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Abstract—With the proliferation of Beyond 5G (B5G) commu-
nication systems and heterogeneous networks, mobile broadband
users are generating massive volumes of data that undergo fast
processing and computing to obtain actionable insights. While
analyzing this huge amount of data typically involves machine
and deep learning-based data-driven Artificial Intelligence (AI)
models, a key challenge arises in terms of providing privacy
assurances for user-generated data. Even though data-driven
techniques have been widely utilized for network traffic analysis
and other network management tasks, researchers have also
identified that applying AI techniques may often lead to severe
privacy concerns. Therefore, the concept of privacy-preserving
data-driven learning models has recently emerged as a hot
area of research to facilitate model training on large-scale
datasets while guaranteeing privacy along with the security
of the data. In this paper, we first demonstrate the research
gap in this domain, followed by a tutorial-oriented review
of data-driven models, which can be potentially mapped to
privacy-preserving techniques. Then, we provide preliminaries
of a number of privacy-preserving techniques (e.g., differential
privacy, functional encryption, Homomorphic encryption, secure
multi-party computation, and federated learning) that can be
potentially adopted for emerging communication networks. The
provided preliminaries enable us to showcase the subset of data-
driven privacy-preserving models, which are gaining traction in
emerging communication network systems. We provide a number
of relevant networking use cases, ranging from the B5G core and
Radio Access Networks (RANs) to semantic communications,
adopting privacy-preserving data-driven models. Based on the
lessons learned from the pertinent use cases, we also identify
several open research challenges and hint toward possible solu-
tions.

Index Terms—Privacy preservation, machine learning, deep
learning, data-driven models, communication networks, feder-
ated learning.
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I. INTRODUCTION

The field of privacy-preserving data-driven learning models

(data-driven models in short) for emerging communication

networks is a new area of research that focuses on creating ma-

chine learning (ML) models that can learn from sensitive data

without compromising the privacy of the individuals in the

data. This observation is particularly applicable to emerging

communication networks, e.g., cell-free networks [1], space-

air-ground integrated networks [2], and Internet of Things

(IoT) systems [3], where the data flow across multiple users

and devices, and the data sharing may not be possible or

even appropriate because of security, privacy or regulatory

policies. To effectively deal with this challenge, privacy-

preserving technologies (e.g., differential privacy (DP) [4],

Homomorphic encryption (HE) [5], secure multi-party com-

putation (SMPC) [6], and federated learning (FL) [7]) are

being increasingly adopted in learning models exploiting large-

scale, decentralized datasets. For instance, DP is capable of

controlled insertion of noise into data so as to protect user

privacy while permitting data mining and statistical analysis

along with developing ML models [4]. On the other hand,

HE and SMPC, which are based on cryptographic techniques,

allow secure computations and learning on encrypted data [6].

Particularly in the case of SMPC, a number of parties can

compute a function over their private inputs in tandem without

having to share their respective input data with others [6].

Such techniques can be regarded as highly useful in emerging

communication networks due to their ability to facilitate

both the secrecy and data privacy of participating users. On

the other hand, FL, a decentralized learning framework, has

recently garnered much research attention in both academia

and industry since it allows users to train local models based

on their private data and share only the model parameters

with a centralized server that aggregates model weights to

converge to a global model [7]. Variants of FL have emerged

based on the varied needs of different communication network

scenarios, which range from Beyond 5G (B5G) cellular net-

works to Unmanned Aerial Vehicles (UAVs) or drones-assisted

networks [8]–[11]. Furthermore, there is a growing focus on

exploiting semantic communication system models with data-

driven models, such as task-oriented semantic communication

network (TOSCN) [12], DeepSC-ST (Deep Learning Enabled

Semantic Communications with Speech Recognition and Syn-

thesis) [13], and DeepJSCC-V (Deep Learning (DL)-based
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Joint Source-Cchannel Coding with Variable code length) [14],

with a primary focus on attaining improved network sum rate.

Some researchers further assessed the need and conceptualized

techniques for incorporating privacy via FL frameworks for

semantic communication-enabled networks [15].

While the aforementioned techniques are associated with

unique advantages to enforce privacy preservation in data-

driven learning models, they are not without shortcomings.

For instance, data leakage is a key challenge in these privacy-

preserving algorithms that train ML/deep learning (DL) mod-

els whereby unauthorized disclosure of sensitive information

may take place. Data leakage may be observed when the

parameters of a model, which is trained on sensitive data,

are exposed to adversaries or unintended parties that were not

supposed to. Another common issue of ML/DL techniques,

referred to as model overfitting, also appears as a performance

bottleneck for privacy-preserving learning algorithms. In such

cases, the trained model memorizes the training data in such

a manner that it fails to perform when it confronts unseen

data. On the other hand, model stealing, i.e., unauthorized

access or replication of the model, is another issue with

privacy-preserving learning models whereby the models are

shared/deployed in a public setting.

In this paper, we address the aforementioned challenges of

privacy-preserving data-driven models in the context of emerg-

ing communication networks and investigate their unique

requirements and characteristics. The roadmap of our work

is illustrated in Fig. 1. For interested readers, we first provide

the two enabling technologies, i.e., data-driven models and

privacy-preserving technologies pertinent to communication

networks. This tutorial-oriented approach sets the stage for

the core survey to connect the enabling technologies in various

network scenarios.

The key contributions of our paper are outlined below.

• We identify the actual research gap in terms of existing

privacy-preserving data-driven models and their use in

communication networks to protect the data. To the best

of our knowledge, there is no joint treatment of these two

domains, whereas there have been a number of research

works addressing each domain in a separate manner [16]–

[38].

• We provide detailed discussions on the different types of

data that are typically carried by these networks and the

privacy challenges that are associated with them. Over-

all, this paper provides a comprehensive survey of the

research area of privacy-preserving data-driven learning

models for emerging communication networks and aims

to serve as a useful resource for researchers, practitioners,

and policymakers working in this field.

• We also provide state-of-the-art privacy-preserving data-

driven learning models for emerging communication net-

works, highlighting the main challenges and open prob-

lems and providing some insights into future research

directions in this area. We delineate the various com-

munication network scenarios, including cyber-physical

systems, IoT, and semantic communications [15], that

have recently started to derive the benefit of applying

data-driven and privacy-preserving techniques in tandem.

The structure of the paper is shown in Fig. 3. The remainder

of this paper is structured as follows. We present a background

on this research topic and delineate the exact research gap in

the existing literature in Section II. Then, in Section III, we

provide the preliminaries of data-driven models in communi-

cation networks. Next, Section IV contains a brief overview

of privacy-preserving methods. These preliminaries enable us

to offer Section V, which presents privacy-preserving data-

driven models for various communication network scenarios

along with the lessons learned in the respective network

settings. Section VI discusses open research issues followed

by potential research directions. Finally, Section VII concludes

the paper.

II. BACKGROUND AND RESEARCH GAP

Intelligent network functions are regarded as a desired

feature in next-generation communication systems and net-

works. Network intelligence appears as a critical requirement

that is anticipated to be seamlessly integrated into B5G

and 6G network systems across various levels, ranging from

the physical to application layers. In particular, data-driven

learning emerged as a revolutionary solution for addressing

complex computational problems in emerging networks. While

for traditional networks, the network management tasks could

be computed locally in network nodes, the growing size

of both wired and wireless networks and the exponentially

growing traffic volume, coupled with diverse traffic types and

ultra-high user mobility, contributed to much higher network

dynamism. Conventional optimization and decision-making

algorithms often demonstrate that it is difficult to obtain a

high-quality solution within a short period of time. In such

scenarios, data-driven learning techniques, particularly ML

and DL models, emerged as alternative solutions that provide

reasonable solutions with regard to standard benchmarks. The

underlying algorithms of these models depend on finding

specific patterns with non-linear relationships within the data.

However, a key issue remains in this conventional ML/DL

paradigm, which is the plain-text nature of the input data.

In other words, both raw and pre-processed data used to

train these learning models are traditionally non-encrypted.

When they are encrypted with state-of-the-art cryptography,

the patterns contained within the data are not the same, and

the data-driven models can no longer be effectively trained.

While there has been a number of research works among the

ML community to devise an effective solution to encrypt the

data to preserve the privacy of data and still be able to train AI

models, network practitioners are yet to systematically address

this issue in various types of communication networks. There

are some scattered research works in the literature that aim to

protect the privacy of the input data of the data-driven mod-

els [25]–[37]. However, they are not systematically surveyed.

To the best of our knowledge, there is no comprehensive

survey in the existing literature that identifies this prevalent

research gap as demonstrated in Table I. In this paper, we

address this research gap of privacy-preserving data-driven

learning models for emerging communication networks as

demonstrated in Fig. 4. The figure outlines the desired proper-

ties of emerging communication network systems, focusing on
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Fig. 1. The road map in this paper is composed of a balanced tutorial of the enabling technologies followed by a survey of those technologies in emerging
communication network scenarios.

Quality of Service (QoS), tunable policy, security, and privacy.

It highlights the traditional focus on optimizing AI-based

QoS and security for dependable communication, considering

privacy with legacy methods. This also depicts our shifted

focus in this paper to privacy-preserving, data-driven models

atop secure QoS by reevaluating ML/DL models for potential

privacy leaks, integrating privacy-preserving techniques with

data-driven models, and employing FL for privacy in mobile

edge and cloud computing. The research gap is currently being

considered by a number of researchers through their efforts in

conceptualizing privacy-preserving ML/DL models [25]–[37]

in the context of communication networks [38].

III. TAXONOMY OF DATA-DRIVEN MODELS WITH VIABLE

PRIVACY-PRESERVING MAPPING

FOR COMMUNICATION NETWORK SYSTEMS

Recent research work in communication networks is wit-

nessing a sharp increase in data-driven, predictive models,

from physical and medium access control (MAC) layers of

wireless, cellular, and mobile radio access networks to ap-

plication layers in the backhaul/core networks. ML and DL

techniques are currently popular among researchers, in both

their vanilla and customized/hybrid forms, to improve each

individual block of the communication system or to perform

joint optimization of the entire transmitter or receiver nodes.

Data-driven models have gained momentum in the areas of

signal detection [42], channel estimation and modeling [43],

resource allocation [44], end-to-end communication [16], se-

mantic communications [45], and so forth [46]. It is difficult

to enumerate all the communication system/network areas

where data-driven models were employed to improve network

performance. However, it is possible to narrow down the

prominent ML/DL techniques that have been applied to these

communication systems to formulate and solve various prob-

lems ranging from spectral efficiency maximization [47] to

quality of service provisioning [48]. In this section, we present

a taxonomy of these enabling data-driven modeling techniques

in communication network systems that have been or could

be potentially applicable to privacy-preserving communication

systems and networks.

Fig. 5 presents our proposed taxonomy for data-driven ap-

proaches having the capability of (or the potential for) integra-

tion with privacy-preserving technologies. As depicted in the

figure, we broadly categorize the privacy-preserving-capable

data-driven approaches from three perspectives, namely learn-

ing approaches, prediction features, and performance mea-

sures, respectively. In the remainder of this section, we sum-

marize these learning approaches.

Learning approaches adopted for trust, privacy, as well as

security in computing and communications aspects of network

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2024.3486690

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. XX, NO. X, OCTOBER 2024 4

Fig. 2. Targeted focus of our work is on the intersection of data-driven and PPM models that are relevant to emerging communication networks. Note that
some of the pure ML/DL/PPM concepts are not used. Some technologies are at the intersection of PPM and data-driven models and only those are elaborated
in the core survey in Section V.

TABLE I
COMPARATIVE FEATURES OF EXISTING SURVEYS TO DEMONSTRATE THE RESEARCH GAP AND NEED FOR A NEW SURVEY IN THE AREA OF

PRIVACY-PRESERVING DATA-DRIVEN LEARNING MODELS FOR EMERGING COMMUNICATION NETWORKS. NOTATIONS: PRIVACY-PRESERVING (PP),
MACHINE LEARNING (ML), DEEP LEARNING (DL), AND FEDERATED LEARNING (FL).

Reference Objective PP Classic ML DL PP+DL
Communication networks

use-cases considered

Tanuwidjaja
et al. [25]

Privacy-preserving deep learning on machine
learning as a service

✓ × ✓ ✓ ×

Podschwadt
et al. [26]

Deep learning architectures for privacy-preserving
machine learning with fully Homomorphic encryption

✓ × ✓ ✓ ×

Falcetta
et al. [27]

Privacy-preserving deep learning with Homomorphic
encryption

✓ × ✓ ✓ ×

Lee
et al. [28]

Privacy-preserving machine learning with
fully Homomorphic encryption for deep neural network

✓ × ✓ ✓ ×

Zhang
et al. [29]

Review of privacy-preserving deep learning
based on multiparty secure computation (MPC)

✓ × ✓ ✓ ×

Sun
et al. [30]

A survey on machine learning and privacy parameters
in 6G environment

✓ ✓ ✓ × ✓

Guo
et al. [39]

A survey on space-air-ground-sea integrated
network security in 6G

✓ × × × ×

Al-Garadi
et al. [40]

A survey of machine and deep learning methods
for internet of things (IoT) security

× ✓ ✓ × ✓

Soykan
et al. [41]

A survey and guideline on privacy enhancing
technologies for collaborative machine learning

✓ × × - (FL) ×

Our work (this paper)
Survey on privacy-preserving data-driven
(machine learning) and deep learning models

✓ ✓ ✓ ✓ ✓

systems, are inspired by ML [49]. While ML impacted various

application domains, such as computer vision and signal

processing, its theoretical foundations on discovering patterns

in network data streams, protocol behavior, misconfiguration,

and patterns of malicious activity have been instrumental

in addressing the communication parameters, as well as the

privacy/security parameters. Despite the usefulness of ML

methods for privacy and trust in communication systems, the

topic of jointly addressing both ML for communication and

privacy/security parameters has not been explicitly addressed

in the literature. Therefore, it is important to review the

enabling ML technologies, which already have the capability

of (or may have the potential for integration) with privacy-

preserving algorithms. The ML solutions in the communica-
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Computing (CC)

D. Combining Privacy-preserving 

Algorithms and Machine Learning

A. Cryptographic 

Techniques

A. 5G and Beyond Open Core Network Systems

E. Intelligent Vehicular Networks

D. Software-Defined Networks (SDNs)

B. Open and Reconfigurable Radio Access 

Networks (RANs)

