [84], especially when
third parties store the data. As shown in Fig. 6(a), HE encrypts
the data using a public key and enables the execution of
mathematical operations on the encrypted data to ensure its
privacy and security. The output of the computation is also
encrypted and can only be decrypted by the intended recipient
using the decryption key [27]. When the encrypted output is
eventually decrypted, it will yield the same outcome as if the
operations were conducted on the original unencrypted data.
HE includes various encryption techniques such as partially
HE (PHE), somewhat HE (SWHE), and fully HE (FHE) [28].

PHE [85] allows for a number of operations on encrypted
data, limited to either addition or multiplication. Thus, PHE
is categorized into two groups: additive HE and multiplicative
HE [83], [84]. It is commonly employed in practical applica-
tions like remote keyword search and privacy-preserving data
aggregation due to its minimal computational requirements.
On the other hand, FHE is computationally expensive; it is
less efficient compared to PHE and SWHE [86], making it
unsuitable for time-sensitive applications, especially when the
message size is substantial [6]. SWHE provides support for
a variety of arithmetic and logic operations [87], making it
successfully applied in real-time applications, such as those
in finance, medicine, and recommendation systems. Despite
the long-standing challenge of designing FHE, several studies
have been conducted on HE systems utilizing lattices with
Learning With Errors (LWE) and Ring Learning With Errors
(Ring-LWE) problems, as well as schemes involving integers
with the approximate Greatest Common Divisor (GCD) prob-
lem [87]-[93].

Due to HE’s capability to perform computations on en-
crypted data while preserving privacy, it has a wide range of
practical applications, including protecting cloud computing,
enabling SMPC, and facilitating secure data analysis. HE
facilitates the transmission and processing of encrypted data
while keeping the original data out of the hands of the cloud
provider in a cloud computing environment [94]. This allows
the cloud provider to conduct computing operations while
maintaining data privacy. Likewise, SMPC utilizes the HE
to enable several entities to conduct operations and tasks on
shared data while preserving the confidentiality of the original
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plaintext. This can be beneficial, especially for applications
relevant to marketplaces, auctions, and secure voting. In an
SMPC-based system developed by Mouchet et al. [95], com-
putations on encrypted data can be performed by the users in a
collaborative manner without requiring a shared key configu-
ration, thereby preventing the server from obtaining client data
information [96]. Hence, HE is widely employed in secure data
analysis, where insightful information from encrypted data
can be extracted without requiring data decryption [97]-[99].
This is especially helpful in highly regulated sectors where
data exchange is restricted, such as the case in the healthcare
industry [97].

Additionally, ML models are trained and evaluated in dis-
tributed computing using HE. To ensure the confidentiality of
the training data, one party encrypts the data before passing it
to another party for processing. In [100], the authors presented
DL system that protects participant privacy by not disclosing
local data to a centralized server (CS). They employ additively
HE to safeguard the data gradients on the cloud server, which
may be honest but curious. The authors in [101] introduced a
secure method that utilizes HE to safeguard the training and
prediction data in logistic regression. However, CS may be
required to retrieve, store, and process the data. HE ensures
that the server never has access to the plain data. The authors
in [102], [103] introduced the FL architectures for wearable
healthcare in their publication. They employ HE to encrypt
the user models before uploading them to the server to be
aggregated and broadcasted to the users so they can undergo
retraining. This technique is iterated until convergence is
achieved. The authors in [104]-[106] introduced a method for
privacy-preserving multi-party ML using HE, where each node
in the system has a unique HE private key.

Despite its advantages in privacy protection, HE has several
vulnerabilities [6]. Firstly, constructing secure computing pro-
tocols for PHE and SWHE systems can be computationally
expensive due to a high number of modular exponent arith-
metic operations, leading to reduced efficiency. Secondly, there
is a significant increase in storage overhead when comparing
ciphertexts to the original plaintext. Finally, HE requires a
trusted authority (TA) to generate and distribute public and
private keys to all participating parties. Moreover, under the FL
framework, clients employ additive HE to conceal their local
gradient updates during aggregation, so ensuring their privacy.
Nevertheless, the computational and communicative expenses
associated with HE operations are exceedingly high [103],
[107].

2) Functional Encryption

The concept of FE was introduced by Sahai and Waters
in 2005 and then formalized by Boneh et al. [108] in 2011.
FE is a cryptographic technique that extends public-key cryp-
tography. It allows the encryptor to use an encryption key
to encrypt a message x and grants the decryptor the ability
to conduct computations on the encrypted message using a
functional decryption key to obtain the outcome of a specific
function f(x). Notably, the decryptor is incapable of uncov-
ering the original message «x itself [82], [109], [110]. The
decryption key is function-specific and exclusively applicable
for performing the designated computation on the ciphertext.
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Fig. 6. Homomorphic Encryption (HE) and Functional Encryption (FE) workflows.

Within the context of privacy-preserving data analysis, FE can
be employed to enable data analysis without the need for data
decryption [111]. Access control also employs the usage of
FE to allocate varying degrees of access to individual users,
eliminating the need to decode their data [112].

Lately, there has been a growing emphasis on FE, partic-
ularly in the development of effective strategies for specific
types of functions or polynomials with limitations, such as
linear functions [113], [114] or quadratic functions [115].
FE has the capability to conduct an inner product operation
on encrypted data, which is referred to as inner product
FE (IPFE) [114]. The IPFE allows to solely acquire the
dot product value (x - y) of the vectors upon receiving
the encrypted vector = and functional decryption key that
corresponds to vector y, without gaining access to the contents
of x. Generally, FE comprises three parties as outlined below.

o Key Distribution Center (KDC): The KDC distributes
the encryption key to the encryptor and the functional
decryption key, which is linked to a vector y, to the
decryptor.

e Encryptor: Using the encryption key provided by the
KDC, the encryptor can compute a ciphertext of the data
vector x to be sent to the decryptor.

o Decryptor: Using the ciphertext provided by the encryptor
along with the functional decryption key provided by the
KDC, the decryptor can compute only the inner product
result (z.y).

Both FHE and FE can be utilized to conduct dot product
operations on encrypted data. However, unlike HE, which
necessitates decrypting the ciphertext to receive the computed
result, FE can directly provide the result, as can be seen
in Fig. 6(b). In addition, IPFE is more efficient than HE
because it utilizes linear operations in encryption [79]. While
FE shows promise as a technology and is recognized as a
crucial component for secure and privacy-preserving systems,
it is still relatively new and requires further research to enhance
its performance.

3) Secure Multi-party Computation (SMPC)

SMPC is an alternative approach to doing computations on
encrypted data. It enables many participants to collaboratively
calculate a function using their individual private inputs while
ensuring that no information about their inputs is disclosed
to the other participants. This is accomplished by employing
encryption to secure the data and conducting computations
on the encrypted data without the need for decryption [29],
[116]. SMPC supports a set of functions such as private
set intersection protocols and secure comparison and equality
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testing. For instance, the secure equality testing allows two
parties to determine if their private inputs are equal without
revealing their confidential information.

There are two commonly used protocols for SMPC in
the literature: Yao’s garbled circuits, which were created
by Yao [117] along with oblivious transfer protocol [118]
and GMW (the Goldreich-Micali-Wigderson protocol) [119],
presented by Goldreich et al.. These protocols allow parties
to securely exchange their inputs and use Oblivious Transfer
(OT) protocol [120], which employs public key cryptographic
methods, to compute the output. These protocols require a
long time and resources for processing, and there is still a
significant communication cost associated with SMPC proto-
cols [121].

Hence, SMPC exhibits a diverse array of uses, encom-
passing secure voting, auctions, and markets. Secure voting
can employ SMPC to guarantee accurate vote counting while
maintaining the confidentiality of individual votes. It can also
be employed in secure auctions to guarantee the confidentiality
of bids while simultaneously enabling fair and transparent
conduct of the auction and maintaining price confidentiality in
secure marketplaces while simultaneously facilitating efficient
market operations.

In the scope of ML, one potential solution for privacy
protection in ML training and evaluation is to use SMPC.
This involves using solutions such as GMW or Yao’s garbled
circuits to ensure the safeguarding of confidential information
during the entirety of the procedure. The authors in [55],
[122]-[124] proposed SMPC-based solutions for safeguarding
the privacy of ML techniques, including neural networks,
logistic regression, and linear regression. These techniques
require data owners to distribute their data among various
servers while ensuring that none of them can gain access to
sensitive data, which is then used for training the models
using SMPC. Other works also combine SMPC and HE,
such as the privacy-preserving prediction solution introduced
in [125]. However, in order to ensure the security of these
techniques against potential adversaries, it becomes necessary
to implement supplementary measures such as zero-knowledge
proofs [126]. The solutions proposed in the literature also
vary in the number of parties involved, with some using
two-party SMPC [127]-[129] and others involving three-party
communication [130].

Other works related to the FL environment suggested a
strategy for securely aggregating the model parameter updates
using an SMPC-based secret sharing scheme [55], [127],
[131], [132] with two honest-but-curious non-colluding servers
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required. Moreover, SMPC not only targets privacy protection
during the training and execution of the FL but also introduces
the necessary measures to prevent security attacks. The paper
referenced as [131] presents a method of utilizing SMPC to
prevent poisoning attacks while ensuring the confidentiality
of sensitive data. Additional approaches utilizing SMPC to
safeguard privacy and mitigate backdoor attacks in FL are
presented in references [133]-[135].

However, these SMPC-based solutions can be costly due to
the complex cryptographic processes involved and the need
for communication between data sources [136]. To address
this issue, customized SMPC protocols have been developed
that incorporate certain sections of the ML and FL training
algorithm to improve privacy, such as in the case of FL. where
safe aggregation of weight updates can mitigate the risk of
sensitive data exposure [137]—-[139]. In this approach, a trusted
authority can be used to minimize communication among data
owners, while an aggregator server combines confidential data
without gaining access to sensitive information. In summary,
SMPC is regarded as a relatively recent technology that
requires further investigation to enhance its efficiency and
scalability due to its demanding computational nature. It may
not be suitable for extensive computation and data analysis at
present. However, ongoing research is actively tackling these
obstacles.

B. Differential Privacy (DP)

DP is a mathematical framework designed to safeguard the
privacy of individuals by adding random noise to data before
transmission in a controlled manner to mitigate information
disclosure risks while still allowing for accurate data analysis
to be conducted [140], [141], as can be seen in Fig. 7.
DP can be applied to various tasks such as data mining,
ML, and statistical analysis [142]-[144]. In data mining and
statistical analysis, DP can maintain the privacy of individuals
by ensuring that patterns and relationships are representative
of the overall population rather than specific individuals [145].
In the realm of ML, DP allows for training models on sensitive
data without revealing any confidential information about
individuals [34], [35], [146]-[149]. Consequently, it serves
as a new method for preventing privacy and security attacks,
including membership and model inference, model extraction,
and poisoning [150]. DP also has numerous applications in
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healthcare [151], [152], finance [153], and social media [154]—
[156] by protecting patient, customers, and users privacy,
respectively, while enabling for valuable data analysis.

Various methods exist for achieving DP, such as noise
addition and data perturbation [157], but the most common
DP methods are the exponential mechanism, which adds the
noise to data based on a score function, and the Laplace
mechanism that is based on the Laplace distribution [158].
Each technique has its strengths and weaknesses and is suited
to different types of data and analysis tasks. DP involves a
privacy budget, which determines the level of privacy loss
allowed for any given analysis based on the privacy parameter
epsilon (€) representing the maximum allowed privacy loss.
The smaller € is, the higher the level of privacy maintained
and lower accurate analysis [159], [160].

