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Abstract
We prove Rietsch’s mirror conjecture that the Dubrovin quantum connection for
minuscule flag varieties is isomorphic to the character D-module of the Berenstein–
Kazhdan geometric crystal. The idea is to recognize the quantum connection as
Galois and the geometric crystal as automorphic. We reveal surprising relations
with the works of Frenkel and Gross; Heinloth, Ngô, and Yun; and Zhu on Kloost-
erman sheaves. The isomorphism comes from global rigidity results where Hecke
eigensheaves are determined by their local ramification. As corollaries, we obtain
combinatorial identities for counts of rational curves and the Peterson variety pre-
sentation of the small quantum cohomology ring.
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1. Introduction
Let G be a complex, almost simple, algebraic group, let B �G be a Borel subgroup,
and let P � G be a parabolic subgroup containing B . Let B_ � P_ � G_ denote
the Langlands duals. In the case that P_ is a minuscule maximal parabolic subgroup,
we prove the mirror theorem that the quantum connection of the partial flag variety
G_=P_ is isomorphic to the character D-module of the geometric crystal associated
to .G;P /. This isomorphism is the top row of the diagram ofD-modules of Figure 1,
where the bottom row is an instance of the geometric Langlands program.

In fact, our main result is stronger. It concerns the equivariant quantum coho-
mology of G_=P_, and moreover adds a parameter � 2 A1. This is Theorem 11.14.
Specializing � D 1 is the equivariant version of the above mirror theorem which was
conjectured by Rietsch [107], and taking the semiclassical limit (� ! 0) yields the
equivariant Peterson isomorphism which was stated in the as yet unpublished lectures
of Peterson [100].

We now discuss the diagram of Figure 1 in detail.

1.1. Quantum cohomology and mirror symmetry for flag varieties
The study of the topology of flag varieties G_=B_ has a storied history. Borel found
the cohomology rings H�.G_=B_;C/ to be isomorphic to the coinvariant algebras
of the Weyl group W acting on the natural reflection representations. This result is
continued by the works of Chevalley, Bernstein, Gelfand, and Gelfand, Demazure,
Lascoux, and Schützenberger, and many others on the Schubert calculus of flag vari-
eties.

Much progress was made on the quantum cohomology of flag varieties in the
last two decades. Givental and Kim [56] and Ciocan-Fontanine [28] (for G_ of
type A), and Kim [80] (for general G_) identified the quantum cohomology rings

Figure 1. The four D-modules in this work.
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QH�.G_=B_;C/ with the ring of regular functions on the nilpotent leaf of the Toda
lattice of G. Subsequently, Givental [54] formulated a mirror conjecture that oscil-
latory integrals over a middle-dimensional cycle inside the mirror manifold should
be solutions to the quantum D-module, and established this result for G_ of type A
(see also [37]). This mirror theorem was extended to general G_=B_ by Rietsch in
[107] and [108]. These oscillatory integrals gave new integral formulas for Whittaker
functions.

By contrast, our understanding of mirror symmetry for partial flag varieties
G_=P_ is much more limited. Peterson [100] discovered a uniform geometric
description of the quantum cohomology rings QH�.G_=P_;C/, but this work
remains unpublished (see, however, [25], [87], [105], [107]). The quantum D-
modules of G_=P_ have remained largely unstudied in full generality. Batyrev et
al. [5] proposed a mirror conjecture for SL.n/=P_, and Rietsch formulated a mirror
conjecture for arbitrary G_=P_, in the style of Givental.

One of the main aims of this work is to establish Rietsch’s mirror conjecture
in the case that P_ is minuscule (see Section 2.4). This class of spaces includes
projective spaces, Grassmannians, and orthogonal Grassmannians (see Figure 2 for
the full list). Even for the case of Grassmannians, whose quantum cohomology rings
are well studied in [11], [113], and [123] and a large part of the mirror conjecture
established in [93], our results are new.

1.2. Small quantum D-module
We now let P_ be a minuscule (maximal) parabolic subgroup. The small quantum
cohomology ring QH�.G_=P_/ is isomorphic to CŒq; q�1� ˝ H�.G_=P_/ as a
vector space,1 with quantum multiplication denoted by �q .

Let C�q D Spec.CŒq; q�1�/ be the 1-dimensional torus with coordinate q. The
small quantum D-module (at � D 1) (see [36]) is the connection on the trivial
H�.G_=P_/-bundle over C�q given by

QG_=P_

WD d C .��q/
dq

q
; (1.2.1)

where � 2H 2.G_=P_;Z/ is the effective divisor class, and we consider

��q 2 End
�
H�.G_=P_/

�
˝CŒq�: (1.2.2)

In [26], Chevalley gave a combinatorial formula for the cup product in H�.G_=
P_/ with the divisor class � , that is, for (1.2.2) at q D 0. A quantum Chevalley for-
mula (see Theorem 4.3) evaluating (1.2.2) in terms of Schubert classes for general

1In this paper, cohomologies and quantum cohomologies are all taken with C coefficients.
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flag varieties was stated by Peterson [100] and proved by Fulton and Woodward [46].
This formula has been extended to the equivariant case by Mihalcea [94] and to the
cotangent bundle of partial flag varieties by Su [119]. For recent developments in the
minuscule case, see [19].

In the sequel, we also let QG_=P_

denote the corresponding algebraicD-module,
where D D DC�

q
D CŒq; q�1�h@qi is the ring of differential operators on C�q , and

@q WD d
dq

.

1.3. The character D-module of a geometric crystal
Berenstein and Kazhdan [8], based on previous works by Lusztig and of Berenstein
and Zelevinsky [10], have constructed geometric crystals which are certain complex
algebraic varieties equipped with rational maps. The motivation of the construction
was the birational lifting of the combinatorics of Lusztig’s canonical bases and Kashi-
wara’s crystal bases.

Fix opposite Borel subgroups B and B� of G with unipotent subgroups U and
U�, and let T D B \B�. Let R denote the root system, and let R˙ denote the sub-
sets of positive and negative roots. Let  W U ! Ga be a nondegenerate character in
the sense that  is nontrivial on every simple root space when composed with the
exponential isomorphism

L
i2I A

1 ŠU=ŒU;U �.
For a parabolic subgroup P � G, let WP � W be the Weyl group of the Levi

subgroup LP , and let IP � I be the corresponding subset of the Dynkin diagram.
There is a unique set W P �W of minimal length coset representatives for the quo-
tient W=WP . Define w�1P 2 W to be the longest element in W P . The (parabolic)
geometric crystal X DX.G;P / is the smooth subvariety

X DUZ.LP / PwPU \B� �G;

where Z.LP / denotes the center of the Levi subgroup LP , and PwP 2 G is a repre-
sentative of wP 2W , equipped (see [8, Section 2.2]) with geometric crystal actions
Gm � X ! X (which are rational maps, defined on a dense open subset) and three
regular maps of importance to us:

f WX ! A1; u1t PwPu2 7! .u1/C .u2/ called the decoration function,

� WX ! T; x 7! x mod U� 2B�=U� Š T called the weight function,

� WX !Z.LP /; u1t PwPu2 7! t called the highest weight function.

The fiber Xt WD ��1.t/ for t 2 Z.LP / is called the geometric crystal with high-
est weight t . For any t 2 Z.LP /, Xt is a log Calabi–Yau variety isomorphic to the

open projected Richardson variety VG=P �G=P (see [81]), the complement in G=P
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of a particular anticanonical divisor @G=P . (The boundary divisor @G=P is not nor-
mal crossing in general. There is a Bott–Samelson resolution that provides an explicit

compactification of VG=P with normal crossing divisors; see [81, Appendix], [84, Sec-

tion 4.2].) The affine variety VG=P has a distinguished holomorphic volume form !

(see Section 6.6), with simple poles along the boundary divisor @G=P .
On A1 we consider the cyclic D-module E WDDA1=DA1.@x � 1/ with generator

the exponential function, where DA1 D CŒx�h@xi. The pullback f �E is a D-module
on X . Note that one can identify the D-module E with the connection d � dx on the
trivial line bundle on A1. The pullback f �E can be identified with the connection
d � df on the trivial line bundle on X . We define the character D-module of the
geometric crystal X by

Cr.G;P / WDR��f
�E; (1.3.1)

which is a D-module on Z.LP /. For P D B , the geometric crystal X tropicalizes
to Kashiwara’s combinatorial crystals (see [8, Section 6]). As explained in Lam [86]
and Chhaibi [27], the tropicalization of (1.3.1) is an irreducible character of G_.

A priori Cr.G;P / is a complex of D-modules, but we show in Theorem 1.8
(D Theorem 7.10) that it is just a D-module. Our proof is via the left-hand side of
Figure 1, which enables us to recognize this statement as the Ramanujan property, in
the context of the geometric Langlands program, for a certain cuspidal automorphic
D-module AG (see Section 1.7 below and [71, Theorem 1]).

This article seems to be the first time the properties of the character D-module
Cr.G;P / are studied. There are other geometric crystals, and as we shall see below,
other families of Landau–Ginzburg models that one could apply this construction
to. We also note that automorphic D-modules with wild ramification, and geometric
analogues of Arthur conjectures—both of which play an important role in our study—
are themes which have been largely unexplored at the present time.

1.4. Rietsch’s Landau–Ginzburg model
In [107], Rietsch constructed conjectural Landau–Ginzburg mirror partners of all par-
tial flag varieties G=P . Her construction was motivated by earlier works of Givental
[54], Joe and Kim [77], and Batyrev et al. [5] for type A flag varieties, and also by the
Peterson presentation of QH�.G_=P_/.

Rietsch’s mirror construction are families of varieties fibered over q 2

Spec.CŒq˙1i j i … IP �/, equipped with holomorphic superpotentials fq , and holo-
morphic volume forms !q .

It was observed by Lam [86] and Chhaibi [27] that Rietsch’s mirror construction
could be obtained from the group geometry of geometric crystals. Thus, after identi-
fying Spec.CŒq˙1i j i … IP �/ with Z.LP /, Rietsch’s mirror family can be identified
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with the highest weight function � WX !Z.LP / of Section 1.3, and Rietsch’s super-
potential becomes the decoration function ft WD f jXt

WXt ! A1; henceforth we will
use fq or ft interchangeably (q being a point in Spec.CŒq˙1i j i … IP �/ and t a point
in Z.LP /).

Earlier mirror Landau–Ginzburg models for various partial flag varieties (see,
e.g., [5], [37], [54]) were Laurent polynomial superpotentials defined on an algebraic
torus. These Landau–Ginzburg models arose from toric degenerations of G_=P_.
In contrast, Rietsch’s candidate mirror Landau–Ginzburg model is defined (see [98],
[99]) on a partial compactification of a torus, and is intrinsically related to the group
geometry ofG=P (and not to any toric degeneration). In the literature, this distinction
also appears in the form of “strong mirror” versus “weak mirror.”

Stated informally our main goal in this paper is to show:

If P_ is minuscule, then G_=P_ and .
ı

G=P ;fq/ form a Fano type mirror pair.

On the A-model side G_=P_ is a projective Fano variety, and on the B-model side
ı

G=P is a log Calabi–Yau variety (see [79] for general expectations for Fano type
mirror pairs). We show that some of the mirror symmetry expectations hold.

One expectation is a relationship between the Gromov–Witten invariants of
G_=P_ and the coefficients of the Laurent series expansion of the potential fq
restricted to a torus of VG=P . If P_ is minuscule, then we shall establish such a rela-
tionship in the form of an integral representation of the quantum period of G_=P_

which was previously known for Grassmannians in [93] and for quadrics in [99] (see
Section 13 for details).

1.5. The mirror isomorphism
The following is a simple version of the main result of this paper and establishes the
top row of Figure 1.

THEOREM 1.6 (Theorem 8.3)
Suppose that P_ is minuscule. The geometric crystal D-module Cr.G;P / and the
quantum cohomology D-module QG_=P_

for G_=P_ are isomorphic.

For G_=P_ a projective space Pn, the result is well known (see [53], [78]). The
homological mirror symmetry version is established in [1] and [40]. Our approach
gives an original perspective in terms of hyper-Kloosterman sheaves studied in
SGA 4 1

2
(see [33]).

ForG_=P_ a Grassmannian Gr.k; n/, the result is already new. Partial results are
obtained by Marsh and Rietsch [93], notably a canonical injection of QG_=P_

into
Cr.G;P /, who establish as a consequence a conjecture of Batyrev et al. [4, Conjec-
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ture 5.2.3]. Our Theorem 1.6 is stronger. Indeed, it establishes the conjecture of [93,
Section 3] that the canonical injection is bijective, and thereby also another conjecture
of Batyrev et al. [5, Conjecture 5.1.1].

For G_=P_ an even-dimensional quadric, the injection of QG_=P_

into Cr.G;P /
is obtained by Pech, Rietsch, and Williams [99], and our Theorem 1.6 establishes a
conjecture of [99, Section 4].

Although both sides of Theorem 1.6 are described explicitly, this does not lead
to a way of establishing the isomorphism. Indeed our proof will follow a lengthy
path, where the isomorphism will eventually arise from Langlands reciprocity for the
automorphic D-module AG of [71, Section 2.5] over the rational function field C.t/.

While the Langlands program has integrated for a long time adjacent areas of
mathematics into the solution of some of its conjectures, in the other direction, there
are yet rather few applications of the Langlands program to problems outside of num-
ber theory. Interestingly, in this paper we shall apply recent advances in the geometric
Langlands program to establish results on the geometry of flag varieties.

1.7. Kloosterman sums, Kloosterman sheaves, and Kloosterman D-modules
For a prime p and a finite field Fq , q D pm, define the two maps

f W .F�q /
n ! Fq .x1; x2; : : : ; xn/ 7! x1 C x2 C � � � C xn;

� W .F�q /
n ! F�q .x1; x2; : : : ; xn/ 7! x1x2 � � �xn:

The (hyper-)Kloosterman sum in .n� 1/-variables is

Kln.aIq/ WD .�1/n�1
X

x2��1.a/

exp
�2�i
p

TrFq=Fp
f .x/

�
; (1.7.1)

where a 2 F�q . Deligne [33] defines the (hyper-)Kloosterman sheaf to be the `-adic
sheaf on F�p given by

KlQ`
n WDR�Šf

�AS Œn� 1�; (1.7.2)

where AS is the Artin–Schreier sheaf on A1 corresponding to a nontrivial character
 W Fp ! Q`. For an appropriate embedding � W Q` ! C, the Kloosterman sum (1.7.1)
is identified as the Frobenius trace of the Kloosterman sheaf (1.7.2): Kln.aIq/ D

�.Tr.Froba;KlQ`
n //. The Kloosterman D-module is defined (see [78]) by replacing

the Artin–Schreier sheaf with the exponential D-module:

Kln WDR�Šf
�E: (1.7.3)

The pair .� W .F�q /
n ! F�q ; f / and (1.7.2) should be compared with the geometric

crystal mirror family .� WX !Z.LP /; f / and (1.3.1).
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Heinloth, Ngô, and Yun [71] generalize Kloosterman sheaves and D-modules.
More precisely, for a representation V of G_, they define a generalized Klooster-
man D-module Kl.G_;V / on C�. Their construction uses the moduli stack BunG of
G -bundles on P1, where G is a particular nonconstant group scheme over P1 (see Sec-
tion 7); equivalently, BunG classifies G-bundles with specified ramification behavior.
Heinloth, Ngô, and Yun construct an automorphic Hecke eigen-D-module AG on the
Hecke stack over BunG . The generalized KloostermanD-module Kl.G_;V / is defined
to be the Hecke eigenvalue of AG . The projection and superpotential maps � and f
are replaced in this setting by the projection maps of the Hecke moduli stack.

A remarkable feature of the automorphic D-module AG is that it is rigid: it can
be characterized uniquely by its local components. Indeed, the existence of the rigid
local systems constructed by Heinloth, Ngô, and Yun was predicted by Gross, who
constructed the trace function of AG over finite fields via the stable trace formula.
(We refer to [126] for a comprehensive survey of rigid automorphic forms.)

The following result gives an automorphic interpretation of geometric crystals.

THEOREM 1.8 (Theorem 7.10)
Let P � G be a cominuscule parabolic, and let V be the corresponding minuscule
representation of G_. The character D-module Cr.G;P / is isomorphic to the Kloost-
erman D-module Kl.G_;V / defined as the V -Hecke eigenvalue of the automorphic
D-module AG .

The proof of Theorem 1.8 is by a comparison of the geometry of the Hecke
moduli stack and that of parabolic geometric crystals.

The above suggests a new parallel between exponential sums over finite fields and
Landau–Ginzburg models. Recall that arithmetic mirror symmetry has been studied
for mirror Calabi–Yau varieties (see [122, Section 3]). The present work leads us to
suggest that arithmetic mirror symmetry could conjecturally extend to Fano varieties
and their mirror Landau–Ginzburg models. Although we do not pursue this direction
in the present paper, we observe for example the precise compatibility between the
recent conjecture of Katzarkov, Kontsevich, and Pantev [79, (3.1.5)], specialized to
G_=P_ D Pn, and the classical theorem of Sperber [116] on the Newton polygon of
the Kloosterman sums Kln.aIq/. We remark that the Hodge theory of Kloosterman
connections was studied in [44].

We believe that the purity property of an exponential sum (viewed from a mir-
ror Landau–Ginzburg model perspective) should mirror the Hodge–Tate property of
the cohomology of a Fano variety. In the context of Theorem 1.8, the Kloosterman
sum Kl.G_;V / is pointwise pure (see [71]), and the partial flag variety G=P has coho-
mology of Hodge–Tate type. We speculate that the slope multiplicities of the Newton
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polygon of Kl.G_;V / should coincide with the Betti numbers dimH i .G=P / (which
are well known). The same construction applied to other mirror families (see, e.g.,
[30]) produces new `-adic sheaves and overconvergent F -isocrystals.

1.9. Frenkel–Gross rigid connection
In [43], Frenkel and Gross study a rigid irregular connection on the trivial G_-bundle
on P1 given by the formula

rG_

WD d C yp
dq

q
C x� dq; (1.9.1)

where yp 2 g_ D Lie.G_/ is a principal nilpotent, and x� 2 g_
�

lives in the highest
root space. For anyG_-representation V , we have an associated connection r.G_;V /.

When V is the minuscule representation of G_ corresponding to parabolic P_,
we have a natural isomorphism L WH�.G_=P_/Š V .

THEOREM 1.10 (Theorem 4.14)
Under the isomorphism L WH�.G_=P_/Š V , the quantum connection QG_=P_

is
isomorphic to the connection r.G_;V /.

The isomorphism L sends the Schubert basis of H�.G_=P_/ to the canonical
basis of V . The proof of Theorem 1.10 is via a direct comparison of the Frenkel–Gross
connection in the canonical basis with the quantum Chevalley formula.

1.11. Zhu’s theorem
Beilinson and Drinfeld have introduced a class of connections called opers, extend-
ing earlier work of Drinfeld and Sokolov. They use opers to construct (part of) the
Galois-to-automorphic direction of the geometric Langlands correspondence. Frenkel
and Gross [43] have observed that (1.9.1) can be put into oper form after a gauge
transformation.

Zhu [128] has extended Beilinson and Drinfeld’s construction to allow certain
nonconstant group schemes, or equivalently to allow specified ramifications. He
thereby confirms the conjecture of [71] that the Kloosterman D-module KlG_ is
isomorphic to the Frenkel–Gross connection rG_

.
Theorem 1.6 is obtained by composing the isomorphisms of Theorems 1.8 and

1.10, and Zhu’s theorem.
This concludes our discussion of Figure 1. We continue this introduction by

explaining the stronger Theorem 1.15 and how it relates to Rietsch’s equivariant mir-
ror conjecture and to the equivariant Peterson isomorphism.
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1.12. Equivariant quantum cohomology and weighted geometric crystals
We may replace the quantum cohomology ringQH�.G_=P_/ by the T _-equivariant
quantum cohomology ring QH�T_.G

_=P_/. We briefly discuss the new features.

The corresponding equivariant quantum connection Q
G_=P_

T_ is a connection over
C�q � t� relative to t�, where t D Lie.T / and instead of ��q in (1.2.1), we have the

operator cT1 .O.1// �T
_

q of equivariant quantum multiplication in QH�T_.G
_=P_/

(see Section 10). Identifying S DH�T_.pt/ with the coordinate C-algebra Sym.t/Š

CŒt��, we may equivalently consider the family of connections Q
G_=P_

T_ ˝hC indexed
by h 2 t� viewed as algebra morphism h W S ! C. These specialize again to connec-
tions on the trivial H�.G_=P_/-bundle over C�q .

Let us now discuss the weighted characterD-module of the geometric crystal X ,
equipped with the weight function � W X ! T . The character D-module (1.3.1) can
be weighted with a parameter h 2 t�, to give

WCr.G;P / WDR��.�
�MT ˝ f �E/; (1.12.1)

where MT denotes the .D˝ S/-module on T defined in Section 9.2.
The D-module version of Rietsch’s equivariant mirror conjecture in [107] states

that there is an isomorphism

WCr.G;P / ' Q
G_=P_

T_ :

1.13. A deformation of Zhu’s theorem
The twisted Kloosterman D-module TKln arises in (1.7.2) by replacing the Artin–
Schreier sheaf by the tensor product of an Artin–Schreier sheaf and a Kummer sheaf.
The automorphic D-module AG can similarly be deformed to an automorphic D-
module which further depends on the choice of a character of T (see [71]). We thus
obtain the twisted Kloosterman D-module, denoted TKlG_ .

The corresponding deformation of the Frenkel–Gross connection (1.9.1) has not
appeared in the literature as far as we know. We define the deformed Frenkel–Gross
connection to be

erG_

WD d C .yp C h/
dq

q
C x� dq; (1.13.1)

for h 2 t_ an element of the Cartan subalgebra.
With these modifications, Figure 1 and Theorems 1.6, 1.8, and 1.10 all hold with

their equivariant and deformed counterparts. In particular, we deduce Rietsch’s equiv-
ariant mirror conjecture for minuscule flag varieties. With some mild variation, we
also generalize Zhu’s theorem to the deformed setting: the twisted Kloosterman D-
module TKlG_ and the deformed Frenkel–Gross connection erG_

are isomorphic.
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1.14. D�-module generalization
The passage from the quantum connection Q

G_=P_

T_ to the quantum cohomology ring
QH�T_.G

_=P_/ itself is obtained by taking a semiclassical limit. A framework to
rigorously formalize the semiclassical limit is to extend the mirror theorem to an
isomorphism of D�-modules, where D� WD CŒq; q�1;��h�@qi and � is an additional
parameter. In (1.12.1), the D-module E is replaced by the D�-module E1=� defined
in Section 11.8, the .D˝ S/-module MT is replaced by the .D� ˝ S/-module M1=�

defined in Section 11.1, and we obtain the .D� ˝ S/-module

WCr1=�
.G;P /

WDR��.�
�M1=�

T ˝ f �E1=�/: (1.14.1)

Similarly, one obtains an �-deformation TKl1=�G_ of the twisted Kloosterman D-
module. The equivariant quantum connection and deformed Frenkel–Gross connec-
tion (1.13.1) also possess a further �-deformation

Q
G_=P_

�;T_ WD �d C cT1
�
O.1/

�
�q
dq

q
;

erG
� WD �d C .yp C h/

dq

q
C x� dq:

These two formulas define �-connections over C�q � t� relative to t�, hence in partic-
ular .D� ˝ S/-modules.

We are now able to state the main result of this paper, which includes the equiv-
ariant �-mirror isomorphism.

THEOREM 1.15 (Theorems 11.6, 11.9, 11.12, 11.14)
Suppose that P_ is minuscule. The four .D� ˝ S/-modules WCr1=�

.G;P /
, erG_

� ,

Q
G_=P_

�;T_ , and TKl1=�G_ are isomorphic.

Specializing both h D 0 2 t� and � D 1 yields the earlier mirror Theorem 8.3.
Specializing � D 0 establishes the equivariant Peterson isomorphism, which we
explain in the next subsection. Theorem 1.15 is obtained by exploiting the grading
of the quantum product on one side, and the homogeneity of the potential fq on the
other side.

1.16. Application: Proof of the Peterson isomorphism
Given a regular function on an algebraic variety, one can consider the sheaf of Jaco-
bian ideals generated by all the first-order derivatives. Its quotient ring defines a sub-

scheme, possibly nonreduced, of critical points of the function. Since VG=P is affine,
applying this construction to the weighted potential, we obtain a (relative) Jacobian

ring Jac. VG=P ;fq; �/, which has the structure of a CŒt�; q; q�1�-algebra.
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THEOREM 1.17 (Theorem 12.4)
If P_ is minuscule, then we have an isomorphism of CŒt�; q; q�1�-algebras

QH�T_.G
_=P_/Š Jac. VG=P ;fq; �/.

Specializing to nonequivariant cohomology, we obtain the mirror isomorphism

of CŒq; q�1�-algebras QH�.G_=P_/ Š Jac. VG=P ;fq/. The same isomorphism is
expected to hold for every Fano mirror dual pair. It is established for (possibly orb-
ifold) toric Fano varieties in [3], [31], [45], [60], and [97].