C. IoT Systems and Networks

G. Cloud Computing Networks

J. Semantic Communication and Privacy-

preserving Deep Learning Models

H. Edge Computing Networks

I. Digital Twin Network Systems for Smart 

Communities
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VI. Open Research Issues and Future Directions

VII. Conclusion

A. Privacy-preserving Model Training and 

Resource Issues in Emerging Networks

D. Challenges on Deploying Privacy-preserving 

Data-driven Models in the Edge

B. Quantum Computing-resilient Privacy-

preserving Data-driven Models

C. Privacy-preserving Data-Driven Model 

Challenges in Social Networks and Crowd-sourced 

Data Networks

E. Challenges on  Incorporating Privacy-

preservation as a QoS Metric

F. Challenges on Optimal Privacy-preserving 

Hybrid Model Selection and Training

I. Compatibility Issues of Privacy-preserving Data-

driven Models with Blockchain-Based Networks

G. Challenges Associated With Privacy-preserving 

Data-driven Models in the Entire Ecosystem

H. Challenges on Embedding Privacy-preserving 

Data-driven Models with Cell-free Communication 

Networks

J. Challenges on Guaranteeing Freshness of Data-

driven Models due to Model Decay and Privacy 

Leakage

Structure of 

the paper

F. Networked Cyber-Physical Systems
K. Summary: Current Status and Challenges

Fig. 3. The structure of this paper.

tion domain of our interest, similar to other disciplines, can

be categorized into supervised, unsupervised, semi-supervised,

self-supervised, reinforcement, and active learning, as depicted

in Fig. 5. The supervised learning paradigm typically facil-

itates learning from labeled network system data in large

network traffic datasets comprising a massive number of traffic
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Fig. 4. Our focus in this paper is shown in terms of the prevalent research gap of the overlooked intersection of privacy-preserving foundational techniques
and data-driven models with regard to emerging communication systems and networks.

flows. However, localization and mobility patterns of users, in

addition to user anonymization, are key privacy elements that

may be revealed through such data-driven models. Therefore,

contemporary supervised learning techniques for regression

and classification tasks need to be carefully integrated with

such privacy considerations to construct effective privacy-

preserving models based on the training dataset. While su-

pervised models may appear straightforward in carrying out

network analytics, the underlying assumptions may or may not

hold. For example, Naive Bayes (NB) classification is a simple

ML model, which works on some fundamental assumptions

with regard to the underlying dataset [50]. If the assump-

tions are not valid in practice, Naive Bayes classification

should not be considered even if its performance appears

to be efficient. The need for making valid assumptions for

such supervised models is further emphasized for facilitating

physical layer privacy and security [51]. Some other notable

examples of supervised learning methods in modern network

communication settings include linear regression (e.g., for

network flow prediction with privacy [52], network throughput

prediction [53], and other privacy-preserving network activity

prediction tasks [54]–[57]), Logistic Regression (LR) (e.g.,

for malicious traffic detection [58]), Support Vector Machines

(SVMs) (e.g., for wireless transceiver classification [59], wire-

less signal processing [60], predicted decoupling of WiFi and

Long Term Evolution (LTE) in unlicensed spectrum [61]).

Decision trees, which are non-linear ML models with sim-

ple yet effective decision-based branch and bound approach,

are also abundant in the networking literature, with recent

research efforts exerted toward secure and scalable edge com-

puting [62], secure and privacy-preserving smart cities [63],

and so forth. Random Forests (RFs), which are typically built

upon a large number of Decision Trees (DTs), have been

applied for network flow classification in both classical and

emerging softwarized communication systems [64]–[67] and

also for advanced privacy-preserving networking tasks [68]–

[71].

A subset of ML techniques, namely the Neural Network

(NN)-based structures, also requires a detailed discussion

due to their effectiveness in solving a myriad of interesting

communication and networking problems, which do not scale

well with classical optimization techniques, such as linear

programming, convex optimization, stochastic geometry, and

geometric programming. The neural network-based learning

approaches can be broadly classified into three types, namely

artificial neural networks (ANNs), graph neural networks

(GNNs), and recurrent neural networks (RNNs). The ANNs

cover various structures, such as autoencoders, convolutional

neural networks (CNNs), variational autoencoders (VAEs),

generative adversarial networks (GANs), and deep belief net-

works (DBNs). ANN models, when trained with a networking

dataset, can capture non-linearities present in the data and

can be useful in terms of distinguishing various network

features, e.g., malicious vs normal traffic flows, private vs

public network flows in the core networks, and so forth. A

detailed discussion of these models, without the considera-

tion of privacy-preserving capability, was presented in the

coauthors’ earlier work in [72]. However, in recent times,
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Fig. 5. Taxonomy of data-driven models with potential privacy-preserving integration capability for emerging communication systems and networks. Reconciling
with Fig. 2, it is worth noting that some techniques are at the intersection of PPM and data-driven models and only those are elaborated in the core survey
in Section V. Other techniques have been mentioned in the taxonomy for the sake of completeness.

there has been a growing trend toward incorporating or at

least mapping, the privacy-preserving requirements in many

of these ANN-based implementations with regard to network

communication systems. For instance, physical layer secret-

key generation has been utilized to provide both privacy and

security capability to mobile users via AutoEncoders (AEs)

in a recent work [73], [74]. The Variational AutoEncoder

(VAE), on the other hand, has been recently investigated for

privacy-aware communication over a wiretap channel with

demonstrated success [75].

IV. PRIVACY-PRESERVING METHODS WITH POTENTIAL

APPLICATIONS FOR EMERGING

COMMUNICATION SYSTEMS AND NETWORKS

The most important concern in the emergence of data-driven

learning models is privacy. Therefore, in this section, we

present an overview of various privacy-preserving techniques

for communication networks that can be broadly classified

into cryptographic methods, DP, confidential computing, and

distributed/federated learning to provide privacy-preserving

functionality for data-driven and DL models.

A. Cryptographic Techniques

Cryptographic techniques involve mathematical methods

and algorithms that can secure communication and protect

data, such as text, voice, images, and video, from unauthorized

access [41]. These techniques aim to ensure the confiden-

tiality, integrity, and authenticity of information by using

encryption, digital signatures, and hash functions. Encryption

can be achieved using symmetric or asymmetric keys, while

digital signatures and Hash functions provide authenticity and

integrity [76]. These techniques are used in various applica-

tions, including securing online transactions, protecting email

communication, securing data stored in the cloud, etc. [25].

Furthermore, there exist alternative cryptographic methods

that allow for secure computations on encrypted data, as
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documented in [25], [77]–[79], such as DP, HE, SMPC, and

functional encryption (FE) [41]. When choosing a method

from this collection, many factors, including the algorithm

type of the ML model, the threat model, and the limits on

computation and communication overhead imposed by the use

case, must be considered. Hence, a comprehensive viewpoint is

necessary to determine the most privacy-enhancing resolution.

This section discusses privacy-enhancing technologies, in-

cluding HE, FE, and SMPC techniques [80]–[82]. These

technologies help protect users’ privacy and data from attacks.

The study focuses on secret sharing in the SMPC framework,

which is widely used. SMPC allows data processing while

remaining encrypted, while HE and FE systems enable com-

putational operations on ciphertext data without decryption.

1) Homomorphic Encryption

HE is a Paillier cryptosystem-based cryptographic technique

that performs computations on encrypted data without requir-

ing the decryption of the data [26], [83], [84], especially when

third parties store the data. As shown in Fig. 6(a), HE encrypts

the data using a public key and enables the execution of

mathematical operations on the encrypted data to ensure its

privacy and security. The output of the computation is also

encrypted and can only be decrypted by the intended recipient

using the decryption key [27]. When the encrypted output is

eventually decrypted, it will yield the same outcome as if the

operations were conducted on the original unencrypted data.

HE includes various encryption techniques such as partially

HE (PHE), somewhat HE (SWHE), and fully HE (FHE) [28].

PHE [85] allows for a number of operations on encrypted

data, limited to either addition or multiplication. Thus, PHE

is categorized into two groups: additive HE and multiplicative

HE [83], [84]. It is commonly employed in practical applica-

tions like remote keyword search and privacy-preserving data

aggregation due to its minimal computational requirements.

On the other hand, FHE is computationally expensive; it is

less efficient compared to PHE and SWHE [86], making it

unsuitable for time-sensitive applications, especially when the

message size is substantial [6]. SWHE provides support for

a variety of arithmetic and logic operations [87], making it

successfully applied in real-time applications, such as those

in finance, medicine, and recommendation systems. Despite

the long-standing challenge of designing FHE, several studies

have been conducted on HE systems utilizing lattices with

Learning With Errors (LWE) and Ring Learning With Errors

(Ring-LWE) problems, as well as schemes involving integers

with the approximate Greatest Common Divisor (GCD) prob-

lem [87]–[93].

Due to HE’s capability to perform computations on en-

crypted data while preserving privacy, it has a wide range of

practical applications, including protecting cloud computing,

enabling SMPC, and facilitating secure data analysis. HE

facilitates the transmission and processing of encrypted data

while keeping the original data out of the hands of the cloud

provider in a cloud computing environment [94]. This allows

the cloud provider to conduct computing operations while

maintaining data privacy. Likewise, SMPC utilizes the HE

to enable several entities to conduct operations and tasks on

shared data while preserving the confidentiality of the original

plaintext. This can be beneficial, especially for applications

relevant to marketplaces, auctions, and secure voting. In an

SMPC-based system developed by Mouchet et al. [95], com-

putations on encrypted data can be performed by the users in a

collaborative manner without requiring a shared key configu-

ration, thereby preventing the server from obtaining client data

information [96]. Hence, HE is widely employed in secure data

analysis, where insightful information from encrypted data

can be extracted without requiring data decryption [97]–[99].

This is especially helpful in highly regulated sectors where

data exchange is restricted, such as the case in the healthcare

industry [97].

Additionally, ML models are trained and evaluated in dis-

tributed computing using HE. To ensure the confidentiality of

the training data, one party encrypts the data before passing it

to another party for processing. In [100], the authors presented

DL system that protects participant privacy by not disclosing

local data to a centralized server (CS). They employ additively

HE to safeguard the data gradients on the cloud server, which

may be honest but curious. The authors in [101] introduced a

secure method that utilizes HE to safeguard the training and

prediction data in logistic regression. However, CS may be

required to retrieve, store, and process the data. HE ensures

that the server never has access to the plain data. The authors

in [102], [103] introduced the FL architectures for wearable

healthcare in their publication. They employ HE to encrypt

the user models before uploading them to the server to be

aggregated and broadcasted to the users so they can undergo

retraining. This technique is iterated until convergence is

achieved. The authors in [104]–[106] introduced a method for

privacy-preserving multi-party ML using HE, where each node

in the system has a unique HE private key.

Despite its advantages in privacy protection, HE has several

vulnerabilities [6]. Firstly, constructing secure computing pro-

tocols for PHE and SWHE systems can be computationally

expensive due to a high number of modular exponent arith-

metic operations, leading to reduced efficiency. Secondly, there

is a significant increase in storage overhead when comparing

ciphertexts to the original plaintext. Finally, HE requires a

trusted authority (TA) to generate and distribute public and

private keys to all participating parties. Moreover, under the FL

framework, clients employ additive HE to conceal their local

gradient updates during aggregation, so ensuring their privacy.

Nevertheless, the computational and communicative expenses

associated with HE operations are exceedingly high [103],

[107].

2) Functional Encryption

The concept of FE was introduced by Sahai and Waters

in 2005 and then formalized by Boneh et al. [108] in 2011.

FE is a cryptographic technique that extends public-key cryp-

tography. It allows the encryptor to use an encryption key

to encrypt a message x and grants the decryptor the ability

to conduct computations on the encrypted message using a

functional decryption key to obtain the outcome of a specific

function f (x). Notably, the decryptor is incapable of uncov-

ering the original message x itself [82], [109], [110]. The

decryption key is function-specific and exclusively applicable

for performing the designated computation on the ciphertext.
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Fig. 6. Homomorphic Encryption (HE) and Functional Encryption (FE) workflows.

Within the context of privacy-preserving data analysis, FE can

be employed to enable data analysis without the need for data

decryption [111]. Access control also employs the usage of

FE to allocate varying degrees of access to individual users,

eliminating the need to decode their data [112].

Lately, there has been a growing emphasis on FE, partic-

ularly in the development of effective strategies for specific

types of functions or polynomials with limitations, such as

linear functions [113], [114] or quadratic functions [115].

FE has the capability to conduct an inner product operation

on encrypted data, which is referred to as inner product

FE (IPFE) [114]. The IPFE allows to solely acquire the

dot product value (x · y) of the vectors upon receiving

the encrypted vector x and functional decryption key that

corresponds to vector y, without gaining access to the contents

of x. Generally, FE comprises three parties as outlined below.

• Key Distribution Center (KDC): The KDC distributes

the encryption key to the encryptor and the functional

decryption key, which is linked to a vector y, to the

decryptor.

• Encryptor: Using the encryption key provided by the

KDC, the encryptor can compute a ciphertext of the data

vector x to be sent to the decryptor.

• Decryptor: Using the ciphertext provided by the encryptor

along with the functional decryption key provided by the

KDC, the decryptor can compute only the inner product

result ïx.yð.

Both FHE and FE can be utilized to conduct dot product

operations on encrypted data. However, unlike HE, which

necessitates decrypting the ciphertext to receive the computed

result, FE can directly provide the result, as can be seen

in Fig. 6(b). In addition, IPFE is more efficient than HE

because it utilizes linear operations in encryption [79]. While

FE shows promise as a technology and is recognized as a

crucial component for secure and privacy-preserving systems,

it is still relatively new and requires further research to enhance

its performance.
3) Secure Multi-party Computation (SMPC)

SMPC is an alternative approach to doing computations on

encrypted data. It enables many participants to collaboratively

calculate a function using their individual private inputs while

ensuring that no information about their inputs is disclosed

to the other participants. This is accomplished by employing

encryption to secure the data and conducting computations

on the encrypted data without the need for decryption [29],

[116]. SMPC supports a set of functions such as private

set intersection protocols and secure comparison and equality

testing. For instance, the secure equality testing allows two

parties to determine if their private inputs are equal without

revealing their confidential information.

There are two commonly used protocols for SMPC in

the literature: Yao’s garbled circuits, which were created

by Yao [117] along with oblivious transfer protocol [118]

and GMW (the Goldreich-Micali-Wigderson protocol) [119],

presented by Goldreich et al.. These protocols allow parties

to securely exchange their inputs and use Oblivious Transfer

(OT) protocol [120], which employs public key cryptographic

methods, to compute the output. These protocols require a

long time and resources for processing, and there is still a

significant communication cost associated with SMPC proto-

cols [121].