DP applications in the FL field can be divided into two
categories, namely local DP (LDP) and central DP (CDP)
based on the FL trust model [161]. When employing the
central trust model, the FL server obtains client updates in
plaintext, while CDP applications follow the same model but
involve introducing noise on the server’s end. This results
in the server sending privacy-protected model parameters,
which are received by the clients. The clients then perform
local training and send their updates back to the server. The
server aggregates these updates and adds noise proportionate
to the sensitivity, repeating this process until convergence is
achieved in each round of FL. DP noise sampling in FL
can be done through three mechanisms - Laplace, Gaussian,
and exponential [157]. LDP, on the other hand, provides
enhanced privacy by eliminating the need to trust the FL
server. This is achieved by introducing noise on the client
side, reducing the reliance on the server [162]-[168]. LDP has
gained significant attention in the literature to address honest-
but-curious aggregator threats, especially since its introduction
in [158].

The study presented in [169] introduced a new privacy-
preserving method, known as LDP-FedSGD (LDP-based Fed-
erated Stochastic Gradient Descent), for vehicular commu-
nication, combining FL-based LDP with crowd-sourcing ap-
plications to predict traffic status using a single numeric
characteristic. The research conducted by Wang et al. [170]
addressed the challenge of perturbing multidimensional data
to achieve optimal worst-case error. They proposed the Hybrid
and Piecewise Mechanisms, building upon the work of Duchi
et al. [171], which focused on single attribute numerical data.
These techniques were extended to handle data with multi-
ple dimensions and both numerical and categorical features.
Similarly, the study in [172] also introduces a novel privacy-
preserving method for LDP in the context of FL, specifically
for handling high-dimensional, continuous, and large-scale
data. The method also allows clients to customize their privacy
budget.

The authors of [173] aimed to improve the efficiency of
LDP, which can be hindered by the large variation in the
added noise, leading to more communication overhead be-
tween server and clients to obtain the required outcomes [172].
They proposed a method of separating and shuffling gradients
before transmission to counteract the privacy issues caused
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by multidimensional data and repetitions. Another study [174]
evaluated the effectiveness of CDP and LDP against backdoor,
membership inference, and property inference threats using
experiments. The evaluations indicate that while LDP may
be ineffective in protecting against property inference, CDP
offers a level of defense but with reduced effectiveness. Nev-
ertheless, they both can successfully defend against backdoor
and membership inference threats [175], [176]. Distributed DP
(DDP) is a promising approach that combines both methods
to find a balance between utility and privacy concerns. This
method involves local protection of updates using LDP by
clients, while secure aggregation ensures that the FL server
does not expose intermediate parameters [138], [177]-[180].
To conclude, the preference and trade-off between CDP and
LDP are influenced by the trust model of the implementations.
CDP is unable to ensure privacy in scenarios involving a
malicious server model. On the other hand, while LDP can
safeguard clients from malicious servers, it may compromise
the precision of the model. Therefore, it is important to con-
sider the trade-offs between privacy and accuracy when using
DP and to carefully manage the privacy budget. Moreover, the
adversarial colliding client model is not taken into account in
the DP itself. Other privacy-enhancing techniques, such as HE,
FE, SMPC, and/or FL, can be used with a hybrid solution to
provide a comprehensive privacy and security solution.

C. Confidential Computing (CC)

CC ensures the privacy of users’ environments when run-
ning programs in virtualized environments by leveraging en-
clave technologies, hardware security features, and trusted ex-
ecution environments (TEEs) [181]. Enclaves offer hardware-
based protection from other software components on the same
platform, such as the operating system and hypervisor, by
creating secure and isolated memory regions inaccessible from
random access memory (RAM) [182]. This technology is
primarily provided by hardware vendors like Intel, ARM,
and AMD under various names. Intel developed the enclave
concept with Software Guard Extensions (SGX) to improve
security and privacy on their processors, starting with the
Skylake generation [181]. However, solely relying on SGX
for privacy protection is not enough, as the code from the
ML as a service (MLaaS) provider may not be trustworthy.
To prevent unauthorized data access, SGX must be restricted
within a sandbox. The Ryoan sandbox is a commonly used
option for SGX, allowing users to verify the execution of
enclaves without accessing the model specifications, ensuring
the confidentiality of both clients and ML models [183].

Trust-based secure enclave solutions are designed to protect
against malicious insiders, like rogue hypervisors in virtual-
ized cloud environments. However, these solutions are still
vulnerable to side-channel attacks on the processors [184].
The use of computational confidentiality, facilitated by TEEs,
offers a practical and effective solution to this issue. TEEs
ensure the secure execution of ML tasks by isolating sensi-
tive computations from untrusted software. However, utilizing
TEEs requires additional hardware capabilities which may
incur costs. In FL situations, TEEs can be used on either
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the server or the client side. In large-scale deployments,
such as IoT applications, equipping every device with TEEs
can be costly. While some IoT-specific solutions, like ARM
TrustZone, exist, most implementations of TEEs are on the
server side. Recent instances of Sybil attacks highlight the
need to also protect against malicious client devices to prevent
Sybil-based poisoning attempts [185].

Researchers in [182], [184]-[193] investigated the use of
TEEs to protect DL models in the context of MaaS. Due
to hardware constraints, it is not viable to execute model
inference within TEEs. The limit of the TEEs (enclave) code
is constrained by a specified threshold, such as 128MB in
the case of Intel SGX. If this limit is exceeded, the process
of swapping data takes place, resulting in potential concerns
for both performance and security, as the data needs to be
decrypted and encrypted during the swapping process. There-
fore, strategies such as splitting the model and utilizing GPU
(Graphics Processing Unit) accelerators have been proposed
to address this problem. The main focus of these studies has
been on how to outsource computation to GPUs and how to
partition the deep neural network (DNN). Some studies have
also employed blinding operations to add a layer of protection
by obscuring results during computation outsourcing. After
completion, these results are unblinded within the TEEs [187],
[190]-[192].

TEEs are being increasingly utilized in FL situations, with
two main applications depending on the trust model. One case
involves an untrusted aggregating server, where SMPC can
protect model updates, but a malicious server can still pose a
challenge in semi-honest models. In these cases, TEEs such
as Intel SGX can be used to secure server-side activities. The
other scenario is when there is a potential for malicious client
devices, which can manipulate the protocol despite appearing
harmless. In such cases, TEEs such as ARM TrustZone can
be used to secure client-side activities. When both server-side
and client-side can be malicious, TEEs can be utilized on both
ends [193]. Although there has been significant progress in
utilizing TEEs in ML on the cloud, there are limited studies on
applying TEEs to FL situations. A collaborative effort between
Intel and UPenn [194] employed Intel SGX in the FL context
to address medical imaging, where data is trained locally,
encrypted, and aggregated using the SGX enclave before being
transmitted to clients. Both the model data and data updates
are safeguarded in the given scenario. In their publication,
Chen et al. employed TEEs to carry out activities on both
the client and server sides [193]. However, this study did not
safeguard model updates despite claiming to transmit them
securely. Another study [195] utilized ARM TrustZone TEEs
to protect client-side activities by dividing the DNN model
into segments by employing Ohrimenko’s method for side-
channel assaults and DP utilized for update protection. This
method was further improved upon by utilizing TEEs on both
client and server sides in FL [196], [197]. This study also
focused on protecting all layers of the DNN, rather than just
the most vulnerable ones as in [196], [198]. These studies
demonstrate the potential of TEEs in safeguarding FL against
various attacks, such as model inversion, property, and model
inference attacks.
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In conclusion, CC-based techniques facilitate secure exe-
cutions by leveraging the hardware assurances provided for
separated and safeguarded memory regions.

D. Combining Privacy-preserving Algorithms and Machine
Learning

In recent years, both industrial and academic stakeholders
introduced a variety of HE libraries, such as the Simple
Encrypted Arithmetic Library (SEAL) [199], HE Library
(HElib) [200], [201], Faster Fully HE (TFHE) [202], PAL-
ISADE [203], Compute Unified Device Architecture (CUDA)
HE (cuHE) [204], HE for Arithmetic of Approximate Numbers
(HEAAN) [205], and HE-transformer [206]. Many of these
libraries are built on the Ring Learning with Errors (RLWE)
principle and share similar choices regarding underlying rings,
error distributions, and parameter settings.

SEAL [199] stands out as the most popular open-source
HE tool, supporting both Brakerski/Fan-Vercauteren (BFV)
and Cheon-Kim-Kim-Song (CKKS) schemes. Written in C++,
SEAL is under continuous development to expand compatibil-
ity with other languages like C#, F#, Python, and JavaScript.
One of SEAL’s key features is its ability to compress data,
significantly reducing the memory footprint. The HElib [200],
[201] is another open-source tool based on the Brakerski-
Gentry-Vaikuntanathan (BGV) scheme and was developed in
C++. HEIlib emphasizes efficient ciphertext packing and data
movement optimizations, though it has some limitations in
bootstrapping performance.

The TFHE [202] library, open-source and maintained in
C/C++, focuses on a Ring variant of the Gentry, Sahai, and
Waters (GSW) scheme and uses an alternative torus repre-
sentation. TFHE is known for its extremely rapid gate-by-gate
bootstrapping process, which doesn’t limit the number of gates
or their arrangement. PALISADE [203] is an open-source
initiative that provides an HE library that supports various
schemes like BGV, BFV, CKKS, FHEW, and THEW. Devel-
oped in C++, it includes features for multi-party extensions
and utilizes RNS algorithms for enhanced performance. The
cuHE [204] library leverages GPU acceleration through CUDA
for parallel computing, implementing arithmetic functions
using techniques like the Chinese Remainder Theorem (CRT),
Number-Theoretic Transform (NTT), and Barrett reduction for
managing large polynomial operands.

The HEAAN library [205], supporting the CKKS scheme,
is designed for fixed-point arithmetic with rational num-
bers, where the error margin is adjustable based on specific
parameters. Lastly, the HE transformer for nGraph (HE-
transformer) [206] is a project based on SEAL for the Intel
nGraph Compiler. This C++ implementation acts as a graph
compiler for neural networks (NNs), serving as a proof-of-
concept to evaluate the performance of HE schemes in DL
applications.

In [207], the authors designed an HE library called
GAZELLE that combined with the garbled circuits (GC) to
support SMPC for preserving privacy in an MLaaS environ-
ment. Gazelle library aims to accelerate the mathematical
operations on encrypted data for DL-required processes by
leveraging an automatic switch between HE and GC.
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In [125], the authors implemented Mini Oblivious Neural
Network (MiniONN) library in C++ using the Arithmetic
sharing, Boolean sharing, and Yao’s garbled circuits (ABY)
library [208] for SMPC implementation and Yet Another
Somewhat HE(YASHE) [209] for additively HE.

PySyft and Advanced Privacy-Preserving Federated Learn-
ing (APPFL) are two Python libraries for secure and private
DL. They use FL and DP to decouple private and sensitive
data. They can be used within the major DL frameworks, such
as TensorFlow and PyTorch.

Marc et al. in [210] introduced the FE library, called
CiFEr, to build privacy-enhanced ML models. CiFEr library
is written in C by combining various libraries like GNU
Multiple Precision (GMP), Apache Milagro Crypto Library
(AMCL), and libsodium. Another FE library called GoFE is
also proposed in [210].

HT2ML [211] is a C++-based framework for PP ML based
on HE and Intel SGX TEE. This prototype uses Microsoft
OpenEnclave, which is a hardware-agnostic open-source li-
brary for developing SGX enclave applications, and HEIib
library. HT2ML accelerates the HE-based computations for
the SGX enclave while preserving the integrity and privacy of
the computation to protect users’ data and models. Ohrimenko
et al. [25] proposed a secure enclave platform based on the
SGX system for SMPC.