The equivariant Peterson variety Y is the closed subvariety of G=B�� t� defined
by

Y WD
®
.gB�; h/ 2 .G=B�/� t�

ˇ̌
g�1 � .F � h/ vanishes on Œu�;u��

¯
;

where F 2 g� is a principal nilpotent defined as in (1.9.1) (see [107, Section 3.2]),
and u� WD Lie.U�/, and g�1 � .�/ denotes the coadjoint action. It contains an open
subscheme

Y� WD Y \B�w0B�=B�;

obtained by intersecting with the open Schubert cell B�w0B�=B�, wherew0 denotes
the longest element of W . The intersection of Y� with the opposite Schubert stratifi-
cation ¹BwB�=B�º gives the 2rk.g/ strata

Y�P WD Y� \BwP0 B�=B�; (1.17.1)

where wP0 is the longest element of WP � W and the intersections are to be
taken scheme-theoretically. In [100], Peterson announced the isomorphism Y�P Š

Spec.QH�T_.G
_=P_//.

Rietsch [107] has proved that Jac. VG=P ;fq; �/ is isomorphic to CŒY�P � as
CŒt�; q; q�1�-algebras. We thus obtain the following corollary.

COROLLARY 1.18 (Equivariant Peterson isomorphism; see Corollary 12.5)
If P_ is minuscule, then we have an isomorphism of CŒt�; q; q�1�-algebras
QH�T_.G

_=P_/Š CŒY�P �.

The Peterson isomorphism has been established directly for Grassmannians by
Rietsch [104], for quadrics by Pech, Rietsch, and Williams [99], and for Lagrangian
and orthogonal Grassmannians by Cheong [25], all in the nonequivariant case (i.e.,
specializing h 2 t� to zero). In the equivariant case, the results of [104] and [93] can
be combined to also obtain Corollary 1.18 for Grassmannians (see [93, Section 5]).
For some other works on the spectrum of classical equivariant cohomology rings,
which correspond to the specialization q D 0, see [61] and [62].
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Theorem 1.17 is proved by passing to the semiclassical limit (� ! 0) in the equiv-
ariant �-mirror isomorphism of Theorem 1.15.

1.19. Mirror pairs of Fano type and towards mirror symmetry for Richardson vari-
eties

In our mirror theorem, the A-model G_=P_ and the B-model .Xt ; ft / play distinctly
different roles. On the other hand, the geometry of G=P features prominently in the
construction of Xt . This suggests a more symmetric mirror conjecture should exist.

One such setting could be the mirror pairs of compactified Landau–Ginzburg
models studied in [79], and one might speculate on the mirror symmetry of the pair
of compactified Landau–Ginzburg models

.G=P;g;!G=P ; fG=P / and .G_=P_; g_;!G_=P_ ; fG_=P_/;

where g is a Kähler form, !G=P denotes the volume form of [81], and fG=P denotes

the potential function on VG=P discussed above. If such a mirror theorem holds, we

would expect a matching of the cohomologies of the log Calabi–Yau manifolds VG=P

and VG_=P_. Indeed, the equality H�. VG=P /ŠH�. VG_=P_/ holds more generally
for open Richardson varieties.

Namely, we identify the Weyl group of G and of G_, and denote it by W . For
v;w 2 W with v � w, the open Richardson variety Rw

v � G=B is the intersection
of the Schubert cell B� PvB=B with the opposite Schubert cell B PwB=B . We denote
by LRw

v � G_=B_ the open Richardson variety attached to G_. Then we have the
equalityH�.Rw

v /ŠH�. LRw
v / (see Proposition 14.6). We are thus led to the question:

Can our mirror theorems be generalized to Richardson varieties?
Let us also comment that the open Richardson varieties Rw

v are expected to be
cluster varieties (see [89]). We refer to [59], [65], and [66] for recent results on canon-
ical bases on log Calabi–Yau varieties assuming the existence of a cluster structure.

For a discussion of the cluster structure of VG=P , see [7, Section 2].

1.20. Other related works
Witten [124] has related Langlands reciprocity for connections with possibly irreg-
ular singularities and mirror symmetry of Hitchin moduli spaces of Higgs bundles
(see also [70] and [35] in the absence of singularities). The present work may perhaps
be seen as an instance of this relation in the case of rigid connections, although we
are considering rather the moduli spaces of holomorphic bundles. Another important
difference is that automorphic D-modules appear in [124] as the A-side, as opposed
to the B-side in the present work.

Recently, the rigid connections of [43] and [71] have been generalized by Yun and
Chen to parahoric structures and Yun considered rigid automorphic forms ramified at
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three points. See also [13], [17], and [111] for recent advances on wild character
varieties.

Quantum multiplication by divisor classes in the equivariant quantum cohomol-
ogy ringQH�T_�C�.T

�G_=P_/ of the cotangent bundle has been recently computed
for any partial flag variety by Su [119], extending work of Braverman, Maulik, and
Okounkov [16] for the cotangent bundle T �G_=B_ of the full flag variety. Special-
izing the C�-equivariant parameter to zero, it recovers the T _-equivariant quantum
Chevalley formula of Mihalcea [94]. It would be interesting to investigate generaliza-
tions of Rietsch’s mirror conjecture to this setting. See [120] for work in this direction.

A different approach to mirror phenomena for partial flag varieties is the study of
period integrals of hypersurfaces in G=P by Lian, Song, and Yau [90]. Their “tauto-
logical system” is further studied in [75], where geometry such as the open projected

Richardson VG=P also makes an appearance.
Since QH�.G_=P_/ is known (see [23]) to be semisimple for minuscule P_,

the Dubrovin conjecture concerning full exceptional collections of vector bundles on
G_=P_ and the Stokes matrix of QG_=P_

at q D 1 is expected to hold. It has been
established for projective spaces by Guzzetti [68], and more generally for Grassman-
nians by Ueda [121]. Recent works on exceptional collections for projective homoge-
neous spaces include [85] for G_ classical and [39] for G_ of type E6.

Related to the Dubrovin conjecture are the Gamma conjectures in [48]. The rela-
tion with mirror symmetry is discussed in [49] and [79]. The conjectures are known
for Grassmannians (see [48]), for certain toric varieties (see [49]), and are compat-
ible with taking hyperplane sections (see [49]). Also, [58] establishes the Gamma
conjecture I for Fano 3-folds with Picard rank 1, exploiting notably the modularity
of the quantum differential equation which holds for 15 of the 17 families from the
Iskovskikh classification. See [41] and [74] for further recent progress.

2. Preliminaries
Notation in Sections 2.1–2.4 will be used frequently in the article. The results of
Section 2.5 will be used in Sections 3 and 4.

2.1. Root systems and Weyl groups
LetG denote a complex almost simple algebraic group, let T �G be a maximal torus,
and let B , B� be opposed Borel subgroups. The Lie algebras are denoted g, t, b, b�,
respectively. Let R denote the root system of G, and let I denote the vertex set of
the Dynkin diagram. The simple roots are denoted ˛i 2 t�, and the simple coroots are
denoted ˛_i 2 t. The pairing between t and t� is denoted by h:; :i. Thus aij D h˛i ; ˛

_
j i

are the entries of the Cartan matrix. Let RC;R� � R denote the subsets of positive
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and negative roots. Let � 2 RC denote the highest root, and let � WD 1
2

P
˛2RC ˛ be

the half-sum of positive roots.
We let W denote the Weyl group, and let si , i 2 I denote the simple generators.

For a root ˛ 2 R, we let s˛ 2W denote the corresponding reflection. The length of
w is denoted `.w/. For w 2 W , we let Inv.w/ WD ¹˛ 2 RC j w˛ 2 R�º denote the
inversion set of w. Thus jInv.w/j D `.w/. Let “�” denote the Bruhat order on W ,
and let “�” denote a cover relation (i.e., w � v if w < v and `.w/D `.v/� 1).

Let P �G denote the standard parabolic subgroup associated to a subset IP � I .
Let WP �W be the subgroup generated by si ; i 2 IP . Let W P be the set of minimal
length coset representatives for W=WP . Let �P WW !W P denote the composition
of the natural map W ! W=WP with the bijection W=WP Š W P . Let RP � R

denote the root system of the Levi subgroup of P . Let �P WD 1
2

P
˛2R

C
P

˛.

For a weight 	 of g, we let V� denote the irreducible highest weight representa-
tion of g with highest weight 	.

2.2. Root vectors and Weyl group representatives
We pick a generator x˛ for the weight space g˛ for each root ˛. Write yj for x�˛j

,
xj for x˛j

, and y˛ for x�˛ . Define

Psj WD exp.�xj / exp.yj / exp.�xj / 2G:

Then if w D si1 � � � si` is a reduced expression, the group element Pw D Psi1 � � � Psi` does
not depend on the choice of reduced expression.

We assume that the root vectors x˛ have been chosen to satisfy:
(1) Pw � x˛ D ˙xw˛ ,
(2) Œx˛; y˛�D ˛_,
where Pw � x˛ denotes the adjoint action (see [117, Chapter 3]). In (3.9.1), we will
make a choice of sign for x� .

2.3. Quantum roots
If G is simply laced, then we consider all roots to be long roots. Otherwise, we have
both long and short roots. Let QRC �RC be the subset of positive roots defined by

QRC D
®
ˇ 2RC

ˇ̌
`.sˇ /D h2�;ˇ_i � 1

¯
:

A root ˇ 2 QRC is called a quantum root (terminology to be explained in Section 4.2).
If G is simply laced, then QRC DRC. Otherwise, it is a proper subset. A root ˛ 2RC

belongs to QRC if one of the following is satisfied (see [16]):
(1) ˛ is a long root, or
(2) no long simple roots ˛i appear in the expansion of ˛ in terms of simple roots.
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Figure 2. The minuscule parabolic quotients. In the second column, the possible minuscule nodes
are indicated with a black vertex.

If G is of type Bn, then QRC is the union of the long positive roots with the short
simple root ˛n. If G is of type Cn, then QRC is the union of the long positive roots
with the short roots of the form ˛i C ˛iC1 C � � � C ˛j , where 1� i � j � n� 1.

2.4. Minuscule weights
Let i 2 I , and let $i denote the corresponding fundamental weight. We call i, or $i,
minuscule, if the weights of V D V$i

are exactly the set W � 	. Equivalently, i 2 I is
minuscule if the coefficient of ˛_

i
in every coroot ˛_ is at most 1.

Let P D Pi �G be the parabolic subgroup associated to IP D I n ¹iº. Then WP
is the stabilizer of $i. We have natural bijections between W P , W=WP , and W �$i.
We have that ˛ 2RP if the simple root ˛i does not occur in ˛. We say that P D Pi is
a minuscule parabolic if i is a minuscule weight.

The minuscule nodes for each irreducible root system are listed in Figure 2.
Our conventions follow the Bourbaki numbering (see [15, Chapter VIII, Section 7.4,
Proposition 8]).

If G is simply laced, then a minuscule node is also cominuscule. Thus the coef-
ficient of ˛i in every root ˛ 2RC is at most 1. This means that the nilradical of P is
abelian; hence by Borel–de Siebenthal theory, G=P is a compact Hermitian symmet-
ric space (see, e.g., [64]).
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2.5. A remarkable quantum root
Fix a minuscule node i and corresponding parabolic P D Pi. Define the long root

 D 
.i/ 2R by:


 WD

8̂̂<̂
:̂
˛i if G is simply laced;

˛n�1 C 2˛n if G is of type Bn (and thus i D n);

2˛1 C 2˛2 C � � � C 2˛n�1 C ˛n D � if G is of type Cn (and thus i D 1).

Since 
 is a long root, it is also a quantum root. The coroot 
_ is the (unique)
“Peterson–Woodward lift” of ˛_

i
CQ_P 2 Q_=Q_P , where Q_, Q_P denote coroot

lattices (see Section 15).
Let IQ D ¹j 2 IP j h˛j ; 


_i D 0º D ¹j 2 IP j h
;˛_j i D 0º. Then ˛ 2RQ if no
simple root ˛j with j … IQ occurs in ˛. If G is simply laced, then IQ is the set of
nodes in I not adjacent to i. If G is of type Bn, then IQ D ¹1; 2; : : : ; n� 3;n� 1º. If
G is of type Cn, then IQ D ¹2; 3; : : : ; nº D IP .

LEMMA 2.6
The root 
 has the following properties:
(1) h$i; 


_i D 1, and
(2) h˛; 
_i D �1 for ˛ 2RCP nRCQ.

Proof
This is by direct check.

It turns out that the root 
 can be characterized in a number of ways.

PROPOSITION 2.7
Let ˇ 2RC nRCP . Then the following are equivalent:
(1) ˇ D 
;
(2) we have h˛;ˇ_i 2 ¹�1; 0º for all ˛ 2RCP ;
(3) there exists w 2W P such that ˇ D �w�1.�/.

Define W.
/ WD ¹w 2W P jw
 D ��º. Let wP=Q 2WP be the longest element
that is a minimal length coset representative in wP=QWQ. Note that Inv.wP=Q/ D

RCP nRCQ (see Lemma 15.3). Denote s0� WD s�w
�1
P=Q

.

PROPOSITION 2.8
Suppose that w 2W.
/. Then:
(1) `.ws�/D `.w/� `.s�/,
(2) `.ws0�/D `.w/� `.s�/� `.w�1

P=Q
/D `.w/� `.s0�/,
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(3) ws0� D �P .ws�/,
(4) there is a unique length-additive factorization w D uw0, where u 2 WJ and

w0 2W.
/ is the minimal length element in the double coset WJwWP ; here,
WJ is a standard parabolic subgroup all of whose generators stabilize � .

Conversely, suppose that w 2W P satisfies (1) and (2). Then w 2W.
/.

The proofs of Propositions 2.7 and 2.8 are given in Section 15.

3. Frenkel–Gross connection
We caution the reader that the roles of G and G_ are reversed in Sections 3–5 com-
pared to the rest of the paper.

3.1. Principal sl2
Let yp WD

P
i2I yi which is a principal nilpotent in b�. Let 2�_ D

P
˛2RC ˛_,

viewed as an element of t. We have

2�_ D 2
X
i2I

$_i D
X
i2I

ci˛
_
i ;

where the ci are positive integers. Let xp WD
P
i2I cixi 2 b. Then .xp; 2�_; yp/ is a

principal sl2-triple (see [63] and [15, Chapter VIII, Section 11, no. 4]).
Let z.yp/ be the centralizer of yp which is an abelian subalgebra of dimension

equal to the rank of g. The adjoint action of 2�_ preserves z.yp/ and the eigenvalues
are nonnegative even integers. We denote the eigenspaces by z.yp/2m with m 	 0.
Thus z.yp/0 D z.g/. The integers m	 1 counted with multiplicity dim z.yp/2m coin-
cide with the exponents m1 � � � � �mr of the root system R. Kostant has shown that
g D ˚m�0Sym2m.C2/˝ z.yp/2m as a representation of the principal sl2. It implies
that twice the sum of exponents is equal to the number of roots jRj.

The first exponent is m1 D 1 since z.yp/2 contains yp . The last exponent is
mr D c � 1 which is the height of the highest root � because x�� 2 z.yp/. In fact,
mi CmrC1�i D c for any i .

3.2. Rigid irregular connection
Frenkel and Gross [43] construct a meromorphic connection rG on the trivial G-
bundle on P1n¹0;1º by the formula

rG WD d C yp
dq

q
C x� dq: (3.2.1)

Here d is the trivial connection and yp
dq
q

C x� dq is the g-valued connection 1-form

attached to the trivialization G � P1n¹0;1º. For any finite-dimensional G-module
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V , it induces a meromorphic flat connection r.G;V / on the trivial vector bundle V �

P1n¹0;1º. If V� is an irreducible highest module, then we also write r.G;�/ for
r.G;V�/.

The formula (3.2.1) is in oper form (see [43]) because rG is everywhere transver-
sal to the trivial B-bundle B �P1n¹0;1º inside G �P1n¹0;1º. The connection rG

has a regular singularity at the point 0 with monodromy generated by the principal
unipotent exp.2i�yp/. It has an irregular singularity at the point 1, and it is shown
in [43] that the slope is 1=c, where c is the Coxeter number of G. One of the main
results of [43] is that the connection is rigid in the sense of the vanishing of the
cohomology of the intermediate extension to P1 of r.G;Ad/, viewed as a holonomic
D-module on SpecCŒq; q�1�D P1n¹0;1º. Here, Ad is the adjoint representation of
G on g.

3.3. Outer automorphisms
In certain cases, the connection rG admits a reduction of the structure group. This
is related to outer automorphisms of G, and thus to automorphisms of the Dynkin
diagram. IfG is of typeA2n�1, then rG can be reduced to type Cn. IfG is of typeE6,
then rG can be reduced to type F4. If G is of type DnC1 with n	 4, then rG can be
reduced to type Bn. In particular, there is a reduction from typeD4 to type B3. In fact,
by using the full group S3 of automorphisms of the Dynkin diagram, if G is of type
D4, then rG can be reduced to typeG2. As a consequence, there is also a reduction of
rG from type B3 to type G2 even though B3 has no outer automorphism. It follows
from Frenkel and Gross [43, Sections 6 and 13], who determine the differential Galois
group of rG for every G, that the above is a complete list of possible reductions.

3.4. Homogeneity
We make the observation that the connection rG is compatible with the natural grad-
ing on g induced by the adjoint action of the cocharacter subgroup �_ W Gm ! G.
Precisely, we have a Gm-action on g induced by � 7! Ad.�_.�//, where � 2 Gm.
Consider also the Gm-action on P1n¹0;1º given by � � q D �cq, where we recall that
c is the Coxeter number of g. It induces a natural Gm-equivariant linear action on
T �P1n¹0;1º and also on the bundle g˝ T �P1n¹0;1º.

LEMMA 3.5
The connection 1-form yp

dq
q

C x� dq in �1.P1n¹0;1º;g/ is homogeneous of
degree 1 under the above Gm-equivariant action.
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Proof
We have seen in Section 3.1 that yp has degree m1 D 1 and x� has degree �mr D

1� c, which implies the assertion.

3.6. Frenkel–Gross operator acting on the minuscule representation
Let i be a minuscule node, and let V$i

denote the minuscule representation. In this
section, we explicitly compute r.G;$i/. We shall use the canonical basis of V$i

,
constructed in [50].

There is a basis ¹vw jw 2W P º of V$i
characterized by the properties

xj .vw/D

´
vsjw if hw$i; ˛

_
j i D �1;

0 otherwise,
yj .vw/D

´
vsjw if hw$i; ˛

_
j i D 1;

0 otherwise,

and the condition that vw has weight w$i. Note that in the formulas above,
sjw always lies in W P . (For example, hw$i; ˛

_
j i D 1 implies that sjw > w and

sjwWP ¤wWP . Together with w 2W P , we have that sjw 2W P .)
The following result follows from [50, Lemma 3.1] and the discussion after [50,

Lemma 3.3]. We caution that our Psj is equal to Geck’s nj .�1/.

LEMMA 3.7
(1) For w 2W P , we have Pwve D vw . For u 2W and w 2W P , we have Puvw D

˙v�P .uw/.
(2) For ˛ 2RC and w 2W P , we have

x˛.vw/D

´
˙vs˛w if hw$i; ˛

_i D �1;

0 otherwise,

x�˛.vw/D

´
˙vs˛w if hw$i; ˛

_i D 1;

0 otherwise.

LEMMA 3.8
Let j 2 I and w 2W P . Then

yj vw D

´
vwsˇ if ˇ Dw�1.˛j / 2RC nRCP ;

0 otherwise.

In the first case, we automatically have wsˇ �w and wsˇ 2W P .

Proof
Let ˇ D w�1.˛j /. The condition that ˇ > 0 is equivalent to sjw > w. In this case,
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Inv.sjw/D Inv.w/[ ¹ˇº, so the condition that sjw 2W P is equivalent to ˇ …RP .
The condition hw$i; ˛

_
j i D 1 is thus equivalent to ˇ 2RC nRCP .

Recall that we have defined a distinguished root 
 D 
.i/ 2 RC and a subset
W.
/�W in Section 2.5.

LEMMA 3.9
There is a sign " 2 ¹C1;�1º, not depending on w 2W P , such that

"x�vw D

´
v�P .ws�/ if w 2W.
/;

0 otherwise.

Proof
Let ˇ D �w�1.�/. By Lemma 3.7(2), x�vw ¤ 0 if and only if hw$i; �

_i D �1. By
a similar argument to the proof of Lemma 3.8, this holds if and only if ˇ 2RC nRCP .
By Proposition 2.7, we have x�vw ¤ 0 if and only if ˇ D 
, that is, w 2W.
/.

Suppose thatw 2W.
/. By Proposition 2.8(4), we havew D uw0, where u 2WJ
is an element of a standard parabolic subgroup stabilizing � , and the product uw0 is
length-additive. Then we have

x�vw D x� Puvw0 D "0 Pu Pw0x��. Pw0/�1vw0 D " Puvw0s0
�

D "vws0
�
;

where "0, " are signs not depending on w. For the first equality, we have used
Lemma 3.7(1). For the second equality, we used that Pu is a product of elements
Psj , where sj � D � and thus Psj commutes with x� . For the third equality, we used
x��ve D vs� which follows from Lemma 3.7(2) and Lemma 2.6(1). In the last two
equalities, we used Proposition 2.8(2) applied to w;w0 2W.
/. In the last equality,
we also used that `.ws0�/D `.u/C `.w0s0�/.

From now on, we make the assumption that

x� 2 g� is chosen so that "D 1 in Lemma 3.9. (3.9.1)

4. Quantum cohomology connection

4.1. Quantum cohomology of partial flag varieties
Let P �G be an arbitrary standard parabolic subgroup. Let QH�.G=P / denote the
small quantum cohomology ring of G=P . It is an algebra over CŒqi j i … IP �, where
we write qi for q˛_

i
. Forw 2W P , let �w 2QH�.G=P / denote the quantum Schubert

class. For each i 2 I , let �i WD �s˛i
. Then we have
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QH�.G=P /Š
M
w2W P

CŒqi j i … IP � � �w :

4.2. Quantum Chevalley formula
The quantum Chevalley formula for a general G=P is due to Fulton and Wood-
ward [46] and Peterson [100]. Let 
P WQ_ !Q_=Q_P be the quotient map, where
Q_ D

L
i2I Z˛

_
i (resp., Q_P D

L
i2IP

Z˛_i ) is the coroot lattice. Recall that �P D
1
2

P
˛2R

C
P

˛. The following version of the quantum Chevalley rule is from [87, Theo-

rem 10.14, Lemma 10.18].

THEOREM 4.3
For w 2W P , we have

�i �q �w D
X
ˇ

h$i ; ˇ
_i�wsˇ C

X
�

h$i ; �
_iq�P .�_/��P .ws�/;

where the first summation is over ˇ 2RC nRCP such that wsˇ �w and wsˇ 2W P ,
and the second summation is over � 2RC nRCP such that

`.ws�/D `.w/� `.s�/ and (4.3.1)

`
�
�P .ws�/

�
D `.w/C 1�

˝
2.�� �P /; �

_
˛
: (4.3.2)

4.4. Degrees
The quantum cohomology ring QH�.G=P / is a graded ring. The degree of �w is
equal to 2`.w/. The degrees of the quantum parameters qi D q˛_

i
for i 2 InIP are

given by

deg.qi /D 2

Z
G=P

c1.TG=P / � ��P .w0si / D
˝
4.�� �P /; ˛

_
i

˛
:

The second equality is [46, Lemma 3.5]. Indeed, the first Chern class ofG=P satisfies

c1.TG=P /D
X

i2InIP

˝
2.�� �P /; ˛

_
i

˛
�i : (4.4.1)

We verify that the quantum multiplication �i�q is homogeneous of degree 2
directly from Theorem 4.3. Indeed, �wsˇ has degree 2`.w/C 2, and

degq�P .�_/ C 2`
�
�P .ws�/

�
D

˝
4.�� �P /; 
P .�

_/
˛
C 2`.w/C 2� 2

˝
2.�� �P /; �

_
˛
D 2`.w/C 2;

where the second equality follows because �� �P is orthogonal to Q_P .
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4.5. Quantum connection and quantum D-module
We let Cq be the complex points of SpecCŒqi j i … IP � and let C�q be the complex
points of SpecCŒq˙1i j i … IP �. We can attach a quantum connection QG=P on the
trivial bundle C�q �H�.G=P / over C�q as follows. For each i 2 InIP , the connection
QG=P in the direction of qi is given by

qi
@

@qi
C �i�q;

where �q is quantum multiplication with quantum parameter q. The connection is
integrable, which is equivalent to the associativity of the quantum product. The asso-
ciated connection 1-form isX

i2InIP

.�i�q/
dqi

qi
2�1

�
C�q ;End

�
H�.G=P /

��
: (4.5.1)

Define a C�-action on H�.G_=P_/ by � � � D �i� for � 2 C� and � 2

H 2i .G_=P_/. Also define a C�-action on C�q by � � qi D �deg.qi /=2qi for i … IP .
Then it is clear from the previous Section 4.4 that the connection 1-form (4.5.1) is
homogeneous of degree 1 for the action of C�.