Hence, SMPC exhibits a diverse array of uses, encom-

passing secure voting, auctions, and markets. Secure voting

can employ SMPC to guarantee accurate vote counting while

maintaining the confidentiality of individual votes. It can also

be employed in secure auctions to guarantee the confidentiality

of bids while simultaneously enabling fair and transparent

conduct of the auction and maintaining price confidentiality in

secure marketplaces while simultaneously facilitating efficient

market operations.

In the scope of ML, one potential solution for privacy

protection in ML training and evaluation is to use SMPC.

This involves using solutions such as GMW or Yao’s garbled

circuits to ensure the safeguarding of confidential information

during the entirety of the procedure. The authors in [55],

[122]–[124] proposed SMPC-based solutions for safeguarding

the privacy of ML techniques, including neural networks,

logistic regression, and linear regression. These techniques

require data owners to distribute their data among various

servers while ensuring that none of them can gain access to

sensitive data, which is then used for training the models

using SMPC. Other works also combine SMPC and HE,

such as the privacy-preserving prediction solution introduced

in [125]. However, in order to ensure the security of these

techniques against potential adversaries, it becomes necessary

to implement supplementary measures such as zero-knowledge

proofs [126]. The solutions proposed in the literature also

vary in the number of parties involved, with some using

two-party SMPC [127]–[129] and others involving three-party

communication [130].

Other works related to the FL environment suggested a

strategy for securely aggregating the model parameter updates

using an SMPC-based secret sharing scheme [55], [127],

[131], [132] with two honest-but-curious non-colluding servers
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required. Moreover, SMPC not only targets privacy protection

during the training and execution of the FL but also introduces

the necessary measures to prevent security attacks. The paper

referenced as [131] presents a method of utilizing SMPC to

prevent poisoning attacks while ensuring the confidentiality

of sensitive data. Additional approaches utilizing SMPC to

safeguard privacy and mitigate backdoor attacks in FL are

presented in references [133]–[135].

However, these SMPC-based solutions can be costly due to

the complex cryptographic processes involved and the need

for communication between data sources [136]. To address

this issue, customized SMPC protocols have been developed

that incorporate certain sections of the ML and FL training

algorithm to improve privacy, such as in the case of FL where

safe aggregation of weight updates can mitigate the risk of

sensitive data exposure [137]–[139]. In this approach, a trusted

authority can be used to minimize communication among data

owners, while an aggregator server combines confidential data

without gaining access to sensitive information. In summary,

SMPC is regarded as a relatively recent technology that

requires further investigation to enhance its efficiency and

scalability due to its demanding computational nature. It may

not be suitable for extensive computation and data analysis at

present. However, ongoing research is actively tackling these

obstacles.

B. Differential Privacy (DP)

DP is a mathematical framework designed to safeguard the

privacy of individuals by adding random noise to data before

transmission in a controlled manner to mitigate information

disclosure risks while still allowing for accurate data analysis

to be conducted [140], [141], as can be seen in Fig. 7.

DP can be applied to various tasks such as data mining,

ML, and statistical analysis [142]–[144]. In data mining and

statistical analysis, DP can maintain the privacy of individuals

by ensuring that patterns and relationships are representative

of the overall population rather than specific individuals [145].

In the realm of ML, DP allows for training models on sensitive

data without revealing any confidential information about

individuals [34], [35], [146]–[149]. Consequently, it serves

as a new method for preventing privacy and security attacks,

including membership and model inference, model extraction,

and poisoning [150]. DP also has numerous applications in

healthcare [151], [152], finance [153], and social media [154]–

[156] by protecting patient, customers, and users privacy,

respectively, while enabling for valuable data analysis.

Various methods exist for achieving DP, such as noise

addition and data perturbation [157], but the most common

DP methods are the exponential mechanism, which adds the

noise to data based on a score function, and the Laplace

mechanism that is based on the Laplace distribution [158].

Each technique has its strengths and weaknesses and is suited

to different types of data and analysis tasks. DP involves a

privacy budget, which determines the level of privacy loss

allowed for any given analysis based on the privacy parameter

epsilon (ϵ) representing the maximum allowed privacy loss.

The smaller ϵ is, the higher the level of privacy maintained

and lower accurate analysis [159], [160].

DP applications in the FL field can be divided into two

categories, namely local DP (LDP) and central DP (CDP)

based on the FL trust model [161]. When employing the

central trust model, the FL server obtains client updates in

plaintext, while CDP applications follow the same model but

involve introducing noise on the server’s end. This results

in the server sending privacy-protected model parameters,

which are received by the clients. The clients then perform

local training and send their updates back to the server. The

server aggregates these updates and adds noise proportionate

to the sensitivity, repeating this process until convergence is

achieved in each round of FL. DP noise sampling in FL

can be done through three mechanisms - Laplace, Gaussian,

and exponential [157]. LDP, on the other hand, provides

enhanced privacy by eliminating the need to trust the FL

server. This is achieved by introducing noise on the client

side, reducing the reliance on the server [162]–[168]. LDP has

gained significant attention in the literature to address honest-

but-curious aggregator threats, especially since its introduction

in [158].

The study presented in [169] introduced a new privacy-

preserving method, known as LDP-FedSGD (LDP-based Fed-

erated Stochastic Gradient Descent), for vehicular commu-

nication, combining FL-based LDP with crowd-sourcing ap-

plications to predict traffic status using a single numeric

characteristic. The research conducted by Wang et al. [170]

addressed the challenge of perturbing multidimensional data

to achieve optimal worst-case error. They proposed the Hybrid

and Piecewise Mechanisms, building upon the work of Duchi

et al. [171], which focused on single attribute numerical data.

These techniques were extended to handle data with multi-

ple dimensions and both numerical and categorical features.

Similarly, the study in [172] also introduces a novel privacy-

preserving method for LDP in the context of FL, specifically

for handling high-dimensional, continuous, and large-scale

data. The method also allows clients to customize their privacy

budget.

The authors of [173] aimed to improve the efficiency of

LDP, which can be hindered by the large variation in the

added noise, leading to more communication overhead be-

tween server and clients to obtain the required outcomes [172].

They proposed a method of separating and shuffling gradients

before transmission to counteract the privacy issues caused
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by multidimensional data and repetitions. Another study [174]

evaluated the effectiveness of CDP and LDP against backdoor,

membership inference, and property inference threats using

experiments. The evaluations indicate that while LDP may

be ineffective in protecting against property inference, CDP

offers a level of defense but with reduced effectiveness. Nev-

ertheless, they both can successfully defend against backdoor

and membership inference threats [175], [176]. Distributed DP

(DDP) is a promising approach that combines both methods

to find a balance between utility and privacy concerns. This

method involves local protection of updates using LDP by

clients, while secure aggregation ensures that the FL server

does not expose intermediate parameters [138], [177]–[180].

To conclude, the preference and trade-off between CDP and

LDP are influenced by the trust model of the implementations.

CDP is unable to ensure privacy in scenarios involving a

malicious server model. On the other hand, while LDP can

safeguard clients from malicious servers, it may compromise

the precision of the model. Therefore, it is important to con-

sider the trade-offs between privacy and accuracy when using

DP and to carefully manage the privacy budget. Moreover, the

adversarial colliding client model is not taken into account in

the DP itself. Other privacy-enhancing techniques, such as HE,

FE, SMPC, and/or FL, can be used with a hybrid solution to

provide a comprehensive privacy and security solution.

C. Confidential Computing (CC)

CC ensures the privacy of users’ environments when run-

ning programs in virtualized environments by leveraging en-

clave technologies, hardware security features, and trusted ex-

ecution environments (TEEs) [181]. Enclaves offer hardware-

based protection from other software components on the same

platform, such as the operating system and hypervisor, by

creating secure and isolated memory regions inaccessible from

random access memory (RAM) [182]. This technology is

primarily provided by hardware vendors like Intel, ARM,

and AMD under various names. Intel developed the enclave

concept with Software Guard Extensions (SGX) to improve

security and privacy on their processors, starting with the

Skylake generation [181]. However, solely relying on SGX

for privacy protection is not enough, as the code from the

ML as a service (MLaaS) provider may not be trustworthy.

To prevent unauthorized data access, SGX must be restricted

within a sandbox. The Ryoan sandbox is a commonly used

option for SGX, allowing users to verify the execution of

enclaves without accessing the model specifications, ensuring

the confidentiality of both clients and ML models [183].

Trust-based secure enclave solutions are designed to protect

against malicious insiders, like rogue hypervisors in virtual-

ized cloud environments. However, these solutions are still

vulnerable to side-channel attacks on the processors [184].

The use of computational confidentiality, facilitated by TEEs,

offers a practical and effective solution to this issue. TEEs

ensure the secure execution of ML tasks by isolating sensi-

tive computations from untrusted software. However, utilizing

TEEs requires additional hardware capabilities which may

incur costs. In FL situations, TEEs can be used on either

the server or the client side. In large-scale deployments,

such as IoT applications, equipping every device with TEEs

can be costly. While some IoT-specific solutions, like ARM

TrustZone, exist, most implementations of TEEs are on the

server side. Recent instances of Sybil attacks highlight the

need to also protect against malicious client devices to prevent

Sybil-based poisoning attempts [185].

Researchers in [182], [184]–[193] investigated the use of

TEEs to protect DL models in the context of MaaS. Due

to hardware constraints, it is not viable to execute model

inference within TEEs. The limit of the TEEs (enclave) code

is constrained by a specified threshold, such as 128MB in

the case of Intel SGX. If this limit is exceeded, the process

of swapping data takes place, resulting in potential concerns

for both performance and security, as the data needs to be

decrypted and encrypted during the swapping process. There-

fore, strategies such as splitting the model and utilizing GPU

(Graphics Processing Unit) accelerators have been proposed

to address this problem. The main focus of these studies has

been on how to outsource computation to GPUs and how to

partition the deep neural network (DNN). Some studies have

also employed blinding operations to add a layer of protection

by obscuring results during computation outsourcing. After

completion, these results are unblinded within the TEEs [187],

[190]–[192].

TEEs are being increasingly utilized in FL situations, with

two main applications depending on the trust model. One case

involves an untrusted aggregating server, where SMPC can

protect model updates, but a malicious server can still pose a

challenge in semi-honest models. In these cases, TEEs such

as Intel SGX can be used to secure server-side activities. The

other scenario is when there is a potential for malicious client

devices, which can manipulate the protocol despite appearing

harmless. In such cases, TEEs such as ARM TrustZone can

be used to secure client-side activities. When both server-side

and client-side can be malicious, TEEs can be utilized on both

ends [193]. Although there has been significant progress in

utilizing TEEs in ML on the cloud, there are limited studies on

applying TEEs to FL situations. A collaborative effort between

Intel and UPenn [194] employed Intel SGX in the FL context

to address medical imaging, where data is trained locally,

encrypted, and aggregated using the SGX enclave before being

transmitted to clients. Both the model data and data updates

are safeguarded in the given scenario. In their publication,

Chen et al. employed TEEs to carry out activities on both

the client and server sides [193]. However, this study did not

safeguard model updates despite claiming to transmit them

securely. Another study [195] utilized ARM TrustZone TEEs

to protect client-side activities by dividing the DNN model

into segments by employing Ohrimenko’s method for side-

channel assaults and DP utilized for update protection. This

method was further improved upon by utilizing TEEs on both

client and server sides in FL [196], [197]. This study also

focused on protecting all layers of the DNN, rather than just

the most vulnerable ones as in [196], [198]. These studies

demonstrate the potential of TEEs in safeguarding FL against

various attacks, such as model inversion, property, and model

inference attacks.
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In conclusion, CC-based techniques facilitate secure exe-

cutions by leveraging the hardware assurances provided for

separated and safeguarded memory regions.

D. Combining Privacy-preserving Algorithms and Machine

Learning

In recent years, both industrial and academic stakeholders

introduced a variety of HE libraries, such as the Simple

Encrypted Arithmetic Library (SEAL) [199], HE Library

(HElib) [200], [201], Faster Fully HE (TFHE) [202], PAL-

ISADE [203], Compute Unified Device Architecture (CUDA)

HE (cuHE) [204], HE for Arithmetic of Approximate Numbers

(HEAAN) [205], and HE-transformer [206]. Many of these

libraries are built on the Ring Learning with Errors (RLWE)

principle and share similar choices regarding underlying rings,

error distributions, and parameter settings.

SEAL [199] stands out as the most popular open-source

HE tool, supporting both Brakerski/Fan-Vercauteren (BFV)

and Cheon-Kim-Kim-Song (CKKS) schemes. Written in C++,

SEAL is under continuous development to expand compatibil-

ity with other languages like C#, F#, Python, and JavaScript.

One of SEAL’s key features is its ability to compress data,

significantly reducing the memory footprint. The HElib [200],

[201] is another open-source tool based on the Brakerski-

Gentry-Vaikuntanathan (BGV) scheme and was developed in

C++. HElib emphasizes efficient ciphertext packing and data

movement optimizations, though it has some limitations in

bootstrapping performance.

The TFHE [202] library, open-source and maintained in

C/C++, focuses on a Ring variant of the Gentry, Sahai, and

Waters (GSW) scheme and uses an alternative torus repre-

sentation. TFHE is known for its extremely rapid gate-by-gate

bootstrapping process, which doesn’t limit the number of gates

or their arrangement. PALISADE [203] is an open-source

initiative that provides an HE library that supports various

schemes like BGV, BFV, CKKS, FHEW, and THEW. Devel-

oped in C++, it includes features for multi-party extensions

and utilizes RNS algorithms for enhanced performance. The

cuHE [204] library leverages GPU acceleration through CUDA

for parallel computing, implementing arithmetic functions

using techniques like the Chinese Remainder Theorem (CRT),

Number-Theoretic Transform (NTT), and Barrett reduction for

managing large polynomial operands.

The HEAAN library [205], supporting the CKKS scheme,

is designed for fixed-point arithmetic with rational num-

bers, where the error margin is adjustable based on specific

parameters. Lastly, the HE transformer for nGraph (HE-

transformer) [206] is a project based on SEAL for the Intel

nGraph Compiler. This C++ implementation acts as a graph

compiler for neural networks (NNs), serving as a proof-of-

concept to evaluate the performance of HE schemes in DL

applications.