E. Distributed Learning

ML approaches have become widely used in various in-
dustries and educational settings [212]; however, due to pri-
vacy concerns, Google introduced a decentralized framework
known as FL in 2016 [213]. This approach allows multiple par-
ticipants to collaborate and train an ML model without sharing
their training data [214]-[216]. Instead, the participants train
the model on their own data and then send only their updated
local model parameters to a central aggregator to measure
the average value of the gradient descent of the local models
received from different participants to update the global model
without revealing this data to another party [217]. This process
is repeated until convergence [25], [32], [218]-[220]. This
preserves the privacy of the participants while still allowing
them to learn an accurate global model (as it collects data
from different distributions). However, this approach requires
more local computation by the participants, although it reduces
communication overhead.

Therefore, FL. has become increasingly popular in both
industry and research due to its ability to address privacy,
security, and regulatory concerns when working with data
from multiple parties [221]. This applies to various industries,
such as healthcare, finance, and transportation. In healthcare,
FL allows for model training using patient data without
compromising sensitive information between institutions or
hospitals [222]—-[225]. Similarly, in finance, FL enables banks
to train models on financial data without sharing sensitive
data [226]-[228]. In the transportation sector, FL. can be uti-
lized to train models on traffic data while protecting sensitive
information between different organizations [229]-[231].

Despite the advantages that come with FL, it is a rela-
tively new technology and has some challenges that need
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to be addressed. These challenges include data heterogeneity,
communication efficiency, and privacy and security concerns.
Existing studies [100], [232]-[235] have shown that FL can
pose privacy and security risks, as model parameters may leak
information about the training data as a result of inference
attacks [236]. Other privacy risks include the ability to derive
private information from a trained model [176], [218] and the
potential for model inversion [237], backdoor, and GAN-based
attacks [25], [238]. Moreover, FL is computationally intensive
and may not be feasible for large-scale computation and data
analysis. Additionally, frequent model updates and large data
transfers between parties can result in high communication
costs, posing a challenge for FL implementation.

Hence, the protection of privacy and reduction of commu-
nication costs are important areas of research in FL. To ensure
the security and efficiency of FL, three cases must be consid-
ered: 1) a malicious aggregation server that falsifies aggregated
results or manipulates models, affecting the accuracy of trained
models; 2) high communication costs due to the complex
DL model and distributed structure; and 3) the potential for
participants’ original training data to be inferred from the
uploaded gradients [239], [240]. Several proposed schemes
have attempted to address these concerns, such as using
verifiable FL schemes defending against malicious participants
in medical applications [241], [242], in which low-accuracy
models could cause medical accidents. However, these solu-
tions have limitations, such as high communication costs and
impractical solutions due to involving SMPC protocol. The key
to protecting privacy and secure aggregation is finding a way
to aggregate without revealing the gradient to the aggregation
server. To address these challenges, various techniques have
been proposed to secure the aggregation process for FL global
model construction [243]. These techniques include DP and
HE, where DP [32], [168], [169], [172]-[174], [177], [178],
[244] adds noise to data to protect individual privacy while
HE [101], [103], [104], [106], [107] allows for computations
on encrypted data without decryption. For example, Fig. 8
shows how FHE is being utilized to secure the FL process
via encrypting the local model updates before transmitting
them to the server while allowing the construction of the
global model. Some studies [245] combine both techniques to
enable a secure FL process, but these methods suffer from high
overhead and are vulnerable to collusion attacks if participants
work together.

Overall, FL is a promising technology that allows for the
training of models on large-scale, decentralized data sets while
ensuring the privacy and security of the data. It has many
potential applications in various industries, but it still faces
challenges that need to be addressed before it can be widely
adopted in emerging communication networks. While FL pro-
vides an elegant framework for distributed data-driven learn-
ing, it has been associated with challenges, such as communi-
cation bottlenecks and client data heterogeneity. Coauthors of
this paper addressed these challenges in [246] by developing
an asynchronous weight updating FL with personalization by
tailoring models to individual users based on their local data
while exchanging model updates in a pre-scheduled manner.
Furthermore, the asynchronous personalized FL technique
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was combined with Moreau Envelopes-based regularization.
This approach leverages the advantages of Moreau Envelopes
for handling optimization issues, along with asynchronous
weight updates to boost communication efficiency. It also ad-
dresses data heterogeneity by creating a personalized learning
framework. The method was tested across multiple datasets
in [246] and was demonstrated to achieve faster convergence
and higher communication efficiency compared to the baseline
data-driven model. Practical aspects taken into consideration
by such research work advance FL techniques for emerging
networks that require communication efficiency by design.

The protection of data security has long been a key area
of study when developing deep or FL. models. These models
are designed to safeguard clients (such as mobile devices)
from unauthorized access to their data. The clients are able
to keep their original data confidential on their devices while
simultaneously participating in the model training process with
others. They only need to send updates of their local models to
a central server. However, the default privacy measures in place
for FL are not enough to fully protect the confidentiality of the
local training data [247]. This makes the system vulnerable to
privacy breaches if an adversary is able to intercept the local
gradient updates shared with the server. This breaching can
result in the reconstruction of the private training data with
high accuracy. Such model inversion attacks, where attackers
discreetly monitor gradient adjustments during iterative train-
ing, can lead to the exposure of private data [100]. Attackers
can exploit the intermediate gradients to access the training
data without any prior knowledge of the learning model.

Table II highlights a high-level comparison of the focused
privacy-preserving methods and their functionalities discussed
in this section.

It is also worth mentioning that a number of privacy leak-
age attacks have emerged recently, including Gradient Inver-
sion [248], Client Privacy Leakage (CPL) [249], Deep Leakage
Gradient (DLG) [250], and Improved DLG (IDLG) [251].
These attacks aim to steal the training data and labels through
the use of gradient information. Many of these attacks are
based on iterations, which involve minimizing the distance
between dummy gradients and actual gradients. This recovery
process is formulated as an iterative optimization problem,
with the error between gradients and the dummy inputs used
as parameters. To prevent privacy leakage, several techniques
have been investigated, including Gaussian or Laplacian noise-
based DP. This approach involves adding Gaussian or Lapla-
cian noise to gradients during training before sharing them
with the server [252]. However, this can come at the expense
of accuracy, as it may decrease below a desired threshold.
Another approach is gradient compression, such as gradient
pruning [250], where a specific pruning ratio is chosen during
training to make the model more robust against leakage
attacks. However, pruning in the initial stages of training
may cause the loss of important feature-related information.
Another approach is to use HE to protect data privacy, while
still ensuring model convergence [104]. However, this can be
computationally and memory intensive, limiting its practical
application. In addition to these defense strategies, increasing
local iterations or batch sizes during model training [253] can
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Fig. 8. Applying FHE in federated learning.

also mitigate privacy leakage.

V. PRIVACY-PRESERVING DATA-DRIVEN MODELS FOR
EMERGING COMMUNICATION NETWORKS

In this section, we first describe how the intersection of
privacy-preserving and data-driven models (comprising ma-
chine/deep learning techniques), described in Section III and
Section IV, respectively, are gaining traction in emerging com-
munication networks. Then we describe the various emerg-
ing communication network settings that can utilize privacy-
preserving techniques in conjunction with data-driven models.

Guizani et al. [254] examined the security and privacy
challenges posed by the integration of edge intelligence in
5G and beyond (B5G) networks. The authors emphasized
the growing importance of edge intelligence, which enables
data processing closer to where data is generated, reducing
latency and transmission risks, by employing trained data-
driven models. Then their work demonstrated how a decentral-
ized approach brings new security and privacy concerns with
regard to resource management in these emerging networks.
As a solution, their work investigated the incorporation of
blockchain technology for enhanced privacy in BSG networks.

Researchers in [255] empirically elucidated how ensuring
privacy in data-driven learning models for 5G and beyond
networks is a significant challenge. The architecture of the
various learning models including supervised, unsupervised,
and reinforcement learning-based adversarial models, while
designed to enhance network efficiency, can be vulnerable to
privacy threats. Analysis of the adopted models’ performance,
both before and during privacy breaches, demonstrates that
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such attacks not only compromise the integrity of the data but
can also result in performance degradation that is comparable
to or worse than traditional security threats like data leakage.
This is evident in the deterioration of key performance metrics
under privacy attacks, highlighting the critical need for robust
privacy-preserving mechanisms.

Next, the goal of the study conducted by Humayun et
al. [256] was to find an optimal approach for ensuring privacy
and improving energy efficiency in 5G-powered IIoT (Indus-
trial IoT) systems within Industry 4.0. With 5G introducing
significant changes across various sectors, its integration with
Industry 4.0, which utilizes IoT devices, has become a key
industrial trend. Industry 4.0 incorporates ideas like smart in-
frastructure, intelligent services, and rapid development cycles,
leading to the connection of billions of devices. However,
this large-scale connectivity of varied devices presents notable
privacy concerns, which are a major area of focus for users.
In a similar vein, researchers in [257] introduce two protocols
designed to address privacy concerns in 5G-enabled position-
ing systems. The protocols protect the privacy of reference
points by encrypting the original data matrix using two random
matrices through concatenation and multiplication, without
affecting the positioning service. A thorough analysis was
conducted to evaluate the security strength, computation cost,
and communication overhead of the proposed protocols under
machine learning settings. This ensures higher security under
specific time and communication constraints. However, adapt-
ing these protocols requires further validation in real-world
network deployment for the verification of the outsourced
computation overhead.
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TABLE 11
SECTION IV SUMMARY. NOTATIONS: PRIVACY-PRESERVING (PP), MACHINE LEARNING (ML), DEEP LEARNING (DL), FEDERATED LEARNING (FL),
COMPUTATION OVERHEAD (COMP), COMMUNICATION OVERHEAD (COMM), ACCURACY LOSS (AccC L0oSS), AND SCOPE.

Objective Reference Methodology COMP COMM Accuracy loss Scope
HE FE SMPC DP CcC
[27], [28], [100] v High High Low -
[29], [124] v Medium High Low -
[34], [140], [141],
[144], [147], [149], v Low Low High -
PP DL [160]
. Load Forecasting in
[142] v Low Low High smart grid
[145] v Low Low High Mobile data analytics
. Sensitive
[146] v Low Low High crowd-sourcing data
. Distributed web
[148] v Low Low High attack detection
[186], [190], [198] v Low Low Low -
[153] v Low Low High Financial Flme-senes
prediction
Industrial
[105] v High High Low cyber-physical
systems
[102] v High High Low Healthcare
Electricity theft
PP FL [79] v Low Low Low detection in smart
grid
[103], [104], [106], . .
[107] v High High Low -
Securing IoT-based
[154] v Low Low High social media
networks
[138], [168],
[172]-[174], [177], v Low Low High -
[178]
[169] v Low Low High IoT
[193], [195], [197] v Low Low Low -
[122] v Medium | High Low Distributed linear
regression
[131], [132], [134], . .
[135] v Medium High Low -
Electricity theft
[82] v Low Low Low detection in smart
grid
Electricity theft
[116] v Medium High Low detection in smart
PP ML grid
[109] v Low Low Low -
[55], [123], [138] v Medium High Low -
[182] v Low Low Low ML as a Service
[187]-[189], [191],
[192] v Low Low Low -
[152] v Low Low High Social medl.a data
outsourcing
[84] v High High Low Secure data mining
[129] v Medium High Low Data mining
[101] v High High Low PP logistic regression
[97] v High High Low Healthcare data
[981, [99] v High High Low -
PP statistical . . Linear Regression
[128] v Medium High Low and Classification
analysis [151] v Low Low High Healthcare data
[158] v Low Low High -
dggcgggfi . [111] v Low Low Low Health
PP da‘f“ [139] v Medium High Low Mobile sensing
aggregation
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A. 5G and Beyond Open Core Network Systems

In Beyond 5G and 6G core network systems, open protocols
for interoperability and multi-tenant service provisioning make
privacy preservation a critical yet untouched problem. In these
emerging open-core networks, resource slicing in a dynamic
manner is considered to be a key feature for effective network
management to optimize the user-perceived Quality of Service
(QoS). Resource slicing in the network, for instance, allows
for efficient handling of massive machine-to-machine and IoT
traffic without impacting the quality of simultaneous video
streaming services. Kline er al. [258] identified a number of
security and privacy concerns with multiple service providers
and operators in emerging 5G core networks that include infor-
mation exfiltration via side-channels, control spoofing due to
compromised infrastructure, and control manipulation across
different service/administrative domains. Since distributed and
multi-party resource slicing cannot be ensured to be privacy-
preserving with existing public-key cryptography schemes,
Kline et al. discussed the breakthroughs in FHE exploiting
lattice-based encryption to provide robust, hierarchical secu-
rity. They also developed advanced private and secure network
control through the Threshold FHE scheme and presented
proof-of-concept results. This concept was further augmented
with data-driven techniques to conceptualize programmable
privacy to enable confidential smart contracts by employing
FHE [259].