It follows from Theorem 4.3 that quantum multiplication is a Laurent polynomial;
hence QG=P is an algebraic connection.

Remark 4.6
We may identify the universal cover of C�q with H 2.G=P / and define a flat con-
nection on H 2.G=P / instead, which would correspond to the general framework
of Frobenius manifolds (see [36], [72], [92]). Viewing ¹�i j i … IP º as a basis
of H 2.G=P /, the link is the change of parameters given by .qi j i … IP / 7!P
i2InIP

log.qi /�i 2 H 2.G=P / (see, e.g., [76, Section 2.2]). Intrinsically, C�q
is identified with the quotient H 2.G=P /=2i�H 2.G=P;Z/ (see also Lemma 8.2
below).

4.7. Minuscule case
For minuscule G=P , with IP D In¹iº, where i is a minuscule node, we shall simplify
Theorem 4.3. The Schubert divisor class �i 2H 2.G=P / is a generator of Pic.G=P /.
It defines a minimal homogeneous embedding G=P � P.V /, and G=P is realized as
the closed orbit of the highest weight vector ve 2 V D V$i

. The hyperplane class of
P.V / restricts to � . The following is established in [21] and [114].

LEMMA 4.8
If P D Pi is a minuscule parabolic, then h2.� � �P /; ˛

_
i

i D c, the Coxeter number
of G.
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It then follows from (4.4.1) that the first Chern class c1.TG=P / is equal to c� .
There is only one quantum parameter q D qi D q˛_

i
which has degree 2c.

PROPOSITION 4.9
Let 
 D 
.i/ be the long root of Section 2.5. Then for w 2W P , we have

�i �q �w D
X
ˇ

�wsˇ C �.w/q��P .ws�/;

where the first summation is over ˇ 2RC nRCP such that wsˇ �w and wsˇ 2W P ,
and �.w/ equals 1 or 0 depending on whether w 2W.
/ or not.

Proof
For ˇ_ 2 RC, the coefficient h$i; ˇ

_i is either 0 or 1, and it is equal to 1 if ˇ_ 2

RC nRCP . This explains the first summation.
Suppose that � 2RC nRCP and we have (4.3.1) and (4.3.2). Define IQ0 WD ¹j 2

IP j h˛j ; �
_i D 0º D ¹j 2 IP j h�;˛_j i D 0º. We have Inv.ws�/\RCQ0 D ; and thus

Inv.ws�/\R
C
P � .RCP nRCQ0/. Now, (4.3.1) implies that s� 2W P and thus h˛i ; �

_i �

0 for i 2 IP . It follows from our definition of IQ0 that h˛i ; �
_i < 0 for i 2 IP and

h˛i ; �
_i D 0 for i 2 IQ0 . Thus h˛; �_i< 0 for ˛ 2RCP nRCQ0 , so

jRCP nRCQ0 j � �
X

˛2R
C
P
nR

C

Q0

h˛; �_i D �
X
˛2R

C
P

h˛; �_i D �h2�P ; �
_i:

Condition (4.3.2) guarantees that we have equality and hence that h˛; �_i D �1 for
˛ 2 RCP nRCQ0 . By Proposition 2.7, we conclude that � D 
. It follows from the last
sentence of Proposition 2.8 that w 2W.
/.

Example 4.10
Suppose that G=P D Gr.n � 1;n/ D CPn�1. The minimal representative permu-
tations w 2 W P are determined by the value w.n/ 2 Œ1; n�, or equivalently by a
Young diagram which is a single column of length w.n/ � 1. Denote the Schubert
classes by �; D 1, �1 D �s˛1

, �2; : : : ; �n�1. Then ��j1 D �j for 1 � j � n � 1 and
�1 �q �n�1 D q. The quantum cohomology ring has presentation CŒ�1; q�=.�

n
1 � q/.

Chaput, Manivel, and Perrin [21]–[23] study the quantum cohomology of minus-
cule and cominuscule flag varieties. In particular, they obtain a combinatorial descrip-
tion in terms of certain quivers (see [21, Proposition 24]), which may be compared
with Proposition 4.9 above.

4.11. Minuscule representation
Define the linear isomorphism
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L WH�.G=P /! V; �w 7! vw for w 2W P . (4.11.1)

Recall the principal sl2-triple .xp; 2�_; yp/.

PROPOSITION 4.12 (Gross [64])
The isomorphism L intertwines the action of the Lefschetz sl2 on H�.G=P / and the
action of the principal sl2 on V .

Proof
If the term �wsˇ occurs in �i �0 �w , then wˇ D ˛j for some j (see [118]). It then
follows from Lemma 3.8 that L.�i �0 �w/ D ypvw D yp ı L.�w/. On the other
hand, we have dim.G=P /D h$i; 2�

_i, and `.w/D h$i; �
_i � hw$i; �

_i (see [64,
Section 6]). Since L.�w/ D vw has weight w$i (see Section 3.6), for every d 2

Œ0; 2dim.G=P /�, the image L.Hd .G=P // is equal to the 2�_-eigenspace of V of
eigenvalue dim.G=P /� d .

Consider quantum multiplication �i�q as an operator on H�.G=P / with coeffi-
cients in CŒq�.

PROPOSITION 4.13
We have L ı �i�q D .yp C qx� / ıL.

Proof
Let �i�q D D1 C D2, where D1 and D2 correspond to the two terms of Propo-
sition 4.9. We have seen in the proof of Proposition 4.12 that L ı D1 D yp ı L.
Assumption (3.9.1) and Proposition 4.9 show that L ıD2 D qx� ıL.

Golyshev and Manivel [57] study “quantum corrections” to the geometric Satake
correspondence. Their main result is closely related to our Proposition 4.13 for the
simply laced cases.

Recall from Section 4.5 that the quantum connection on C�q is given by

QG=P D d C �i �q
dq

q
: (4.13.1)

THEOREM 4.14
If P �G is minuscule with minuscule representation V , then under the isomorphism
L WH�.G=P /! V , the quantum connection QG=P is isomorphic to the rigid con-
nection r.G;V /. Moreover, the isomorphism is graded with respect to the gradings in
Sections 3.4 and 4.5.
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4.15. Automorphism groups
The connected automorphism group of a projective homogeneous space H=P is of
the same Dynkin type as H except in the following three exceptional cases (see [2,
Section 3.3]):
� If H D Sp.2n/ is of type Cn, n	 2, and i D 1 is the unique minuscule node,

then H=P1 is isomorphic to projective space P2n�1. Thus it is homogeneous
under the bigger automorphism group G D PGL.2n/.

� If H D SO.2nC 1/ is of type Bn, n 	 2, and i D n is the unique minuscule
node, then the odd orthogonal Grassmannian SO.2nC 1/=Pn is isomorphic
to the even orthogonal Grassmannian SO.2nC 2/=PnC1.

� If H is of type G2 and i D 1, then H=P1 is a 5-dimensional quadric which
is also isomorphic to SO.7/=P1. In this case, i corresponds to the unique
short root, which is therefore also the shortest highest root, and thus H=P1
is quasiminuscule and coadjoint, but it is neither minuscule nor cominuscule.
On the other hand, the 5-dimensional quadric is cominuscule as a homoge-
neous space under G D SO.7/.

In each of the above cases the quantum cohomology rings coincide, and hence the
quantum connections also coincide. In the first two cases we can apply Theorem 4.14
to deduce that the corresponding rigid connections associated to a minuscule repre-
sentation V coincide. In view of Section 3.3, we conclude that if there is a minus-
cule Grassmannian H=P whose connected automorphic group is G, then rG can be
reduced to rH .

4.16. Quantum period solution
The connection QG=P has regular singularities at q D 0. Let S.q/ be the horizontal
section of the dual connection that is asymptotic to �w0w

P
0

as q ! 0. Here, w0wP0
(resp., w0 and wP0 ) is the longest element of W P (resp., W and WP ). The quantum
period of G=P is hS.q/; 1i. Here, h�; �i denotes the intersection pairing onH�.G=P /,
so hS.q/; 1i is equal to the coefficient of �w0w

P
0

in the Schubert expansion of S.q/.
The quantum period hS.q/; 1i has a power series expansion in q with nonnegative
coefficients, which one can determine using the Frobenius method. We determine the
first term in the q-expansion in the following.

LEMMA 4.17
As q ! 0, ˝

S.q/; 1
˛
D 1C q

Z
G=P

�c�1i ��P .w0w
P
0
s�/

CO.q2/:

The integral above is the number of paths in Bruhat order inside W P from
�P .w0w

P
0 s�/ to w0wP0 . It is a positive integer.



MIRROR CONJECTURE FOR MINUSCULE FLAG VARIETIES 101

Proof
We write S.q/D �w0w

P
0

CqvCO.q2/, where v 2H�.G=P /. Since S is a horizontal

section of the connection dual to QG=P , we have dS
dq

D �i�q S.q/. Using the quantum

Chevalley formula in Proposition 4.9 and dS
dq

D vCO.q/, this implies that

v D �i �0 vC ��P .w0w
P
0
s�/
:

Since �i�0 is nilpotent, this equation uniquely determines v.
We have `.w0wP0 /D dim.G=P /, and

`
�
�P .w0w

P
0 s�/

�
D dim.G=P /C 1� c;

where c D h2.���P /; 

_i is the Coxeter number ofG by Lemma 4.8. Hence we find

that hv; 1i is as stated in the lemma.
The interpretation as counting paths in Bruhat order follows from the classical

Chevalley formula for the cup product with �i. It is a general fact that the Bruhat
order of anyW P is a directed poset with maximal element w0wP0 . In particular, there
exists always a path in Bruhat order from any element to the top, and the count is
positive.

5. Examples

5.1. Grassmannians
Let G D PGLn. Then G=P is the Grassmannian Gr.k; n/ for 1 � k � n � 1. The
Weyl group W D Sn, and the simple root ˛i D 
 corresponds to the transposition
of k and k C 1. We have h2.�� �P /; 


_i D n. The maximal parabolic subgroup is
WP D Sk � Sn�k . The minimal representatives w 2W P are the permutations such
that w.1/ < � � � < w.k/ and w.k C 1/ < � � � < w.n/. Any such permutation can be
identified with a Young diagram that fits inside a k� .n�k/ rectangle, and `.w/ is the
number of boxes in the diagram. The projection �P WW !W P consists in reordering
the values w.1/; : : : ;w.k/ in increasing order and similarly for w.kC 1/; : : : ;w.n/.

In the quantum Chevalley formula of Proposition 4.9, the condition that wsˇ �w
means that ˇ 2 RC n RCP is the transposition of l 2 Œ1; k� and m 2 .n � k;n� with
w.m/D w.l/C 1. Equivalently, the Young diagram of wsˇ has one additional box
on the .k � l C 1/th row. In the second term of the quantum Chevalley formula, the
condition `.�P .ws�// D `.w/C 1 � n is equivalent to w
 D �� , which is in turn
equivalent to w.k/D n and w.k C 1/D 1. This can also be seen from the fact that
the element �P .ws�/ has Young diagram obtained by deleting the rim of the diagram
of w (see [12]). A presentation for the quantum cohomology ring of Grassmannians
is given in [18], [20], and [113].
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The first term in the q-expansion in Lemma 4.17 is
�
n�2
k�1

�
. Indeed, �P .w0wP0 s�/

has Young diagram the .k�1/� .n�k�1/ rectangle. The number of paths in Bruhat
order is equal to the number of ways to sequentially add boxes to form the k � n

rectangle which corresponds to the maximal elementw0wP0 ofW P . This is consistent
with the q-expansion of the quantum period in terms of binomial coefficients in [5,
Theorem 5.1.6] and [93, Corollary 4.7].

The fundamental representation V D V$i
is the exterior product ƒkCn. The

highest weight vector is ve D e1 ^ � � � ^ ek . For every w 2 W P , the basis vector is
vw D Pw � ve D ew.1/ ^ � � � ^ ew.k/. The Schubert class �w is the B-orbit closure of
Span.ew.1/; : : : ; ew.k// inside Gr.k; n/.

Example 5.2
Assume that k D 2 and n D 4. Denote the Schubert classes by �; D 1, �1 D �s˛i

,
�11, �2, �21, and �22. The quantum Chevalley formula gives the identities �1 �q �1 D

�11 C �2, �1 �q �11 D �1 �q �2 D �21, �1 �q �21 D �22 C q, and �1 �q �22 D q�21.

5.3. Type D
If G D SO.2n/ is of type Dn, n	 4, and i D 1, then G=P1 is a quadric of dimension
2n� 2 in P2n. The quantum cohomology ring is described in [22] and [99].

The two minuscule nodes i D n and i D n� 1 are equivalent, and then G=Pn is
isomorphic to one connected component of the orthogonal Grassmannian of maximal
isotropic subspaces in C2n. A presentation for the quantum cohomology ring is given
in [83].

5.4. Exceptional cases
A presentation of the quantum cohomology ring of the Cayley planeE6=P6 (resp., the
Freudenthal variety E7=P7) is given in [21, Theorem 31] (resp., [21, Theorem 34]).
The quantum corrections in the quantum Chevalley formula are also described in
terms of the respective Hasse diagram. There are 6 (resp., 12) correction terms for
E6=P6 (resp., E7=P7).

5.5. Six-dimensional quadric, triality of D4
A case of special interest is G D SO.8/ of type D4 where all minuscule nodes 1,
3, 4 are equivalent. The homogeneous space G=P1 is a 6-dimensional quadric. It
also coincides with the Grassmannian SO.7/=P3 of isotropic spaces of dimension 3
inside C7.

The quadric is minuscule both as an SO.8/-homogeneous space and as an
SO.7/-homogeneous space. Theorem 4.14 applies in both cases so that QSO.8/=P1 '

QSO.7/=P3 is isomorphic to the Frenkel–Gross connection r.G;V / for bothG D SO.8/
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and G D SO.7/. Here, the representation V is either the standard representation of
SO.8/, or its restriction to SO.7/ which is the direct sum of the trivial representation
plus the standard representation.

PROPOSITION 5.6
(i) The quantum connection QSO.8/=P1 of the 6-dimensional quadric is the direct

sum of two irreducible constituents of dimensions 1 and 7, respectively.
(ii) The differential Galois group is G2.

Proof
We have seen in Section 3.3 that rG for G of type D4 reduces to rG for G of type
G2. Thus it suffices to observe that the standard representation V of SO.8/ when
restricted to G2 decomposes into the trivial representation plus the irreducible repre-
sentation of dimension 7. This holds because the restriction of the standard represen-
tation of SO.7/ is the 7-dimensional representation of G2.

A presentation of the quantum cohomology ring of the homogeneous spaceG=P1
is given in [22]. It is also given in [83] as a particular case of Grassmannians of
isotropic spaces and in [99] as a particular case of even-dimensional quadrics. From
either of these presentations or from the quantum Chevalley formula, we find the
quantum multiplication by � D �i in the Schubert basis; thus

QG=P1 D q
d

dq
C

0BBBBBBBBBBB@

0 0 0 0 0 0 q 0

1 0 0 0 0 0 0 q

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

1CCCCCCCCCCCA
:

The middle cohomology H 6.G=P1/ is 2-dimensional, spanned by ¹�C3 ; �
�
3 º.

Since � �q �
C
3 D � �q �

�
3 , the subspace C.�C3 ���3 / is in the kernel of � and in partic-

ular is a stable 1-dimensional subspace of the connection. The other stable subspace,
denoted H #.G=P1/ following [67], has dimension 7 and is spanned by �C3 C ��3
and all the cohomology in the remaining degrees. This is consistent with Proposi-
tion 5.6(i).

The rank-7 subspace H #.G=P1/ is generated as an algebra by H 2.G=P1/, and
moreover the vector 1 is cyclic for the multiplication by � . The quantum D-module
QG=P1 is then given in scalar form as D=DL, where
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L WD
�
q
d

dq

�7
C 4q2

d

dq
C 2q:

The differential Galois group of L on P1n¹0;1º ' C�q is equal to G2 according
to Proposition 5.6(ii). Recall from [43] that ultimately the reason for the differential
Galois group to be G2 is the triality of D4 and the invariance of the Frenkel–Gross
connection rSO.8/ under outer automorphisms which reduces it to rG2 .

After rescaling L by q 7! �q=4, the D-module D=DL becomes isomorphic
to the hypergeometric D-module 1F6.

1=2
1 1 1 1 1 1

/ studied in [78] with the notation
H .0; 0; 0; 0; 0; 0; 0I1=2/. Katz proved in [78, Theorem 4.1.5] that the differential
Galois group is G2, which is consistent with Proposition 5.6(ii).

Our work gives a new interpretation of D=DL studied by Katz and by Frenkel
and Gross as the quantum connection QG=P1 . Hence we have the following question.

Question 5.7
Is it possible to see a priori that the differential Galois group of the quantum connec-
tion of the 6-dimensional quadric is G2?

The question seems subtle because, for example, the quantum connection of the
5-dimensional quadric, which is homogeneous under G2, has rank 6 (see Section 5.8
below), and thus its differential Galois group is unrelated to the group G2.

5.8. Odd-dimensional quadrics
More generally, let G D SO.2nC1/ be of type Bn with n	 3. Then G=P1 is a .2n�

1/-dimensional quadric and is cominuscule. The cohomology has total dimension 2n.
There is one Schubert class �k in each even degree 2k � 4m�2. The quantum product
is determined in [22, Section 4.1.2]. In particular, �1 �q �k�1 D �k for 1� k � n� 1

and nC 1 � k � 2n � 2, �1 �q �n�1 D 2�n, �1 �q �2n�2 D �2n�1 C q, and �1 �q
�2n�1 D q�1, which also follows from the quantum Chevalley formula. The relation
between the quantum connection and hypergeometric D-modules is studied in detail
by Pech, Rietsch, and Williams [99].

The space G2=P1 is a 5-dimensional quadric. Its connected automorphism group
is SO.7/ by Section 4.15. It is coadjoint as aG2-homogeneous space and cominuscule
as an SO.7/-homogeneous space. The cohomology has total dimension 6. A presen-
tation of the quantum cohomology ring is CŒ�; q�=.�6 � 4�q/ (see [24, Section 5.1]).

6. Character D-module of a geometric crystal
In this section, we introduce the character D-module for the geometric crystal of
Berenstein and Kazhdan [8]. The roles of G and G_ are interchanged relative to
Sections 3–5.
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6.1. Double Bruhat cells
LetU �B andU� �B� be opposite maximal unipotent subgroups. For eachw 2W ,
define

Bw� WD U PwU \B�;

Uw WD U \B� PwB�:

LEMMA 6.2
Let U.w/ WDU \ PwU� Pw�1. For u 2Uw

�1
, there is a unique 
.u/ 2Bw� and a unique

�.u/ 2U.w/ such that


.u/D �.u/ Pwu:

The twist map 
 W Uw ! Bw� is a biregular isomorphism and � W Uw ,! U.w/ is an
injection.

Proof
This is [9, Propositions 5.1 and 5.2] (see also [10, Theorem 4.7] and [8, Claim 3.25]).
Since our conventions differ from those in [8] and [10] slightly, we provide a proof.

If we define the subgroupU 0.w/ WDU�\ PwU� Pw�1, then the multiplication maps
U.w/�U 0.w/! PwU� Pw�1 and U 0.w/�U.w/! PwU� Pw�1 are bijective. In partic-
ular, B� PwB� Pw�1 DB� PwU� Pw�1 DB�U

0.w/U.w/DB�U.w/.
We have u�1 2 Uw . Thus u�1 Pw�1 2 B�U.w/� B�U . Since B� \ U D 1, the

factorization u�1 Pw�1 D 
.u/�1�.u/ with 
.u/ 2 B� and �.u/ 2 U.w/ is unique.
Moreover, 
.u/ 2 Bw� . Since �.u/w 2 B�u

�1, it follows similarly that u 7! �.u/ is
injective.

Conversely, Pw�1U PwU D . Pw�1U Pw\U�/U D Pw�1U.w/ PwU . Hence, given x 2

Bw� we have Pw�1x 2 Pw�1U.w/ PwU , which provides by factorization an inverse ele-
ment 
�1.x/ 2Uw .

LEMMA 6.3
For t 2 T , let s WD Pwt Pw�1. Each of Uw and U.w/ is Ad.T /-stable, and for u 2Uw ,

�.tut�1/D s�.u/s�1; 
.tut�1/D s
.u/t�1:

Proof
Since s Pw D Pwt , we have s
.u/t�1 D s�.u/s�1 Pwtut�1; hence the assertion follows.
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6.4. Geometric crystals
Fix an arbitrary standard parabolic subgroup P � G. Let w0 2 W be the longest
element ofW , and let wP0 2WP be the longest element of WP . Define wP WDwP0 w0

so that w�1P is the longest element in W P . In this case, the subgroup UP WD U.wP /

is the unipotent radical of P . The parabolic geometric crystal associated to .G;P / is

X WDUZ.LP / PwPU \B� DZ.LP /B
wP
� :

We now define three maps � , � , f on X , called the highest weight map, the
weight map, and the decoration or superpotential.

The highest weight map is given by

� WX !Z.LP / x D u1t PwPu2 7! t:

Let Xt D ��1.t/D ¹u1t PwPu2 2 B�º be the fiber of X over t . We call Xt the geo-
metric crystal with highest weight t . Since the product map Z.LP / � BwP

� ! X is
an isomorphism, we have a natural isomorphism Xt ŠBwP

� . Geometrically, we think
of X as a family of open Calabi–Yau manifolds fibered over Z.LP /.

The weight map is given by

� WX ! T x 7! x mod U� 2B�=U� Š T: (6.4.1)

For i 2 I , let �i WU ! A1 be the additive character uniquely determined by

�i
�
exp.txj /

�
D ıij t;

where the elements xj for j 2 I are given in Section 2.2. Let the standard additive
character be  WD

P
i2I �i . The decoration (or superpotential) is given by

f WX ! A1 x D u1t PwPu2 7! .u1/C .u2/:

It follows from [107, Lemma 5.2] that f agrees with Rietsch’s superpotential. (This
reference has conventions Langlands dual to ours. Our Z.LP / and wP0 are denoted
.T _/WP and wP in [107], while our Psi is inverse to the corresponding notation there.)

Set  t .u/ WD  .tut�1/ for t 2 T and u 2 U . For t 2 Z.LP /, the potential can
be expressed as a function of u 2Uw

�1
P as follows:

ft .u/ WD f
�
t
.u/

�
D t

�
�.u/

�
C .u/: (6.4.2)

Equivalently, the potential is expressed on BwP
� DU PwPU \B� by

ft .u1 PwPu2/D t .u1/C .u2/:
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Example 6.5
Let G D SL.2/ and P DB . With the parameterizations

u1 D

�
1 a

0 1

�
; t D

�
t 0

0 1=t

�
;

PwP D Ps1 D

�
0 �1

1 0

�
; u2 D

�
1 t2=a

0 1

�
;

the geometric crystal X is the set of matrices

X D

²�
a=t 0

1=t t=a

� ˇ̌̌̌
a; t 2 C�

³
� SL.2/;

equipped with the functions

f .x/D aC t2=a; �.x/D

�
t 0

0 1=t

�
; and �.x/D

�
a=t 0

0 t=a

�
:

6.6. Open projected Richardson varieties
For v;w 2W with v �w, the open Richardson variety Rw

v �G=B is the intersection
of the Schubert cell B� PvB=B with the opposite Schubert cell B PwB=B . The map
u 7! u Pw0 .mod B/ induces an isomorphism Uw

�
! R

w0
ww0

. For every t 2 Z.LP /,
we have a sequence of isomorphisms

Xt ŠBwP
� Š UwP Š R

w0

wP
0

; (6.6.1)

given by x D tu1 PwPu2 7! u1 PwPu2 7! u�12 7! u�12 Pw0B , where in the factorization
we assume that u1 2 U.wP /. We describe directly the composition of these isomor-
phisms as follows.

LEMMA 6.7
For every x D u1t PwPu2 2 Xt with u1 2 UP D U.wP /, we have x�1 PwP0 B D

u�12 Pw0B .

Proof
We have x�1 PwP0 B D u�12 Pw�1P u1 PwP Pw0B . It suffices to observe that Pw0 Pw�1P �

u1 PwP Pw0 2U since u1 2U.wP /.

The projection p WG=B !G=P induces an isomorphism of R
w0

wP
0

onto its image

VG=P , the open projected Richardson variety of G=P . The complement of VG=P

in G=P is the divisor @G=P in G=P , the multiplicity-free union of the irreducible
codimension-1 subvarieties Di , i 2 I and Di , i … IP , where
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Di WD p.R
w0si

wP
0

/ and Di WD p.R
w0

siw
P
0

/:

By [81, Lemma 5.4], @G=P is anticanonical in G=P , or in other words, the canonical
bundle is given by !G=P D OG=P .@G=P /. There is thus, up to scalar, a unique mero-
morphic form ! on G=P that has no zeros, and simple poles along @G=P . We let 1=!
denote the section of the anticanonical bundle inverse to !.

6.8. Explicit formula for superpotential
We now give an explicit formula for the superpotential ft as a function on Uw

�1
P .