In [207], the authors designed an HE library called

GAZELLE that combined with the garbled circuits (GC) to

support SMPC for preserving privacy in an MLaaS environ-

ment. Gazelle library aims to accelerate the mathematical

operations on encrypted data for DL-required processes by

leveraging an automatic switch between HE and GC.

In [125], the authors implemented Mini Oblivious Neural

Network (MiniONN) library in C++ using the Arithmetic

sharing, Boolean sharing, and Yao’s garbled circuits (ABY)

library [208] for SMPC implementation and Yet Another

Somewhat HE(YASHE) [209] for additively HE.

PySyft and Advanced Privacy-Preserving Federated Learn-

ing (APPFL) are two Python libraries for secure and private

DL. They use FL and DP to decouple private and sensitive

data. They can be used within the major DL frameworks, such

as TensorFlow and PyTorch.

Marc et al. in [210] introduced the FE library, called

CiFEr, to build privacy-enhanced ML models. CiFEr library

is written in C by combining various libraries like GNU

Multiple Precision (GMP), Apache Milagro Crypto Library

(AMCL), and libsodium. Another FE library called GoFE is

also proposed in [210].

HT2ML [211] is a C++-based framework for PP ML based

on HE and Intel SGX TEE. This prototype uses Microsoft

OpenEnclave, which is a hardware-agnostic open-source li-

brary for developing SGX enclave applications, and HElib

library. HT2ML accelerates the HE-based computations for

the SGX enclave while preserving the integrity and privacy of

the computation to protect users’ data and models. Ohrimenko

et al. [25] proposed a secure enclave platform based on the

SGX system for SMPC.

E. Distributed Learning

ML approaches have become widely used in various in-

dustries and educational settings [212]; however, due to pri-

vacy concerns, Google introduced a decentralized framework

known as FL in 2016 [213]. This approach allows multiple par-

ticipants to collaborate and train an ML model without sharing

their training data [214]–[216]. Instead, the participants train

the model on their own data and then send only their updated

local model parameters to a central aggregator to measure

the average value of the gradient descent of the local models

received from different participants to update the global model

without revealing this data to another party [217]. This process

is repeated until convergence [25], [32], [218]–[220]. This

preserves the privacy of the participants while still allowing

them to learn an accurate global model (as it collects data

from different distributions). However, this approach requires

more local computation by the participants, although it reduces

communication overhead.

Therefore, FL has become increasingly popular in both

industry and research due to its ability to address privacy,

security, and regulatory concerns when working with data

from multiple parties [221]. This applies to various industries,

such as healthcare, finance, and transportation. In healthcare,

FL allows for model training using patient data without

compromising sensitive information between institutions or

hospitals [222]–[225]. Similarly, in finance, FL enables banks

to train models on financial data without sharing sensitive

data [226]–[228]. In the transportation sector, FL can be uti-

lized to train models on traffic data while protecting sensitive

information between different organizations [229]–[231].

Despite the advantages that come with FL, it is a rela-

tively new technology and has some challenges that need
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to be addressed. These challenges include data heterogeneity,

communication efficiency, and privacy and security concerns.

Existing studies [100], [232]–[235] have shown that FL can

pose privacy and security risks, as model parameters may leak

information about the training data as a result of inference

attacks [236]. Other privacy risks include the ability to derive

private information from a trained model [176], [218] and the

potential for model inversion [237], backdoor, and GAN-based

attacks [25], [238]. Moreover, FL is computationally intensive

and may not be feasible for large-scale computation and data

analysis. Additionally, frequent model updates and large data

transfers between parties can result in high communication

costs, posing a challenge for FL implementation.

Hence, the protection of privacy and reduction of commu-

nication costs are important areas of research in FL. To ensure

the security and efficiency of FL, three cases must be consid-

ered: 1) a malicious aggregation server that falsifies aggregated

results or manipulates models, affecting the accuracy of trained

models; 2) high communication costs due to the complex

DL model and distributed structure; and 3) the potential for

participants’ original training data to be inferred from the

uploaded gradients [239], [240]. Several proposed schemes

have attempted to address these concerns, such as using

verifiable FL schemes defending against malicious participants

in medical applications [241], [242], in which low-accuracy

models could cause medical accidents. However, these solu-

tions have limitations, such as high communication costs and

impractical solutions due to involving SMPC protocol. The key

to protecting privacy and secure aggregation is finding a way

to aggregate without revealing the gradient to the aggregation

server. To address these challenges, various techniques have

been proposed to secure the aggregation process for FL global

model construction [243]. These techniques include DP and

HE, where DP [32], [168], [169], [172]–[174], [177], [178],

[244] adds noise to data to protect individual privacy while

HE [101], [103], [104], [106], [107] allows for computations

on encrypted data without decryption. For example, Fig. 8

shows how FHE is being utilized to secure the FL process

via encrypting the local model updates before transmitting

them to the server while allowing the construction of the

global model. Some studies [245] combine both techniques to

enable a secure FL process, but these methods suffer from high

overhead and are vulnerable to collusion attacks if participants

work together.

Overall, FL is a promising technology that allows for the

training of models on large-scale, decentralized data sets while

ensuring the privacy and security of the data. It has many

potential applications in various industries, but it still faces

challenges that need to be addressed before it can be widely

adopted in emerging communication networks. While FL pro-

vides an elegant framework for distributed data-driven learn-

ing, it has been associated with challenges, such as communi-

cation bottlenecks and client data heterogeneity. Coauthors of

this paper addressed these challenges in [246] by developing

an asynchronous weight updating FL with personalization by

tailoring models to individual users based on their local data

while exchanging model updates in a pre-scheduled manner.

Furthermore, the asynchronous personalized FL technique

was combined with Moreau Envelopes-based regularization.

This approach leverages the advantages of Moreau Envelopes

for handling optimization issues, along with asynchronous

weight updates to boost communication efficiency. It also ad-

dresses data heterogeneity by creating a personalized learning

framework. The method was tested across multiple datasets

in [246] and was demonstrated to achieve faster convergence

and higher communication efficiency compared to the baseline

data-driven model. Practical aspects taken into consideration

by such research work advance FL techniques for emerging

networks that require communication efficiency by design.

The protection of data security has long been a key area

of study when developing deep or FL models. These models

are designed to safeguard clients (such as mobile devices)

from unauthorized access to their data. The clients are able

to keep their original data confidential on their devices while

simultaneously participating in the model training process with

others. They only need to send updates of their local models to

a central server. However, the default privacy measures in place

for FL are not enough to fully protect the confidentiality of the

local training data [247]. This makes the system vulnerable to

privacy breaches if an adversary is able to intercept the local

gradient updates shared with the server. This breaching can

result in the reconstruction of the private training data with

high accuracy. Such model inversion attacks, where attackers

discreetly monitor gradient adjustments during iterative train-

ing, can lead to the exposure of private data [100]. Attackers

can exploit the intermediate gradients to access the training

data without any prior knowledge of the learning model.

Table II highlights a high-level comparison of the focused

privacy-preserving methods and their functionalities discussed

in this section.

It is also worth mentioning that a number of privacy leak-

age attacks have emerged recently, including Gradient Inver-

sion [248], Client Privacy Leakage (CPL) [249], Deep Leakage

Gradient (DLG) [250], and Improved DLG (IDLG) [251].

These attacks aim to steal the training data and labels through

the use of gradient information. Many of these attacks are

based on iterations, which involve minimizing the distance

between dummy gradients and actual gradients. This recovery

process is formulated as an iterative optimization problem,

with the error between gradients and the dummy inputs used

as parameters. To prevent privacy leakage, several techniques

have been investigated, including Gaussian or Laplacian noise-

based DP. This approach involves adding Gaussian or Lapla-

cian noise to gradients during training before sharing them

with the server [252]. However, this can come at the expense

of accuracy, as it may decrease below a desired threshold.

Another approach is gradient compression, such as gradient

pruning [250], where a specific pruning ratio is chosen during

training to make the model more robust against leakage

attacks. However, pruning in the initial stages of training

may cause the loss of important feature-related information.

Another approach is to use HE to protect data privacy, while

still ensuring model convergence [104]. However, this can be

computationally and memory intensive, limiting its practical

application. In addition to these defense strategies, increasing

local iterations or batch sizes during model training [253] can
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Fig. 8. Applying FHE in federated learning.

also mitigate privacy leakage.

V. PRIVACY-PRESERVING DATA-DRIVEN MODELS FOR

EMERGING COMMUNICATION NETWORKS

In this section, we first describe how the intersection of

privacy-preserving and data-driven models (comprising ma-

chine/deep learning techniques), described in Section III and

Section IV, respectively, are gaining traction in emerging com-

munication networks. Then we describe the various emerg-

ing communication network settings that can utilize privacy-

preserving techniques in conjunction with data-driven models.

Guizani et al. [254] examined the security and privacy

challenges posed by the integration of edge intelligence in

5G and beyond (B5G) networks. The authors emphasized

the growing importance of edge intelligence, which enables

data processing closer to where data is generated, reducing

latency and transmission risks, by employing trained data-

driven models. Then their work demonstrated how a decentral-

ized approach brings new security and privacy concerns with

regard to resource management in these emerging networks.

As a solution, their work investigated the incorporation of

blockchain technology for enhanced privacy in B5G networks.

Researchers in [255] empirically elucidated how ensuring

privacy in data-driven learning models for 5G and beyond

networks is a significant challenge. The architecture of the

various learning models including supervised, unsupervised,

and reinforcement learning-based adversarial models, while

designed to enhance network efficiency, can be vulnerable to

privacy threats. Analysis of the adopted models’ performance,

both before and during privacy breaches, demonstrates that

such attacks not only compromise the integrity of the data but

can also result in performance degradation that is comparable

to or worse than traditional security threats like data leakage.

This is evident in the deterioration of key performance metrics

under privacy attacks, highlighting the critical need for robust

privacy-preserving mechanisms.

Next, the goal of the study conducted by Humayun et

al. [256] was to find an optimal approach for ensuring privacy

and improving energy efficiency in 5G-powered IIoT (Indus-

trial IoT) systems within Industry 4.0. With 5G introducing

significant changes across various sectors, its integration with

Industry 4.0, which utilizes IoT devices, has become a key

industrial trend. Industry 4.0 incorporates ideas like smart in-

frastructure, intelligent services, and rapid development cycles,

leading to the connection of billions of devices. However,

this large-scale connectivity of varied devices presents notable

privacy concerns, which are a major area of focus for users.

In a similar vein, researchers in [257] introduce two protocols

designed to address privacy concerns in 5G-enabled position-

ing systems. The protocols protect the privacy of reference

points by encrypting the original data matrix using two random

matrices through concatenation and multiplication, without

affecting the positioning service. A thorough analysis was

conducted to evaluate the security strength, computation cost,

and communication overhead of the proposed protocols under

machine learning settings. This ensures higher security under

specific time and communication constraints. However, adapt-

ing these protocols requires further validation in real-world

network deployment for the verification of the outsourced

computation overhead.
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TABLE II
SECTION IV SUMMARY. NOTATIONS: PRIVACY-PRESERVING (PP), MACHINE LEARNING (ML), DEEP LEARNING (DL), FEDERATED LEARNING (FL),

COMPUTATION OVERHEAD (COMP), COMMUNICATION OVERHEAD (COMM), ACCURACY LOSS (ACC LOSS), AND SCOPE.

Objective Reference
Methodology

COMP COMM Accuracy loss Scope
HE FE SMPC DP CC

PP DL

[27], [28], [100] ✓ High High Low –

[29], [124] ✓ Medium High Low –

[34], [140], [141],
[144], [147], [149],

[160]
✓ Low Low High –

[142] ✓ Low Low High
Load Forecasting in

smart grid

[145] ✓ Low Low High Mobile data analytics

[146] ✓ Low Low High
Sensitive

crowd-sourcing data

[148] ✓ Low Low High
Distributed web
attack detection

[186], [190], [198] ✓ Low Low Low –

[153] ✓ Low Low High
Financial time-series

prediction

PP FL

[105] ✓ High High Low
Industrial

cyber-physical
systems

[102] ✓ High High Low Healthcare

[79] ✓ Low Low Low
Electricity theft

detection in smart
grid

[103], [104], [106],
[107]

✓ High High Low –

[154] ✓ Low Low High
Securing IoT-based

social media
networks

[138], [168],
[172]–[174], [177],

[178]
✓ Low Low High –

[169] ✓ Low Low High IoT

[193], [195], [197] ✓ Low Low Low –

[122] ✓ Medium High Low
Distributed linear

regression

[131], [132], [134],
[135]

✓ Medium High Low –

PP ML

[82] ✓ Low Low Low
Electricity theft

detection in smart
grid

[116] ✓ Medium High Low
Electricity theft

detection in smart
grid

[109] ✓ Low Low Low –

[55], [123], [138] ✓ Medium High Low –

[182] ✓ Low Low Low ML as a Service

[187]–[189], [191],
[192]

✓ Low Low Low –

[152] ✓ Low Low High
Social media data

outsourcing

[84] ✓ High High Low Secure data mining

[129] ✓ Medium High Low Data mining

[101] ✓ High High Low PP logistic regression

PP statistical

[97] ✓ High High Low Healthcare data

[98], [99] ✓ High High Low –

[128] ✓ Medium High Low
Linear Regression
and Classification

analysis [151] ✓ Low Low High Healthcare data

[158] ✓ Low Low High –

Encrypted
data ordering

[111] ✓ Low Low Low Health

PP data
aggregation

[139] ✓ Medium High Low Mobile sensing
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A. 5G and Beyond Open Core Network Systems

In Beyond 5G and 6G core network systems, open protocols

for interoperability and multi-tenant service provisioning make

privacy preservation a critical yet untouched problem. In these

emerging open-core networks, resource slicing in a dynamic

manner is considered to be a key feature for effective network

management to optimize the user-perceived Quality of Service

(QoS). Resource slicing in the network, for instance, allows

for efficient handling of massive machine-to-machine and IoT

traffic without impacting the quality of simultaneous video

streaming services. Kline et al. [258] identified a number of

security and privacy concerns with multiple service providers

and operators in emerging 5G core networks that include infor-

mation exfiltration via side-channels, control spoofing due to

compromised infrastructure, and control manipulation across

different service/administrative domains. Since distributed and

multi-party resource slicing cannot be ensured to be privacy-

preserving with existing public-key cryptography schemes,

Kline et al. discussed the breakthroughs in FHE exploiting

lattice-based encryption to provide robust, hierarchical secu-

rity. They also developed advanced private and secure network

control through the Threshold FHE scheme and presented

proof-of-concept results. This concept was further augmented

with data-driven techniques to conceptualize programmable

privacy to enable confidential smart contracts by employing

FHE [259].