European Telecommunications Standards Institute (ETSI)
recommended Zero touch network and Service Management
(ZSM) architecture for the network function orchestration and
automation, which splits the core network into operational,
technological, and business planes [260]. Al and ML-based
data-driven models have been considered in [261] to support
closed-loop network functions in the ZSM framework for
cyber threat intelligence that requires security data collection
points. However, this poses a potential privacy leakage sce-
nario in such massive core network systems, and FL methods
were considered to be directly applicable in ZSM-based end-
to-end service management in core networks in [262]. Privacy-
preserving methods combined with Al-based data-driven mod-
els for core network systems were also introduced by an
assortment of FL frameworks introduced in [263]-[268]. The
privacy-preserving and security parameters aggregation con-
cept for end-to-end QoS management, based on this assortment
of research work, is illustrated in Fig. 9.

Lessons Learned

Core networks deal with massive numbers of network flows
that could be unstructured and flow at a significantly high
speed. Unstructured big network data needs to be converted
to structured data prior to applying data-driven models, and a
significant challenge exists in this preprocessing step, which
is often taken for granted as trivial. However, this prepro-
cessing task may impose significant delays on the network
orchestration tasks, and hierarchical data-driven models need
to be designed such that the preprocessing of unstructured
data can be dynamically handled by the upper-level mod-
els, whereas the lower-level ones work in conjunction with
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privacy-preserving techniques, such as HE, ME, and MPC.
FL in this context emerged as a natural choice for distributed
processing, as well as learning to prevent raw data leakage
while training the models at localized sources while fulfilling
their respective resource constraints. Also, in the case of
FL-enabled core networks, label generation from the local
data may be theoretically possible; however, they may be
practically challenging due to the absence of data annotation
at the hardware level and non-iid data characteristics. While
personalized FL. models can be customized for each network
function in a given core network, generalizing them may
require devising another level of Al models to scale across
the entire core network.

B. Open and Reconfigurable Radio Access Networks (RANs)

While the preceding subsection covers the core networks
in B5G and 6G networks with regard to their use of privacy-
preserving techniques coupled with Al-based systems such as
FL, we now turn our attention to radio/wireless access network
technologies adopting privacy-preserving data-driven models.
The radio access networks of emerging networks connect the
wireless/mobile users with the core network under extremely
dynamic and unpredictable channel conditions. Numerous
research works have been done on ML/DL model-based chan-
nel prediction, resource allocation, and mobility prediction
techniques to improve communication network performance
outcomes. On the other hand, a number of privacy-preserving
techniques are now being adopted in wireless fronthaul. How-
ever, the seamless fusion of privacy-preserving algorithms with
data-driven models remains an interesting avenue where some
pioneering research has started to appear.

6G networks are envisioned to surpass 5G in terms of speed,
capacity, and latency, enabling transformative applications
such as holographic communication, high-fidelity mobile In-
ternet, and pervasive Al. These networks will rely on cutting-
edge technologies like edge computing, advanced beamform-
ing, and massive Multiple Input Multiple Output (MIMO) to
achieve these feats. However, the complexity and openness
of 6G networks also introduce significant privacy and security
challenges. To tackle these issues, Ye et al. [269] formulated a
novel approach that leverages HE and GNNs. HE, as described
in the preceding section, is a form of encryption that allows
computations to be performed on ciphertexts, generating an
encrypted result that, when decrypted, matches the result
of operations performed on the plaintext. This property is
particularly useful for preserving the privacy of data in cloud
computing and, by extension, in 6G networks, where data
may need to be processed by intermediate nodes without
exposing the underlying sensitive information. In addition,
the incorporation of GNNs offers a sophisticated method to
analyze and interpret the complex relationships and patterns
within the data transmitted across 6G networks. The reason
behind introducing GNN is its ability to handle data structured
as graphs, making it a natural choice for modeling the intricate
interactions and dependencies in network traffic in 6G RAN.
By applying GNNSs, the system can learn to detect anomalies,
optimize network performance, and enhance security measures
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Fig. 9. privacy-preserving and security parameters aggregation in beyond 5G open core networks with end-to-end QoS management.

based on the vast amounts of data flowing through the network,
all while maintaining the privacy of the data through HE.

Researchers are recently also investigating the application
of deep learning techniques with privacy-preserving techniques
for the combined purposes of sensing and safe communication,
with an additional focus on semantic communications [270]-
[273]. For instance, the system conceptualized in [270] in-
tegrates a transmitter and receiver operating over a wireless
channel, influenced by noise and fading. At the transmitter,
a deep neural network, acting as an encoder, is employed
to jointly perform source coding, channel coding, and mod-
ulation. On the receiving end, another deep neural network,
posing as a decoder, handles demodulation, channel decoding,
and source decoding to recover the transmitted data. The
transmitted signal fulfills two roles, i.e., it enables commu-
nication with the receiver while also facilitating sensing. In
the presence of a target, the reflected signal is captured, and a
separate deep neural network decoder is employed for sensing,
tasked with detecting the target and determining its range.
These networks—one encoder and two decoders—are trained
jointly using multi-task learning, considering both the data and
channel conditions. Researchers in [270] further expanded the
system to include semantic communications by introducing
an additional deep neural network decoder at the receiver,
which acts as a task classifier, evaluating the accuracy of
label classification in the received signals. The study employed
CIFAR (Canadian Institute For Advanced Research)-10 [274]
as input data and took into account channel conditions such as
Additive White Gaussian Noise (AWGN) and Rayleigh fading.
The findings demonstrate the potential of multi-task deep
learning to effectively support high-precision joint sensing
and semantic communications that further facilitate privacy-
preserving.
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Lessons Learned

Combining these two technologies, i.e., privacy-preserving
techniques and data-driven models, within 6G networks rep-
resents a powerful tool for ensuring privacy preservation at
scale. HE ensures that data remains encrypted throughout
its journey across the 6G RAN, which is anticipated to
support open standards and multiple tenants/service providers,
resulting in possible privacy leakage scenarios. Thus, privacy
is retained with the introduction of HE even when the data are
being processed at the 6G base stations. Meanwhile, GNNs
provide the intelligence layer that enables the network to
adapt and respond to emerging threats and challenges, ensuring
robust security and optimal performance. While the exist-
ing research work typically outlines frameworks integrating
privacy-preserving algorithms with data-driven models for 6G
networks, it is important to also discuss potential challenges,
limitations, and future directions for research in this area,
emphasizing the importance of developing scalable, efficient
solutions to support the anticipated demands of 6G networks in
TeraHertz (THz) communication environment where channel
models are not yet known. Moreover, the introduction of
intelligent and reconfigurable surfaces for 6G networks may
add to the complexity of channel models in hyper-dense 6G
tiny cells. In such scenarios, privacy-preserving data-driven
models may serve as a modular concept on top of the yet-
to-be-established physical layer models of such emerging
systems.

C. IoT Systems and Networks

The recent proliferation of IoT devices and sensors for
facilitating smart community applications has resulted in vul-
nerabilities that can result in unauthorized access and data
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Fig. 10. Privacy issues in sensing, network, and computing layers of IoT systems.

breaches. These may be observed in all three layers of IoT
systems, namely sensing, networking, and computing layers,
as depicted in Fig. 10. Privacy leakage in IoT systems may
be customer-specific and may range from revealing the user
behavior to exposing sensitive parameters, data, and even
learned models, which may, for example, user-behavior re-
vealing sensitive parameters, data, and even learned models
to outside parties [275]. In particular, the correlation between
geolocation data and the end users’ demographics and usage
patterns in IoT systems data acquisition was reported in [276].
To address the privacy-preserving need utilizing data-driven
models, Berry et al. [277] presented a fusion of a hybrid
SMPC with ML in IoT systems. Their data-driven privacy-
preserving model was tailored for energy-constrained IoT
devices where individual nodes aim to protect their respective
data. Therefore, training data are not shared among the nodes.
The data-driven model is protected with information-theoretic
security/privacy guarantees from being accessed by probing
nodes. The hybrid multi-party secure computing allows for a
communication-efficient matrix and is scalable over a massive
number of low-power IoT devices. Furthermore, an open-
source library, referred to as Cicada, was developed that other
IoT developers can use on IoT nodes, such as Raspberry Pi
devices, even on resource-constrained IoT platforms, such as
UAVs/drones.

Next, Bocu et al. [278] provided an interesting analysis
of personal data gathered via sensors on mobile devices and
indicated the privacy risks of the captured sensitive data. In
particular, they considered DP to be a key technique for data
anonymization to mitigate the possibility of privacy leakage.
Their survey also indicated that apparently harmless personal
data collection through sensory systems could actually lead
to identifying critical personal data items that should be
protected according to data protection regulations, e.g., the
Health Insurance Portability and Accountability Act (HIPAA)
and General Data Protection Regulation (GDPR).

Researchers in [279] presented a privacy-preserving data-
driven model for predictive maintenance in 6G-enabled indus-
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trial IoT network systems. They trained binary neural networks
(BNNs) along with HE circuits to ensure that the privacy
of all the participating users is guaranteed. The rationale
behind adopting the BNN-based model was its lightweight
performance capability to ensure that it would not overwhelm
the resource-limited IoT nodes. Furthermore, they verified the
performance of this privacy-preserving data-driven model ap-
proach based on experimental test data. In a similar vein, Wang
et al. [280] demonstrated the viability of jointly employing HE
and a DL-based model based on secure multi-party computing
to guarantee the privacy of the users.

Arachchige et al. [144] tweaked the global DP to a localized
setting and invoked this to a differentially private mechanism
for IoT devices that is referred to as LATNET. In other words,
LATNET employs the post-processing invariance property of
DP and also the composition property while applying the
localized DP to a CNN. The computational complexity of
LANET was demonstrated to be reasonable on a resource-
constrained platform when tested with the well-known CIFAR-
10 dataset that yielded approximately 91% testing accuracy
while obtaining a high level of privacy.

FL models are also emerging in IoT systems to serve a
plethora of objectives, from IoT data analytics to IoT resource
allocation [19], [20], [40], [281]-[287]. Among these, the work
by Yin et al. [287] is note-worthy since it fuses multi-party
data sharing and FL based on Bayesian DP. Recent research
work conducted by co-authors of this survey [11], [288]-
[291] addresses communication-efficiency challenges in IoT-
based systems by examining the communication overhead and
privacy risks associated with FL. Then the work designed an
algorithm that integrates Knowledge Distillation (KD) and DP
to mitigate these issues. The operational flow and network ar-
chitectures of model-based and model-agnostic (KD-based) FL
algorithms were provided that enables customization of model
architectures for each client to account for heterogeneous and
constrained system resources. Proof-of-concept experiments,
based on the MNIST dataset [292], demonstrated that KD-
based FL algorithms can surpass local accuracy and achieve
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performance comparable to centralized training. Furthermore,
we show that applying DP to KD-based FL significantly
reduces its utility, resulting in up to 70% accuracy loss for
considered privacy budgets.