Given g D b�v, where b� 2 B� and v 2 U , we set �C.g/ D v. Also let g 7! gT

denote the transpose antiautomorphism of G (see, e.g., [42]). Let g 7! g�T denote
the composition of the inverse and transpose antiautomorphisms (which commute).
There is an involution ? W I ! I determined by w0 � ˛i D �˛i? . We let P ? be the
standard parabolic subgroup determined by IP? D .IP /

?.

LEMMA 6.9
For u 2Uw

�1
P , we have

�C
�
. Pw0/

�1uT PwP
?

0

�
D . Pw0/

�1�.u/�T Pw0:

Proof
Let v D �.u/. Then x D v PwPu 2 B� and u D . PwP /

�1v�1x. Noting that . Pw/T D

. Pw/�1, we have

. Pw0/
�1uT D . Pw0/

�1xT v�T PwP D
�
. Pw0/

�1xT Pw0
	�
. Pw0/

�1v�T Pw0
	�
. Pw0/

�1 PwP
	
:

We note that Œ. Pw0/
�1xT Pw0� 2 B� and Œ. Pw0/

�1v�T Pw0� 2 U , so the claim follows
from the equality

. Pw0/
�1 PwP D . PwP

?

0 /�1:

We first argue that . Pw0/
�1 Psi Pw0 D Psi? . Write ˛_.t/ for the cocharacter Gm ! T .

Then ˛_i .�1/D .Psi /
2 2 T and ˛_i .�1/

2 D 1. Let w0 D siw0 Dw0si? , and compute

. Pw0/
�1 Psi Pw0 D . Pw0/

�1˛_i .�1/ Pw0 D . Pw0/
�1˛_i .�1/ Pw0˛

_
i?.�1/Psi? D Psi? ;

where we have used . Pw0/
�1˛_i .t/ Pw0 Dw0 � ˛i .t/D ˛i?.t

�1/. It follows that

. Pw0/
�1 PwP D . Pw0/

�1 PwP Pw0. Pw0/
�1 D PwP?. Pw0/

�1 D . PwP
?

0 /�1;

as required.
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In the following, we shall assume that G is simply connected. Since the partial
flag variety G=P depends only on the type of G, we lose no generality.

For a fundamental weight $i and elements u;w 2 W , there is a generalized
minor�u$i ;w$i

WG ! A1, defined in [42]. This function is equal to the matrix coef-
ficient g 7! hg � vw$i

; vu$i
i of G acting on the irreducible representation V$i

, with
respect to extremal weight vectors vw$i

WD Pw �v$i
and vu$i

WD Pu �v$i
with weights

w$i and u$i , respectively. Here v$i
denotes a fixed highest weight vector with

weight $i .

LEMMA 6.10
For u 2Uw

�1
P , we have

 
�
�.u/

�
D

X
i2InI?

P

�
wP ?

0
si$i ;w0$i

.u/

�$i ;w0$i
.u/

:

Thus

ft .u/D .u/C
X

i2InI?
P

˛i?.t/
�
wP ?

0
si$i ;w0$i

.u/

�$i ;w0$i
.u/

: (6.10.1)

Proof

First note that �i .�C.g// D
�$i ;si $i

.g/

�$i ;$i
.g/

. We have  .�.u// D
P
i…IP

�i .�.u//.

Since . Pw0/
�1 exp.tyi / Pw0 D exp.�txi?/, we have �i .�.u//D �i?.. Pw0/

�1�.u/�T �

Pw0/. By Lemma 6.9, we have for i? … IP , the equalities

�i?
�
�.u/

�
D �i

�
�C

�
. Pw0/

�1uT PwP
?

0

��
D
�$i ;si$i

.. Pw0/
�1uT PwP

?

0 /

�$i ;$i
.. Pw0/�1uT PwP

?

0 /

D
�
w0$i ;w

P ?

0
si$i

.uT /

�
w0$i ;w

P ?

0
$i
.uT /

D
�
wP ?

0
si$i ;w0$i

.u/

�
wP ?

0
$i ;w0$i

.u/
:

Finally, observe that we havewP
?

0 $i D$i whenever i 2 I nI ?P . For the last formula,
we note that for t 2Z.LP /, we have �i .t�.u/t�1/D ˛i .t/�i .�.u//.

Fix a reduced word i D i1i2 � � � i` of w�1P . We have the Lusztig rational parame-

terization G`m ! Uw
�1
P given by

a D .a1; a2; : : : ; a`/ 7�! xi.a/D xi1.a1/xi2.a2/ � � �xi`.a`/;

where xi .t/ WD exp.txi / denotes a one-parameter subgroup of G.
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COROLLARY 6.11
In the Lusztig parameterization, the superpotential ft jG`

m
W G`m ! A1 is given by the

function

ft .a1; a2; : : : ; a`/D a1 C a2 C � � � C a` C
X

i2InIP

˛i .t/;Pi ;

where Pi is a Laurent polynomial in a1; a2; : : : ; a` with positive coefficients.

Proof
We may assume that G is simply connected and apply Lemma 6.10. We have
 .xi.a// D a1 C a2 C � � � C a`. Now, for any i 2 I n I ?P , the generalized minor
�
wP ?

0
si$i ;w0$i

.xi.a// is a polynomial in a1; a2; : : : ; a` with positive coefficients

by [10, Theorem 5.8] and �$i ;w0$i
.xi.a// is a monomial in a1; a2; : : : ; a` by [10,

Corollary 9.5].

Corollary 6.11 generalizes [27, Theorem 5.6] to the parabolic setting.

Example 6.12
If P is minuscule, then I n IP D ¹iº consists of a single minuscule node. It follows
from the proofs of [10, Theorem 5.8, Corollary 9.5] that �$i? ;w0$i? .xi.a// D

a1a2 � � �a` and that �
wP ?

0
si?$i? ;w0$i?

.xi.a// is a square-free polynomial in
a1; a2; : : : ; a` with positive integer coefficients.

Example 6.13
Let us pick G D SL.4/ and i D 2. A reduced word for wP Dw�1P is 2312. We obtain
the parameterization

.a1; a2; a3; a4/ 7�! uD xi.a/D

0BB@
1 a3 a3a4 0

0 1 a1 C a4 a1a2

0 0 1 a2

0 0 0 1

1CCA ;
and

�.u/D

0BBB@
1 0 1

a1a3
� 1
a1

0 1 a1Ca4

a1a2a3a4
� 1
a1a2

0 0 1 0

0 0 0 1

1CCCA :
Thus  .�.u// D .a1 C a4/=a1a2a3a4. This is equal to the ratio �24;34.u/=

�12;34.u/, agreeing with Lemma 6.10. Here, �I;J denotes the minor using rows
I and columns J . Thus the superpotential is given by
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ft jG4
m

D a1 C a2 C a3 C a4 C q
a1 C a4

a1a2a3a4
;

where q D ˛i.t/. For generic q, the function ft has four critical points in the chart
¹.a1; a2; a3; a4/ 2 G4mº, which for q D 1 are given by

.�1=
p
2;�

p
2;�

p
2;�1=

p
2/; .�i=

p
2;�i

p
2;�i

p
2;�i=

p
2/;

.i=
p
2; i

p
2; i

p
2; i=

p
2/; .1=

p
2;

p
2;

p
2; 1=

p
2/:

We have 4 < 6 D dim.H�.Gr.2; 4//. So the Laurent polynomial ft jG4
m

is a “weak
mirror”: the missing critical points lie outside of this toric chart inside Xt , consistent
with the discussion in [106, Section 9].

Example 6.14
Let us pick G D SL.5/ and i D 2. A reduced word for wP is 234123. Using the
reversed reduced word for w�1P , we obtain the parameterization

.a1; a2; a3; a4; a5; a6/ 7�! uD xi.a/D

0BBBBB@
1 a3 a3a6 0 0

0 1 a2 C a6 a2a5 0

0 0 1 a1 C a5 a1a4

0 0 0 1 a4

0 0 0 0 1

1CCCCCA ;
and

�.u/D

0BBBBB@
1 0 1

a1a2a3
� 1
a1a2

1
a1

0 1 a1a2Ca1a6Ca5a6

a1a2a3a4a5a6
� a1Ca5

a1a2a4a5

1
a1a4

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1CCCCCA :

Thus  .�.u// D .a1a2 C a1a6 C a5a6/=a1a2a3a4a5a6. This is equal to the ratio
�235;345.u/=�123;345.u/, agreeing with Lemma 6.10. Thus the superpotential is
given by

ft jG6
m

D a1 C a2 C a3 C a4 C a5 C a6 C q
a1a2 C a1a6 C a5a6

a1a2a3a4a5a6
;

where q D ˛i.t/. In this case, ft jG6
m

has 10D dimH�.Gr.2; 5// critical points in the
toric chart, so there are no “missing critical points.”

6.15. Polar divisor of the superpotential
By construction, the potential ft can be identified with a rational function on G=P .
We now show that the polar divisor of ft is equal to the anticanonical divisor @G=P �

G=P .
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PROPOSITION 6.16
The potential ft , viewed as a rational function onG=P , has polar divisor @G=P . It can
thus be written as the ratio .1=
t /=.1=!/ of two holomorphic anticanonical sections
on G=P , where 1=! is the holomorphic anticanonical section of Section 6.6.

Proof
Let x D tu1 PwPu2 2Xt , where u1 2 U.wP /. Under (6.6.1), we have that x is sent to
x�1 PwP0 P D u�12 Pw0P .

Given y 2B�, and i 2 I , we have

�w0$i ;$i
.y/D 0 () y 2B Pw0 PsiB: (6.16.1)

Indeed, writing y D b1vb2, we have

hy � v$i
; vw0$i

i D 0 () hb1 � vv$i
; vw0$i

i D 0 () v �w0si

() y 2B Pw0 PsiB:

Working in the open affine chart (the big cell) .B� \ Uw�1P U /P=P � G=P , the
divisor Di is thus cut out by the single equation �w0$i ;$i

.y/D 0.
Now, we take y D x�1. By Lemma 6.7, the vanishing of �w0$i ;$i

.x�1/ is
equivalent to the vanishing of �w0$i ;$i

.u�12 Pw0/ (noting that wP0 $i D$i ). On the
other hand, by [42, Proposition 2.6] and [8, (1.8)],

�i .u2/D ��i .u
�1
2 /D �hu�12 vw0$i

; vw0si$i
i D �

�w0si$i ;w0$i
.u�12 /

�w0$i ;w0$i
.u�12 /

;

which has a pole along the zero locus of �w0$i ;w0$i
.u�12 / D �w0$i ;$i

.u�12 w0/.
Thus the function �i .u2/ has a simple pole along Di and the function  .u2/ has
simple poles along all the Di ; i 2 I . In a similar manner using Lemma 6.10, we find
that  .u1/ has simple poles along the divisors Di ; i … IP . Since all the divisors Di

and Di are distinct, the rational function ft has polar divisor exactly @G=P .

Remark 6.17
Proposition 6.16 is one manifestation of mirror symmetry of Fano manifolds. For
example, the potentials of mirrors of toric Fano varieties are constructed in [55] and
the same property can be seen to hold. In general, it is explained in Katzarkov, Kontse-
vich, and Pantev [79, Remark 2.5(ii)] by the fact that the cup product by c1.KG_=P_/

on the cohomology of the mirror manifold G_=P_ is a nilpotent endomorphism.

Remark 6.18
The zero divisor of 1=! and the zero divisor of 1=
t may intersect, so ft has
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points of indeterminacy. Indeed, this happens in the example of P2 (see also [79,
Remark 2.5(i)]).

6.19. The character D-module of a geometric crystal
Let E WDDA1=DA1.@x � 1/ be the exponential D-module on A1. Let Ef D f �E be
the pullback D-module on X . Finally, define the character D-module of the geomet-
ric crystal X by

Cr.G;P / WDR��Ef on Z.LP /. (6.19.1)

A priori Cr.G;P / lies in the derived category of D-modules on Z.LP /. But in The-
orem 7.10 we shall see that Ri��Ef D 0 for i ¤ 0, and thus Cr.G;P / is just a D-
module.

Remark 6.20
Our conventions for D-modules follow those in [73]. All the D-modules we study in
this paper are integrable connections, so in particular they are holonomic. We will not
need the formalism of derived categories ofD-modules, since we are always just han-
dling D-modules. For the six functors for holonomic D-modules, we refer the reader
to [73, Section 3]. Our Rf� and RfŠ are the same as

R
f

and
R
f Š

there. Our f� and fŠ

are the degree-0 parts
R 0
f

and
R 0
f Š

there. Additionally, the reader may consult [44] and
the references therein for more background on exponential D-modules of the form
Ef .

6.21. Homogeneity
Recall that �P D 1

2

P
˛2R

C
P

˛ and that wP D wP0 w0 is the inverse of the longest

element of W P .

LEMMA 6.22
We have wP .�/D ��C 2�P .

Proof
The element wP0 sends RCP to R�P and permutes the elements of RC nRCP . We com-
pute

wP .�/DwP0 w0.�/DwP0 .��/D �wP0 .�� �P /�wP0 .�P /

D �.�� �P /C �P D ��C 2�P :

We view 2�_ as a cocharacter Gm ! T . Similarly, we view 2�_ � 2�_P as a
cocharacter Gm !Z.LP /.
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LEMMA 6.23
For any u 2Uw

�1
P , t 2Z.LP /, and � 2 Gm,

f.	_�	_
P
/.
2/t

�
Ad�_.�/.u/

�
D �ft .u/:

Proof
We have  	_.
/.u/D � .u/ for any u 2 U and � 2 Gm. Thus in view of (6.4.2), we
have

f.	_�	_
P
/.
2/t

�
Ad�_.�/.u/

�
D .	_�	_

P
/.
2/t

�
�
�
Ad�_.�/.u/

��
� � .u/;

and we are now reduced to treating the first term. It follows from Lemma 6.3 that

�
�
Ad�_.�/.u/

�
D Ad

�
wP .�

_/
�
.�/

�
�.u/

�
;

and therefore the first term above is equal to

 .wP .	_//.
/.	_�	_
P
/.
2/t

�
�.u/

�
D .wP .	_/C2	_�2	_

P
/.
/t

�
�.u/

�
D 	_.
/t

�
�.u/

�
D � t

�
�.u/

�
:

In the second line we have used Lemma 6.22, but with �_ and �_P instead of � and �P .

We define the following Gm-actions onX ,Z.LP /, and A1. For � 2 Gm, we have

� � x D �_.�/x�_.�/�1 for x 2X;

� � t D .2�_ � 2�_P /.�/t for t 2Z.LP /;

� � aD �a for a 2 A1:

Also equip T with the trivial Gm-action.

PROPOSITION 6.24
The maps � WX !Z.LP /, f WX ! A1, and � WX ! T are Gm-equivariant.

Proof
We have � � x D .2�_ � 2�_P /.�/wP .�

_/.�/x�_.�/�1. We verify using Lemma 6.3
that x 7! wP .�

_/.�/x�_.�/�1 is an automorphism of BwP
� . This shows that �.� �

x/D � � �.x/. The second claim follows from Lemma 6.23. The last claim is imme-
diate from the definitions.

COROLLARY 6.25
For any 	 2 C�, we have
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R��Ef=� Š
�
t 7! .2�_ � 2�_P /.	/t

	
�
Cr.G;P /:

Proof
By definition, the left-hand side is equal to R��f �Œa 7! a=	��E. In view of Proposi-
tion 6.24, it is isomorphic to

R��.x 7! � � x/�f
�E D

�
t 7! .2�_ � 2�_P /.�/t

	
�
R��f

�E

D
�
t 7! .2�_ � 2�_P /.�/t

	
�
Cr.G;P /;

which concludes the proof.

We record the following lemma which will be needed in Section 13 in the context
of rapid decay cycles.

LEMMA 6.26
The meromorphic form ! on G=P with simple poles along the anticanonical divisor
@G=P is preserved under the T -action.

Proof
First we observe that each irreducible component of the divisor @G=P is T -invariant
and thus the sections cutting them out are T -weight vectors. Now for P DB , the sec-
tions cutting out the 2jI j divisor componentsDi andDi have T -weights$1; : : : ;$n

andw0$1; : : : ;w0$n. The sum of these weights is zero, so the form !G=B must be T -
invariant. Each open Richardson variety Rw

v has its own canonical form !Rw
v

which is
obtained from !G=B by taking residues, so again these forms are T -invariant. Finally,
for each parabolic P , the projection map p W G=B ! G=P induces an isomorphism

of R
w0

wP
0

onto its image VG=P . Since p is T -equivariant, the result follows.

6.27. Convention for affine Weyl groups
Let w�� 2 Waf D W � P_ denote an element of the affine Weyl group, and let ı
denote the null root of the affine root system. Then for � 2 P ,

w�� � .�C nı/Dw�C
�
n� h�;	i

�
ı: (6.27.1)

6.28. Cominuscule case
We now assume that G is simple and of adjoint type. Fix a cominuscule node i of G,
which is also a minuscule node of G_. Let P D Pi be the corresponding (maximal)
parabolic, and identify Z.LP / with Gm Š P1n¹0;1º via the simple root ˛i.
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LEMMA 6.29
If P is a cominuscule parabolic, then the composition of .2�_�2�_P / W Gm !Z.LP /

with ˛i WZ.LP /Š Gm, is the character q 7! qc , where c is the Coxeter number ofG.

Proof
We have �_G � �_P D �G_ � �P_ for the dual minuscule parabolic group P_ of G_.
Since ˛i is a simple coroot ofG_, it follows from Lemma 4.8 that h2.�_G ��_P /; ˛ii D

c, where c is the Coxeter number of G_ which is also the Coxeter number of G.

Let � be the quotient of the coweight lattice of G by the coroot lattice. Thus
� is isomorphic to the center of G_. Let 
 2 � be the element corresponding to
the cominuscule node i. Namely, 
 
 �$_

i
under this identification (see [87, Sec-

tion 11.2]); we have 
 D ��$
_
i wP . For a coweight 	 of G, we abuse notation by

letting �� 2 G..�// denote the corresponding element, which is a lift of the transla-
tion element �� 2Waf. Our choice is uniquely determined by the following property:
��U˛�

�� DU���˛ , where U˛ �G..�// denotes the one-parameter subgroup indexed
by the affine root ˛.

Let P
 D ��$
_
i PwP D PwP �

$_
i? . Then P
 2 G..�// is a lift of 
 to the loop group.

Note that P
j��1D1 D PwP . Let GŒ��1�1 WD ker.GŒ��1�
ev1
��! G/, where ev1 is given

by ��1 D 0.

LEMMA 6.30
(a) Let ˛ 2R. Then


�1 � ˛ 2

´
R� ı for ˛ 2RC nRCP ,

RCZ�0ı for ˛ …RC nRCP .

(b) For u 2UP , we have P
�1u P
 2GŒ��1�1.
(c) We have w�1P ˛i D �� and 
�1˛i D �� � ı.

Proof
(a) We first note that Inv.w�1P /D RC nRCP and wP D w�1P? (see Section 6.8). Thus
w�1P acts as a bijection from RC n RCP to �.RC n RCP?/. In particular, w�1P � RC n

RCP D �.RC nRCP?/. For ˛ 2R, we compute by (6.27.1)


�1 � ˛ D ��$
_
i? �w�1P � ˛ D ��$

_
i? �w�1P .˛/Dw�1P ˛ � hw�1P ˛;�$_i?iı; (6.30.1)

where ı, the null root of the affine root system, is the weight of � . If ˛ 2RCnRCP , then
(6.30.1) shows that 
�1 �˛ 2R�� ı, using that i cominuscule implies i? cominuscule
implies hˇ;$_

i?
i D 1 for all ˇ 2RC nRCP? . If ˛ …RC nRCP , then hw�1P ˛;�$_

i?
i 	 0

and 
�1 �˛ 2RCZ�0ı. This proves (a). Statement (b) follows immediately from (a).
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We prove (c). Since w�1P sends RC n RCP to �.RC n RCP?/, we see that �� 2

w�1P .RC nRCP /. Since i is cominuscule, every root ˇ 2RC nRCP is of the form ˇ D ˛i

mod
P
j2IP

Z�0˛j . But w�1P ˛j > 0 for all j 2 IP , so w�1P .˛i C
P
j2IP

Z�0˛j /�

w�1P .˛i/C
P
j2I Z�0˛j . We deduce thatw�1P ˛i D �� . The second statement follows

from (6.30.1).

Thus we obtain an inclusion

�t WXt �!GŒ��1�1 (6.30.2)

x D u1t PwPu2 7�! P
�1t�1u1t P
 2GŒ��1�1; (6.30.3)

where u1 2UP and u2 2Uw
�1
P .

6.31. Embedding the geometric crystal into the affine Grassmannian
We interpret the inclusion �t via the affine Grassmannian.

Let Gr D G..�//=GŒŒ��� denote the affine Grassmannian of G. The connected
components Gr� of Gr are indexed by 
 2�. For a dominant weight 	, let Gr� WD

GŒŒ������ � Gr denote the GŒŒ���-orbit. The closure of Gr� is a spherical Schubert
variety inside Gr. (The minus sign in ��� is chosen to match the convention (6.27.1)
and our choice of ��.)

For 	 D $_
i

, we have that Gr$_
i

Š G=P is already closed in Gr. Indeed, the

map G ! Gr given by g 7! g�$
_
i? mod GŒŒ��� has stabilizer P ?, giving a closed

embedding G=P ? Š Gr$_
i
,! Gr� . Note that $_

i?
2W � .�$_

i
/, so �$

_
i? 2GŒŒ��� �

��$
_
i , and G=P ŠG=P ?.
Since Pw�1P UP PwP \P ? D ¹eº, we have an inclusion Xt ,!G=P ? given by x D

u1t PwPu2 7! t�1u�11 t PwP mod P ?, where u1 2UP and u2 2Uw
�1
P . Composed with

the isomorphism G=P ?
�
! Gr$_

i
, we obtain an inclusion

Xt �! Gr$_
i
; (6.31.1)

x D u1t PwPu2 7�! t�1u1t PwP �
$_

i? D t�1u1t � P
 D P
 �t .x/: (6.31.2)

7. Heinloth, Ngô, and Yun’s Kloosterman D-module
While the article [71] works over a finite field, we will work over the complex num-
bers C (cf. [71, Section 2.6]). In this section, we assume that G is simple and of
adjoint type.

7.1. A group scheme over P1

Take t to be the coordinate on P1, and set s D t�1. Let
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I.0/D I1.0/ WD
®
g 2G

�
Œs�

	 ˇ̌
g.0/ 2B

¯
;

I.1/D I1.1/ WD
®
g 2G

�
Œs�

	 ˇ̌
g.0/ 2U

¯
:

Here GŒŒs�� is a shorthand for G.CŒŒs��/. Similarly, define

I
opp
0 .0/ WD

®
g 2G

�
Œt �

	 ˇ̌
g.0/ 2B�

¯
;

I
opp
0 .1/ WD

®
g 2G

�
Œt �

	 ˇ̌
g.0/ 2U�

¯
:

Also let I1.2/D I.2/D ŒI.1/; I.1/� be the commutator subgroup of I.1/. One veri-
fies that the Lie algebra of I.1/=I.2/ has weights given by the set Iaf of simple affine
roots, and in particular our definition of I.2/ agrees with that in [71, Section 1.2]. Via
the exponential map, we obtain an isomorphism

I.1/=I.2/Š
M
i2Iaf

A1:

Let � W I.1/=I.2/ ! A1 be the standard affine character. Precisely, we fix root
vectors xi D x˛i

2 g˛i
and define � by �.exp.txi //D �t for all i 2 Iaf. The choice

of xi for i 2 I is already fixed in Section 2.2. Since g˛0
can be identified with sg�� ,

the choice of x0 2 g˛0
is equivalent to a choice of x�� 2 g�� . The choice of x��

satisfying the compatibilities (1) and (2) of Section 2.2 is equivalent to a choice of
a sign, which will be fixed in (7.8.2). We have that � is a generic affine character,
meaning that it takes nonzero values on each exp.xi /, for i 2 Iaf.

Denote by G .1; 2/ the group scheme over P1 in [71, Section 1.2], satisfying

G .1; 2/jP1n¹0;1º ŠG � P1n¹0;1º;

G .1; 2/.O0/D I
opp
0 .1/;

G .1; 2/.O1/D I.2/:

Here O0 Š CŒŒs�� (resp., O1 Š CŒŒt ��) is the completed local ring at 0 (resp., 1).
The group scheme G .1; 2/ is constructed by dilatation (see [14, Section 3.2]). First,
the group scheme G .1; 1/ is the dilatation of the constant group scheme G �P1 along
U� � ¹0º � G � ¹0º and along U � ¹1º � G � ¹1º. Then G .1; 2/ is the dilatation
of G .1; 1/ which is an isomorphism away from 1 and at 1 induces G .1; 2/.O1/D

I.2/� I.1/D G .1; 1/.O1/.