European Telecommunications Standards Institute (ETSI)

recommended Zero touch network and Service Management

(ZSM) architecture for the network function orchestration and

automation, which splits the core network into operational,

technological, and business planes [260]. AI and ML-based

data-driven models have been considered in [261] to support

closed-loop network functions in the ZSM framework for

cyber threat intelligence that requires security data collection

points. However, this poses a potential privacy leakage sce-

nario in such massive core network systems, and FL methods

were considered to be directly applicable in ZSM-based end-

to-end service management in core networks in [262]. Privacy-

preserving methods combined with AI-based data-driven mod-

els for core network systems were also introduced by an

assortment of FL frameworks introduced in [263]–[268]. The

privacy-preserving and security parameters aggregation con-

cept for end-to-end QoS management, based on this assortment

of research work, is illustrated in Fig. 9.

Lessons Learned

Core networks deal with massive numbers of network flows

that could be unstructured and flow at a significantly high

speed. Unstructured big network data needs to be converted

to structured data prior to applying data-driven models, and a

significant challenge exists in this preprocessing step, which

is often taken for granted as trivial. However, this prepro-

cessing task may impose significant delays on the network

orchestration tasks, and hierarchical data-driven models need

to be designed such that the preprocessing of unstructured

data can be dynamically handled by the upper-level mod-

els, whereas the lower-level ones work in conjunction with

privacy-preserving techniques, such as HE, ME, and MPC.

FL in this context emerged as a natural choice for distributed

processing, as well as learning to prevent raw data leakage

while training the models at localized sources while fulfilling

their respective resource constraints. Also, in the case of

FL-enabled core networks, label generation from the local

data may be theoretically possible; however, they may be

practically challenging due to the absence of data annotation

at the hardware level and non-iid data characteristics. While

personalized FL models can be customized for each network

function in a given core network, generalizing them may

require devising another level of AI models to scale across

the entire core network.

B. Open and Reconfigurable Radio Access Networks (RANs)

While the preceding subsection covers the core networks

in B5G and 6G networks with regard to their use of privacy-

preserving techniques coupled with AI-based systems such as

FL, we now turn our attention to radio/wireless access network

technologies adopting privacy-preserving data-driven models.

The radio access networks of emerging networks connect the

wireless/mobile users with the core network under extremely

dynamic and unpredictable channel conditions. Numerous

research works have been done on ML/DL model-based chan-

nel prediction, resource allocation, and mobility prediction

techniques to improve communication network performance

outcomes. On the other hand, a number of privacy-preserving

techniques are now being adopted in wireless fronthaul. How-

ever, the seamless fusion of privacy-preserving algorithms with

data-driven models remains an interesting avenue where some

pioneering research has started to appear.

6G networks are envisioned to surpass 5G in terms of speed,

capacity, and latency, enabling transformative applications

such as holographic communication, high-fidelity mobile In-

ternet, and pervasive AI. These networks will rely on cutting-

edge technologies like edge computing, advanced beamform-

ing, and massive Multiple Input Multiple Output (MIMO) to

achieve these feats. However, the complexity and openness

of 6G networks also introduce significant privacy and security

challenges. To tackle these issues, Ye et al. [269] formulated a

novel approach that leverages HE and GNNs. HE, as described

in the preceding section, is a form of encryption that allows

computations to be performed on ciphertexts, generating an

encrypted result that, when decrypted, matches the result

of operations performed on the plaintext. This property is

particularly useful for preserving the privacy of data in cloud

computing and, by extension, in 6G networks, where data

may need to be processed by intermediate nodes without

exposing the underlying sensitive information. In addition,

the incorporation of GNNs offers a sophisticated method to

analyze and interpret the complex relationships and patterns

within the data transmitted across 6G networks. The reason

behind introducing GNN is its ability to handle data structured

as graphs, making it a natural choice for modeling the intricate

interactions and dependencies in network traffic in 6G RAN.

By applying GNNs, the system can learn to detect anomalies,

optimize network performance, and enhance security measures
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Fig. 9. privacy-preserving and security parameters aggregation in beyond 5G open core networks with end-to-end QoS management.

based on the vast amounts of data flowing through the network,

all while maintaining the privacy of the data through HE.

Researchers are recently also investigating the application

of deep learning techniques with privacy-preserving techniques

for the combined purposes of sensing and safe communication,

with an additional focus on semantic communications [270]–

[273]. For instance, the system conceptualized in [270] in-

tegrates a transmitter and receiver operating over a wireless

channel, influenced by noise and fading. At the transmitter,

a deep neural network, acting as an encoder, is employed

to jointly perform source coding, channel coding, and mod-

ulation. On the receiving end, another deep neural network,

posing as a decoder, handles demodulation, channel decoding,

and source decoding to recover the transmitted data. The

transmitted signal fulfills two roles, i.e., it enables commu-

nication with the receiver while also facilitating sensing. In

the presence of a target, the reflected signal is captured, and a

separate deep neural network decoder is employed for sensing,

tasked with detecting the target and determining its range.

These networks—one encoder and two decoders—are trained

jointly using multi-task learning, considering both the data and

channel conditions. Researchers in [270] further expanded the

system to include semantic communications by introducing

an additional deep neural network decoder at the receiver,

which acts as a task classifier, evaluating the accuracy of

label classification in the received signals. The study employed

CIFAR (Canadian Institute For Advanced Research)-10 [274]

as input data and took into account channel conditions such as

Additive White Gaussian Noise (AWGN) and Rayleigh fading.

The findings demonstrate the potential of multi-task deep

learning to effectively support high-precision joint sensing

and semantic communications that further facilitate privacy-

preserving.

Lessons Learned

Combining these two technologies, i.e., privacy-preserving

techniques and data-driven models, within 6G networks rep-

resents a powerful tool for ensuring privacy preservation at

scale. HE ensures that data remains encrypted throughout

its journey across the 6G RAN, which is anticipated to

support open standards and multiple tenants/service providers,

resulting in possible privacy leakage scenarios. Thus, privacy

is retained with the introduction of HE even when the data are

being processed at the 6G base stations. Meanwhile, GNNs

provide the intelligence layer that enables the network to

adapt and respond to emerging threats and challenges, ensuring

robust security and optimal performance. While the exist-

ing research work typically outlines frameworks integrating

privacy-preserving algorithms with data-driven models for 6G

networks, it is important to also discuss potential challenges,

limitations, and future directions for research in this area,

emphasizing the importance of developing scalable, efficient

solutions to support the anticipated demands of 6G networks in

TeraHertz (THz) communication environment where channel

models are not yet known. Moreover, the introduction of

intelligent and reconfigurable surfaces for 6G networks may

add to the complexity of channel models in hyper-dense 6G

tiny cells. In such scenarios, privacy-preserving data-driven

models may serve as a modular concept on top of the yet-

to-be-established physical layer models of such emerging

systems.

C. IoT Systems and Networks

The recent proliferation of IoT devices and sensors for

facilitating smart community applications has resulted in vul-

nerabilities that can result in unauthorized access and data
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Fig. 10. Privacy issues in sensing, network, and computing layers of IoT systems.

breaches. These may be observed in all three layers of IoT

systems, namely sensing, networking, and computing layers,

as depicted in Fig. 10. Privacy leakage in IoT systems may

be customer-specific and may range from revealing the user

behavior to exposing sensitive parameters, data, and even

learned models, which may, for example, user-behavior re-

vealing sensitive parameters, data, and even learned models

to outside parties [275]. In particular, the correlation between

geolocation data and the end users’ demographics and usage

patterns in IoT systems data acquisition was reported in [276].

To address the privacy-preserving need utilizing data-driven

models, Berry et al. [277] presented a fusion of a hybrid

SMPC with ML in IoT systems. Their data-driven privacy-

preserving model was tailored for energy-constrained IoT

devices where individual nodes aim to protect their respective

data. Therefore, training data are not shared among the nodes.

The data-driven model is protected with information-theoretic

security/privacy guarantees from being accessed by probing

nodes. The hybrid multi-party secure computing allows for a

communication-efficient matrix and is scalable over a massive

number of low-power IoT devices. Furthermore, an open-

source library, referred to as Cicada, was developed that other

IoT developers can use on IoT nodes, such as Raspberry Pi

devices, even on resource-constrained IoT platforms, such as

UAVs/drones.

Next, Bocu et al. [278] provided an interesting analysis

of personal data gathered via sensors on mobile devices and

indicated the privacy risks of the captured sensitive data. In

particular, they considered DP to be a key technique for data

anonymization to mitigate the possibility of privacy leakage.

Their survey also indicated that apparently harmless personal

data collection through sensory systems could actually lead

to identifying critical personal data items that should be

protected according to data protection regulations, e.g., the

Health Insurance Portability and Accountability Act (HIPAA)

and General Data Protection Regulation (GDPR).

Researchers in [279] presented a privacy-preserving data-

driven model for predictive maintenance in 6G-enabled indus-

trial IoT network systems. They trained binary neural networks

(BNNs) along with HE circuits to ensure that the privacy

of all the participating users is guaranteed. The rationale

behind adopting the BNN-based model was its lightweight

performance capability to ensure that it would not overwhelm

the resource-limited IoT nodes. Furthermore, they verified the

performance of this privacy-preserving data-driven model ap-

proach based on experimental test data. In a similar vein, Wang

et al. [280] demonstrated the viability of jointly employing HE

and a DL-based model based on secure multi-party computing

to guarantee the privacy of the users.

Arachchige et al. [144] tweaked the global DP to a localized

setting and invoked this to a differentially private mechanism

for IoT devices that is referred to as LATNET. In other words,

LATNET employs the post-processing invariance property of

DP and also the composition property while applying the

localized DP to a CNN. The computational complexity of

LANET was demonstrated to be reasonable on a resource-

constrained platform when tested with the well-known CIFAR-

10 dataset that yielded approximately 91% testing accuracy

while obtaining a high level of privacy.

FL models are also emerging in IoT systems to serve a

plethora of objectives, from IoT data analytics to IoT resource

allocation [19], [20], [40], [281]–[287]. Among these, the work

by Yin et al. [287] is note-worthy since it fuses multi-party

data sharing and FL based on Bayesian DP. Recent research

work conducted by co-authors of this survey [11], [288]–

[291] addresses communication-efficiency challenges in IoT-

based systems by examining the communication overhead and

privacy risks associated with FL. Then the work designed an

algorithm that integrates Knowledge Distillation (KD) and DP

to mitigate these issues. The operational flow and network ar-

chitectures of model-based and model-agnostic (KD-based) FL

algorithms were provided that enables customization of model

architectures for each client to account for heterogeneous and

constrained system resources. Proof-of-concept experiments,

based on the MNIST dataset [292], demonstrated that KD-

based FL algorithms can surpass local accuracy and achieve
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performance comparable to centralized training. Furthermore,

we show that applying DP to KD-based FL significantly

reduces its utility, resulting in up to 70% accuracy loss for

considered privacy budgets.

Lessons Learned

The combined approach of privacy-preserving algorithms

and ML/DL models needs to be lightweight subject to the

resource constraints of the target IoT systems. While the main

bottleneck is energy (i.e., IoT nodes should not transmit the

acquired data at all times), the processing limitations of such

devices may vary. For instance, Raspberry Pi devices may be

more limited than Nvidia Jetson microcontrollers on an indus-

trial IoT platform. On the other hand, such IoT boards may

be even more constrained when used on aerial systems, such

as UAVs. Programmable privacy, as well as programmable

computing, should be integrated into data-driven models to

take into consideration their resource availability in a dynamic

manner. Also, it is important to consider encouraging research

outcomes in this domain, such as the aforementioned LAT-

NET [144], as lightweight solution benchmarks to compare the

performance tradeoffs of emerging privacy-preserving ML/DL

models.

D. Software-Defined Networks (SDNs)

SDNs decouple the control plane from the data plane

and bring forth the concept of re-programmable routing and

re-configurable network tasks by replacing many network

middleboxes with one or several SDN controllers as shown

in Fig. 11. Network operators and service providers are

embracing SDN architecture in their backbone networks and

also in the data center networks where virtualization is a key

feature. Therefore, it is of paramount importance to design

privacy-preserving solutions for SDN to prevent data privacy

leakage. In this vein, Wu et al. [293] conceptualized a joint

DL and DP data protection mechanism for SDN. This method

comprised a GAN to synthesize artificial samples to respond to

an adversary with the appropriate response. By doing so, they

reinforced user location privacy in 5G-enabled SDN systems.

Guo et al. [294], on the other hand, devised an intelligent

zero-trust secure framework for SDN systems that comprises

a data collection module, trust assessment engine, and a user

behavior analysis engine that can be implemented in the SDN

controller. LSTM and CNN-based self-attention networks were

customized to protect every resource and network connection

in the considered SDN, thereby facilitating dynamic authoriza-

tion and guaranteeing the data privacy of users.

Next, Mendis et al. [295] envisioned blockchain as a service

for decentralized secure computing and privacy-preserving

in SDN systems. Their main motivation was the privacy-

preserving data-driven technique implemented in a distributed

manner instead of centralized data acquisition and processing.

In spirit, their solution was comparable to FL frameworks

for SDN traffic flow control and resource allocation [296].

They demonstrated that in particular SDN settings that they

considered, more effective computing paradigms could be

possible to process private or scattered data for training

Fig. 11. Privacy-preserving functionality can be deployed to the SDN network
controller along with other network functionalities.

appropriate ML models. Their technique was, in essence, a

synchronized cooperative computing process exploiting HE

and blockchain among the distributed, untrusted SDN nodes,

each with constrained processing resources.

Lessons Learned

SDN controllers are designed to centralize the functions

of diverse middleboxes, streamlining network management

and control. This centralization is critical for implementing

advanced technologies like distributed FL or blockchain-based

privacy preservation techniques within an SDN framework.

While placing such functionalities to a single or geographically

distributed SDN controller(s) is critical, reliable coordination

between the controller(s) and distributed network nodes is

a key challenge for maintaining privacy standards that may

inadvertently impact QoS, potentially degrading network per-

formances in terms of delay and reliability to meet the actual

privacy needs.