Lessons Learned

The combined approach of privacy-preserving algorithms
and ML/DL models needs to be lightweight subject to the
resource constraints of the target IoT systems. While the main
bottleneck is energy (i.e., IoT nodes should not transmit the
acquired data at all times), the processing limitations of such
devices may vary. For instance, Raspberry Pi devices may be
more limited than Nvidia Jetson microcontrollers on an indus-
trial IoT platform. On the other hand, such IoT boards may
be even more constrained when used on aerial systems, such
as UAVs. Programmable privacy, as well as programmable
computing, should be integrated into data-driven models to
take into consideration their resource availability in a dynamic
manner. Also, it is important to consider encouraging research
outcomes in this domain, such as the aforementioned LAT-
NET [144], as lightweight solution benchmarks to compare the
performance tradeoffs of emerging privacy-preserving ML/DL
models.

D. Software-Defined Networks (SDNs)

SDNs decouple the control plane from the data plane
and bring forth the concept of re-programmable routing and
re-configurable network tasks by replacing many network
middleboxes with one or several SDN controllers as shown
in Fig. 11. Network operators and service providers are
embracing SDN architecture in their backbone networks and
also in the data center networks where virtualization is a key
feature. Therefore, it is of paramount importance to design
privacy-preserving solutions for SDN to prevent data privacy
leakage. In this vein, Wu et al. [293] conceptualized a joint
DL and DP data protection mechanism for SDN. This method
comprised a GAN to synthesize artificial samples to respond to
an adversary with the appropriate response. By doing so, they
reinforced user location privacy in 5G-enabled SDN systems.

Guo et al. [294], on the other hand, devised an intelligent
zero-trust secure framework for SDN systems that comprises
a data collection module, trust assessment engine, and a user
behavior analysis engine that can be implemented in the SDN
controller. LSTM and CNN-based self-attention networks were
customized to protect every resource and network connection
in the considered SDN, thereby facilitating dynamic authoriza-
tion and guaranteeing the data privacy of users.

Next, Mendis et al. [295] envisioned blockchain as a service
for decentralized secure computing and privacy-preserving
in SDN systems. Their main motivation was the privacy-
preserving data-driven technique implemented in a distributed
manner instead of centralized data acquisition and processing.
In spirit, their solution was comparable to FL frameworks
for SDN traffic flow control and resource allocation [296].
They demonstrated that in particular SDN settings that they
considered, more effective computing paradigms could be
possible to process private or scattered data for training
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Fig. 11. Privacy-preserving functionality can be deployed to the SDN network
controller along with other network functionalities.

appropriate ML models. Their technique was, in essence, a
synchronized cooperative computing process exploiting HE
and blockchain among the distributed, untrusted SDN nodes,
each with constrained processing resources.

Lessons Learned

SDN controllers are designed to centralize the functions
of diverse middleboxes, streamlining network management
and control. This centralization is critical for implementing
advanced technologies like distributed FL or blockchain-based
privacy preservation techniques within an SDN framework.
While placing such functionalities to a single or geographically
distributed SDN controller(s) is critical, reliable coordination
between the controller(s) and distributed network nodes is
a key challenge for maintaining privacy standards that may
inadvertently impact QoS, potentially degrading network per-
formances in terms of delay and reliability to meet the actual
privacy needs.

To address the aforementioned challenges, a nuanced under-
standing of the practical trade-offs between QoS and privacy
parameters needs to be developed. For instance, devising
privacy-preserving methods may require additional compu-
tational resources and demand more feature-rich networking
protocols. This translates into increased delay and/or a drop in
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throughput. This is evident in the case of FL, which requires
coordination among distributed, less powerful user nodes to
share the model parameters, resulting in significant commu-
nication overhead in already congested delivery networks.
On the other hand, blockchain-based distributed ledgers for
enhancing security and privacy could be associated with ad-
ditional network delay because of the consensus update time.
In order to effectively address the QoS trade-off with desired
privacy levels, it is, therefore, essential to develop lightweight
predictive models to proactively balance these contrasting
needs. Designing such models needs to thoroughly take into
account a number of factors, such as the current network
configuration, data sensitivity, network traffic types, and their
priorities, and so forth. At the same time, the SDN controller(s)
require dynamic adaptation of coordination strategies with
the distributed nodes to prioritize the critical data flows and
adjust privacy level settings as needed to combat dynamic
network conditions. Thus, the SDN controller(s) may ensure
that the deployed privacy-preserving models do not exhaust
the resources required for adequate QoS while maintaining an
optimal balance with privacy protection needs.

E. Intelligent Vehicular Networks

Vehicle-to-vehicle/infrastructure (V2X) communication net-
works have received renewed interest as B5G and 6G networks
meet autonomous driving, electric vehicles (EVs), and vehicu-
lar metaverse. Embedded intelligence in V2X communication
became prominent and facilitated automated collision alerts,
lane change alerts, data sharing among vehicles and roadside
units (RSUs), navigation status, and so forth. In addition,
an EV is known to generate tens of terabytes of data on a
daily basis [297] that require high bandwidth and low-delay
communication networks for taking prompt decisions and
actions. However, vehicular data contains location information
and other personalized user information that is associated
with strict privacy needs, and the ML models are vulnerable
to various privacy leakage scenarios [17], [22], [30], [298],
[299]. Therefore, integrating privacy-preserving techniques
with data-driven models is imperative, according to recent
research work [300], [301].

Talat ef al. provided a taxonomy of threat models in EVs
and discussed privacy preservation strategies in [302]. The
major attack vectors are illustrated in Fig. 12. The adoption of
DP perturbation approach in intelligent transportation systems
(ITSs) was extensively reported in [4]. According to [300], HE,
along with ML models, can protect the privacy of EV (Electric
Vehicles) users in a myriad of scenarios, including real-time
data transmission, database analysis, collaborative learning,
and so on. [303] discussed ML, particularly reinforcement
learning techniques, combined with privacy-preserving tech-
nologies, for dynamic resource management of highly mobile
EV networks. [300] highlighted the importance of preserving
the privacy of vehicular network routing mechanisms based on
ML models. Furthermore, [300] identified the shortcomings of
intrusion detection systems that collect data from EVs to detect
adversaries in the EV network that may result in privacy leak-
age. For example, when EVs collaborate to detect an intrusion,
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they need to share their location and routing information with
one another and could possibly share sensitive information
with an eavesdropping node. Therefore, [300] pointed out
the importance of privacy-preserving data-driven models for
intrusion detection. Furthermore, the researchers in that work
also demonstrated how privacy-preserving data-driven models
are useful for energy demand predictions for EV networks,
EV energy trading, and optimal EV charging schedules.

Lessons Learned

Many services for EVs depend on the exchange of pre-
cise location and movement data with relevant entities. For
instance, to identify nearby points of interest (Pols) like
charging stations and restaurants, an EV must share its current
location with the system. Additionally, ML algorithms use
this information to predict factors related to these Pols. While
the collection of such data is useful for identifying pertinent
Pols, it also risks revealing personal patterns of EV users,
such as their religious practices, preferred dining spots, and
shopping preferences. If this sensitive information were to fall
into the hands of malicious individuals or if an attacker were
to intercept these data exchanges, it could lead to significant
privacy invasions. Consequently, it is crucial to safeguard the
privacy of EVs when they interact with any Location-Based
Service (LBS) provider.

F. Networked Cyber-Physical Systems

Networked cyber-physical systems emerged as facilitators
for critical infrastructures and other smart city/community
applications in recent decades. Among these systems, the
smart energy grid, shortly referred to as the smart grid, may
be regarded as an important study case of networked cyber-
physical systems where privacy-preserving techniques and
data-driven models need to be utilized.

A smart grid (SG) is a modern enhancement of the tradi-
tional power grid system to ensure reliable electricity delivery,
optimize grid operations, and engage consumers [82]. In SG,
SMs are installed at consumer homes to report the consumers’
power consumption readings periodically (every few minutes)
to the system operator (SO) for real-time monitoring, energy
management, and billing [304]. However, SG is susceptible
to cyber-attacks, where deceitful consumers manipulate their
reported electricity consumption to illegally reduce their bills.
These attacks not only result in financial losses but also jeop-
ardize the grid’s performance as the consumption data is used
for grid management. To accurately detect such adversaries,
current methods rely on ML models that use the consumption
data, violating consumers’ privacy by revealing such informa-
tion about their lifestyle, such as travel habits and appliance
usage [116]. To address these privacy and security challenges,
a privacy-preserving electricity theft detection scheme, known
as PPETD, was proposed in [116]. This scheme employs
secret sharing techniques to transmit masked consumption
data, allowing the SO to compute aggregated readings for
load monitoring and billing without compromising consumers’
privacy. It also utilizes SMPC protocols, incorporating arith-
metic and binary circuits, to interactively evaluate a CNN-
based electricity theft detector on the masked consumption
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Fig. 12. Privacy attack vectors of V2X and ITS networks that require advanced privacy-preserving techniques integrated with data-driven models.

data, ensuring the privacy of consumers’ readings. However,
this scheme suffers from considerable computation and com-
munication overhead, as the model evaluation is conducted
online through interactive communication between the SO and
each SM. Additionally, a trade-off exists between overhead
and model accuracy, as it uses approximated operations such
as addition, multiplication, and comparison. Furthermore, both
the SM and SO know the model’s classification, which should
only be known by the SO. Dataset from the Irish energy
grid [305] has been leveraged by researchers to incorporate
data-driven models with privacy-preserving techniques.

To address the limitations in PPETD [116], the authors
in [82] proposed a more efficient scheme, called ETDFE, that
achieves the same system objectives in terms of monitoring
load, computing bills, and identifying electricity theft while
protecting the privacy of consumers. This is achieved through
the use of FE, where the encrypted data readings are aggre-
gated for load monitoring and billing, and only the aggregated
value is known to the SO. Additionally, [79] introduces a novel
approach for privacy-preserving, decentralized FL that can
detect energy theft cyberattacks. To ensure privacy, an efficient
FE-based aggregation method is developed that eliminates the
need for a trusted KDC. This approach allows electricity theft
detection stations (ETDS) to train local models using their
individual customers’ power consumption data. The encrypted
training parameters are then sent to the aggregator server
rather than revealing the model’s parameters, which could
potentially leak customers’ private data through attacks such
as membership and inference [79]. The experimental findings
demonstrate that this FL-based energy theft detection method
offers improved detection accuracy, with reduced computa-
tional and communication overhead, compared to previous
efforts that rely on the Paillier cryptosystem [306].

On the other hand, the authors of [78] proposed an FL-
based energy predictor that considers privacy and communi-
cation efficiency for net-metering systems. These systems are
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commonly utilized to decrease greenhouse gas emissions by
installing renewable energy sources, such as solar panels, and
selling excess energy back to the grid [80], [307]. In this case,
the SMs report the difference between energy consumption
and generation, i.e., a net reading, rather than solely reporting
energy consumption [304], [308]. The authors employed a
real power consumption/generation data set to develop a
multi-data-source hybrid DL-based predictor that considers
historical net readings and solar irradiance values to accurately
predict future net readings. In addition, they proposed an IPFE
scheme to enable secure data aggregation and protect customer
privacy by encrypting the parameters of their models during
FL training. To further address communication efficiency,
the authors utilized the change-and-transmit (CAT) approach,
which updates local model parameters only when significant
changes occur, reducing unnecessary communication.