7.2. Hecke modifications
Recall that � is the quotient of the coweight lattice of G by the coroot lattice. Let
BunG D BunG .1;2/ denote the moduli stack of G .1; 2/-bundles on P1 defined in [71,
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Section 1.4]. The stack BunG is the union BunG D
F
�2�Bun�G of connected com-

ponents indexed by 
 2�. We let ?� denote the basepoint of Bun�
G

. Under the iso-
morphism Bun0G Š Bun�G of [71, Corollary 1.2], the basepoint ?� is the image of the
point corresponding to the trivial bundle ?.

The stack of Hecke modifications is the stack which on a C-scheme S takes value
the groupoid

HeckeG .S/ WD
®
.E1;E2; x; �/

ˇ̌
Ei 2 BunG .S/; x W S ! P1n¹0;1º;

� W E1j.P1n¹xº/�S

Š
�! E2j.P1n¹xº/�S

¯
:

It has two natural forgetful maps

HeckeG

BunG BunG � P1n¹0;1º

������

pr1 ������

pr2
(7.2.1)

given by pr1.E1;E2; x; �/D E1 and pr2.E1;E2; x; �/D .E2; x/. The geometric fibers
of pr2 over BunG � P1n¹0;1º are isomorphic to the affine Grassmannian GrG D

G..�//=GŒŒ���, where � is a local coordinate at x.
Let 	 be an integral coweight of G, and assume that Gr� lies in the 
-component

of Gr. The GŒŒ���-orbits Gr� (and their closures Gr�) in GrG define substacks
Hecke� � HeckeG (and Hecke�); see [71, p. 259].

7.3. Parameterization
Assume now that .G;P / are as in Section 6.28, that is,G is simple and of adjoint type,
and P D Pi is the maximal parabolic subgroup corresponding to the cominuscule
node i. In particular, Z.LP / is 1-dimensional. We now fix the isomorphism

˛i WZ.LP /Š P1n¹0;1º z 7! ˛i.z/: (7.3.1)

Via (7.3.1), we may use “t” both as a coordinate on P1 and as a coordinate onZ.LP /.
We follow [71, Section 5.2] in the remainder of this subsection. Let Hk

be the restriction of pr2 W HeckeG ! BunG � P1n¹0;1º to ?� � P1n¹0;1º �

BunG �P1n¹0;1º and for q 2 P1n¹0;1º, let Hkq denote the restriction to ?� � ¹qº.
By [71, Corollary 1.3], Bun�G contains an affine open substack isomorphic to

T � I.1/=I.2/, called the big cell. Let Hkı � Hk denote the inverse image of the big
cell T � I.1/=I.2/� Bun0

G
under pr1, and similarly define Hkıq . Denote the map

Hkı! T � I.1/=I.2/' T �U�� �U=ŒU;U �

by the following triple:
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.fT ; f0; fC/ W Hkı �! T �U�� �U=ŒU;U �:

Our aim is to parameterize Hkı and compute fT , f0, fC.
Let E0 DG �P1 be the trivial bundle, and let E� be the G -bundle corresponding

to the basepoint ?� 2 Bun�G . The bundle E� is obtained by gluing the trivial bundle
on P1n¹1º with the trivial bundle on the formal disk around 1 via the transition
function 
.t�1/D ��$

_
i PwP . We fix once and for all trivializations of E0 over P1 and

of E� over P1n¹1º.
We use the local parameter � D 1� t=q at q. Thus � D 0; 1;1 (or ��1 D 1; 1; 0)

corresponds to t D q; 0;1, respectively. Let


.��1/D P
 D ��$
_
i PwP 2GŒ�; ��1�; so that 
.��1/j��1D1 D PwP . (7.3.2)

We view 
.��1/ as an isomorphism


.��1/ W E0jP1n¹q;1º �! E� jP1n¹q;1º;

using the trivializations of E0 and E� over P1n¹1º. Since

��1 D �qt�1 CO
�
.t�1/2

�
; (7.3.3)

the Laurent expansions of 
.��1/ and 
.t�1/ in t�1 differ by an element of GŒŒt�1��.
Thus 
.��1/ extends to an isomorphism


.��1/ W E0jP1n¹qº �! E� jP1n¹qº: (7.3.4)

Any point in Hkıq can be obtained by precomposing 
.��1/ with an element of

Aut.E0jP1n¹qº/ŠGŒ��1�:

From the definition of G , a bundle E 2 BunG is equipped with level structures at 0
and at 1. Let 
.��1/g.��1/ represent a point E 2 Hkıq under our parameterization.
We define the level structure (at 0 and at 1) associated to E to be the pair�

evtD0
�

.��1/g.��1/

��1	
; evtD1

�
g.��1/�1

	�
D

�
g.1/�1 Pw�1P ; g.0/�1

�
2G �G

of elements of G. (The isomorphism (7.3.4) preserves the level structure at 1, and
?� has the trivial level structure at 1, hence the formula evtD1Œg.��1/�1� for the
level structure at 1.)

The big cell T �I.1/=I.2/� Bun0G is the orbit of E0 under the action of the group
I

opp
0 .0/ � I.1/ (recall that T Š I

opp
0 .0/=I

opp
0 .1/, I.1/D I1.1/, and I.2/D I1.2/).

It follows that 
.��1/g.��1/ projects under pr1 to the big cell Bun0G if and only if

g.0/�1 2U , g.0/ 2U;

g.1/�1 Pw�1P 2B�, PwPg.1/ 2B�:
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We have a natural evaluation map evq W Hkıq ! Grq given by considering

.��1/g.��1/ as an element of G..�//=GŒŒ��� Š Grq . The image evq.Hkıq/ is
denoted Grıq . We may further rigidify the moduli problem by precomposing with an
element of Aut.E0/D Aut.G � P1/DG to obtain an isomorphism


.��1/g.��1/g.0/�1 W E0jP1n¹qº �! E� jP1n¹qº;

which is the identity at 1. Set h.��1/ WD g.��1/g.0/�1 2GŒ��1�1, where we recall

that GŒ��1�1 D ker.GŒ��1�
��1D0
����!G/. This gives the parameterization

Hkıq Š
®
h.��1/ 2GŒ��1�1

ˇ̌
h.1/ 2 Pw�1P B�U

¯
:

Varying q, this gives the parameterization

Hkı Š
®
h.��1/ 2GŒ��1�1

ˇ̌
h.1/ 2 Pw�1P B�U

¯
� P1n¹0;1º: (7.3.5)

Under this parameterization, the image of h.��1/ in Grq ŠG..�//=GŒŒ��� is equal to
P
h.��1/.

LEMMA 7.4
Under the parameterization (7.3.5), write h.1/D Pw�1P b�u for u 2 U and b� 2 B�.
Then we have

fT .h; q/D b�1� mod U� 2B�=U� Š T;

fC.h; q/D u mod ŒU;U � 2U=ŒU;U �;

f0.h; q/D qa�� .h/ 2U�� Š g�� ;

where a�� .h/ denotes the g�� -part of the tangent vector :dh.�
�1/

d.��1/
j��1D0 2 g.

Proof
The formulas for fT and fC follow from the parameterization (7.3.5). The function
f0.h; q/ is obtained by expanding h.��1/�1 at t D 1 using the local parameter t�1.
By (7.3.3), we have

dh.��1/�1

d.t�1/

ˇ̌̌
t�1D0

D
d��1

d.t�1/

dh.��1/�1

d.��1/

ˇ̌̌
��1D0

D �q
dh.��1/�1

d.��1/

ˇ̌̌
��1D0

D q
dh.��1/

d.��1/

ˇ̌̌
��1D0

2 g;

where for the last equality we have used the condition h.0/D 1 2G: if h.��1/�1 D

1C h1�
�1 CO.��2/, then h.��1/D 1� h1�

�1 CO.��2/.
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7.5. Kloosterman D-module
Let 	 be an integral coweight for G. Let Hk� be the restriction of Hecke� to ?� �

P1n¹0;1º. Define Hkı� and Hkıq;� by intersecting with Hkı and Hkıq the substack
Hecke� � HeckeG .

Let O� denote the structure sheaf of Gr�, considered as a DGr� -module. Denote
the minimal extension of O� under the inclusion j W Gr� ,! Gr� by D�. Abusing
notation, also denote by D� the holonomic D-module on Hk� obtained via the iso-
morphism Hk� Š Gr�. We consider the following diagram, where we recall that the
maps fC, f0, pr2 have been defined at the beginning of Section 7.3:

Hkı� ,! Hk�

U=ŒU;U ��U�� ?� � P1n¹0;1º

������

.fC;f0/ ������

pr2 (7.5.1)

We write

.�C; �0/ WU=ŒU;U ��U�� Š I.1/=I.2/


! A1:

Recall our D-module conventions from Remark 6.20, and recall that E D DA1=

DA1.@x � 1/ denotes the exponential D-module on A1. We write E
C WD ��CE and
E
0 WD ��0E. Define (see [71, (5.8)]) the Kloosterman D-module by

Kl.G_;�/ WD pr2;Š.f
�
CE


C ˝ f �0 E

0 ˝D�/: (7.5.2)

Remark 7.6
In [71, Theorem 1], there is another definition of Kl.G_;�/ as the 	-Hecke eigenvalue
of an automorphic D-module AG . We shall discuss AG in Section 9 below. In view
of the results of [71, Section 5.2], the two definitions agree.

7.7. Comparison
The inclusion �t WXt !GŒ��1�1 of (6.30.2) can be extended to an inclusion

Q�D .�; �/ WX �!GŒ��1�� P1n¹0;1º;

where for x D u1t PwPu2 with u1 2UP and u2 2Uw
�1
P , we have via (7.3.1),

�.x/D �t .x/D P
�1t�1u1t P
 2GŒ��1� and

�.x/D ˛i.t/ 2 P1n¹0;1º:
(7.7.1)

LEMMA 7.8
Under the identification (7.3.5), we have an isomorphism Q� WX Š Hkı

$_
i

.
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Proof
Fix t 2 Z.LP /, and let q D ˛i.t/ 2 P1n¹0;1º. We show that �t W Xt Š Hkı

q;$_
i

D

Hkıq \ Hk�. (In this proof, we explicitly distinguish t and q for clarity.)
Let x D u1t PwPu2 2X . Then by (7.3.2), we have

PwP . P

�1t�1u1t P
/j��1D1 D t�1u1t PwP D .t�1x/.u�12 / 2B�U; (7.8.1)

so �.x/ 2 Hkıq . The map x 7! P
�t .x/ is an inclusion Xt ,! Gr$_
i

(see (6.31.1)). It
follows that �t .Xt /� Hkı

q;$_
i

and the map �t is injective.
Under our identification (7.3.5), any element of Hkq;$_

i
is represented by

h.��1/ D P
�1g P
, where g 2 G is constant. It follows from Lemma 6.30(a) that
h.��1/ 2 GŒ��1�1 is equivalent to g 2 UP . The condition that h.1/ 2 Pw�1P B�U is
then equivalent to h.��1/ 2 �t .Xt /. Thus, �t is surjective. We are done.

By Lemma 6.30(c), we have w�1P ˛i D �� . Henceforth, we assume that

x�� 2 g�� is equal to � Pw�1P xi 2 g�� . (7.8.2)

Note that the choice (7.8.2) is independent of (3.9.1), which in the notation of this
section is an assumption on the root vectors of g_ (rather than g).

PROPOSITION 7.9
We have

fT
�
Q�.x/

�
D t�.x/�1 2B�=U� Š T;

fC
�
Q�.x/

�
D u�12 mod ŒU;U � 2U=ŒU;U �;

f0
�
Q�.x/

�
D � .u1/x�� 2U�� Š g�� ;

where  WU ! A1 denotes the standard additive character from Section 6.4.

Proof
Let �.x/D h.��1/. Then by (7.8.1), we have

PwPh.1/D .t�1x/.u�12 /:

By Lemma 7.4 and the definition (6.4.1) of the weight map � , we have

fT
�
Q�.x/

�
D x�1t mod U� D �.x/�1t D t�.x/�1 2 T

and fC.Q�.x//D u�12 mod ŒU;U �.
It remains to compute f0.Q�.x//. Let uP D Lie.UP /. Then uP D

L
˛2RCnR

C
P

g˛ .

Since i is cominuscule, ˛i occurs in every ˛ 2RC nRCP with coefficient 1. It follows
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that ˛ C ˇ is never a root for ˛;ˇ 2 RC n RCP . In particular, uP is an abelian Lie
algebra and UP is an abelian algebraic group, and so is P
�1UP P
. Let exp W uP !UP

be the exponential map, which is an isomorphism since UP is unipotent.
Now, P
�1g˛
 can be identified with the root space Og��1�˛ , where Og D gŒ�˙1�

is the loop algebra, and 
�1 � ˛ is now an affine root. By Lemma 6.30(c), we have
w�1P ˛i D �� , and 
�1˛i D �� � ı, where ı denotes the null root. It follows that

a�� .h/D Pw�1P � exp�1.u/˛i D � .u/x�� ; (7.9.1)

where h.��1/D P
�1u P
 2 P
�1UP P
 for u 2 UP , and exp�1.u/˛i denotes the compo-
nent of exp�1.u/ 2 uP lying in the root space g˛i .

We compute

f0
�
Q�.x/

�
D qa�� .h/ (by Lemma 7.4)

D �˛i.t/ .t
�1u1t /x�� (by (7.3.1), (7.7.1), and (7.9.1))

D �˛i.t/˛i.t
�1/ .u1/x�� D � .u1/x�� 2 g�� ;

as claimed.

We can now prove the main result of this section.

THEOREM 7.10
The character D-module Cr.G;P / is a flat connection (smooth and concentrated in
one degree) and is isomorphic to the Kloosterman D-module Kl.G_;$_

i
/.

Proof
Recall (see (7.5.2)) that by definition,

Kl.G_;$_
i
/ WD pr2;Š.f

�
CE


C ˝ f �0 E

0 ˝D$_

i
/:

The translation element �$
_
i is minimal in the Bruhat order ofWaf=W . Thus Gr$_

i
D

Gr$_
i

, and we have D$_
i

Š OHk
$_

i

.

Thus we may restrict ourselves to considering the diagram

Hkı
$_

i

U=ŒU;U ��U�� ?� � P1n¹0;1º

�����
.fC;f0/ �����

pr2 (7.10.1)

Recall that U�� Š g�� is identified with A1 via the root vector x�� . We then have
Kl.G_;$_

i
/ D pr2;Š.f

�
CE


C ˝ f �0 E

0/. By Lemma 7.8 and Proposition 7.9, diagram

(7.10.1) gets identified with the diagram
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X

U=ŒU;U ��A1 Z.LP /

�
�

���

‚W u1t PwPu2 7!.u
�1
2
;� .u1// �

�
��	

�
(7.10.2)

Setting � WD .�C; �0/, it follows that �.u;a/D � .u/� a for .u; a/ 2 U=ŒU;U � �

A1. The definition of the character D-module can then be written as

Cr.G;P / DR��Ef DR��.‚
�E�
/DRpr2;�

�
.fC; f0/

�E

� �

�! Kl.G_;$_
i
/;

where ‚ is the left arrow in (7.10.2). The last isomorphism is due to [71, p. 269]; in
theD-module setting it also follows from the main result of [128]. It also follows from
this calculation that Cr.G;P / is aD-module, rather than a complex ofD-modules.

Remark 7.11
Similarly, over a finite field Fq equipped with a nontrivial additive character  W Fq !

Q
�

` , we can define the Artin–Schreier `-adic sheaf L .f / WD f �L on X and a geo-
metric crystal `-adic sheaf R��L .f / on Z.LP /. The comparison with generalized
Kloosterman `-adic sheaves is the same.

7.12. Homogeneity
In [127, Section 2.6.4], a Gm-action is defined on Hkı. Under the parameteriza-
tion (7.3.5), � 2 Gm acts by conjugation by �_.�/ on the first factor GŒ��1�1 and
by q 7! �cq on the second factor P1n¹0;1º, where c is the Coxeter number. The
map .fC; f0/ W Hkı! I.1/=I.2/ is Gm-equivariant, where Gm acts on I.1/=I.2/ by
scalar multiplication in every affine simple root space.

The Gm-action on Hkı preserves Hkı
!_
i

, and under the isomorphism of the dia-
grams (7.10.1) and (7.10.2), this Gm-action is identified with the one in Section 6.21.

8. The mirror isomorphism for minuscule flag varieties

8.1. D-module mirror theorem
Assume as before that G is of adjoint type and G_ is simply connected. Let P �G

be a parabolic subgroup, and let P_ �G_ be the corresponding parabolic of the dual
group.

LEMMA 8.2
There is a canonical exact sequence

2i�H 2.G_=P_;Z/!H 2.G_=P_/!Z.LP /:
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Proof
By Borel’s theorem, there is a canonical isomorphism H 2.G_=P_/Š tWP . We have
Z.LP /D TWP and thus it only remains to apply the exponential map.

Recall that the character D-module Cr.G;P / attached to the Berenstein–Kazhdan
parabolic geometric crystal has been constructed in Section 6, and that the quan-
tum connection QG_=P_

for the projective homogeneous space G_=P_ has been
described in Section 4 in terms of the quantum Chevalley formula. The base of
Cr.G;P / is Z.LP /, and the base QG_=P_

is C�q . Since C�q ŠH 2.G_=P_/=2i�H 2

.G_=P_;Z/ by Remark 4.6, via

.qi j i … IP / 7!
X

i2InIP

log.qi /�i ;

the above Lemma 8.2 shows that the two base tori are canonically isomorphic.

THEOREM 8.3
Suppose that P is a cominuscule parabolic subgroup of G, and let P_ be the dual
minuscule parabolic subgroup of G_. The geometric crystal D-module Cr.G;P / and
the quantum connection QG_=P_

for G_=P_ are isomorphic.

Proof
Let i be the minuscule node corresponding to P . We claim that the isomorphism
Z.LP /

�
!H 2.G_=P_/=2i�H 2.G_=P_;Z/ of Lemma 8.2 factors as the composi-

tion

Z.LP /
˛i

�! P1n¹0;1º D C�q
log

�! C=2i�Z
�i

�!H 2.G_=P_/=2i�H 2.G_=P_;Z/:

Indeed, the Schubert class �i 2 H 2.G_=P_;C/ corresponds to the fundamental
coweight $_

i
2 tWP under Borel’s isomorphism. Thus composing with the exponen-

tial map, we see that the isomorphism

C�q
log

�! C=2i�Z
�i

�!H 2.G_=P_/=2i�H 2.G_=P_;Z/
�
!Z.LP /D TWP

is given by the cocharacter q 7!$_
i
.q/. Composing with ˛i the claim follows from

h˛i;$
_
i

i D 1.
The proof of the theorem follows by combining the following three results:

� Theorem 7.10 says that Cr.G;P / is isomorphic to the Kloosterman D-module
Kl.G_;$_

i
/ if we identify the respective bases Z.LP / and P1n¹0;1º via ˛i.

� Zhu [128] proved that Kl.G_;$_
i
/ is isomorphic to the Frenkel–Gross connec-

tion r.G_;$_
i
/ (see also Theorem 9.6 below).
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� Theorem 4.14 says that r.G_;$_
i
/ is isomorphic to QG_=P_

, if we identify
the bases via P1n¹0;1º D C�q .

In Zhu’s isomorphism the choice of affine generic character � in the definition of
Kl.G_;$_

i
/ matches with a particular choice of highest root vector in the definition of

r.G_;$_
i
/ (see Theorem 9.6). All our sign choices lead to a single overall sign, which

is equivalent to an isomorphism q 7! ˙q of the curve P1n¹0;1º.
To determine this sign and conclude that Cr.G;P / is isomorphic to QG_=P_

, we
consider the quantum period solution hS.q/; 1i of QG_=P_

. From Lemma 4.17, we
know that the first term in the q-expansion is positive. On the other hand, the corre-
sponding solution of Cr.G;P / is

1

.2i�/`

I
eft .x/! D

1

.2i�/`

I
ea1C���Ca`C˛i.t/Pi

da1

a1
� � �
da`

a`
; (8.3.1)

where we use the expression of the superpotential from Corollary 6.11. Since Pi

is a Laurent polynomial with positive coefficients, and ˛i.t/ D q, we deduce from
Cauchy’s residue theorem that the first term in the q-expansion of the above integral
is also positive.

If G is of type An, this proves a conjecture of Marsh and Rietsch [93, Section 3],
and if G is of type Dn, a conjecture of Pech, Rietsch, and Williams [99, Section 4].
They construct in both cases a D-module homomorphism QG_=P_

! Cr.G;P / and
show that it is injective. The conjecture remained open whether it is an isomor-
phism, or equivalently whether the dimension of H�.G_=P_/ is equal to the rank
of Cr.G;P /. This is Theorem 8.3.

COROLLARY 8.4
Suppose that P is a cominuscule parabolic ofG. The number of paths in Bruhat order
inside W P from �P .w0w

P
0 s�/ to w0wP0 is equal to Pi.1; 1; : : : ; 1/, where Pi is the

Laurent polynomial of Corollary 6.11.

Proof
Lemma 4.17 gives that the first term in the q-expansion of the quantum period is given
by the above number of paths. In Example 6.12, we have seen that Pi.a1; : : : ; a`/ is
the ratio of a square-free polynomial by the product a1 � � �a`. Hence (8.3.1) evaluates
to Pi.1; 1; : : : ; 1/. The corollary follows from Theorem 8.3.

9. Generalization of Zhu’s theorem
In this section, we explain how Zhu’s results in [128] establish Theorem 9.6 below.
We assume the reader is familiar with [128].
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9.1. Deformation of the Frenkel–Gross connection
We use the notation from Section 3, except that G and G_ are swapped. We define a
deformation of the Frenkel–Gross connection parameterized by h 2 t� as follows:

erG_

WD d C .yp C h/
dq

q
C x� dq: (9.1.1)

This is a connection on the trivial G_-bundle over P1n¹0;1º � t� relative to t�

(i.e., we view the connection 1-form .yp C h/dq
q

C x� dq as a relative differential

on P1n¹0;1º � t� over t� for the projection morphism P1n¹0;1º � t�! t�). ThuserG_

specialized to 0 2 t� is the connection rG_

of [43] considered in Section 3. As
before, the connection (9.1.1) depends on a choice of basis vector x� , but this choice
is suppressed from the notation. If the choice of x� 2 g_

�
is not mentioned, then by

default we will use (3.9.1). As before, we also have the associated vector bundle with
connection er.G_;�/ D er.G_;V�/ over P1n¹0;1º � t� relative to t�.

9.2. Rigid automorphic D-module
Recall from Section 7.1 the standard affine character � W I.1/=I.2/ ! A1. Recall
that E DDA1=.@x � 1/ denotes the exponential D-module on A1, and that we write
E
 WD ��E for the pullback D-module on I.1/=I.2/. Let S D Sym.t/, and identify
the complex points of Spec.S/ with t�. Define the .DT ˝ S/-module MT as the free
rank-1 .OT ˝ S/-module with basis element “xh,” for h 2 Spec.S/ D t�, with the
action of the differential operator @k 2DT ˝ S along k 2 t � Fun.t�/ given by

@k � xh WD k xh:

Equivalently, MT is a rank-1 connection on the trivial line bundle over T � t� relative
to t� (i.e., for every h 2 t�, and locally for x in an open simply connected open subset
of T the horizontal sections of MT specialized at h are given by constant multiples of
the function x 7! xh).

Recall our D-module conventions from Remark 6.20. Let j� W T � I.1/=I.2/ ,!

Bun�
G

denote the inclusion of the big cell into the 
-component of BunG . By [71,
Corollary 1.3], j� is an affine open embedding. For an affine map f , we have Rf� D

f�, and it follows that Rj�;� D j�;� and Rj�;Š D j�;Š (see [73, p. 95]).
Now consider the .DT�I.1/=I.2/ ˝ S/-module MT �E
 on T � I.1/=I.2/.

LEMMA 9.3
We have j�;Š.MT �E
/

�
�! j�;�.MT �E
/.

Proof
This is the D-module version of [71, Lemma 2.3]. We repeat the argument. For w 2
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Waf ��, let Pw denote the G .1; 2/-bundle defined by a lift of w. Pick ˛ 2 Inv.w/,
and let U˛ � I.1/ denote the corresponding one-parameter subgroup. We have an
inclusion U˛ ,! Aut.Pw/ and a commutative diagram

U˛ � pt pt

U˛ � BunG BunG



id�Pw

��



Pw

�act

Pulling back j�;�.MT �E
/ in two ways, we obtain

E
 jU˛
� j�;�.MT �E
/jPw

Š ��j�;�.MT �E
/jPw
:

Since E
 jU˛
is defined by a nontrivial character of U˛ , it follows that the stalk of

j�;�.MT �E
/ vanishes at Pw . Similarly, the stalk of j�;Š.MT �E
/ vanishes at Pw .
Since this holds for all w 2Waf ��, the result follows.

Following Heinloth, Ngô, and Yun [71, Definition 2.4, p. 269], we make the fol-
lowing definition.

Definition 9.4
Define AG ;T to be the .DBunG

˝ S/-module on BunG given by j�;Š.MT � E
/ D

j�;�.MT �E
/ on each connected component Bun�G .

Thus AG ;T is the intermediate, or minimal, extension of D-modules (see, e.g.,
[73, Section 3.4]).