To address the aforementioned challenges, a nuanced under-

standing of the practical trade-offs between QoS and privacy

parameters needs to be developed. For instance, devising

privacy-preserving methods may require additional compu-

tational resources and demand more feature-rich networking

protocols. This translates into increased delay and/or a drop in
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throughput. This is evident in the case of FL, which requires

coordination among distributed, less powerful user nodes to

share the model parameters, resulting in significant commu-

nication overhead in already congested delivery networks.

On the other hand, blockchain-based distributed ledgers for

enhancing security and privacy could be associated with ad-

ditional network delay because of the consensus update time.

In order to effectively address the QoS trade-off with desired

privacy levels, it is, therefore, essential to develop lightweight

predictive models to proactively balance these contrasting

needs. Designing such models needs to thoroughly take into

account a number of factors, such as the current network

configuration, data sensitivity, network traffic types, and their

priorities, and so forth. At the same time, the SDN controller(s)

require dynamic adaptation of coordination strategies with

the distributed nodes to prioritize the critical data flows and

adjust privacy level settings as needed to combat dynamic

network conditions. Thus, the SDN controller(s) may ensure

that the deployed privacy-preserving models do not exhaust

the resources required for adequate QoS while maintaining an

optimal balance with privacy protection needs.

E. Intelligent Vehicular Networks

Vehicle-to-vehicle/infrastructure (V2X) communication net-

works have received renewed interest as B5G and 6G networks

meet autonomous driving, electric vehicles (EVs), and vehicu-

lar metaverse. Embedded intelligence in V2X communication

became prominent and facilitated automated collision alerts,

lane change alerts, data sharing among vehicles and roadside

units (RSUs), navigation status, and so forth. In addition,

an EV is known to generate tens of terabytes of data on a

daily basis [297] that require high bandwidth and low-delay

communication networks for taking prompt decisions and

actions. However, vehicular data contains location information

and other personalized user information that is associated

with strict privacy needs, and the ML models are vulnerable

to various privacy leakage scenarios [17], [22], [30], [298],

[299]. Therefore, integrating privacy-preserving techniques

with data-driven models is imperative, according to recent

research work [300], [301].

Talat et al. provided a taxonomy of threat models in EVs

and discussed privacy preservation strategies in [302]. The

major attack vectors are illustrated in Fig. 12. The adoption of

DP perturbation approach in intelligent transportation systems

(ITSs) was extensively reported in [4]. According to [300], HE,

along with ML models, can protect the privacy of EV (Electric

Vehicles) users in a myriad of scenarios, including real-time

data transmission, database analysis, collaborative learning,

and so on. [303] discussed ML, particularly reinforcement

learning techniques, combined with privacy-preserving tech-

nologies, for dynamic resource management of highly mobile

EV networks. [300] highlighted the importance of preserving

the privacy of vehicular network routing mechanisms based on

ML models. Furthermore, [300] identified the shortcomings of

intrusion detection systems that collect data from EVs to detect

adversaries in the EV network that may result in privacy leak-

age. For example, when EVs collaborate to detect an intrusion,

they need to share their location and routing information with

one another and could possibly share sensitive information

with an eavesdropping node. Therefore, [300] pointed out

the importance of privacy-preserving data-driven models for

intrusion detection. Furthermore, the researchers in that work

also demonstrated how privacy-preserving data-driven models

are useful for energy demand predictions for EV networks,

EV energy trading, and optimal EV charging schedules.

Lessons Learned

Many services for EVs depend on the exchange of pre-

cise location and movement data with relevant entities. For

instance, to identify nearby points of interest (PoIs) like

charging stations and restaurants, an EV must share its current

location with the system. Additionally, ML algorithms use

this information to predict factors related to these PoIs. While

the collection of such data is useful for identifying pertinent

PoIs, it also risks revealing personal patterns of EV users,

such as their religious practices, preferred dining spots, and

shopping preferences. If this sensitive information were to fall

into the hands of malicious individuals or if an attacker were

to intercept these data exchanges, it could lead to significant

privacy invasions. Consequently, it is crucial to safeguard the

privacy of EVs when they interact with any Location-Based

Service (LBS) provider.

F. Networked Cyber-Physical Systems

Networked cyber-physical systems emerged as facilitators

for critical infrastructures and other smart city/community

applications in recent decades. Among these systems, the

smart energy grid, shortly referred to as the smart grid, may

be regarded as an important study case of networked cyber-

physical systems where privacy-preserving techniques and

data-driven models need to be utilized.

A smart grid (SG) is a modern enhancement of the tradi-

tional power grid system to ensure reliable electricity delivery,

optimize grid operations, and engage consumers [82]. In SG,

SMs are installed at consumer homes to report the consumers’

power consumption readings periodically (every few minutes)

to the system operator (SO) for real-time monitoring, energy

management, and billing [304]. However, SG is susceptible

to cyber-attacks, where deceitful consumers manipulate their

reported electricity consumption to illegally reduce their bills.

These attacks not only result in financial losses but also jeop-

ardize the grid’s performance as the consumption data is used

for grid management. To accurately detect such adversaries,

current methods rely on ML models that use the consumption

data, violating consumers’ privacy by revealing such informa-

tion about their lifestyle, such as travel habits and appliance

usage [116]. To address these privacy and security challenges,

a privacy-preserving electricity theft detection scheme, known

as PPETD, was proposed in [116]. This scheme employs

secret sharing techniques to transmit masked consumption

data, allowing the SO to compute aggregated readings for

load monitoring and billing without compromising consumers’

privacy. It also utilizes SMPC protocols, incorporating arith-

metic and binary circuits, to interactively evaluate a CNN-

based electricity theft detector on the masked consumption
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Fig. 12. Privacy attack vectors of V2X and ITS networks that require advanced privacy-preserving techniques integrated with data-driven models.

data, ensuring the privacy of consumers’ readings. However,

this scheme suffers from considerable computation and com-

munication overhead, as the model evaluation is conducted

online through interactive communication between the SO and

each SM. Additionally, a trade-off exists between overhead

and model accuracy, as it uses approximated operations such

as addition, multiplication, and comparison. Furthermore, both

the SM and SO know the model’s classification, which should

only be known by the SO. Dataset from the Irish energy

grid [305] has been leveraged by researchers to incorporate

data-driven models with privacy-preserving techniques.

To address the limitations in PPETD [116], the authors

in [82] proposed a more efficient scheme, called ETDFE, that

achieves the same system objectives in terms of monitoring

load, computing bills, and identifying electricity theft while

protecting the privacy of consumers. This is achieved through

the use of FE, where the encrypted data readings are aggre-

gated for load monitoring and billing, and only the aggregated

value is known to the SO. Additionally, [79] introduces a novel

approach for privacy-preserving, decentralized FL that can

detect energy theft cyberattacks. To ensure privacy, an efficient

FE-based aggregation method is developed that eliminates the

need for a trusted KDC. This approach allows electricity theft

detection stations (ETDS) to train local models using their

individual customers’ power consumption data. The encrypted

training parameters are then sent to the aggregator server

rather than revealing the model’s parameters, which could

potentially leak customers’ private data through attacks such

as membership and inference [79]. The experimental findings

demonstrate that this FL-based energy theft detection method

offers improved detection accuracy, with reduced computa-

tional and communication overhead, compared to previous

efforts that rely on the Paillier cryptosystem [306].

On the other hand, the authors of [78] proposed an FL-

based energy predictor that considers privacy and communi-

cation efficiency for net-metering systems. These systems are

commonly utilized to decrease greenhouse gas emissions by

installing renewable energy sources, such as solar panels, and

selling excess energy back to the grid [80], [307]. In this case,

the SMs report the difference between energy consumption

and generation, i.e., a net reading, rather than solely reporting

energy consumption [304], [308]. The authors employed a

real power consumption/generation data set to develop a

multi-data-source hybrid DL-based predictor that considers

historical net readings and solar irradiance values to accurately

predict future net readings. In addition, they proposed an IPFE

scheme to enable secure data aggregation and protect customer

privacy by encrypting the parameters of their models during

FL training. To further address communication efficiency,

the authors utilized the change-and-transmit (CAT) approach,

which updates local model parameters only when significant

changes occur, reducing unnecessary communication.

Lessons Learned

The smart grid is a critical infrastructure that needs to

protect its user privacy to thwart possible manipulations and

privacy exposure attacks. The solutions discussed need to

be generalized as well as customized for other networked

cyber-physical systems in smart communities that may range

from smart homes, smart hospitals, smart societies, and smart

factories. The key challenge is to acquire enough datasets

for the other cyber-physical system use cases and validate

the privacy-preserving data-driven models for those scenarios

based on the experiences derived from the smart grid study

case. Furthermore, cyber-physical systems have a data sensing

layer (physical plane) and a data computing layer (cyber

plane) that are interconnected by the network layer comprising

heterogeneous communication protocols. Therefore, it is also

important to design an end-to-end privacy-preserving solution

across all the layers in the entire cyber-physical ecosystem.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2024.3486690

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. XX, NO. X, OCTOBER 2024 22

G. Cloud Computing Networks

Cloud computing is a well-known and widely adopted

method of delivery of computational resources in networked

data centers to users as per their computing needs. Data leaks,

however, have emerged as a significant threat to the cloud

computing paradigm. Therefore, privacy-preserving techniques

are being heavily considered for cloud computing [309] to

thwart outsourcing and leaking data to third-party data centers.

Researchers indicated the usefulness of FHE for ensuring

data privacy under cloud computing settings in [310]. They

also demonstrated the lack of adoption of privacy-preserving

ML techniques while processing sensitive data (e.g., medical

datasets) outsourced into a cloud environment. A combined

neural network and HE was then presented to elucidate their

agility and feasibility for ML as a service in cloud computing

with privacy-preserving properties.

Gupta et al. [311] pioneered in presenting a unique system

model of cloud computing for privacy-preserving outsourced

classification schemes. Their system model consists of data

owners, data collectors, and classifier owners, specifically for

cloud computing platforms. A data owner that desires to

store data in the cloud introduces a statistical model-based

noise by exploiting ϵ-DP into the data prior to dispatching

it to the data collector, which in turn offers cloud services,

including storage, computing, and data sharing to other data

owners and the classified owner. The classified owner, on the

other hand, performs computing tasks on the acquired data

(mixed with noise) from the data collector. Then, a novel

privacy-preserving model was conceptualized by combining

the strengths of both DP and ML approaches to perform

privacy-preserving computation on noisy data. In this method,

the ML task exploits the ϵ-DP-induced noisy data rather than

encrypted data. Empirical results based on the blood transfu-

sion service center, phoneme, and Wilt datasets demonstrate

its robustness in preventing adversaries from accessing the

original data of the data owners.

Privacy leakage in cross-silo collaborative learning may lead

to data leakages. To address this issue, FL has been considered

in the cloud computing paradigm where distributed data cen-

ters are considered as participating clients while the parameter

aggregator entity resides in a single data center or is virtualized

across multiple data centers [312]. Cross-silo FL typically

needs to handle a massive number of data samples, which

leads to much computation, and computation/communication-

efficient FL techniques are emerging to solve these issues

along with other challenges, such as statistical, model, and

system heterogeneity.

Lessons Learned

Existing research work [311] hints at performance degra-

dation while preserving privacy as complex ML models are

used in tandem with privacy-preserving methods. Therefore,

performance degradation needs to be carefully formulated and

quantified to address the issue optimally. In other words, there

should be new performance metrics that jointly address and

balance both QoS and Quality of Privacy (QoP) parameters.

Also, many of these privacy-preserving data-driven models

are not standardized since researchers develop these in a

scattered way as proof-of-concepts. It is important to have a

standardized set of privacy-preserving data-driven libraries for

benchmarking purposes and comparative performance evalua-

tion.

H. Edge Computing Networks

In the study conducted by Hrzich et al. [313], an extensive

examination of HE techniques is presented, focusing on their

integration with ML within cloud and edge computing environ-

ments to address privacy concerns [314]. As intelligent edge

services, including those in transportation systems and medical

IoT, become increasingly integrated into various domains, ML

emerges as a key enabler. This shift from centralized ML in

cloud data centers to ubiquitous computing on end devices

highlights the necessity of preserving the privacy of sensitive

data processed by these services [313].

The paper explores the application of Partial, Somewhat,

and Fully HE methods across multiple ML models, train-

ing these models on encrypted data to produce classifi-

cation predictions without compromising the data’s confi-

dentiality. This approach presents two promising directions:

privacy-preserving training and privacy-preserving classifica-

tion, thereby enabling ML over encrypted data while maintain-

ing acceptable levels of accuracy and computational efficiency.

This experimental evaluation serves as a foundational piece,

guiding future investigations into which ML models and

encryption techniques best balance privacy preservation with

performance, particularly in edge computing scenarios where

data privacy and security are paramount [314].

Moreover, the adoption of Machine Learning-as-a-Service

(MLaaS) by cloud-collaborative edge computing technology

leaders as a delivery model further underlines the importance

of integrating HE with ML to ensure data privacy during model

training and inference phases. This integration is crucial in

enabling a wide range of pervasive computing applications

to leverage MLaaS while ensuring the confidentiality and

integrity of sensitive data [313]. Moreover, researchers in [145]

conceptualized the EdgeSanitizer framework that adopts DP in

mobile edge computing scenarios by injecting noise into the

actual data. The additional layer of data protection achieved

by that framework was theoretically validated and empiri-

cally evaluated to demonstrate its scalability with resource-

constrained edge devices and resilience against invasive infer-

ence.

On the other hand, the research work in [315] conceptual-

ized a privacy-preserving AI-based service composition tech-

nique for the network edge that exploits FHE. This provides

an effective balance between the QoS need of the edge devices

and AI model performance for their privacy assurance. FHE

permits computations on encrypted data without decryption,

thus thwarting potential data manipulation by attackers. Exper-

imental evaluations using a synthetic QoS dataset demonstrate

the framework’s effectiveness in preserving privacy without

compromising the performance of service composition tasks

in edge networks. Other works also discussed how ML meets

computation and communication control in emerging edge and
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cloud computing network systems [18], [24], [221], [316].

Moreover, FL frameworks, to alleviate the computation burden

and privacy leakage at the cloud computing level, have been

considered to be deployed on the last mile users to facilitate

privacy-preserving edge computing [244].

Lessons Learned

The privacy-preserving data-driven models for edge com-

puting scenarios in the literature so far assume that edge

devices, which abstract edge functionality as services, are

stationary. This assumption may not hold true in dynamic edge

environments where devices frequently move or change their

operational parameters. Moreover, many of the edge devices

in FL have different capabilities in terms of computational

resources and the residual energy level. Additionally, some

edge devices require more incentives to contribute to collab-

orative learning due to selfish behavior. Such considerations

are theoretically mentioned; however, they are not practically

demonstrated in the available proof-of-concepts.