Lessons Learned

The smart grid is a critical infrastructure that needs to
protect its user privacy to thwart possible manipulations and
privacy exposure attacks. The solutions discussed need to
be generalized as well as customized for other networked
cyber-physical systems in smart communities that may range
from smart homes, smart hospitals, smart societies, and smart
factories. The key challenge is to acquire enough datasets
for the other cyber-physical system use cases and validate
the privacy-preserving data-driven models for those scenarios
based on the experiences derived from the smart grid study
case. Furthermore, cyber-physical systems have a data sensing
layer (physical plane) and a data computing layer (cyber
plane) that are interconnected by the network layer comprising
heterogeneous communication protocols. Therefore, it is also
important to design an end-to-end privacy-preserving solution
across all the layers in the entire cyber-physical ecosystem.
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G. Cloud Computing Networks

Cloud computing is a well-known and widely adopted
method of delivery of computational resources in networked
data centers to users as per their computing needs. Data leaks,
however, have emerged as a significant threat to the cloud
computing paradigm. Therefore, privacy-preserving techniques
are being heavily considered for cloud computing [309] to
thwart outsourcing and leaking data to third-party data centers.
Researchers indicated the usefulness of FHE for ensuring
data privacy under cloud computing settings in [310]. They
also demonstrated the lack of adoption of privacy-preserving
ML techniques while processing sensitive data (e.g., medical
datasets) outsourced into a cloud environment. A combined
neural network and HE was then presented to elucidate their
agility and feasibility for ML as a service in cloud computing
with privacy-preserving properties.

Gupta et al. [311] pioneered in presenting a unique system
model of cloud computing for privacy-preserving outsourced
classification schemes. Their system model consists of data
owners, data collectors, and classifier owners, specifically for
cloud computing platforms. A data owner that desires to
store data in the cloud introduces a statistical model-based
noise by exploiting e-DP into the data prior to dispatching
it to the data collector, which in turn offers cloud services,
including storage, computing, and data sharing to other data
owners and the classified owner. The classified owner, on the
other hand, performs computing tasks on the acquired data
(mixed with noise) from the data collector. Then, a novel
privacy-preserving model was conceptualized by combining
the strengths of both DP and ML approaches to perform
privacy-preserving computation on noisy data. In this method,
the ML task exploits the e-DP-induced noisy data rather than
encrypted data. Empirical results based on the blood transfu-
sion service center, phoneme, and Wilt datasets demonstrate
its robustness in preventing adversaries from accessing the
original data of the data owners.

Privacy leakage in cross-silo collaborative learning may lead
to data leakages. To address this issue, FL has been considered
in the cloud computing paradigm where distributed data cen-
ters are considered as participating clients while the parameter
aggregator entity resides in a single data center or is virtualized
across multiple data centers [312]. Cross-silo FL typically
needs to handle a massive number of data samples, which
leads to much computation, and computation/communication-
efficient FL techniques are emerging to solve these issues
along with other challenges, such as statistical, model, and
system heterogeneity.

Lessons Learned

Existing research work [311] hints at performance degra-
dation while preserving privacy as complex ML models are
used in tandem with privacy-preserving methods. Therefore,
performance degradation needs to be carefully formulated and
quantified to address the issue optimally. In other words, there
should be new performance metrics that jointly address and
balance both QoS and Quality of Privacy (QoP) parameters.
Also, many of these privacy-preserving data-driven models
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are not standardized since researchers develop these in a
scattered way as proof-of-concepts. It is important to have a
standardized set of privacy-preserving data-driven libraries for
benchmarking purposes and comparative performance evalua-
tion.

H. Edge Computing Networks

In the study conducted by Hrzich ef al. [313], an extensive
examination of HE techniques is presented, focusing on their
integration with ML within cloud and edge computing environ-
ments to address privacy concerns [314]. As intelligent edge
services, including those in transportation systems and medical
IoT, become increasingly integrated into various domains, ML
emerges as a key enabler. This shift from centralized ML in
cloud data centers to ubiquitous computing on end devices
highlights the necessity of preserving the privacy of sensitive
data processed by these services [313].

The paper explores the application of Partial, Somewhat,
and Fully HE methods across multiple ML models, train-
ing these models on encrypted data to produce classifi-
cation predictions without compromising the data’s confi-
dentiality. This approach presents two promising directions:
privacy-preserving training and privacy-preserving classifica-
tion, thereby enabling ML over encrypted data while maintain-
ing acceptable levels of accuracy and computational efficiency.
This experimental evaluation serves as a foundational piece,
guiding future investigations into which ML models and
encryption techniques best balance privacy preservation with
performance, particularly in edge computing scenarios where
data privacy and security are paramount [314].

Moreover, the adoption of Machine Learning-as-a-Service
(MLaaS) by cloud-collaborative edge computing technology
leaders as a delivery model further underlines the importance
of integrating HE with ML to ensure data privacy during model
training and inference phases. This integration is crucial in
enabling a wide range of pervasive computing applications
to leverage MLaaS while ensuring the confidentiality and
integrity of sensitive data [313]. Moreover, researchers in [145]
conceptualized the EdgeSanitizer framework that adopts DP in
mobile edge computing scenarios by injecting noise into the
actual data. The additional layer of data protection achieved
by that framework was theoretically validated and empiri-
cally evaluated to demonstrate its scalability with resource-
constrained edge devices and resilience against invasive infer-
ence.

On the other hand, the research work in [315] conceptual-
ized a privacy-preserving Al-based service composition tech-
nique for the network edge that exploits FHE. This provides
an effective balance between the QoS need of the edge devices
and Al model performance for their privacy assurance. FHE
permits computations on encrypted data without decryption,
thus thwarting potential data manipulation by attackers. Exper-
imental evaluations using a synthetic QoS dataset demonstrate
the framework’s effectiveness in preserving privacy without
compromising the performance of service composition tasks
in edge networks. Other works also discussed how ML meets
computation and communication control in emerging edge and
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cloud computing network systems [18], [24], [221], [316].
Moreover, FL frameworks, to alleviate the computation burden
and privacy leakage at the cloud computing level, have been
considered to be deployed on the last mile users to facilitate
privacy-preserving edge computing [244].

Lessons Learned

The privacy-preserving data-driven models for edge com-
puting scenarios in the literature so far assume that edge
devices, which abstract edge functionality as services, are
stationary. This assumption may not hold true in dynamic edge
environments where devices frequently move or change their
operational parameters. Moreover, many of the edge devices
in FL have different capabilities in terms of computational
resources and the residual energy level. Additionally, some
edge devices require more incentives to contribute to collab-
orative learning due to selfish behavior. Such considerations
are theoretically mentioned; however, they are not practically
demonstrated in the available proof-of-concepts.

1. Digital Twin Network Systems for Smart Communities

Ahmadi-Assalemi et al. [317] discussed the integration of
Privacy-Enhancing Technologies (PETs) in the design of Digi-
tal Twins (DTs) for smart cities. It highlights the importance of
embedding privacy preservation mechanisms from the outset,
given the privacy risks posed by data-rich DT models in
urban ecosystems. The work outlines the growing value and
challenges of DTs, privacy threats, and the role of PETs like
HE and SMPC in safeguarding data privacy. The authors
emphasize the need for a privacy-aware design in DTs to
manage ethical and legal considerations, ensuring privacy and
data protection in smart city applications.

In [318], Alisic et al. explored the intricate challenges of
safeguarding Cyber-Physical Systems (CPS) from learning-
based cyber-attacks, with a particular focus on the pivotal
role of privacy-preserving measures. A significant portion of
their study is dedicated to the use of HE as a tool to prevent
adversaries from gaining valuable insights from encrypted
data, thereby thwarting potential attacks at their nascent stage.
The research meticulously evaluates the impact of encryption
parameters and the feasibility of conducting anomaly detection
over encrypted data, aiming to complicate the adversaries’
efforts without compromising the essential functionalities of
CPS.

A key feature of the work conducted in [318] is the
practical implementation of a digital twin, i.e., the KTH Live-
In Lab Testbed, that translates the above-mentioned theory into
practice. The deployed digital twin is powered by the IDA
ICE 4.8 software that utilizes real-time sensor data in a smart
building for real-time monitoring and sophisticated analysis
of behavior of the users (i.e., residents of the building). The
digital twin demonstrates how real world modeling can lead to
effective smart system control that effectively improves energy
efficiency and comfort of the residents while protecting their
data privacy.
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Lessons Learned

The existing deployment of privacy-preserving technologies
within digital twin network systems faces several obstacles.
First, the inherent risk of data compromise remains a ma-
jor concern even when employing data-driven models with
privacy-preserving algorithms. Another challenge is that the
implementation of these technologies can be computationally
intensive due to the need for a high degree of expertise
and understanding of these technologies besides the particular
application context. The breadth of privacy-preserving data-
driven models ranges from initial concepts to advanced tested
solutions, showing changing reliability and readiness for the
implementation of the digital twin environments. Moreover,
the continuous change in digital twin technology poses a
unique challenge that is considered a constantly evolving
technology for potential attack vectors. This element calls for a
flexible and proactive approach to user data privacy and secu-
rity, predicting and mitigating risks before they materialize. In
particular, Advanced Persistent Threats (APTs) should be well-
addressed because they are formidable enemies that can use
Al-based techniques to take advantage of new vulnerabilities.
This emphasizes the need for privacy-preserving techniques to
be an integral part of digital twin design to provide robust data
exfiltration controls throughout the data lifecycle.

It is also important to underscore the real-world implications
of privacy concerns in various sectors, such as autonomous
vehicles, healthcare, pharmaceuticals, supply chains, and in-
dustrial control systems. The risks to data privacy, anonymity,
and security in these areas are deemed substantial, necessitat-
ing thorough consideration of privacy and security measures
at all stages of digital development and operation. Therefore,
organizations transitioning towards digital twins should have
a comprehensive understanding of digital twin components,
their values, and the critical importance of data security and
privacy. This includes actionable steps to manage privacy risks
with seamless integration of privacy-preserving techniques
with ML/DL models.

J. Semantic Communication and Privacy-preserving Deep
Learning Models

Jianrui et al. [15] discussed various concepts of semantic
communication, where deep learning plays a crucial role
in extracting features and facilitating communication. While
much of the focus has been on optimizing the local DL
models for semantic encoding/decoding, an equally important
issue is the challenge of developing distributed multi-user
semantic communication for the Metaverse. With the expected
device density in 5G+ and emerging 6G networks, significant
improvements in spectral efficiency will be needed. Non-
orthogonal multiple access (NOMA) can help achieve this
by allowing multiple users to share the same frequency and
time resources, using advanced spatial division multiple access
(SDMA) techniques. These techniques separate users based
on their unique antenna patterns and signal characteristics.
However, reliable separation of these signals relies heavily on
accurate iterative channel estimation and data detection. This
system can support up to twice as many users as there are
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antennas. Additionally, as the source signals are often non-
independent and not identically distributed (non-i.i.d.), it be-
comes more challenging to train the DL models, which require
well-matched knowledge bases (KBs) to function effectively.
Users will need to share large amounts of personal data to
fully synchronize with the system, raising privacy concerns as
this data could be intercepted by malicious actors. Most users
will likely prefer to sacrifice some performance in exchange
for better privacy protection.

K. Summary: Current Status and Challenges

Table III highlights a high-level comparison of the focused
privacy-preserving data-driven models for emerging commu-
nication networks discussed in this section. It is worth noting
as a caveat that we have investigated specific applications that
benefit from privacy-preserving data-driven models, such as
smart health, smart energy, and smart cities. While communi-
cation is a key enabler, not all verticals require privacy. Our
survey does not propose a one-size-fits-all solution; instead, it
highlights tailored privacy-preserving, data-driven approaches
for different networking applications.