9.5. Twisted Kloosterman D-modules and statement of the main result
It is established in [71, Theorem 1] that AG ;T has the Hecke eigenproperty. Let
TKlG_ denote the corresponding G_-Hecke eigenvalue which is a G_-connection
on P1n¹0;1º � t� relative to t�. Our basis element xh for h 2 t� D Spec.S/ corre-
sponds to the multiplicative character � in [71, Remark 2.5] and the D-module on
BunG given by AG ;T ˝S h is denoted A
;� in [71, Theorem 1]. The G_-connection
on P1n¹0;1º given by TKlG_ ˝S h is denoted KlLG .�;�/ in [71, Theorem 1].

THEOREM 9.6
There is a choice of basis vector x� 2 g_

�
, which is compatible up to sign with Sec-

tion 2.2, such that the above G_-connections are isomorphic:

TKlG_ Š erG_

:
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Specialized to 0 2 t�, Theorem 9.6 reduces to KlG_ Š rG_

. The proof of The-
orem 9.6 occupies the rest of this section. We will assume the reader is familiar with
[128].

9.7. Classical Hitchin map
We use notation from Section 7.1, and we let v WD I.1/=I.2/ in the rest of this section.

LEMMA 9.8
The stack BunG is good in the sense of Beilinson and Drinfeld; that is, we have
dimT �BunG D 2dim BunG .

Proof
In [128, Lemma 17], it is shown that BunG .0;1/ is good, where G .0; 1/ is the group
scheme over P1 obtained from the dilatation of the constant group scheme G � P1

along U � ¹1º �G � ¹1º. The lemma follows after noting that BunG D BunG .1;2/

is a principal bundle over BunG .0;1/ under the group I opp
0 .0/=I

opp
0 .1/� I.1/=I.2/Š

T � v.

Let c� WD SpecCŒg��G Š t� �W , where W is the Weyl group. We have a canon-
ical Gm-action on c� coming from the scalar Gm-action on g�. It gives rise to a
decomposition c� D

L
i c
�
di

into 1-dimensional subspaces, where the integers d1 �

d2 � � � � � dr are the degrees of W . Recall that dr D c is the Coxeter number of g.
Let E 2 BunG , and write E 0 WD EjP1n¹0;1º 2 BunG�P1n¹0;1º. The cotangent

space T �
E

BunG maps to �.P1n¹0;1º;g�
E0 ˝ !P1n¹0;1º/, where g�

E0 is the bundle on
P1n¹0;1º associated to E 0 and the coadjoint representation g� ofG. TheG-invariant
map g� ! c� gives rise, as E varies, to a global analogue of the characteristic poly-
nomial called the (global) Hitchin map hcl W T �BunG ! Hitch.P1n¹0;1º/, where

Hitch
�
P1n¹0;1º

�
WD �

�
P1n¹0;1º; c� �Gm !P1n¹0;1º

�
:

Let Hitch.P1/G be the image of hcl, so that we write

hcl W T �BunG ! Hitch.P1/G � Hitch
�
P1n¹0;1º

�
:

We give an explicit description of Hitch.P1/G , following [128]. For a point x 2

P1, we let Ox denote the completed local ring at x and let Fx D Frac.Ox/ denote
its fraction field. Denote by Dx D Spec Ox and D�x D SpecFx the formal disk and
formal punctured disk at x. We write !Ox

for the Ox-module Ox � dt (after choosing
a local coordinate t ), and !F for Fx � dt . We have the local Hitchin map (see [128,
p. 258])

hcl
x W g�˝!F ! c� �Gm !�F DW Hitch.D�x /;
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where F D Fx .
For i D 0; 1; 2, let p.i/D p1.i/ � g1 denote the Lie algebra of I.i/D I1.i/.

Similarly, define p0.i/ � g0 using I opp
0 .i/. For an O-lattice p � g ˝ F , we define

p? WD p_ ˝O !O , where p_ � g� ˝ F is the O-dual of p. The two local Hitchin
maps at x D 0 and x D 1 give the following two commutative diagrams (see [128,
Remark 4.4], [128, Proposition 14]):2

p0.1/
? t� Š p0.1/

?=p0.0/
?

Hitch.D0/RS c�

�


 

�

p.2/? v� Š p.2/?=p.1/?

Hitch.D1/1=c v� � T

�


 

�

where the local Hitchin spaces are defined by (see [128, bottom of p. 263])3

Hitch.D0/RS D
M
1	i	r

!
di

O0
.di /˝ c�di

; (9.8.1)

Hitch.D1/1=c D
M
1	i<r

!
di

O1
.di /˝ c�di

M
!cO1

.c C 1/˝ c�c : (9.8.2)

The bottom map of the left diagram is obtained by taking the residue at 0. The bottom
map of the right diagram is explained in [128, (4.11)]. It involves Kostant’s section
(see [82])

yp C .g_/xp
�
! c�: (9.8.3)

This map is Gm-equivariant for a suitable Gm-action on yp C .g_/xp and the above-
mentioned Gm-action on c� (see [96, Proposition 2.2]). Important for us later will be
the corollary that yp C g_

�

�
! c�c under Kostant’s section.

The following result is a G .1; 2/-version of a similar formula for G .0; 1/ in [128,
p. 270].

LEMMA 9.9
We have an isomorphism

Hitch.P1/G Š
M
1	i<r

�
�
P1;!

di

P1.di � 0C di � 1/
�

˝ c�di

M
�

�
P1;!c

P1

�
c � 0C .c C 1/ � 1

��
˝ c�c Š Ar �A1: (9.9.1)

2In [128, Section 4], p is an arbitrary parahoric subgroup. We specialize to the case that p is the Iwahori. The
notation Hitch.D1/1=c matches [128, p. 272].
3In the notation of [128, p. 259], the integerm is equal to the Coxeter number c for us.
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Proof
By the same argument as in [128, Lemma 5], we have the description

Hitch.P1/G Š Hitch.D0/RS �Hitch.D�
0
/ Hitch

�
P1n¹0;1º

�
�Hitch.D�

1/ Hitch.D1/1=c :

The explicit descriptions (9.8.1) and (9.8.2) give the first isomorphism in (9.9.1). For
the second isomorphism, we note that !d

P1 Š OP1.�2d/. Thus !di

P1.di � 0Cdi � 1/D

OP1.�2di C 2di /D OP1 and !c
P1.c � 0C .c C 1/ � 1/D OP1.1/.

Let � W T �BunG ! t� � v� be the moment map for the action of T � v on BunG .

PROPOSITION 9.10
The following diagram is commutative, all maps are surjective, the bottom map is an
isomorphism, and the top map is flat:

T �BunG t� � v�

Hitch.P1/G c� � v� � T

��




hcl



�Š

(9.10.1)

Proof
The global Hitchin map hcl embeds into the product of the local Hitchin maps hcl

0 and
hcl
x at 0 and 1, which establishes the commutativity of (9.10.1).

The explicit description (9.9.1) of Hitch.P1/G establishes the isomorphism of the
bottom map (see [128, (4.9), Proof of Lemma 19]). The left vertical map of (9.10.1)
is surjective by definition. The right vertical map of (9.10.1) is a quotient map and
thus surjective. The top map � of (9.10.1) is surjective because BunG is a principal
.T � v/-bundle over BunG .0;1/.

The proof of the last claim is identical to that of [128, Lemma 18], which
we repeat. The Hamiltonian reduction ��1.0/=.T � v/ is naturally identified with
T �BunG .0;1/. As remarked in the proof of Lemma 9.8, BunG .0;1/ is good, and
thus T �BunG .0;1/ has dimension 0. This implies that dim��1.0/ D dim.T � v/.
Let W � T �BunG be the largest open substack such that the fibers of �jW have
dimension dim.T � v/. Then W is Gm-invariant, and since ��1.0/ � W , we have
W D T �BunG , so all fibers of � W T �BunG ! t� � v� have dimension dim.T � v/.
Since t� � v� is smooth and T �BunG is locally a complete intersection, we conclude
that � is flat.
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9.11. Quantization
We recall the descriptions of certain spaces of g_-opers from [128, Section 5]. (The
Lie algebra g_ will be suppressed from the notation, so that we write Op for what is
denoted OpLg in [128].) Recall from Section 3.1 the principal sl2-triple .xp; 2�_; yp/
in g_. The space Op.D�x / of opers on the formal punctured disk centered at x can be
identified with the space of operators

d C
�
yp C .g_/xp ˝Fx

�
dz;

where z is a local coordinate at x. The space Op.D0/RS of opers on the formal disk
centered at 0 with regular singularities can be identified with the space of operators

d C
�
yp C .g_/xp ˝ O0

�dq
q
: (9.11.1)

The space Op.D1/1=c of opers on the formal disk centered at 1 with slope at most
1=c is the space of operators�

d C
�yp
t

C
1

t
b_˝ O1C

1

t2
g_� ˝ O1

�
dt

�ı
U _.O1/; (9.11.2)

where t D 1=q. The spaces Op.D0/RS and Op.D1/1=c are subschemes of Op.D�0 /
and Op.D�1/, respectively.

In [128, Section 2], a subscheme of opers Op.P1/G � Op.P1n¹0;1º/ is defined,
and according to [128, Lemma 5], we have (cf. [128, p. 272])

Op.P1/G Š Op.D0/RS �Op.D�
0
/ Op

�
P1n¹0;1º

�
�Op.D�

1/ Op.D1/1=c : (9.11.3)

The description (9.11.3) is a quantization of (9.9.1).
Let U.t/ and U.v/ denote the universal enveloping algebras of t and v, and letD0

be the sheaf of algebras on the smooth site .BunG /sm defined by Beilinson and Drin-
feld [6, Section 1.2.5]. The following variant of [128, Lemma 21] is the quantization
of Proposition 9.10.

PROPOSITION 9.12
We have a commutative diagram of strict morphisms of filtered commutative algebras,
where the top map is an isomorphism and the bottom map is flat:

U.t/W ˝U.v/T C
�
Op.P1/G

	

U.t/˝U.v/ �.BunG ;D
0/

�Š


 

hr

�

(9.12.1)
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Proof
The universal enveloping algebras U.t/ and U.v/ have natural filtrations such that the
associated graded algebras satisfy gr.U.t//Š CŒt�� and gr.U.v//Š CŒv��.

The ring of functions CŒOp.P1/G � has a filtration such that gr.CŒOp.P1/G �/ Š

CŒHitch.P1/G �, and �.BunG ;D
0/ has a filtration such that gr.�.BunG ;D

0// Š

FunT �BunG , where we write Fun to denote the commutative pro-algebra of regu-
lar functions on an affine ind-stack. The right vertical map hr is defined in [128,
(3.3)], and is a quantization of the classical Hitchin map hcl. For these construc-
tions, see [128, p. 254, Section 5.2]. The bottom horizontal map is explained in
[128, pp. 255–256]. The top horizontal map is a quantization of the moment map
� W T �BunG ! t� � v� (see [128, Proposition 15]). Thus, taking associate graded
algebras of (9.12.1), we recover (9.10.1).

The commutativity of (9.12.1) follows from commutative diagrams (see [128,
Proposition 15]) analogous to (9.8.1) and (9.8.2).

By Proposition 9.10, after taking associate graded algebras the top map is an
isomorphism and the bottom map is flat; thus the same statements hold in (9.12.1).

9.13. Proof of Theorem 9.6
Let 
 W Op.D0/RS ! c� be the residue map obtained from the description (9.11.1) and
Kostant’s isomorphism (9.8.3). Let

$ W t�! t� � W D c�

be the projection map. We now compute the intersection Op.P1/G \ 
�1.$.h// for
h 2 t�, which corresponds to a slice of the isomorphism

Op.P1/G
Š

��! c� � SpecU.v/T (9.13.1)

given by the top map of Proposition 9.12.
The space Op.P1n¹0;1º/ of opers consists of operators of the form

r D d C yp
dq

q
C v.q/dq;

where v.q/ 2 .g_/xp Œq; q�1�.
Suppose moreover that r 2 Op.P1/G \ 
�1.$.h//. The condition r 2

Op.D0/RS that r has a regular singularity at 0 implies (see (9.11.1)) that v.q/ 2

q�1.g_/xp Œq�. Write v.q/D a=qC v0.q/ with v0.q/ 2 .g_/xp Œq� and a 2 .g_/xp .
The condition 
.r/ D $.h/ says that the residue of r at 0 is $.h/ 2 c�. By

Kostant’s theorem (see [82, Theorem 7]), the map g_ ! g_ � G_ ! c� induces the
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isomorphism (9.8.3). Thus the element a is uniquely determined by $.h/ 2 c�. We
denote it by aD ah 2 .g_/xp .

Writing t D 1=q, the operator becomes

r D d � .yp C ah/
dt

t
� v0

�1
t

�dt
t2
:

The condition r 2 Op.D1/1=c at 1 implies (see (9.11.2)) that v0.1t / must be con-
stant and must belong to the root space g_

�
D Cx� .

Thus the space of opers Op.P1/G \ 
�1.$.h// is the space of operators of the
form

r D d C .yp C ah/
dq

q
C ˛x� dq; (9.13.2)

for ˛ 2 C. Thus Op.P1/G \ 
�1.$.h//Š A1. This bijection r $ ˛ corresponds to
the isomorphism (9.13.1) under the identification A1 Š v�=T Š Spec.U.v/T /. (The
.r C 1/-dimensional T -module v has weights the simple roots ˛1; : : : ; ˛r and the
negative �� of the longest root; hence v�=T Š A1.)

By construction, the two elements yp C ah and yp C h in g_ have the same
image $.h/ in g_ � G_ Š t� � W D c� and are therefore conjugate by a group
element g 2 G_. Again by Kostant’s theorem, U_ acts freely on yp C b_ via the
adjoint action, and the quotient is isomorphic to yp C .g_/xp . Thus yp C ah and
yp C h are conjugate by an element in the unipotent subgroup U_ �G_. It follows
that Adg.x� /D x� .

Recall from Section 9.1 the deformed Frenkel–Gross connection

erG_

D d C .yp C h/
dq

q
C x� dq: (9.13.3)

We deduce from Adg.x� / D x� that the two connections (9.13.2) with ˛ D 1 and
(9.13.3) are gauge equivalent via a constant gauge transformation.

To complete the proof of Theorem 9.6, it remains to show that the twisted Kloost-
erman D-module TKlG_ is isomorphic to the connection (9.13.2) for some ˛ D ˙1.
This is achieved in the same manner as in [128, p. 273]. Namely, we compare two
automorphic D-modules.

We begin by constructing a Hecke eigen-D-module with Hecke eigenvalue equal
to (9.13.2). Let � W v ! C be the standard affine character, inducing a character ' W

U.v/! C. The element h 2 t� also defines a character 'h WU.t/! C. TheD-module

Aut.h/ WD !
�1=2
BunG

˝ .D0˝U.t/˝U.v/;'h˝' C/

is considered in [128], where D0 is the sheaf of critically twisted differential oper-
ators on .BunG /sm, and the tensor product is defined using the bottom map of
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Proposition 9.12. Using the flatness statement in Proposition 9.12, Zhu’s result (see
[128, Corollary 9]) states that Aut.h/ is a Hecke eigen-D-module with the connec-
tion (9.13.2) as its Hecke eigenvalue.

Finally, we argue that Aut.h/ is isomorphic to the automorphicD-module of [71]
from Definition 9.4. Recall from Section 7.3 the big cell T � v Š VBunG � BunG ,
which maps to the basepoint ? � BunG .0;1/ corresponding to the trivial G .0; 1/-

bundle. By [128, Remark 6.1], !�1=2BunG
is canonically trivialized on VBunG . It follows

that the restriction of Aut.h/ to VBunG Š T � v is isomorphic to MT � E
 . Further-
more, Aut.h/ is a .T � v;MT �E
/-equivariant D-module on BunG (see [126, Sec-
tion A.4.2] for the definition of equivariant). By [71, Remark 2.5], Aut.h/ is automat-
ically the (intermediate) clean extension of Aut.h/j VBunG

. Thus Aut.h/ is isomorphic
to AG ;T specialized at h 2 t� for which TKlG_ specialized at h 2 t� is an eigenvalue.
This shows that TKlG_ specialized at h 2 t� is isomorphic to (9.13.2) and thus to the
deformed Frenkel–Gross connection (9.13.3), completing the proof.

10. Equivariant quantum cohomology and weighted geometric crystals
We extend the mirror isomorphism of Theorem 8.3 to the equivariant case. Recall
from Section 9 the notation S WD Sym.t/ŠH�T_.pt/.

10.1. Equivariant quantum connection
Let QH�T_.G

_=P_/ denote the torus-equivariant small quantum cohomology ring
of G_=P_. It is an algebra over CŒqi j i … IP �˝ S . For w 2W P , we abuse notation
by also writing �w 2 QH�T_.G

_=P_/ for the equivariant quantum Schubert class.
The following equivariant quantum Chevalley formula for a general G_=P_ is due
to Mihalcea [94].

THEOREM 10.2
For w 2W P , we have in QH�T_.G

_=P_/

�i �q �w D .$_i �w �$_i /�w C
X
ˇ_

h$_i ; ˇi�wsˇ C
X
�_

h$_i ; �iq�P .�/��P .ws�/;

where $_i 2 t denotes a fundamental weight of g_, and ˇ_, �_ denote roots of g_.
The last two summations are as in Theorem 4.3.

We have a bundle map QH�T_.G
_=P_/! t�. We write QH�

h
.G_=P_/ for the

fiber of this map over h 2 t�. The algebra QH�
h
.G_=P_/ is again a free CŒqi j i …

IP �-module with Schubert basis ¹�w jw 2W P º.
Now, assume that P_ � G_ is minuscule. Let O.1/ be the line bundle on

G_=P_ arising from the natural embedding G_=P_ ,! P.V$_
i
/. Consider the bun-
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dleQH�T_.G
_=P_/ over C�q � t� extended trivially to C�q . We define the equivariant

quantum connection Q
G_=P_

T_ to be the connection on H�T_.G
_=P_/ over C�q � t�

relative to t� by

Q
G_=P_

T_ WD d C cT1
�
O.1/

�
�q
dq

q
;

where cT1 .O.1// denotes the equivariant first Chern class of O.1/, and �q denotes
equivariant quantum multiplication. We have that cT1 .O.1// D �i � $_

i
�id in

QH�T_.G
_=P_/, so by Theorem 10.2,

cT1
�
O.1/

�
�q �w D �w �$_i �w C

X
ˇ_

h$_i ; ˇi�wsˇ C
X
�_

h$_i ; �iq�P .�/��P .ws�/:

Theorem 4.14 has the following equivariant generalization.

THEOREM 10.3
If P_ � G_ is minuscule with corresponding minuscule representation V$_

i
,

then under the isomorphism L W H�.G_=P_/ ! V$_
i

of (4.11.1), the equivari-

ant quantum connection Q
G_=P_

T_ is isomorphic to the pulled back connection
.idq � inv/�er.G_;$_

i
/, where inv W t� ! t� is the map h 7! �h, and idq W C�q ! C�q

is the identity map.

Proof
The extra term in cT1 .O.1// �q �w , not present in the nonequivariant case is �w �

$_
i
�w . Evaluating at h 2 t�, we get the term �hw �$_

i
; hi�w . This agrees with the

calculation �h � vw D �hw �$_
i
; hivw for g_ acting on vw 2 V . The result then

follows from the calculation in Theorem 4.14.

10.4. Character D-module of a weighted geometric crystal
Define the weighted character D-module of the geometric crystal X by

WCr.G;P / WDR��.Ef ˝ ��MT /; (10.4.1)

where we recall that � W X ! T is the weight map (6.4.1). It is a D-module over
Z.LP / � t� relative to t�. By taking the fiber over h 2 t�, we obtain the D-module
(1.12.1).

Theorem 7.10 has the following generalization.

THEOREM 10.5
Suppose that P D Pi is cominuscule, and identify the bases Z.LP /

�
! P1n¹0;1º
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via ˛i. Then the character D-module WCr.G;P / is isomorphic to a pullback
.idq � inv/�TKl.G_;$_

i
/ of the twisted Kloosterman D-module.

Proof
The proof is the same as that of Theorem 7.10, so we sketch the main differences.
According to Proposition 7.9, we have t�1fT .Q�.x//D �.x/�1. Thus adding fT to the
diagram (7.10.2) we can write, with M�1 denoting the pullback under inverse of the
multiplicative D-module on P1n¹0;1º,

WCr.G;P / DR��.�
�E�
/˝ f �T MT ˝ ��M�1/

DR��
�
.fC; f0/

�E
 ˝ f �T MT

�
˝M�1

D TKlG_ ˝M�1;

where we have used the projection formula (see [73, Corollary 1.7.5]) for the second
equality. For the third equality, we have used a variant of Lemma 9.3, namely, that
pr2;Š.pr�1AG ;T ˝D�/D pr2;�.pr�1AG ;T ˝D�/ and Ripr2;�.pr�1AG ;T ˝D�/D 0 for
i > 0 (cf. [71, Section 4.1]). Since M�1 is isomorphic to OP1n¹0;1º as D-modules,
the conclusion follows.

10.6. The equivariant mirror theorem
Combining Theorems 10.3, 9.6, and 10.5, we obtain the following equivariant
strengthening of Theorem 8.3.

THEOREM 10.7
Suppose that P is a cominuscule parabolic subgroup of G, and let P_ be the dual
minuscule parabolic subgroup of G_. We have an isomorphism

WCr.G;P / Š Q
G_=P_

T_

of D-modules over Z.LP /� t� relative to t�.

In the case that G_=P_ is a Grassmannian, an injection from Q
G_=P_

T_ into
WCr.G;P / is constructed by Marsh and Rietsch [93, Theorems 5.5 and 4.10].

11. The �-mirror theorem
Recall that S D Sym.t/. We introduce an additional parameter � and work with
.D� ˝ S/-modules. We shall establish Theorem 11.14, which is a stronger version
of Theorem 10.7.



MIRROR CONJECTURE FOR MINUSCULE FLAG VARIETIES 139

11.1. D� ˝ S -modules
The definition of the sheaf D�;X of �-differential operators on a complex smooth
affine algebraic variety X equipped with a Gm-action is recalled in Section 16. An S -
structure on aD�;X -module M is an action of S on M that commutes with theD�;X -
action. Equivalently, M is a module for the sheafD�;X ˝S , where elements of S are
considered “scalars.” For any D�;X -module M, the sheaf M ˝ S is a .D�;X ˝ S/-
module.

Our basic example is the multiplicative .D�;T ˝ S/-module M1=�
T on T , defined

as follows.

Definition 11.2
For a complex torus T and t D Lie.T /, let

M1=�
T WDD�;T ˝ S=h�k � k j k 2 t � Si:

We give T the trivial Gm-action and furthermore declare that k 2 t � S has degree 1.
This gives M1=�

T the structure of a graded D�;T -module.

Remark 11.3
The .D�;T ˝S/-module M1=�

T is a free .OT ˝S/-module with basis element “e`=�,”
with the action of �k WD .h 7! hk;hi/ 2D�;T given by

�k � e`=� WD ke`=�;

for k 2 t � S . Here �k should be thought of as “�@k” (see Section 16). And “`” should
be thought of as the multivalued function from T to S D CŒt�� given by

`.t/.h/ WD
˝
log.t/; h

˛
; where h 2 t�. (11.3.1)

Recall that an �-connection on a bundle E over X is a C-linear operator r W

�.X;E/! �.X;E/˝�X such that r.gs/D gr.s/C �s˝dg, where g 2 OX and
s 2 �.X;E/ are sections. An �-connection for � D 1 is simply a connection in the
usual sense. An alternative description of M1=�

T is as follows: take the trivial SŒ��-
bundle on T and equip it with the �-connection �d � k, where k 2 t � S .

Suppose that we have Gm-actions on E and X such that the projection E ! X

is Gm-equivariant. We then say that the �-connection r is graded if ��1r is Gm-
equivariant, where � is taken to be degree 1 for the Gm-action. Equivalently, if r D

�d C 
, then we require that 
 has degree 1 for the Gm-action.

11.4. Frenkel–Gross connection revisited
Let V be a finite-dimensional G_-module, and let � W V � t�! V denote the action
map of t�. Let �� W V ! V ˝ S denote the map defined by ��.v/D v˝ k if v 2 V
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has weight k 2 t. By extending scalars, we obtain a map �� W V ˝ S ! V ˝ S . For a
G_-module V , define the deformed Frenkel–Gross �-connection

er.G_;V /
� WD �d C .yp C��/

dq

q
C x� dq;

acting on the trivial .V ˝ SŒ��/-bundle on P1n¹0;1º. Thus for � D 1 and h 2 t�

inducing an evaluation homomorphism h W S ! C, we have that er.G_;V /
� j�D1 ˝S

C Š er.G_;V / ˝S C reduces to (9.1.1).
Declaring that k 2 t � S sits in degree 1, the Gm-action of Section 3.4 extends to

this deformation so that the 1-form .yp C��/dq
q

C x� dq has degree 1.