I. Digital Twin Network Systems for Smart Communities

Ahmadi-Assalemi et al. [317] discussed the integration of

Privacy-Enhancing Technologies (PETs) in the design of Digi-

tal Twins (DTs) for smart cities. It highlights the importance of

embedding privacy preservation mechanisms from the outset,

given the privacy risks posed by data-rich DT models in

urban ecosystems. The work outlines the growing value and

challenges of DTs, privacy threats, and the role of PETs like

HE and SMPC in safeguarding data privacy. The authors

emphasize the need for a privacy-aware design in DTs to

manage ethical and legal considerations, ensuring privacy and

data protection in smart city applications.

In [318], Alisic et al. explored the intricate challenges of

safeguarding Cyber-Physical Systems (CPS) from learning-

based cyber-attacks, with a particular focus on the pivotal

role of privacy-preserving measures. A significant portion of

their study is dedicated to the use of HE as a tool to prevent

adversaries from gaining valuable insights from encrypted

data, thereby thwarting potential attacks at their nascent stage.

The research meticulously evaluates the impact of encryption

parameters and the feasibility of conducting anomaly detection

over encrypted data, aiming to complicate the adversaries’

efforts without compromising the essential functionalities of

CPS.

A key feature of the work conducted in [318] is the

practical implementation of a digital twin, i.e., the KTH Live-

In Lab Testbed, that translates the above-mentioned theory into

practice. The deployed digital twin is powered by the IDA

ICE 4.8 software that utilizes real-time sensor data in a smart

building for real-time monitoring and sophisticated analysis

of behavior of the users (i.e., residents of the building). The

digital twin demonstrates how real world modeling can lead to

effective smart system control that effectively improves energy

efficiency and comfort of the residents while protecting their

data privacy.

Lessons Learned

The existing deployment of privacy-preserving technologies

within digital twin network systems faces several obstacles.

First, the inherent risk of data compromise remains a ma-

jor concern even when employing data-driven models with

privacy-preserving algorithms. Another challenge is that the

implementation of these technologies can be computationally

intensive due to the need for a high degree of expertise

and understanding of these technologies besides the particular

application context. The breadth of privacy-preserving data-

driven models ranges from initial concepts to advanced tested

solutions, showing changing reliability and readiness for the

implementation of the digital twin environments. Moreover,

the continuous change in digital twin technology poses a

unique challenge that is considered a constantly evolving

technology for potential attack vectors. This element calls for a

flexible and proactive approach to user data privacy and secu-

rity, predicting and mitigating risks before they materialize. In

particular, Advanced Persistent Threats (APTs) should be well-

addressed because they are formidable enemies that can use

AI-based techniques to take advantage of new vulnerabilities.

This emphasizes the need for privacy-preserving techniques to

be an integral part of digital twin design to provide robust data

exfiltration controls throughout the data lifecycle.

It is also important to underscore the real-world implications

of privacy concerns in various sectors, such as autonomous

vehicles, healthcare, pharmaceuticals, supply chains, and in-

dustrial control systems. The risks to data privacy, anonymity,

and security in these areas are deemed substantial, necessitat-

ing thorough consideration of privacy and security measures

at all stages of digital development and operation. Therefore,

organizations transitioning towards digital twins should have

a comprehensive understanding of digital twin components,

their values, and the critical importance of data security and

privacy. This includes actionable steps to manage privacy risks

with seamless integration of privacy-preserving techniques

with ML/DL models.

J. Semantic Communication and Privacy-preserving Deep

Learning Models

Jianrui et al. [15] discussed various concepts of semantic

communication, where deep learning plays a crucial role

in extracting features and facilitating communication. While

much of the focus has been on optimizing the local DL

models for semantic encoding/decoding, an equally important

issue is the challenge of developing distributed multi-user

semantic communication for the Metaverse. With the expected

device density in 5G+ and emerging 6G networks, significant

improvements in spectral efficiency will be needed. Non-

orthogonal multiple access (NOMA) can help achieve this

by allowing multiple users to share the same frequency and

time resources, using advanced spatial division multiple access

(SDMA) techniques. These techniques separate users based

on their unique antenna patterns and signal characteristics.

However, reliable separation of these signals relies heavily on

accurate iterative channel estimation and data detection. This

system can support up to twice as many users as there are
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antennas. Additionally, as the source signals are often non-

independent and not identically distributed (non-i.i.d.), it be-

comes more challenging to train the DL models, which require

well-matched knowledge bases (KBs) to function effectively.

Users will need to share large amounts of personal data to

fully synchronize with the system, raising privacy concerns as

this data could be intercepted by malicious actors. Most users

will likely prefer to sacrifice some performance in exchange

for better privacy protection.

K. Summary: Current Status and Challenges

Table III highlights a high-level comparison of the focused

privacy-preserving data-driven models for emerging commu-

nication networks discussed in this section. It is worth noting

as a caveat that we have investigated specific applications that

benefit from privacy-preserving data-driven models, such as

smart health, smart energy, and smart cities. While communi-

cation is a key enabler, not all verticals require privacy. Our

survey does not propose a one-size-fits-all solution; instead, it

highlights tailored privacy-preserving, data-driven approaches

for different networking applications.

Implementing privacy-preserving models in real-world com-

munication networks presents several practical challenges. One

major issue is interoperability, as these models often need to

integrate with various existing systems, including data-driven

models and standards, which may not be fully compatible. Ad-

ditionally, the hardware requirements for supporting advanced

privacy-preserving techniques can be significant, necessitating

investment in high-performance computing resources. Scala-

bility is another concern, as ensuring that privacy measures can

handle large volumes of data without compromising perfor-

mance is critical. Latency introduced by complex encryption

and data processing techniques can also impact the real-time

performance of communication networks. Furthermore, the

complexity of maintaining and updating these models to adapt

to evolving privacy threats and regulatory requirements adds

to the implementation burden. Addressing these challenges

requires careful planning, robust infrastructure, and ongoing

monitoring and optimization.

VI. OPEN RESEARCH ISSUES AND FUTURE DIRECTIONS

While privacy-preserving data-driven models offer promis-

ing opportunities in emerging 6G network communications,

they also come with several inherent challenges, as well as

more subtle, complex ones. In this section, we discuss the key

constraints and open challenges that researchers may need to

carefully consider.

A. Privacy-preserving Model Training and Resource Issues in

Emerging Networks

Significant communication resources are required by

privacy-preserving techniques, such as HE, SMPC, and DP,

that result in a noticeable increase of network latency [319],

[320], which is not desirable for emerging networks due to

their low latency requirements. FL also requires computational

resources on resource-constrained systems, which may provide

a unique challenge [321]. Thus, the privacy-preserving algo-

rithms on top of data-driven models significantly increase the

computational burden on not only network devices but also the

overall networking infrastructure. As a consequence, training

time and energy consumption could be significantly impacted

with regard to desired 6G network key performance metrics,

such as energy efficiency and sustainability.

In addition to the introduced communication burden, the

privacy-preserving techniques, along with data-driven mod-

els, are intuitively prone to consuming more communication

bandwidth. For instance, sharing encrypted gradients peri-

odically for large-sized data over a large number of users

can significantly degrade communication efficiency. Similarly,

SMPC parameters exchange involving a large number of user

devices may contribute to a substantial increase in the network

traffic, thereby impacting bandwidth and delay requirements

of emerging 6G network systems.

With regard to the massive number of user devices in 6G

networks, particularly in IoT systems, privacy-preserving data-

driven models may not scale well [322]. With the growing

number and diversity of participants in FL or SMPC, the

resultant complexity and overhead of adequately maintaining

privacy may significantly rise, inhibiting their deployability at

scale. In addition, model performance in DP-assisted models

may add noise to the data or gradients to ensure data privacy,

and thereby adversely impact the desired accuracy of those

models. Therefore, it is imperative to fine-tune the model

performance and privacy level to scale well with emerging

communication systems.

Besides the model performance tradeoffs mentioned above,

the deployment and seamless adoption of privacy-preserving

techniques with data-driven emerging network systems war-

rants standardization. This is a huge challenge in the context of

6G systems due to the heterogeneity in networking equipment

and user devices [246]. When the open radio access networks

and open 5G/6G core network standards are being developed,

work groups for privacy preservation, data-driven models, and

their integration on network functions management need to

be clearly drafted before the actual implementation. In other

words, our survey thus far revealed that there are initiatives

from various researchers/industry stakeholders; however, they

are mostly proof-of-work at this point. Appropriate standard-

ization planning should be prioritized in the domain of privacy-

preserving data-driven models for 6G network systems. By

adopting the right strategies for data protection regulation,

aligned with the existing practices (such as GDPR introduced

in the European Union), privacy-preserving ML/DL models

can be usefully embedded in various tiers of emerging net-

works.

In order to effectively address the aforementioned lim-

itations pertaining to privacy-preserving data-driven model

training, it is important to develop lightweight algorithmic

solutions as well as adequate regulatory frameworks to protect

data privacy without significantly impacting computing and

communication efficiency.
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TABLE III
SECTION V SUMMARY, PRESENTING EACH SUBSECTION’S KEY FOCUS AND FINDINGS, TECHNIQUES, AND CHALLENGES ADDRESSED.

Section Key Focus Key Findings/Techniques Challenges Addressed

V-A: 5G and Beyond
Open Core Network

Systems

Privacy-preserving
data-driven models in

5G/6G networks

Integration of Fully HE
(FHE) for secure operations

High computational
overhead, complexity of

implementation

V-B: Open and
Reconfigurable Radio

Access Networks
(RANs)

Privacy in dynamic and
complex 6G RAN

environments

Use of Graph Neural
Networks (GNNs) combined

with Homomorphic
Encryption (HE)

Privacy preservation in open
network structures

V-C: IoT Systems
and Networks

Privacy issues in IoT layers
(sensing, networking,

computing)

Hybrid Secure Multi-Party
Computation (SMPC) and

ML techniques

Energy constraints, data
privacy, scalability

V-D:
Software-Defined
Networks (SDNs)

Privacy in centralized SDN
frameworks

Integration of Differential
Privacy with Generative
Adversarial Networks

(GANs)

Balancing privacy with
network performance

V-E: Intelligent
Vehicular Networks

Privacy in V2X
communications

Use of Differential Privacy
and HE for secure vehicular

communication

High bandwidth and low
latency requirements

V-F: Networked
Cyber-Physical

Systems

Privacy in Smart Grids and
Cyber-Physical Systems

Functional Encryption and
Federated Learning for

secure energy management

Computational overhead,
maintaining privacy in

real-time data

V-G: Cloud
Computing Networks

Privacy in cloud-based data
processing

Privacy-preserving ML
using Homomorphic

Encryption and Differential
Privacy

Performance degradation,
data leakage risks

V-H: Edge
Computing Networks

Privacy at the edge with
limited resources

Homomorphic Encryption
and Differential Privacy for

edge devices

Resource constraints,
dynamic environments

V-I: Digital Twin
Network Systems for
Smart Communities

Privacy in Digital Twins for
smart cities

Integration of
Privacy-Enhancing

Technologies (PETs) in
Digital Twins

Scalability, evolving threat
landscapes

V-J: Semantic
Communication and
Privacy-preserving

Data-driven Models

Privacy-performance
tradeoff in semantic

communication

DL model training based on
well-matched knowledge

bases while preserving user
data-privacy

Scalability, evolving privacy
protection requirements.

B. Quantum Computing-resilient Privacy-preserving Data-

driven Models

Quantum computing poses a significant threat to current en-

cryption schemes due to its ability to solve complex mathemat-

ical problems much more efficiently than classical computers.

Algorithms like Shor’s algorithm can factorize large integers

exponentially faster, rendering many widely used encryption

methods, such as Rivest-Shamir-Adleman (RSA) and Elliptic

Curve Cryptography (ECC), vulnerable to decryption. This

impending risk necessitates a proactive approach to evaluate

the resilience of privacy-preserving models against quantum

attacks. By understanding the specific ways quantum comput-

ing can compromise these models, we can better prepare for

a future where classical encryption may no longer be secure.

To mitigate these threats, researchers have explored var-

ious post-quantum cryptography methods that can be inte-

grated to enhance the resilience of privacy-preserving models.

These methods include lattice-based cryptography, hash-based

cryptography, and multivariate polynomial cryptography tech-

niques [323], all of which are designed to withstand quantum

attacks. Lattice-based cryptography, for example, leverages

the hardness of lattice problems, which remain difficult for

quantum computers to solve. Additionally, hash-based cryp-

tographic methods provide security through hash functions,

which are resistant to quantum decryption techniques. In-

tegrating these post-quantum methods into existing privacy-

preserving models will ensure they remain robust and secure

in the face of advancing quantum computing capabilities. This

proactive integration is crucial for maintaining data privacy

and security in future communication networks as explored in

recent research work such as [324].

Researchers are paying a great deal of attention to quan-

tum computing-resilient security protocols for communication

systems, and this is also applicable to privacy-preserving

data-driven models. This is because of the quantum com-

puter’s anticipated capability to handle complex computations
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with unprecedented speeds that may make inversion attacks

against data-driven models viable [325]. Privacy-preserving

data-driven models relying on HE and FE, i.e., cryptographic

measures, could be, in turn, vulnerable to quantum computing-

capable adversaries. In particular, quantum computing is as-

sumed to be able to invalidate the security assumptions made

by current HE schemes, thereby nullifying their provided

privacy guarantees. Moreover, quantum computing may fa-

cilitate novel manipulations against the cryptographic prim-

itives utilized in SMPC. This may reveal the private data or

compromise the computational integrity required for SMPC.

In the case of DP, quantum computers could be harnessed

to process and analyze the noisy outputs at unprecedented

efficiency and speeds that might render the privacy-preserving

technique ineffective. Furthermore, the data-driven models

could be subject to quantum computing-enabled adversarial

attacks that may cause corrupt model training.

In order to address the impact of quantum computing

on privacy-preserving data-driven models, embedding post-

quantum cryptography is important, albeit challenging, due

to the need for substantial change in contemporary communi-

cation systems and networks. Regulatory and standardization

policies to combat the quantum-computing adversaries in

emerging networks are required to be drafted in a proactive and

systemic manner. In this vein, rethinking the vulnerabilities of

privacy and security protocols of communication systems and

networks is required through an interdisciplinary collaboration

among networking researchers, cryptographers, and quantum

physicists.