Implementing privacy-preserving models in real-world com-
munication networks presents several practical challenges. One
major issue is interoperability, as these models often need to
integrate with various existing systems, including data-driven
models and standards, which may not be fully compatible. Ad-
ditionally, the hardware requirements for supporting advanced
privacy-preserving techniques can be significant, necessitating
investment in high-performance computing resources. Scala-
bility is another concern, as ensuring that privacy measures can
handle large volumes of data without compromising perfor-
mance is critical. Latency introduced by complex encryption
and data processing techniques can also impact the real-time
performance of communication networks. Furthermore, the
complexity of maintaining and updating these models to adapt
to evolving privacy threats and regulatory requirements adds
to the implementation burden. Addressing these challenges
requires careful planning, robust infrastructure, and ongoing
monitoring and optimization.

VI. OPEN RESEARCH ISSUES AND FUTURE DIRECTIONS

While privacy-preserving data-driven models offer promis-
ing opportunities in emerging 6G network communications,
they also come with several inherent challenges, as well as
more subtle, complex ones. In this section, we discuss the key
constraints and open challenges that researchers may need to
carefully consider.

A. Privacy-preserving Model Training and Resource Issues in
Emerging Networks

Significant communication resources are required by
privacy-preserving techniques, such as HE, SMPC, and DP,
that result in a noticeable increase of network latency [319],
[320], which is not desirable for emerging networks due to
their low latency requirements. FL also requires computational
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resources on resource-constrained systems, which may provide
a unique challenge [321]. Thus, the privacy-preserving algo-
rithms on top of data-driven models significantly increase the
computational burden on not only network devices but also the
overall networking infrastructure. As a consequence, training
time and energy consumption could be significantly impacted
with regard to desired 6G network key performance metrics,
such as energy efficiency and sustainability.

In addition to the introduced communication burden, the
privacy-preserving techniques, along with data-driven mod-
els, are intuitively prone to consuming more communication
bandwidth. For instance, sharing encrypted gradients peri-
odically for large-sized data over a large number of users
can significantly degrade communication efficiency. Similarly,
SMPC parameters exchange involving a large number of user
devices may contribute to a substantial increase in the network
traffic, thereby impacting bandwidth and delay requirements
of emerging 6G network systems.

With regard to the massive number of user devices in 6G
networks, particularly in IoT systems, privacy-preserving data-
driven models may not scale well [322]. With the growing
number and diversity of participants in FL or SMPC, the
resultant complexity and overhead of adequately maintaining
privacy may significantly rise, inhibiting their deployability at
scale. In addition, model performance in DP-assisted models
may add noise to the data or gradients to ensure data privacy,
and thereby adversely impact the desired accuracy of those
models. Therefore, it is imperative to fine-tune the model
performance and privacy level to scale well with emerging
communication systems.

Besides the model performance tradeoffs mentioned above,
the deployment and seamless adoption of privacy-preserving
techniques with data-driven emerging network systems war-
rants standardization. This is a huge challenge in the context of
6G systems due to the heterogeneity in networking equipment
and user devices [246]. When the open radio access networks
and open 5G/6G core network standards are being developed,
work groups for privacy preservation, data-driven models, and
their integration on network functions management need to
be clearly drafted before the actual implementation. In other
words, our survey thus far revealed that there are initiatives
from various researchers/industry stakeholders; however, they
are mostly proof-of-work at this point. Appropriate standard-
ization planning should be prioritized in the domain of privacy-
preserving data-driven models for 6G network systems. By
adopting the right strategies for data protection regulation,
aligned with the existing practices (such as GDPR introduced
in the European Union), privacy-preserving ML/DL models
can be usefully embedded in various tiers of emerging net-
works.

In order to effectively address the aforementioned lim-
itations pertaining to privacy-preserving data-driven model
training, it is important to develop lightweight algorithmic
solutions as well as adequate regulatory frameworks to protect
data privacy without significantly impacting computing and
communication efficiency.
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TABLE III
SECTION V SUMMARY, PRESENTING EACH SUBSECTION’S KEY FOCUS AND FINDINGS, TECHNIQUES, AND CHALLENGES ADDRESSED.

Section

Key Focus

Key Findings/Techniques

Challenges Addressed

V-A: 5G and Beyond
Open Core Network
Systems

Privacy-preserving
data-driven models in
5G/6G networks

Integration of Fully HE
(FHE) for secure operations

High computational
overhead, complexity of
implementation

V-B: Open and
Reconfigurable Radio
Access Networks
(RAN)

Privacy in dynamic and
complex 6G RAN
environments

Use of Graph Neural
Networks (GNNs) combined
with Homomorphic
Encryption (HE)

Privacy preservation in open
network structures

V-C: IoT Systems
and Networks

Privacy issues in IoT layers
(sensing, networking,
computing)

Hybrid Secure Multi-Party
Computation (SMPC) and
ML techniques

Energy constraints, data
privacy, scalability

V-D:
Software-Defined
Networks (SDNs)

Privacy in centralized SDN
frameworks

Integration of Differential
Privacy with Generative
Adversarial Networks
(GANs)

Balancing privacy with
network performance

V-E: Intelligent
Vehicular Networks

Privacy in V2X
communications

Use of Differential Privacy
and HE for secure vehicular
communication

High bandwidth and low
latency requirements

V-F: Networked
Cyber-Physical

Privacy in Smart Grids and
Cyber-Physical Systems

Functional Encryption and
Federated Learning for

Computational overhead,
maintaining privacy in

Computing Networks

processing

Encryption and Differential
Privacy

Systems secure energy management real-time data
Privacy-preserving ML
V-G: Cloud Privacy in cloud-based data using Homomorphic Performance degradation,

data leakage risks

V-H: Edge
Computing Networks

Privacy at the edge with
limited resources

Homomorphic Encryption
and Differential Privacy for
edge devices

Resource constraints,
dynamic environments

V-I: Digital Twin
Network Systems for
Smart Communities

Privacy in Digital Twins for
smart cities

Integration of
Privacy-Enhancing
Technologies (PETSs) in
Digital Twins

Scalability, evolving threat
landscapes

V-J: Semantic
Communication and
Privacy-preserving

Privacy-performance
tradeoff in semantic

DL model training based on
well-matched knowledge
bases while preserving user

Scalability, evolving privacy
protection requirements.
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data-privacy

B. Quantum Computing-resilient Privacy-preserving Data-
driven Models

Quantum computing poses a significant threat to current en-
cryption schemes due to its ability to solve complex mathemat-
ical problems much more efficiently than classical computers.
Algorithms like Shor’s algorithm can factorize large integers
exponentially faster, rendering many widely used encryption
methods, such as Rivest-Shamir-Adleman (RSA) and Elliptic
Curve Cryptography (ECC), vulnerable to decryption. This
impending risk necessitates a proactive approach to evaluate
the resilience of privacy-preserving models against quantum
attacks. By understanding the specific ways quantum comput-
ing can compromise these models, we can better prepare for
a future where classical encryption may no longer be secure.

To mitigate these threats, researchers have explored var-
ious post-quantum cryptography methods that can be inte-
grated to enhance the resilience of privacy-preserving models.
These methods include lattice-based cryptography, hash-based
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cryptography, and multivariate polynomial cryptography tech-
niques [323], all of which are designed to withstand quantum
attacks. Lattice-based cryptography, for example, leverages
the hardness of lattice problems, which remain difficult for
quantum computers to solve. Additionally, hash-based cryp-
tographic methods provide security through hash functions,
which are resistant to quantum decryption techniques. In-
tegrating these post-quantum methods into existing privacy-
preserving models will ensure they remain robust and secure
in the face of advancing quantum computing capabilities. This
proactive integration is crucial for maintaining data privacy
and security in future communication networks as explored in
recent research work such as [324].

Researchers are paying a great deal of attention to quan-
tum computing-resilient security protocols for communication
systems, and this is also applicable to privacy-preserving
data-driven models. This is because of the quantum com-
puter’s anticipated capability to handle complex computations
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with unprecedented speeds that may make inversion attacks
against data-driven models viable [325]. Privacy-preserving
data-driven models relying on HE and FE, i.e., cryptographic
measures, could be, in turn, vulnerable to quantum computing-
capable adversaries. In particular, quantum computing is as-
sumed to be able to invalidate the security assumptions made
by current HE schemes, thereby nullifying their provided
privacy guarantees. Moreover, quantum computing may fa-
cilitate novel manipulations against the cryptographic prim-
itives utilized in SMPC. This may reveal the private data or
compromise the computational integrity required for SMPC.
In the case of DP, quantum computers could be harnessed
to process and analyze the noisy outputs at unprecedented
efficiency and speeds that might render the privacy-preserving
technique ineffective. Furthermore, the data-driven models
could be subject to quantum computing-enabled adversarial
attacks that may cause corrupt model training.

In order to address the impact of quantum computing
on privacy-preserving data-driven models, embedding post-
quantum cryptography is important, albeit challenging, due
to the need for substantial change in contemporary communi-
cation systems and networks. Regulatory and standardization
policies to combat the quantum-computing adversaries in
emerging networks are required to be drafted in a proactive and
systemic manner. In this vein, rethinking the vulnerabilities of
privacy and security protocols of communication systems and
networks is required through an interdisciplinary collaboration
among networking researchers, cryptographers, and quantum
physicists.

C. Privacy-preserving Data-Driven Model Challenges in So-
cial Networks and Crowd-sourced Data Networks

Emerging communication networks support social network-
ing data and crowd-sourced data networks, and preserving the
privacy of such networks remains a daunting task. This is
due to the inherent properties of crowd-sourced and social
networks that have diverse users with dynamic user behavior.
While they involve location information, personal prefer-
ences, interactions, and other sensitive data exchange over the
emerging communication networks, perfect anonymization for
training large data-driven models may not be possible due to
issues such as cross-referencing with other datasets, reverse
engineering network architecture, and so forth [326]. Further-
more, training data-driven models in conjunction with privacy-
preserving techniques may take the informed consent of the
users of such networks for granted along with other challenges,
e.g., dynamic join, departure, and change of activities of the
users [327]. However, this may be difficult to facilitate with
one-shot training of privacy-preserving data-driven models.
This issue becomes even more complex with big data, which
are typically unstructured and have heterogeneous data types
and formats. Such unstructured data from social networks
and crowd-sourced environments need to be processed and
converted to appropriate structured types for training privacy-
preserving data-driven models.

Effectively addressing the aforementioned challenges per-
taining to crowd-sourced and social networks warrants a multi-
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dimensional approach comprising both technical and regu-
latory advancements of privacy-preserving techniques fused
with data-driven models. A robust and informed consent
mechanism, although challenging, requires to be embedded
with emerging networks to guarantee compliance with privacy
regulations [328].

D. Challenges on Deploying Privacy-preserving Data-driven
Models in the Edge

As described throughout this survey, FL. and other forms of
collaborative learning techniques to overcome the heteroge-
neous users’ computational resource limitations in the edge
have recently appeared as an appealing privacy-preserving
mechanism. However, data heterogeneity, coupled with user
device heterogeneity and their selfish behavior to participate
in collaborative learning in the absence of an incentive mech-
anism, may be a key barrier to utilizing such learning frame-
works. The communication overhead is also a key bottleneck
in such collaborative learning paradigms, which researchers
are taking into consideration; however, their findings need
to motivate seamless incorporation of communication-efficient
FL protocols in BSG and 6G networks. Also, in the face of
adversarial participants, how privacy leakage can be prevented
needs to be thoroughly investigated with possible scalability
implications. The scalability of such environments is also sub-
ject to the synchronization among heterogeneous user devices
and the central aggregator entity.