11.5. Equivariant quantum connection revisited
Define the equivariant �-quantum connection

Q
G_=P_

�;T_ WD �d C cT1
�
O.1/

�
�q
dq

q
;

acting on the trivial bundle over SpecCŒq; q�1� with fiber the equivariant cohomology
H�T_.G

_=P_/˝CŒ��. Here cT1 .O.1//�q denotes the equivariant quantum cohomol-

ogy action. Then Q
G_=P_

T_ from Section 10.1 is equal to Q
G_=P_

�;T_ j�D1.
As in Section 4.5, we define a Gm-action on QH�T_.G

_=P_/ by using half the
topological degree. As before, k 2 t � S sits in degree 1. The connection 1-form
.�i �q;h �$_

i
/dq
q

is then homogeneous of degree 1 for the Gm-action.
We then have the following variation of Theorem 10.3.

THEOREM 11.6
If P_ � G_ is minuscule and with corresponding minuscule representation V$_

i
,

then under the isomorphism L W H�.G_=P_/ ! V$_
i

of (4.11.1), the equivariant

quantum connection Q
G_=P_

�;T_ is identified with the deformed Frenkel–Gross �-

connection .idq � inv/�er.G_;$_
i
/

� . This is an isomorphism of graded �-connections
on P1n¹0;1º � t� relative to t�.

PROPOSITION 11.7
For any 	 2 C�, there is an isomorphism

Q
G_=P_

�;T_ j�D� Š Œq 7! q=	c ��Œh 7! h=	��Q
G_=P_

T_

of connections on P1n¹0;1º � t� relative to t�.

Proof
Recall that QH�T_.G

_=P_/ is a graded ring with the topological degree deg.�w/D
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2`.w/ and that it follows from Lemma 4.8 that deg.q/ D 2c. The gauge transfor-
mation �w 7! 	`.w/�w then gives the desired isomorphism between the two connec-
tions.

11.8. Twisted Kloosterman D�-modules
Define the exponential D�;A1 -module by

E1=� WDD�;A1=D�;A1.�@x � 1/:

Recall the generic affine character � W I.1/=I.2/ ! A1, and let E
=� WD ��E1=�

denote the pullback.
Let A1=�

G ;T
denote the .D� ˝ S/-module on BunG .1;2/ given by taking the .D� ˝

S/-module M1=�
T � E
=� on T � I.1/=I.2/ and pushing it forward to BunG .1;2/.

We may define the twisted Kloosterman .D� ˝ S/-module TKl1=�G_ on P1n¹0;1º

as TKlG_ ˝ CŒ��. As before, we have associated .D� ˝ S/-modules TKl1=�
.G_;V /

and

TKl1=�
.G_;$_

i
/
. The Gm-action of Section 7.12 gives the structure of a graded .D�˝S/-

module.

THEOREM 11.9
Let $_ be a minuscule fundamental weight of G_. There is a choice of basis element
x� 2 g_

�
such that we have an isomorphism of graded .D�;P1n¹0;1º˝ S/-modules

TKl1=�
.G_;$_/

Š er.G_;$_/
� :

As before, we normalize conventions so that � matches with the choice of x�
from (3.9.1).

Proof
The proof is a variation of the proof of Theorem 9.6. It suffices to show that TKl1=�G_ ŠerG_

� holds when specializing � D 1. Notationwise, the convention is that omitting �

from the notation of a D�-module gives the corresponding D-module at � D 1. Let
S D Sym.t/, and let � W SW ! S denote the natural inclusion. Consider the automor-
phic sheaf

AutG ;T WD !
�1=2
BunG

˝
�
D0˝SW˝U.v/;�˝' .S ˝C/

�
;

defined using Proposition 9.12 and the natural isomorphism U.t/ Š S . The same
argument as in the proof of Theorem 9.6 gives that AutG ;T is a holonomic .D0˝ S/-
module. The technology of [128] shows that AutG ;T is a Hecke eigensheaf on BunG .
Let E denote its Hecke eigenvalue, and for a finite-dimensional G-module V , let
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EV denote its associated bundle. Then EV is a .DGm
˝ S/-module isomorphic to

r.G_;V /.
On the other hand, as in the proof of Theorem 9.6, AutG ;T restricted to VBunG Š

T � v is isomorphic to MT � E
 . Furthermore, AutG ;T is a .T � v;MT � E
/-
equivariant D-module on BunG . It follows that AutG ;T Š AG ;T . Thus TKl.G_;V / Šer.G_;V / for any V , or equivalently, TKlG_ Š erG_

.
We note that the Gm-actions of Section 3.4 and Section 7.12 are in agreement:

they are both induced by the trivial Gm-action on T , the dilation action on v D

I.1/=I.2/, and the action � � q D �cq of the curve P1n¹0;1º (noting that the Coxeter
numbers of G and G_ coincide). Thus TKlG_ Š erG_

as filtered .DP1n¹0;1º ˝ S/-
modules, where the filtration is induced by the Gm-action on C�q as explained in
Section 16.1.

11.10. Weighted geometric crystal D-module revisited
We use notation similar to Section 6. Let WCr1=�

.G;P /
WD R��.M

�=�
T ˝ Ef=�/ be the

pushforward .D�;Z.LP / ˝ S/-module on Z.LP / ˝ S Š Gm;Sym.t/. According to
Proposition 6.24, we have that � W X ! Z.LP /, f W X ! A1, and � W X ! T are
Gm-equivariant. Thus WCr1=�

.G;P /
acquires a natural structure of a graded .D�;Z.LP /˝

S/-module. In Proposition 16.13, we show that WCr1=�
.G;P /

is �-torsion-free.

PROPOSITION 11.11
(i) For any 	 2 C�, there is an isomorphism of DZ.LP /-modules

WCr1=�
.G;P /

j�D� Š Œq 7! q=	c ��Œh 7! h=	��WCr.G;P /;

where c is the Coxeter number of G.
(ii) There is an isomorphism of .D�;Z.LP / ˝ S/-modules

WCr1=�
.G;P /

Š WCr.G;P / ˝C CŒ��:

Proof
Assertion (i) follows from the homogeneity of the potential f established in Sec-
tion 6.21 combined with Corollary 6.25 and Lemma 6.29. Note that M�=�

T is multi-
plicative and thus invariant under any Kummer pullback.

From (i) we deduce that WCr1=�
.G;P /

and WCr.G;P / ˝C CŒ�� are isomorphic after

localizing D�;P1n¹0;1º at .�/. Proposition 16.13 says that WCr1=�
.G;P /

is �-torsion free,
and WCr.G;P / ˝ CŒ�� is also �-torsion-free by construction; hence the isomorphism
extends to D�;P1n¹0;1º.

The following result has an identical proof to Theorem 10.5.
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Figure 3. The four D�-modules in the proof of Theorem 11.14.

THEOREM 11.12
Suppose that P D Pi is cominuscule, and identify the basesZ.LP /

�
! P1n¹0;1º via

˛i. Then the graded character .D�;Z.LP / ˝ S/-module WCr1=�
.G;P /

is isomorphic to

the graded Kloosterman .D�;P1n¹0;1º˝ S/-module .idq � inv/�TKl1=�
.G_;$_

i
/
.

11.13. The D� ˝ Sym.t/ mirror theorem
Combining Theorems 11.6, 11.9, and 11.12, we obtain the result given in Figure 3.

THEOREM 11.14
Suppose that P is a cominuscule parabolic subgroup of an almost simple algebraic
group G. We have an isomorphism of graded .D�;Z.LP / ˝ Sym.t//-modules

WCr1=�
.G;P /

Š Q
G_=P_

�;T_ :

12. Proof of the Peterson isomorphism
We deduce the equivariant Peterson isomorphism (Theorem 12.4) by specializing
� ! 0 in Theorem 11.14.

12.1. The Gauss–Manin model
Recall that S D Sym.t/D CŒt��. In this subsection, we describe the .D�;P1n¹0;1º ˝

S/-module WCr1=�
.G;P /

more explicitly.
By [73, Proposition 1.5.28(i)] and Proposition 16.7, we may compute

R��.M�=�Ef=�/ by computing the sheaf pushforward GM�� along � of the rela-
tive de Rham complex DR�

X=Z.LP /
.M�=�Ef=�/. Since X Š BwP

� � Z.LP /, where
BwP
� and Z.LP / are both affine (and thus also D-affine), it suffices to work with the

modules of global sections. The complex GM�� is given by

�0
�
X=Z.LP /

�
˝C S ! � � � !�d�1

�
X=Z.LP /

�
˝C S !�d

�
X=Z.LP /

�
˝C S;
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where d WD dimX � dimZ.LP / D dimBwP
� , and �k.X=Z.LP // is the module

of relative global differentials. Here, the space of global sections of the rank-1
.D�;X ˝ S/-module M�=�Ef=� has been identified with SŒX�D CŒX�˝ S and the
�-differential is given accordingly by

�d C df C ��1 d�:

Here, the differential �d and the forms df and d� are both relative: no differentiation
is made in the Z.LP /-direction. The form d� is the differential of the weight map,
valued in t D Lie.T /.

By Proposition 16.13, we know that R��.M�=�Ef=�/ vanishes except in one
degree, so the only nonzero cohomology group of GM�� is

GM� WD coker
�
�d�1

�
X=Z.LP /

�
˝ S !�d

�
X=Z.LP /

�
˝ S

�
:

Now, X ŠBwP
� �Z.LP / is an open subset of affine space: specifically, BwP

� is
an open subset of a Schubert cell in G=P . Let x1; x2; : : : ; xd be coordinates for this
Schubert cell. Let

A WD Sym.t/
�
Z.LP /

	
D C

�
X�

�
Z.LP /

�	
˝ S D CŒt�; q˙1i j i … IP �;

which is a Laurent polynomial ring over S in dimZ.LP / variables, and letAŒBwP
� �Š

SŒX�. Then CŒBwP
� � is a localization of CŒx1; : : : ; xd �, and we have isomorphisms of

AŒBwP
� �-modules

�d
�
X=Z.LP /

�
˝ S ŠAŒBwP

� � �!;

�d�1
�
X=Z.LP /

�
˝ S Š

X
i

AŒBwP
� � �!i ;

where ! D
Qd
jD1 dxj and !i D

Q
j¤i dxj . Thus the Gauss–Manin module GM�

can be written explicitly in terms of coordinates by computing the partial derivatives
@f
@xj

C ��1 @�
@xj

. Here, @�
@xj

are the components of the differential d� .
The Gauss–Manin module GM� is an Ah�@qi

j i … IP i-module, where �@qi
acts

via the operator �@qi
C @f

@qi
.

Remark 12.2
We may write “fS” for the weighted multivalued potential, that is, fS WD f C ` ı � ,
where ` is defined as in (11.3.1). The multivaluedness implies that it is not quite an
element of SŒX�. However, its differential dfS D df C d�

�
is well defined.

12.3. Peterson isomorphism
Consider the Jacobian ring of the potential f with weight � :
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Jac
�
X=Z.LP /; f; �

�
WD Sym.t/ŒX�=

� @f
@x1

C
@�

�@x1
; : : : ;

@f

@xd
C

@�

�@xd

�
:

It is independent of the choice of coordinates of BwP
� because it can be identi-

fied with the cokernel of the wedge map with df C d�
�

from �d�1.X=Z.LP // to

�d .X=Z.LP //.

THEOREM 12.4
If P_ is minuscule, then we have an isomorphism of Sym.t/ŒZ.LP /�-algebras

Jac
�
X=Z.LP /; f; �

�
ŠQH�T_.G

_=P_/:

Moreover, multiplication by q @f
@q

on the left-hand side corresponds to quantum multi-

plication by cT1 .O.1//D �i �$_
i

on the right-hand side.

Proof
Recall that AD Sym.t/ŒZ.LP /� D CŒt�; q˙1�. By Theorem 11.14, we have an iso-
morphism ofAh�@qi-modules between GM� and the equivariant quantum connection

Q
G_=P_

�;T_ , which is the Ah�@qi-module QH�T_.G
_=P_/˝ CŒ�� with the action of

�q@q given by �q@q C .�i�q/�$i.
At � D 0, the map is given by wedging with the relative differential df C d�

�
,

so we have GM0 Š Jac.X=Z.LP /; f; �/ as an SŒq˙1�h�@qi-module with the action
of �@q given by multiplication by @f

@q
on the right-hand side which we denote by

Jac.f; �/ for short.
Under the above isomorphism

˛ WQH�T_.G
_=P_/Š Jac.f; �/

of SŒq˙1�-modules, quantum multiplication by �i �$i corresponds to multiplication
by q @f

@q
in Jac.f; �/.

SinceQH�T_.G
_=P_/ is a free SŒq˙1�-module, we deduce that Jac.f; �/ is also

free. Let ˛.1H / be the image of the identity 1H of the ring H�T_.G
_=P_/, and let

1J 2 Jac.f; �/ denote the identity of the ring Jac.f; �/. It also follows that there exists
� 2 Jac.f; �/˝S C.t�/ so that ˛.1H / � � D 1J . Let �˛ WH�T_.G

_=P_/Š Jac.f; �/
denote the composition of the SŒq˙1�-module isomorphism ˛ with left multiplication
by �. Then �˛.1H /D 1J and �˛ sends quantum multiplication by �i to multiplication
by q @f

@q
.

Recall that S Š CŒt��, so the fraction field is C.t�/. By [94, Corollary 6.5] and
[29, Lemma 4.1.3], QH�T_.G

_=P_/˝S Frac.S/ is generated over Frac.S/Œq˙1� by
�i, and thus also by cT1 .O.1//D �i�$

_
i

. We deduce that �˛ induces a Frac.S/Œq˙1�-
algebra isomorphism after localization. Since the SŒq˙1�-algebras QH�T_.G

_=P_/
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and Jac.f; �/ are already free as S -modules, it follows that �˛ is an isomorphism of
SŒq˙1�-algebras.

Recall from (1.17.1) the definition of the Peterson stratum Y�P . Rietsch [107] has
proved that Jac.X=Z.LP /; f; �/ is isomorphic to CŒY�P �. We thus obtain the follow-
ing corollary.

COROLLARY 12.5
If P_ is minuscule, then we have an isomorphism of Sym.t/ŒZ.LP /�-algebras

QH�T_.G
_=P_/Š CŒY�P �:

12.6. Example
Consider the case G_=P_ D Gr.1; nC 1/D Pn. We have that the equivariant quan-
tum Ah�@qi-module QPn

�;T_ is given by the connection

�q
d

dq
C

0BBB@
h1 q

1 h2
: : :

: : :

1 hnC1

1CCCA ;
where

PnC1
iD1 hi D 0, and we identify h D .h1; h2; : : : ; hnC1/ 2 t� in the usual way.

Its dual is isomorphic to Ah�@qi=Ah�@qiL, where

L WD

nC1Y
iD1

�
�q

d

dq
� hi

�
� q:

This is a hypergeometric differential operator of type 0Fn. In the notation of [78,
Section 3], we see that for 	 2 C�, QPn

�;T_ j�D� is the hypergeometric D-module

H�.
hi

0s
�
;;/. On the other hand, the character Ah�@qi-module WCr1=� is given by

the ��-pushforward of M�=�Efq=�, that is,Z
x1���xnC1Dq

x
h1=�
1 � � �x

hnC1=�

nC1 E.x1C���CxnCxnC1/=�
dx1 � � � dxnC1

x1 � � �xnC1
:

The mirror isomorphism QPn

�;T_ Š WCr1=�
.G;P /

of Theorem 11.14 follows in this case
from a result of Katz [78, Theorem 5.3.1] on convolution of hypergeometric D-
modules. In the semiclassical limit � ! 0, we recover the equivariant quantum coho-
mology algebra

QH�T_.Pn/D CŒx; q˙1; t��
ı�nC1Y

iD1

.x � hi /D q
�
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from the quantum connection QPn

�;T_ on the one hand. And on the other hand, from
the potential function f C ��1 d� , and in view of

xi
@f

@xi
C ��1

xi@�

@xi
D xi C hi �

q

x1 � � �xn
;

we recover the Jacobi ring Jac.f; �/. By letting x WD xi C hi , which is independent
of i , we see that @f

@xi
C ��1 @�

@xi
D 0 is equivalent to

QnC1
iD1 .x � hi /D q, in agreement

with Theorem 12.4.

13. An enumerative formula
In this section, we calculate the quantum period of minuscule flag varieties (The-
orem 13.11). The first coefficient in the q-expansion corresponds to the identity of
Corollary 8.4.

13.1. Solution of the geometric crystal D-module
We allow P to be arbitrary until Section 13.4. The Givental [54] integral formula for
Whittaker functions (see also [52]) arises in the present context as solutions to Cr.G;P /
via a natural pairing with homology groups. Equivalently, these are special functions
that are solutions of the quantum differential equation. The final Section 13.16 treats
the case of the classical I0 and K0-Bessel functions as an illustration of the main
concepts.

The solution complex of Cr.G;P / is defined (see [73, Section 4.2]) to be

Sol.G;P / WD RHomD.Cran
.G;P /;O

an
Z.LP /

/:

Recall that Cr.G;P / D R��Ef . By [73, Theorem 4.2.5], we can interpret the stalks

of Sol.G;P / as dual to the algebraic de Rham cohomology H �dR.
VG=P ;Eft / for t 2

Z.LP /. Concretely, Sol.G;P / is the local system of holomorphic horizontal sections
of the connection dual to Cr.G;P /.

If P is cominuscule, then by Theorem 8.3, Cr.G;P / is a coherent D-module;
hence Sol.G;P / is a local system on Z.LP /. For every t 2 Z.LP /, we deduce that

H i
dR.

VG=P ;Eft / is zero unless i D d D dim.G=P /, and that dimH d
dR.

VG=P ;Eft / is
constant and equal to jW P j.

13.2. Compact cycles
The following proposition holds for any open Richardson variety so we state and
prove it in that generality. For u�w in W , recall that Rw

u denotes the open Richard-
son variety, defined to be the intersection of B� PuB=B with B PwB=B .

PROPOSITION 13.3
H`.w/�`.u/.R

w
u / is 1-dimensional.
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Proof
By Poincaré duality, it is equivalent to treat the cohomology with compact support
H
`.w/�`.u/
c .Rw

u /. By [103, Proposition 4.2.1], there is a canonical isomorphism

H �c .R
w
u /Š Ext�C`.u/�`.w/.Mw ;Mu/;

where Mw and Mu denote the Verma modules in the principal block. Since Rw
u has

real dimension 2.`.w/ � `.u//, we have H `.w/�`.u/
c .Rw

u / Š Hom.Mw ;Mu/. This
space is 1-dimensional as follows from the Bernstein–Gelfand–Gelfand correspon-
dence.

To construct a middle dimension cycle generating H`.w/�`.u/.Rw
u /, we use that

Rw
u contains many tori. (In fact by Leclerc [89], CŒRw

u � contains a cluster algebra
and is conjectured to be equal to 1.) We choose any cluster torus .C�/`.w/�`.u/ � Rw

u

and consider the middle dimension cycle given by a compact torus .S1/`.w/�`.u/. We
denote integration along this cycle by

H
. We can normalize the form ! from [81]

which has simple poles along the boundary of Rw
u such thatI

!

.2i�/`.w/�`.u/
D 1:

In view of Proposition 13.3, the cycle is well defined and independent of the choice
of tori.

Recall from Section 6.6 that VG=P Š R
w0
wPw0

, which can be identified with the
open projected Richardson variety in G=P . Thus we have shown that the space

Hd . VG=P / is 1-dimensional and generated by the above compact cycle. For the case
of full flag varieties G=B a related construction appears in [108, Section 7.1], and for
the Grassmannian in [93, Theorem 4.2].

13.4. Poincaré duality
For w 2W P , we define PD.w/ WDw0ww

P
0 , which is still an element of W P . This is

an involution and we have `.PD.w//D d � `.w/. Moreover, the Schubert class �w 2

H 2`.w/.G_=P_/ is Poincaré dual to �PD.w/ 2H 2`.PD.w//.G_=P_/. Since G_=P_

is minuscule, a reduced expression for w 2 W P is unique up to commutation rela-
tions. It is always (see [21, Section 2.4]) a subexpression in any reduced expression
for the longest element w�1P Dw0w

P
0 D PD.1/ of W P .

13.5. Givental fundamental solution
Givental has introduced solutions Sw.�; q/ of the quantum �-connection Q

G_=P_

� in
terms of a generating series of gravitational descendants of Gromov–Witten invariants
(see [53], [5, Section 4.1], [32, Section 10], [67, Section 5], and [76, Section 2.3]
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for details). The functions Sw.1; q/, for w 2 W P , form a fundamental solution of
QG_=P_

near the regular singular point q D 0 (see [48, Section 2]).
The Givental J -function is defined by

JG
_=P_

.	; q/ WD
X

w2W P

˝
Sw.	; q/; 1

˛
�PD.w/:

It gives rise to a multivalued holomorphic section

JG
_=P_

W C�� �C�q !H�.G=P /;

which becomes single-valued when factored through the universal cover H 2.G_=

P_/! C�q . Using the notation of [32, Lemma 10.3.3],

JG
_=P_

.	; q/D exp
� logq

	
�i

��
1C

1X
eD1

X
w2W P

qe
D �w
	� c

E
0;e
�PD.w/

�
:

Intrinsically, the J -function is the solution to the dual connection to Q
G_=P_

� that is
asymptotic to 1 as q approaches the regular singular point 0 (see [49]).

Example 13.6
For Pn, we have (see [32, Section 10])

J Pn

.	; q/D exp
� logq

	
�i

� 1X
eD0

qe
eY
jD1

1

.�i C j	/nC1
: (13.6.1)

The case of quadrics is treated in [99, Section 5].

Of particular importance is the component hJG
_=P_

.	; q/; �PD.1/i D

hSPD.1/.	; q/; 1i which is a power series in 	�1, q. In Section 4.16, we used the
notation S.q/ for SPD.1/.1; q/. The single-valuedness follows from considering the
kernel of the monodromy operator which is the usual cup product with �i. Precisely,

˝
SPD.1/.	; q/; 1

˛
D 1C

1X
eD1

qe
D�PD.1/

	� c
; 1

E
0;e
: (13.6.2)

It is called the hypergeometric series ofG_=P_ in [4] and [5] and called the quantum
period in [47] and [49]. The sum can be simplified further by expanding .	 � c/�1

in power series of 	�1 (see [99, Section 5.2] who also consider more generally
hSPD.1/; �wi for any w 2W P ).
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13.7. Degrees and irregular Hodge filtration
The isomorphism WCr.G;P / Š Q

G_=P_

T_ from Theorem 11.14 induces for every t 2

Z.LP / an isomorphism

dM
iD0

H 2i .G_=P_/ŠHd
dR.

VG=P ;Eft /: (13.7.1)

The cohomology group on the right-hand side is concentrated in a single degree since
WCr.G;P / is a D-module concentrated in a single degree. In this isomorphism, the
left-hand side visibly carries a gradation by degree, which can be transported to the
right-hand side. We want to spell this out precisely and derive an important proposi-
tion.

It is easy to see that the filtration associated to the Jordan decomposition of the
linear endomorphism given by the cup product by �i coincides with the filtration by
degree on H�.G_=P_/. The cup product by �i is the monodromy at q D 0 of the
connection QG_=P_

. Thus we conclude from the mirror isomorphism QG_=P_

Š

Cr.G;P / that the filtration by degree is transported on Hd
dR.

VG=P ;Eft / to the mon-
odromy filtration of Cr.G;P /.

PROPOSITION 13.8
In the isomorphism (13.7.1), the line C � �PD.1/ DH 2d .G_=P_/ spanned by the top
class corresponds to the line spanned by the cohomology class of the volume form !

from Section 6.6. In particular, this cohomology class is nonzero in Hd
dR.

VG=P ;Eft /.

This was previously established for Grassmannians by Marsh and Rietsch [93]
and for quadrics by Pech, Rietsch, and Williams [99].

Proof
In view of the above discussion, we only need to analyze the monodromy filtration

on Hd
dR.

VG=P ;Eft / near ˛i.t/D 0. A convenient way to do so is via the Kontsevich

complex ��
ft

of ft -adapted log-forms, which again involves a resolution G̃=P of the
singularities of .G=P;ft /. It is established in [38, Corollary 1.4.8] that

H d
dR.

VG=P ;Eft /Š
M

pCqDd

H q.G̃=P ;�
p

ft
/:

It is possible to write down the monodromy operator and to verify that the decreasing
monodromy filtration corresponds to the gradation by p�q, following [38], [69], and
[79].

Then, by the above, H 2d .G_=P_/ corresponds under the isomorphism (13.7.1)
to the space H 0.G̃=P ;�d

ft
/ where by the definition of �d

f
, this coincides with the
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space H 0.G̃=P ;�d .log// of log differential holomorphic top forms. It is known
from [81] that H 0 is 1-dimensional and spanned by the form !.

In the isomorphism (13.7.1), the left-hand side is of Hodge–Tate type, namely,
H 2i DH .i;i/, because it is spanned by the Schubert classes �w which are algebraic.
In the mirror isomorphism, H�.G_=P_/ being of Hodge–Tate type translates to

. VG=P ;ft / being pure in the sense that Cr.G;P / is a complex supported in one degree.
We obtain also parts of [79, Conjecture 3.11] concerning the matching of nc-Hodge
structures on both sides of (13.7.1); in particular, on the right-hand side we have iden-
tified the irregular Hodge filtration constructed by Deligne [33] and Esnault, Sabbah,
and Yu [38]. For the case of certain toric mirror pairs, this matching and much more
is established in [102] and [95].