C. Privacy-preserving Data-Driven Model Challenges in So-

cial Networks and Crowd-sourced Data Networks

Emerging communication networks support social network-

ing data and crowd-sourced data networks, and preserving the

privacy of such networks remains a daunting task. This is

due to the inherent properties of crowd-sourced and social

networks that have diverse users with dynamic user behavior.

While they involve location information, personal prefer-

ences, interactions, and other sensitive data exchange over the

emerging communication networks, perfect anonymization for

training large data-driven models may not be possible due to

issues such as cross-referencing with other datasets, reverse

engineering network architecture, and so forth [326]. Further-

more, training data-driven models in conjunction with privacy-

preserving techniques may take the informed consent of the

users of such networks for granted along with other challenges,

e.g., dynamic join, departure, and change of activities of the

users [327]. However, this may be difficult to facilitate with

one-shot training of privacy-preserving data-driven models.

This issue becomes even more complex with big data, which

are typically unstructured and have heterogeneous data types

and formats. Such unstructured data from social networks

and crowd-sourced environments need to be processed and

converted to appropriate structured types for training privacy-

preserving data-driven models.

Effectively addressing the aforementioned challenges per-

taining to crowd-sourced and social networks warrants a multi-

dimensional approach comprising both technical and regu-

latory advancements of privacy-preserving techniques fused

with data-driven models. A robust and informed consent

mechanism, although challenging, requires to be embedded

with emerging networks to guarantee compliance with privacy

regulations [328].

D. Challenges on Deploying Privacy-preserving Data-driven

Models in the Edge

As described throughout this survey, FL and other forms of

collaborative learning techniques to overcome the heteroge-

neous users’ computational resource limitations in the edge

have recently appeared as an appealing privacy-preserving

mechanism. However, data heterogeneity, coupled with user

device heterogeneity and their selfish behavior to participate

in collaborative learning in the absence of an incentive mech-

anism, may be a key barrier to utilizing such learning frame-

works. The communication overhead is also a key bottleneck

in such collaborative learning paradigms, which researchers

are taking into consideration; however, their findings need

to motivate seamless incorporation of communication-efficient

FL protocols in B5G and 6G networks. Also, in the face of

adversarial participants, how privacy leakage can be prevented

needs to be thoroughly investigated with possible scalability

implications. The scalability of such environments is also sub-

ject to the synchronization among heterogeneous user devices

and the central aggregator entity.

To design more robust and scalable FL frameworks with

adequate privacy-preserving guarantees, the integration of

SMPC, HE, and DP is being considered by researchers.

However, their seamless incorporation appears challenging

and needs to be clarified with comprehensive and quantita-

tive performance metrics, particularly on participating node

fairness and privacy outcomes. Furthermore, personalized FL

asynchronicity options and model compression techniques to

optimize the limited resources available on edge devices need

to be considered. Detection and mitigation of model poisoning,

as well as malicious updates, are also of paramount importance

in such collaborative learning settings. Future iterations of FL

could also exploit fully decentralized parameter aggregation

without relying on a centralized entity, and blockchain or

similar techniques could be exploited for coordination and

trust on parameter exchange and updates that may not be

mutable. Personalized models are particularly important in

FL due to the non-IID (non-independent and identically dis-

tributed) nature of data across different participants. Recent

research has made significant strides in this area, such as

the FedProto method proposed by Tan et al. [329]. Fed-

Proto enables personalized learning by creating prototypes

that represent heterogeneous data distributions across clients,

allowing each client to learn a model that is better suited

to its specific data. This approach significantly improves

model accuracy and generalization across diverse data sources.

Furthermore, the PFedHN (Personalized Federated Learning

using Hypernetwork) framework is introduced [330], which

utilizes hypernetworks to generate personalized models for

each client. This framework effectively addresses the challenge
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of non-IID (non-Independent and Identically Distributed) data

by tailoring models to individual clients while preserving the

benefits of FL’s collaborative nature.

Privacy-preserving data-driven models, if trained with some-

what limited and/or perturbed data, may be subject to overfit-

ting problems. This leads to a lack of generalization, which

is even more amplified in collaborating learning scenarios.

As a remedy, knowledge distillation has been considered in

FL to enhance model performance, particularly in scenar-

ios where communication efficiency and privacy preservation

are paramount. For instance, researchers in [331] introduced

pFedCo-TA (Personalized Federated Learning method based

on Teacher Assistant Knowledge Distillation). The pFedCo-

TA approach utilizes knowledge distillation to improve model

accuracy and communication efficiency. The approach clusters

clients based on data similarity, assigns assistants to facili-

tate knowledge transfer between teacher and student models,

and demonstrates significant performance improvements over

traditional methods. [332] proposes a privacy-preserving and

communication-efficient FL framework using ensemble cross-

domain knowledge distillation. The method employs one-shot

offline knowledge distillation with unlabeled, cross-domain

public data, ensuring stronger privacy guarantees by introduc-

ing quantized and noisy ensemble predictions. Experimental

results across image and text classification tasks demonstrate

that this approach outperforms traditional FL methods in

both accuracy and communication efficiency while maintain-

ing robust privacy protection. The work in [333] proposes

a communication-efficient and privacy-preserving personal-

ized FL framework that introduces a feature fusion-based

mutual learning approach that enables personalized learning

while reducing communication costs by only sharing a small-

scale shared model with the global model. Additionally, the

framework incorporates a gradient compression technique with

chaotic encrypted cyclic measurement matrices to enhance

privacy without adding significant computational overhead,

demonstrating superior performance and privacy preservation

in FL scenarios with heterogeneous data. Moreover, The

authors in [291] present an FL algorithm that integrates KD

with LDP to achieve communication efficiency and enhanced

privacy in heterogeneous systems. The proposed method al-

lows clients to design their own local models while protecting

sensitive data through LDP and extends the privacy guarantees

to the exchanged soft labels using the post-processing immu-

nity property of DP.

E. Challenges on Incorporating privacy-preserving as a QoS

Metric

While emerging networks focus heavily on fine-tuning QoS

and QoE (quality of experience) along with various security

attributes, researchers often investigate the tradeoff between

QoS/QoE and security parameters [334]. The interplay be-

tween QoS and privacy in adversarial deep learning models

has been demonstrated to be a tradeoff problem [335], which

is worth investigating further in the context of emerging net-

works. However, privacy is an additional metric that warrants

careful research investigation, which is indeed unexplored in

the literature. Doing so can allow privacy to be addressed

as an intrinsic service quality attribute, which can then be

appropriately fine-tuned with other QoS/QoE requirements,

such as bandwidth, delay, fairness, and so forth. However,

the actual definition of such a comprehensive QoS-privacy

metric is an open research issue since it may consist of various

elements, such as data leakage risk factor, anonymity level, and

so forth. Also, such a privacy-based QoS metric may not be

generalizable or scale well with a wide spectrum and sizes of

datasets that are required to train robust data-driven models

with privacy-preserving capabilities. The lack of standardized

privacy-preserving techniques in emerging network systems

also makes it challenging to quantitatively compare the privacy

aspects of different service providers.

In addition, even though privacy introduced as a tunable

input to service performance metrics is appealing, it may result

in an additional layer of complexity to the training of the

data-driven models. In particular, hyperparameter tuning may

require more effort, and robust methods to accurately fine-tune

the hyperparameters need to be developed in the future.

F. Challenges on Optimal Privacy-preserving Hybrid Model

Selection and Training

Privacy-preserving hybrid model training is an important

aspect, which warrants careful attention due to the unique

challenge involved in managing and coordinating between

diverse model architectures [336]. In addition, the hybrid

model frameworks may result in synchronized model update

issues, and possible privacy leakage across the hybrid model

layers, particularly when distributed, collaborative learning

frameworks are used for IoT systems [337]. Because the

distributed nodes may have different privacy requirements,

their lack of synergistic participation may degrade model

convergence and stability performances, along with possible

privacy leakage of user data. Furthermore, integrating hybrid

models with multiple privacy preservation mechanisms, such

as DP, SMPC, and HE, may lead to heavier models, which

may not scale well with emerging networks leaning toward

edge computing solutions. As a result, the computational

burden of privacy-preserving hybrid data-driven models and

their communication efficiency that may impact the network

systems need to be carefully studied in the future.

G. Challenges Associated With Privacy-preserving Data-

driven Models in the Entire Ecosystem

In emerging networks, there is a focus on integrated

satellite-aerial-terrestrial-underwater networks. These net-

works have different radio access technologies and have in-

herently different communication protocols to cater to unique

user needs [2]. As a consequence, embedding the same

set of privacy-preserving data-driven models across such a

broad ecosystem of networks may lead to side effects in

terms of unexpected communication and privacy performance

outcomes [338]. Recent research work [339] in this area

shows a number of key challenges where AI-assisted privacy-

preserving task offloading in integrated satellite-terrestrial net-

works is discussed. The integration of privacy-preserving data-

driven model-based mechanisms could be naturally suited in
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core networks that address a high volume of data generated

from various access networks at extremely high speeds. Since

SDNs and other emerging solutions for core networks can

handle big network data at scale, it makes sense to deploy

such privacy-preserving models at the core network level and

study the actual impact on throughput, latency, and bandwidth

usage. However, optimizing the privacy-preserving mechanism

overhead so that the effect on communication performance is

minimized requires further investigation. On the other hand,

deploying them in terrestrial and/or aerial access networks

requires more careful planning for actual field implementation.

This is also applicable to IoT network systems that connect

massive numbers of devices and sensors that may not scale

naturally with privacy-preserving AI models. Therefore, the

IoT sensing (data generation) plane could be deemed as a

privacy bottleneck in the entire ecosystem, and it is critical to

safeguard against potential privacy leakage in the “weak links”

of the ecosystem.

H. Challenges on Embedding Privacy-preserving Data-driven

Models with Cell-free Communication Networks

Cell-free communication networks recently appeared as an

exciting alternative to cellular communications, whereby a

dense cluster of base stations aims to serve mobile users

in tandem. The concept of privacy preservation of users is

garnering attention in cell-free network systems in recent

times [340], [341] in addition to their traditional focus on

the physical layer performance improvement. However, when

a group of base stations obtains the location information of

the mobile users, it may take just one compromised base

station to leak out location information or other sensitive

information of the user that it serves. This may introduce

additional complexities to the already complex resource and

cluster optimization problems in cell-free network systems.

The reason behind this is that the privacy-preserving data-

driven models need to be deployed and managed by the already

overburdened base stations, and this may substantially impact

the existing optimization problem formulation. Furthermore,

metadata and signal patterns exchanged between the base

stations could potentially leak the users’ location in a cell-free

network environment. While some researchers started investi-

gating channel estimation with regard to privacy preservation

in cell-free network systems [341], it is still not a mature area

of research, and further investigations are required.

I. Compatibility Issues of Privacy-preserving Data-driven

Models with Blockchain-Based Networks

Different implementations of blockchains in recent years

appeared as an exciting security provisioning technique for

network providers to facilitate transparent transactions. While

there is a genuine debate about scaling the distributed

database/ledger construct of the blockchain in emerging net-

works [342], blockchain’s role in conceptualizing transparent

network slicing contracts in these networks has been con-

sidered in 3GPP studies. How blockchain-enabled networks

can co-exist with privacy-preserving data-driven models is

appearing as a hot research topic recently [343], [344] that

requires careful assessment of these inherently different en-

abling technologies. Researchers need to investigate whether

these two technologies can complement each other or are

mutually disjoint. For instance, the security, audibility, and

non-mutability of blockchain result in transparent transactions

that are visible to all the users that may unwillingly expose

private information (e.g., at what time the user committed the

record, at which location the user was, and so forth) [345].

Even if blockchain and privacy-preserving data-driven models

have non-complementary roles, it is critical to demonstrate

how the joint consideration of both may impact the latency

and throughput performance of B5G and 6G systems.

J. Challenges on Guaranteeing Freshness of Data-driven

Models due to Model Decay and Privacy Leakage

Data-driven models equipped with privacy-preserving

mechanisms may need to be periodically retrained and rede-

ployed to combat the decaying model’s effect as investigated

by recent research work in [283], [346]. As new data continue

to arrive at the network, old models may become outdated.

This may be particularly valid for collaborative learning frame-

works. It is, therefore, important to determine the frequency

of model updates. Also, determining the threshold of model

decay in dynamically changing massive network systems is a

challenging yet important topic of research that needs much

research attention. The additional overhead from privacy-

preserving techniques, such as SMPC, DP, and HE, may

contribute to delayed model updates. Furthermore, the topic

of model freshness in privacy-sensitive applications overlaps

with ethical and regulatory standards, and 3GPP needs to step

in its efforts to have an interdisciplinary lens to tie all these

considerations together in a cohesive manner.

VII. CONCLUSION

Recently, safeguarding privacy while harnessing data for

emerging networks appeared as a top priority across com-

munication landscapes, ranging from the core fabrics of the

Internet to the ever-expanding realms of IoT systems. Our

survey in this paper demonstrated an important research gap

in the literature, namely the fusion of privacy with data-

driven models to complement the communication performance

outcome with privacy-preserving requirements. Our survey,

therefore, paves the way for future networks to explicitly

embed the consideration of user privacy into network function

orchestration.

Emerging networks with embedded AI may predict traffic

flows, detect malicious activities, and self-optimize to recover

from failure, and our survey connects the topic of privacy

preservation to make such embedded AI models even more

robust. As privacy-preserving techniques, we explained how

HE, SMPC, DP, and collaborative learning can be cou-

pled with data-driven models. By seamless integration of

privacy-preserving techniques with data-driven models, we

demonstrated how the expected communication performance

can be met while guaranteeing the data privacy of network

users. The survey also revealed the status quo and actual
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challenges involved in integrating these advanced privacy-

preserving methods with data-driven models in emerging net-

works. Tradeoff problems, such as maintaining privacy and,

at the same time, achieving high-quality model predictions

for relevant network functions, were discussed in the survey.

In addition, the topic of deployment scalability of the privacy-

preserving data-driven models in emerging networks was also

covered both in breadth and depth through a number of lessons

learned. The survey also provided a list of open research

issues and possible research directions in the realm of privacy-

preserving AI models that range from the model training

overhead and privacy quantification as a QoS metric to model

decaying phenomena under the effect of privacy-preserving

techniques. Therefore, this paper is anticipated to stimulate a

wide spectrum of research work in an interdisciplinary domain

of communication networks, privacy and security practitioners,

and regulatory bodies.
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