To design more robust and scalable FL. frameworks with
adequate privacy-preserving guarantees, the integration of
SMPC, HE, and DP is being considered by researchers.
However, their seamless incorporation appears challenging
and needs to be clarified with comprehensive and quantita-
tive performance metrics, particularly on participating node
fairness and privacy outcomes. Furthermore, personalized FL
asynchronicity options and model compression techniques to
optimize the limited resources available on edge devices need
to be considered. Detection and mitigation of model poisoning,
as well as malicious updates, are also of paramount importance
in such collaborative learning settings. Future iterations of FL
could also exploit fully decentralized parameter aggregation
without relying on a centralized entity, and blockchain or
similar techniques could be exploited for coordination and
trust on parameter exchange and updates that may not be
mutable. Personalized models are particularly important in
FL due to the non-IID (non-independent and identically dis-
tributed) nature of data across different participants. Recent
research has made significant strides in this area, such as
the FedProto method proposed by Tan et al. [329]. Fed-
Proto enables personalized learning by creating prototypes
that represent heterogeneous data distributions across clients,
allowing each client to learn a model that is better suited
to its specific data. This approach significantly improves
model accuracy and generalization across diverse data sources.
Furthermore, the PFedHN (Personalized Federated Learning
using Hypernetwork) framework is introduced [330], which
utilizes hypernetworks to generate personalized models for
each client. This framework effectively addresses the challenge
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of non-IID (non-Independent and Identically Distributed) data
by tailoring models to individual clients while preserving the
benefits of FL’s collaborative nature.

Privacy-preserving data-driven models, if trained with some-
what limited and/or perturbed data, may be subject to overfit-
ting problems. This leads to a lack of generalization, which
is even more amplified in collaborating learning scenarios.
As a remedy, knowledge distillation has been considered in
FL to enhance model performance, particularly in scenar-
ios where communication efficiency and privacy preservation
are paramount. For instance, researchers in [331] introduced
pFedCo-TA (Personalized Federated Learning method based
on Teacher Assistant Knowledge Distillation). The pFedCo-
TA approach utilizes knowledge distillation to improve model
accuracy and communication efficiency. The approach clusters
clients based on data similarity, assigns assistants to facili-
tate knowledge transfer between teacher and student models,
and demonstrates significant performance improvements over
traditional methods. [332] proposes a privacy-preserving and
communication-efficient FL. framework using ensemble cross-
domain knowledge distillation. The method employs one-shot
offline knowledge distillation with unlabeled, cross-domain
public data, ensuring stronger privacy guarantees by introduc-
ing quantized and noisy ensemble predictions. Experimental
results across image and text classification tasks demonstrate
that this approach outperforms traditional FL methods in
both accuracy and communication efficiency while maintain-
ing robust privacy protection. The work in [333] proposes
a communication-efficient and privacy-preserving personal-
ized FL framework that introduces a feature fusion-based
mutual learning approach that enables personalized learning
while reducing communication costs by only sharing a small-
scale shared model with the global model. Additionally, the
framework incorporates a gradient compression technique with
chaotic encrypted cyclic measurement matrices to enhance
privacy without adding significant computational overhead,
demonstrating superior performance and privacy preservation
in FL scenarios with heterogeneous data. Moreover, The
authors in [291] present an FL algorithm that integrates KD
with LDP to achieve communication efficiency and enhanced
privacy in heterogeneous systems. The proposed method al-
lows clients to design their own local models while protecting
sensitive data through LDP and extends the privacy guarantees
to the exchanged soft labels using the post-processing immu-
nity property of DP.

E. Challenges on Incorporating privacy-preserving as a QoS
Metric

While emerging networks focus heavily on fine-tuning QoS
and QoE (quality of experience) along with various security
attributes, researchers often investigate the tradeoff between
QoS/QoE and security parameters [334]. The interplay be-
tween QoS and privacy in adversarial deep learning models
has been demonstrated to be a tradeoff problem [335], which
is worth investigating further in the context of emerging net-
works. However, privacy is an additional metric that warrants
careful research investigation, which is indeed unexplored in
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the literature. Doing so can allow privacy to be addressed
as an intrinsic service quality attribute, which can then be
appropriately fine-tuned with other QoS/QoE requirements,
such as bandwidth, delay, fairness, and so forth. However,
the actual definition of such a comprehensive QoS-privacy
metric is an open research issue since it may consist of various
elements, such as data leakage risk factor, anonymity level, and
so forth. Also, such a privacy-based QoS metric may not be
generalizable or scale well with a wide spectrum and sizes of
datasets that are required to train robust data-driven models
with privacy-preserving capabilities. The lack of standardized
privacy-preserving techniques in emerging network systems
also makes it challenging to quantitatively compare the privacy
aspects of different service providers.

In addition, even though privacy introduced as a tunable
input to service performance metrics is appealing, it may result
in an additional layer of complexity to the training of the
data-driven models. In particular, hyperparameter tuning may
require more effort, and robust methods to accurately fine-tune
the hyperparameters need to be developed in the future.

F. Challenges on Optimal Privacy-preserving Hybrid Model
Selection and Training

Privacy-preserving hybrid model training is an important
aspect, which warrants careful attention due to the unique
challenge involved in managing and coordinating between
diverse model architectures [336]. In addition, the hybrid
model frameworks may result in synchronized model update
issues, and possible privacy leakage across the hybrid model
layers, particularly when distributed, collaborative learning
frameworks are used for IoT systems [337]. Because the
distributed nodes may have different privacy requirements,
their lack of synergistic participation may degrade model
convergence and stability performances, along with possible
privacy leakage of user data. Furthermore, integrating hybrid
models with multiple privacy preservation mechanisms, such
as DP, SMPC, and HE, may lead to heavier models, which
may not scale well with emerging networks leaning toward
edge computing solutions. As a result, the computational
burden of privacy-preserving hybrid data-driven models and
their communication efficiency that may impact the network
systems need to be carefully studied in the future.

G. Challenges Associated With Privacy-preserving Data-
driven Models in the Entire Ecosystem

In emerging networks, there is a focus on integrated
satellite-aerial-terrestrial-underwater networks. These net-
works have different radio access technologies and have in-
herently different communication protocols to cater to unique
user needs [2]. As a consequence, embedding the same
set of privacy-preserving data-driven models across such a
broad ecosystem of networks may lead to side effects in
terms of unexpected communication and privacy performance
outcomes [338]. Recent research work [339] in this area
shows a number of key challenges where Al-assisted privacy-
preserving task offloading in integrated satellite-terrestrial net-
works is discussed. The integration of privacy-preserving data-
driven model-based mechanisms could be naturally suited in
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core networks that address a high volume of data generated
from various access networks at extremely high speeds. Since
SDNs and other emerging solutions for core networks can
handle big network data at scale, it makes sense to deploy
such privacy-preserving models at the core network level and
study the actual impact on throughput, latency, and bandwidth
usage. However, optimizing the privacy-preserving mechanism
overhead so that the effect on communication performance is
minimized requires further investigation. On the other hand,
deploying them in terrestrial and/or aerial access networks
requires more careful planning for actual field implementation.
This is also applicable to IoT network systems that connect
massive numbers of devices and sensors that may not scale
naturally with privacy-preserving Al models. Therefore, the
IoT sensing (data generation) plane could be deemed as a
privacy bottleneck in the entire ecosystem, and it is critical to
safeguard against potential privacy leakage in the “weak links”
of the ecosystem.

H. Challenges on Embedding Privacy-preserving Data-driven
Models with Cell-free Communication Networks

Cell-free communication networks recently appeared as an
exciting alternative to cellular communications, whereby a
dense cluster of base stations aims to serve mobile users
in tandem. The concept of privacy preservation of users is
garnering attention in cell-free network systems in recent
times [340], [341] in addition to their traditional focus on
the physical layer performance improvement. However, when
a group of base stations obtains the location information of
the mobile users, it may take just one compromised base
station to leak out location information or other sensitive
information of the user that it serves. This may introduce
additional complexities to the already complex resource and
cluster optimization problems in cell-free network systems.
The reason behind this is that the privacy-preserving data-
driven models need to be deployed and managed by the already
overburdened base stations, and this may substantially impact
the existing optimization problem formulation. Furthermore,
metadata and signal patterns exchanged between the base
stations could potentially leak the users’ location in a cell-free
network environment. While some researchers started investi-
gating channel estimation with regard to privacy preservation
in cell-free network systems [341], it is still not a mature area
of research, and further investigations are required.

1. Compatibility Issues of Privacy-preserving Data-driven
Models with Blockchain-Based Networks

Different implementations of blockchains in recent years
appeared as an exciting security provisioning technique for
network providers to facilitate transparent transactions. While
there is a genuine debate about scaling the distributed
database/ledger construct of the blockchain in emerging net-
works [342], blockchain’s role in conceptualizing transparent
network slicing contracts in these networks has been con-
sidered in 3GPP studies. How blockchain-enabled networks
can co-exist with privacy-preserving data-driven models is
appearing as a hot research topic recently [343], [344] that
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requires careful assessment of these inherently different en-
abling technologies. Researchers need to investigate whether
these two technologies can complement each other or are
mutually disjoint. For instance, the security, audibility, and
non-mutability of blockchain result in transparent transactions
that are visible to all the users that may unwillingly expose
private information (e.g., at what time the user committed the
record, at which location the user was, and so forth) [345].
Even if blockchain and privacy-preserving data-driven models
have non-complementary roles, it is critical to demonstrate
how the joint consideration of both may impact the latency
and throughput performance of B5G and 6G systems.

J. Challenges on Guaranteeing Freshness of Data-driven
Models due to Model Decay and Privacy Leakage

Data-driven models equipped with privacy-preserving
mechanisms may need to be periodically retrained and rede-
ployed to combat the decaying model’s effect as investigated
by recent research work in [283], [346]. As new data continue
to arrive at the network, old models may become outdated.
This may be particularly valid for collaborative learning frame-
works. It is, therefore, important to determine the frequency
of model updates. Also, determining the threshold of model
decay in dynamically changing massive network systems is a
challenging yet important topic of research that needs much
research attention. The additional overhead from privacy-
preserving techniques, such as SMPC, DP, and HE, may
contribute to delayed model updates. Furthermore, the topic
of model freshness in privacy-sensitive applications overlaps
with ethical and regulatory standards, and 3GPP needs to step
in its efforts to have an interdisciplinary lens to tie all these
considerations together in a cohesive manner.

VII. CONCLUSION

Recently, safeguarding privacy while harnessing data for
emerging networks appeared as a top priority across com-
munication landscapes, ranging from the core fabrics of the
Internet to the ever-expanding realms of IoT systems. Our
survey in this paper demonstrated an important research gap
in the literature, namely the fusion of privacy with data-
driven models to complement the communication performance
outcome with privacy-preserving requirements. Our survey,
therefore, paves the way for future networks to explicitly
embed the consideration of user privacy into network function
orchestration.

Emerging networks with embedded Al may predict traffic
flows, detect malicious activities, and self-optimize to recover
from failure, and our survey connects the topic of privacy
preservation to make such embedded AI models even more
robust. As privacy-preserving techniques, we explained how
HE, SMPC, DP, and collaborative learning can be cou-
pled with data-driven models. By seamless integration of
privacy-preserving techniques with data-driven models, we
demonstrated how the expected communication performance
can be met while guaranteeing the data privacy of network
users. The survey also revealed the status quo and actual
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challenges involved in integrating these advanced privacy-
preserving methods with data-driven models in emerging net-
works. Tradeoff problems, such as maintaining privacy and,
at the same time, achieving high-quality model predictions
for relevant network functions, were discussed in the survey.
In addition, the topic of deployment scalability of the privacy-
preserving data-driven models in emerging networks was also
covered both in breadth and depth through a number of lessons
learned. The survey also provided a list of open research
issues and possible research directions in the realm of privacy-
preserving Al models that range from the model training
overhead and privacy quantification as a QoS metric to model
decaying phenomena under the effect of privacy-preserving
techniques. Therefore, this paper is anticipated to stimulate a
wide spectrum of research work in an interdisciplinary domain
of communication networks, privacy and security practitioners,
and regulatory bodies.
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