Remark 13.9
We observe that in the case of Pn, the above essentially amounts to a remarkable
theorem of Sperber [116] on the slopes of hyper-Kloosterman sums. Thus we are
led to conjecture that for almost all primes, the slopes of the minuscule Kloosterman
sums Kl.G;$i/ can be read from the cohomology ofG_=P_. This would follow4 from
a suitable p-adic comparison isomorphism for differential equations of exponential
type between Dwork p-adic cohomology and complex Hodge theory, which does
not seem to be available in the literature yet. Interestingly, the same Hodge numbers
appear in the .g;K/-cohomology of a certain L-packet of discrete series (see [64]).

13.10. Enumerative formula
We can deduce from the above mirror theorem an integral representation for the quan-
tum period and combinatorial formulas for certain Gromov–Witten invariants. Asser-
tion (ii) below is referred to as the weak Landau–Ginzburg model in [101].

THEOREM 13.11
(i) The quantum period (13.6.2) ofG_=P_ is equal to the integral of the potential

on the middle-dimensional compact cycle of VG=P ,

Icpt.	; q/ WD

I
efq=�

!

.2i�/dim.G=P/
:

4Added after submission: Our conjecture can now be established from the main result of Xu and Zhu [125,
Theorem 5.3.2(1)] as follows. They construct an overconvergent F -isocrystal which is a p-adic companion of
the Kloosterman `-adic sheaf KlG of [71], and show that its Newton polygon is the half-sum of positive coroots
	_ for almost all primes. The slopes of the minuscule Kloosterman sums Kl.G;$i/ under the minuscule repre-
sentation V$i

are therefore hw$i; 	
_iC h$i; 	

_i for w 2W P (recall from Section 2.4 that the weights of
V$i

are the orbitW �$i). For every d � 0, the number of w 2W P such that hw$i; 	
_iC h$i; 	

_i D d

coincides with the Betti number dimH2d .G_=P_/ (see the proof of Proposition 4.12).
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(ii) For every integer e 	 0, the genus-0 and degree-e Gromov–Witten correlator
h�ce�2�PD.1/i0;e of G_=P_ is equal to the constant term of f ce1 in any cluster

chart of VG=P , divided by .ce/Š.

For quadrics, the theorem can be established directly by computing both sides
as shown in [99, Section 5.3]. For Grassmannians, the theorem is due to Marsh and
Rietsch [93, Theorem 4.2].

Proof
Assertion (ii) follows from (i) by taking residues. Recall that c is the Coxeter num-
ber of G. Also note that ! is T -invariant by Lemma 6.26, in particular invariant by
�_. This implies the identity Icpt.	; q/D Icpt.1; q=	

c/, which is also satisfied by the
quantum period (13.6.2).

To establish (i), we observe as consequence of the mirror Theorem 8.3 that
Icpt.1; q/ is solution of the quantum connection QG_=P_

. It is a power series in q by
Cauchy’s residue formula. The same holds for the fundamental solution SPD.1/.1; q/.
We can then deduce the desired equality of the two solutions up to scalar from
the Frobenius method at the regular singularity q D 0. More precisely, we need to
consider the equivariant connection Q

G_=P_

T_ and equivariant Gromov–Witten corre-
lators. For generic h 2 t�, the monodromy at q D 0 is regular semisimple. We then
specialize the equivariant parameter to hD 0.

To conclude the proof of (i), we need to specialize the solution hSPD.1/.1; q/; 1i

as in (13.6.2). It is a power series in q with constant term 1. Moreover, the integral
Icpt.1; q/ is against the form ! which implies the identity in view of Proposition 13.8.

The quantum period typically has infinitely many zeros. As explained by

Deligne [34, p. 128], this implies that the irregular Hodge filtration on Hd
dR.

VG=P ;

Eft=�/ does not come from a Hodge structure.

Remark 13.12
The works of Marsh and Rietsch [93] for Grassmannians and Pech, Williams, and
Rietsch [99] for quadrics lead us to suggest a more general formula that hSPD.1/; �wi

should be equal to the residue integral
H
pwe

fq=� !

.2i�/dim.G=P / , with the Plücker coor-
dinate pw added. This formula generalizes Theorem 13.11(i), corresponding to the
case w D 1, and is compatible with the Gamma conjecture and central charges dis-
cussed in [49] and [76].
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Remark 13.13
In a series of works (see, e.g., [51]), Gerasimov, Lebedev, and Oblezin study the
Givental integral from various viewpoints, motivated by Archimedean L-functions,
integrable systems of Toda type, and Whittaker functions.

13.14. Projective spaces
For Pn D Gr.1; nC 1/, the Coxeter number is c D nC 1. We deduce from (13.6.1)
that the quantum period hSPD.1/.	; q/; 1i D hJ Pn

.	; q/; �PD.1/; 1i is equal to

1X
eD0

1

.eŠ/nC1

� q

	nC1

�e
D 0Fn

�
—

1 ��� 1 I
q

	nC1

�
:

On the other hand,

Icpt.	; q/D

I
e

1
�
.x1C���CxnC

q
x1���xn

/ dx1 � � � dxn

.2i�/nx1 � � �xn
:

Hence Theorem 13.11 reduces to Erdélyi’s integral representation.

Remark 13.15
The quantum period for a general minuscule homogeneous space G_=P_ is related
to the Bessel functions of matrix argument introduced by Herz (see [91], [112]).

13.16. Classical Bessel functions

For P1 D Gr.1; 2/, we have fq.x/D xC q
x

for x 2 Gm D VP1, ! D dx
x

, and

H i
dR.Gm;E

fq=�/D

´
0 if i D 0,

C! ˚Cx! if i D 1.

Deligne defines an irregular Hodge filtration and shows in [34, p. 127] that
F 1H 1

dR.Gm;E
fq=�/D C!, which corresponds to Theorem 13.8 above.

The dual space is generated by the two cycles
H

and
R1
0

, denoted by e1, �e2
in [34]. Note that the cycle

R1
0

depends on q and 	 and approaches 0 and 1 in the
direction of rapid decay of the exponential.

The quantum period is 0F1.
—
1 I q

�2 / D I0.2
p
q=	/ D

H
efq=� !

2i�
. The other

integrals are expressed as follows:
R1
0
efq=�! D 2K0.2

p
q=	/;

H
efq=�x !

2i�
D

p
qI1.2

p
q=	/;

R1
0
efq=�x! D �2

p
qK1.2

p
q=	/. Note that I 00 D I1 and K 00 D

�K1.
The determinant of periodsˇ̌̌̌ H

efq=�!
H
efq=�x!R1

0 efq=�!
R1
0 efq=�x!

ˇ̌̌̌
D �2i�	;
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established in the last paragraph of [34],5 corresponds to the Wronskian formula

I�.y/K�C1.y/C I�C1.y/K�.y/D 1=y;

for all y 2 R>0 and � 2 C.
More generally, we consider the equivariant version. Let h 2 C, and let h˛ 2

t�, where ˛ denotes the positive simple root. We consider the integral solutions to
WCr1=�j�D� specialized at 	h˛ 2 t�,I

x2h

qh
efq=�

!

2i�
D qh

1X
kD0

	�2k�2hqk

kŠ�.kC 2hC 1/
D

.q=	2/h

�.1C 2h/
0F1

�
—

1C2h I
q

	2

�
D I2h.2

p
q=	/;

where compared to Example 6.5, we have q D t2 and the factor x2h

qh is equal to
.h˛/.�.x//. Similarly, the integral from 0 to 1 is equal to K2h.2

p
q=	/.

On the quantum connection side, let ¹1; �º be the Schubert basis of H�.P1/.
Then the equivariant quantum Chevalley formula is

� �q � D q � 1C .$ � s �$/ � � D q � 1C ˛_ � �:

Here, s denotes the unique simple reflection. Thus

� �q;h � D q � 1C 2h � �

since h˛_; ˛i D 2. The equivariant quantum connection QP1

�;T_.h˛/ is

�q
d

dq
C

�
��h q

1 �h

�
:

This is equivalent to the second-order differential operator�
�q

d

dq

�2
� .qC �2h2/;

which has solutions specialized to � D 	 the modified Bessel functions I2h.2
p
q=	/

and K2h.2
p
q=	/. This agrees with Theorem 10.7.

14. Compactified Fano and log Calabi–Yau mirror pairs
Our Theorems 8.3 and 11.14 verify two specific mirror symmetry predictions. In this
brief section, the goal is to recast the mirror symmetry of flag varieties in view of
recent advances and to provide some evidence for potential generalizations.

5The minus sign compared to [34] is because we chose the cycle
R 1

0 which is �e2 .
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14.1. Mirror pairs of Fano type
The notion of mirror pairs of Fano type is explained in [79, Section 2.1]. In the context
of Rietsch’s conjecture that we study in this paper, we have a family of mirror pairs
indexed on one side by H 2.G_=P_/ and on the other side by Z.LP /. Lemma 8.2
is interpreted as the “mirror map” and can be compared with [76, Lemma 4.2] in the
toric case.

The A-model is a triple .X;g; 1=!X / consisting of a projective Fano variety
X , a complexified Kähler form g, and an anticanonical section 1=!X . In the con-
text of Rietsch’s conjecture, the variety is X D G_=P_, the Kähler class is varying
in H 2.G_=P_/, and the anticanonical section is the one constructed in [81] (see
also [107]). The B-model is another triple ..Y;f /; 
;!Y / consisting of a Landau–
Ginzburg model, namely, a smooth variety Y with trivial canonical class, a regular
function f W Y ! C (Landau–Ginzburg potential), a Kähler form 
, and a nonvanish-
ing canonical section !Y (holomorphic volume form).

14.2. D-module version of Rietsch’s mirror conjecture
In the context of Rietsch’s conjecture, the B-model is as follows. The Landau–
Ginzburg model is given by the Berenstein–Kazhdan geometric crystal. The under-

lying variety is the open Richardson Y D VG=P in G=P , and the Landau–Ginzburg
potential is the decoration function ft of Berenstein and Kazhdan, which depends on
the parameter t 2Z.LP /. The volume form !Y is again the one constructed in [81].

CONJECTURE 14.3
Let P be a parabolic subgroup of G, and let P_ be the dual parabolic subgroup of
G_. There exists an isomorphism

WCr1=�
.G;P /

Š Q
G_=P_

�;T_

of graded D�-modules over Z.LP /� t� relative to t�.

Theorem 11.14 establishes Conjecture 14.3 in the case where P is minuscule.
The superpotential of WCr.G;P / (explicitly described in Section 6.8) agrees with the
Landau–Ginzburg model defined by Rietsch (see [107, Lemma 5.2]). Thus Conjec-
ture 14.3 is compatible with Rietsch’s conjecture in [107].

14.4. Mirror pairs of compactified Landau–Ginzburg models
Following [79, Section 3.2.4], one may also consider quadruples .X;g;!;f / consist-
ing of a projective Fano variety X , a complexified Kähler form g, a canonical section
!X , and a potential function fX . We may then examine, for appropriate choices of
Kähler forms, the mirror symmetry between
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.G=P;g;!G=P ; fG=P / and .G_=P_; g_;!G_=P_ ; fG_=P_/:

The A- and B-sides now play a symmetric role. Rietsch’s mirror conjecture corre-
sponds to omitting some of the data on both sides. The full mirror conjecture between
these compactified mirror pairs involves the matching of a variety of homological data
on both sides.

For example, a Fano type mirror pair gives rise to a pair of open Calabi–Yau man-
ifolds by taking the complement of the anticanonical divisor. One obtains triples of a
log Calabi–Yau manifold, a Kähler form, and a volume form. In our setting, the log

Calabi–Yau varieties are VG_=P_ and VG=P , respectively. The volume forms are as
before. Thus from the general mirror predictions in [79, Table 2], we expect a match-

ing of the cohomology of the open projected Richardson variety H�. VG=P / and the

cohomology of the Langlands dual open projected Richardson variety H�. VG_=P_/.
We show in the next subsection that this matching holds more generally for arbitrary
Richardson varieties.

14.5. Open Richardson varieties
Recall the open Richardson varieties Rw

u �G=B , where u;w 2W with u� w, and

the special case R
w0

wP
0

Š VG=P . They are log Calabi–Yau varieties with canonical vol-

ume form (see [81]). We denote by LRw
u � G_=B_ the open Richardson varieties

inside the flag variety of the dual group.

PROPOSITION 14.6
For any i 	 0 and u;w 2 W with u � w, there is an isomorphism H i .Rw

u / Š

H i . LRw
u /.

Proof
Since Rw

u and Rw
u are smooth complex algebraic varieties of the same dimension,

by Poincaré duality, the stated isomorphism is equivalent to the same statement for
cohomology with compact support. As in the proof of Proposition 13.3, this is in turn
equivalent to the isomorphism Ext�.Mw ;Mu/ Š Ext�.Mg_;w ;Mg_;u/, where Mw

(resp., Mg_;w ) denotes a Verma module in the principal block of category O for g
(resp., g_). By the work of Soergel [115], the principal blocks of category O for g
and g_ are equivalent, and the isomorphism of Ext-groups follows.

Question 14.7
Can this isomorphism be an indication of mirror symmetry between open Richardson
varieties Rw

u �G=B and LRw
u �G_=B_?
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15. Proofs from Section 2.5

15.1. Proof of Proposition 2.7
The implications (1) H) (2) and (1) H) (3) are easy to check directly.

We thank the referee for the following argument showing (2) H) (1), simplify-
ing our original proof. Recall that Q_ (resp., Q_P ) denotes the coroot lattice spanned
by ˛_i ; i 2 I (resp., ˛_i ; i 2 IP ). By a result of Peterson and Woodward (see [87, The-
orem 10.13(1)]), for each 	_P 2Q_=Q_P there exists a unique lift 	_ 2Q_ (called
the Peterson–Woodward lift) of 	_P such that h˛;	_i 2 ¹0;�1º for all ˛ 2RCP . Since
i is minuscule and ˇ 2RC nRCP , we have ˇ_CQ_P D ˛_

i
CQ_P 2Q_=Q_P . Thus, if

ˇ_ satisfies (2), then it is the Peterson–Woodward lift, which is unique, and we must
have ˇ_ D 
_.

We show that (3) H) (1). Suppose that G is simply laced. Suppose that ˇ D

�w�1.�/ 2RC nRCP , but ˇ ¤ ˛i. Then i is also cominuscule so ˇ D ˛i C ˇ0, where
ˇ0 is a nonzero linear combination of ˛j for j ¤ i. Since w 2W P , we have w˛j 2

RC for j ¤ i. Thus wˇ � w˛i 2 Z�0R
C n ¹0º. Since w˛i is a root, it would be

impossible for wˇ D �� .
Suppose that G is of type Bn. Choosing coordinates for R, we have � D ˛1 C

2˛2C� � �C2˛n D �1C�2. We may identifyW with the group of signed permutations
on ¹1; 2; : : : ; nº, and W P is identified with signed permutations that are increasing,
under the order 1 < 2 < � � � < n < �n < �.n � 1/ < � � � < �1. We have jW P j D 2n.
For example, w D .2; 4; 5;�3;�1/ 2W P and w�1.�1 C �2/D ��5 C �1. It follows
by inspection that �w�1.�/ 2RC nRCP implies that �w�1.�/D �4 C �5 D ˛n�1 C

2˛n.
Suppose that G is of type Cn. We have � D 2˛1 C 2˛2 C � � � C 2˛n�1 C ˛n. The

elements of W P are

1; s1; s2s1; s3s2s1; : : : ; snsn�1 � � � s1; sn�1snsn�1 � � � s2s1; : : : ;

s1s2 � � � sn�1snsn�1 � � � s2s1;

and we have jW P j D 2n. We have �w�1.�/ 2 RC n RCP if and only if w D

s1s2 � � � sn�1snsn�1 � � � s2s1, and the statement follows.

15.2. Proof of Proposition 2.8
We first note the following properties of wP=Q.

LEMMA 15.3
(1) Inv.wP=Q/DRCP nRCQ,
(2) `.wP=Q/D h�2�P ; 


_i,
(3) `.wP=Qs�/D `.wP=Q/C `.s�/D h2.�� �P /; 


_i � 1.
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Proof
Let wP (resp., wQ) be the maximal element of WP (resp., WQ). Then wP=QwQ D

wP is length-additive, so Inv.wP=Q/DwQ.Inv.wP / n Inv.wQ//DRCP nRCQ, prov-

ing (1). Formula (2) follows from Lemma 2.6(2). Since Inv.s�/ \ RCP D ;, it fol-
lows that the product wP=Qs� is length-additive. Formula (3) follows from (2) and

 2 QR.

15.3.1. Proof of (1) in Proposition 2.8
It is equivalent to show that Inv.w/ � Inv.s�/. Suppose that ˛ 2 Inv.s�/. Then ˛ �

h˛; 
_i
 D s�˛ < 0, where aD h˛; 
_i> 0. Thus

�a� D aw.
/Dw.˛/�w.s�˛/;

and it follows that w˛ < 0 because w.s�˛/ is a root.

15.3.2. Proof of (2) in Proposition 2.8
After formulas (1) and (3) of Lemma 15.3, it is equivalent to show that Inv.ws�/ �

RCP nRCQ. Let ˛ 2RCP nRCQ. Then s�˛ D 
C ˛ by Lemma 2.6. Thus ws�˛ Dw˛C

wˇ Dw˛ � � . Since � is the highest root, we deduce that ˛ 2 Inv.ws�/.

15.3.3. Proof of (3) in Proposition 2.8
Since w�1

P=Q
2 WP , it suffices to show that ws0� 2 W P . It suffices to check that

Inv.ws�/\RCQ D ;. But s� fixes every element in RCQ, and Inv.w/\RCQ D ; since

w 2W P . The claim follows.

15.3.4. Proof of (4) in Proposition 2.8
The standard parabolic subgroup J is given as follows: for type An, we have J D

¹2; 3; : : : ; n � 1º; for type Dn or E6, we have J D Œn� n ¹2º; for type E7, we have
J D Œn� n ¹1º; for type Bn, we have J D Œn� n ¹1; 2º; for type Cn, we have J D ;. In
all cases, it is clear that WJ stabilizes � .

If w;v 2W.
/, then clearly wv�1 belongs to the stabilizer of � . In the simply
laced types, this stabilizer is exactly the group WJ . In type Bn, the stabilizer of �
is WŒn�n¹2º, but from the description in the proof of Proposition 2.7, it is clear that
wv�1 2WJ . In type Cn, as noted previously we have W.
/D ¹s�º which consists of
a single element.

The double coset WJwWP contains a unique minimal element w0, and since
w 2 W P , we have a length-additive factorization w D uw0, where u 2 WJ . Since
w0 2W P and .w0/�1.�/Dw�1.�/D �
, we have w0 2W.
/.
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15.3.5. Proof of final sentence in Proposition 2.8
We assume that w 2W P satisfies Inv.w/� Inv.s�/ and Inv.ws�/�RCP nRCQ. Sup-
pose first that G is simply laced so that 
 D ˛i. Suppose that �w�1.�/ D ˛ ¤ ˛i.
Let w˛i D �
 < 0. Since w 2 W P , we have ˛ … RCP . On the other hand, we have
w.˛ � ˛i/ D �� C 
 < 0. Again because w 2 W P , this shows that ˛ … RC n RCP .
Thus ˛ 2R�.

Let ı D �˛ 2 RC. Since wı D � and w 2 W P , we have that ı C 	 cannot be
a root whenever 0 ¤ 	 2

P
j2IP

Z�0˛j . If ı 2 RCP , then it follows that ı 2 RCP n

RCQ. But then s�ı D ı C 
 implies that .ws�/ı D wı C w
 > 0, contradicting the

assumption that Inv.ws�/�RCP nRCQ.

Thus ı 2RC nRCP , and again since w 2W P , we may assume that ı D � . Thus
w� D � , so w lies in the stabilizer W 0 �W of � . In types E6, E7, or Dn, n	 4, it is
easy to see that Inv.wsi/ for w 2W 0 cannot contain RCP nRCQ sinceW 0 is a parabolic
subgroup that contains the minuscule node i, but does not contain the adjoint node
(node 2 in types Dn or E6 and node 1 in type E7). In type An, the whole claim is
easy to check directly, and we conclude that w 2W.
/.

Suppose that G is of type Bn. We use notation from the proof of Proposition 2.7.
We have s� D sn�1snsn�1 and for a signed permutation w Dw1w2 � � �wn 2W P , we
have ws� D w1w2 � � � .�wn/.�wn�1/. Thus the first condition Inv.w/ � Inv.s�/ is
equivalent to wn�1;wn < 0. The second condition Inv.ws�/�RCP nRCQ is equivalent
to the condition that ¹w1;w2; : : : ;wn�2º are all bigger than �wn and �wn�1 under
the order 1 < 2 < � � �n < �n < �.n� 1/ < � � � < �1. It follows that wn�1 D �2 and
wn D �1, so that w
 D �� .

Suppose that G is of type Cn. Then `.s�/ 	 `.w/ for w 2W P with equality if
and only if w D s� D s1s2 � � � sn�1snsn�1 � � � s2s1. The claim follows easily.

16. Background on D�-modules
The main purpose of this section is to establish Proposition 16.13, which is used in
Section 12.

16.1. Filtered and graded categories
Let X be a complex smooth affine algebraic variety equipped with a Gm-action. Its
structure sheaf OX is naturally graded by Gm-homogeneous sections. Denote by
p W T �X ! X the cotangent bundle of X . Denote by DX the sheaf of differential
operators on X . This is a sheaf of noncommutative rings. It is equipped with a filtra-
tion

� � � �DX;�1 �DX;0 �DX;1 � � � �

induced by the gradation of OT �X plus the order of the differential operator.
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Let MF.DX;�/ denote the category of filtered left DX;�-modules that are qua-
sicoherent as OX -modules. An object M� 2 MF.DX;�/ is equipped with a filtration
� � �M�1 �M0 �M1 � � � satisfying DX;jMi �MiCj . The category MF.DX;�/ is an
additive category, but not an abelian category; it can be made into an exact cate-
gory by declaring a sequence 0!M 0� !M� !M 00� ! 0 to be exact if 0!M 0i !

Mi ! M 00i ! 0 is exact for all i . (This is stronger than asking for the sequence of
underlying unfiltered DX -modules to be exact.) As shown in [88], one can define the
derived category of MF.DX;�/; we let DbF.DX;�/ denote the bounded derived cat-
egory of MF.DX;�/. There are natural forgetful functors MF.DX;�/! M.DX / and
DbF.DX;�/!Db.DX / sending a filtered moduleM� to the underlyingDX -module
M , and a complex M �� of filtered modules to the underlying complex M �.

The associated graded of DX;� is the sheaf grDX;� D p�OT �X of graded com-
mutative rings on X , where the grading comes from the grading of OX together with
the declaration that vector fields have degree 1. Since p is affine, we have equiva-
lences of categories

M.OT �X /Š M.p�OT �X / and Db.OT �X /ŠDb.p�OT �X /

between the corresponding categories of quasicoherent OT �X -modules and quasico-
herent p�OT �X -modules, and bounded derived categories. We have an associated
graded functor, and derived functor

gr W MF.DX;�/! M.OT �X / and gr WDbF.DX;�/!Db.OT �X /:

Definition 16.2
Let D�;X denote the sheaf of graded noncommutative rings with a central section �,
locally generated by f 2 OX and sections � 2‚X of the tangent sheaf with the rela-
tions Œf; ��D �.� � f / and �
� 
� D �Œ�; 
�. The grading is given by the assignment
deg.�/D 1 and the homogeneous degrees of f and � induced by the Gm-action.

The sheaf D�;X=� is isomorphic to the sheaf p�OT �X , while the localization
D�;X at .�/ is isomorphic toDX Œ�˙1�. Let MG.D�;X / denote the category of sheaves
of graded left D�;X -modules that are quasicoherent as graded OX -modules. To an
object M� 2 MF.DX;�/ we associate an object

M�˝CŒ��DWM � D
M
i

M �
i 2 MG.D�;X /;

by defining M �
i DMi . The section � acts by the identity, thought of as a map from

M �
i to M �

iC1. It is clear that ˝CŒ�� W MF.DX;�/! MG.D�;X / is an exact functor.
For the following result, see [88, Section 7] and [109, Section 4].
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PROPOSITION 16.3
The functor

˝CŒ�� W MF.DX;�/! MG.D�;X /; M� 7!M � DM�˝CŒ��

is an equivalence between MF.DX;�/ and the full subcategory of �-torsion-free
D�;X -modules. It induces a derived functor ˝CŒ�� giving an equivalence of cate-
gories

˝CŒ�� WDbF.DX;�/ŠDb.D�;X /:

We also have a functor ˝CŒ��C W MG.D�;X / ! M.OT �X / and a left derived

functor
L
˝CŒ�� C WDb.D�;X /!Db.OT �X /, setting � D 0.

PROPOSITION 16.4
We have commutative diagrams

MF.DX;�/ MG.D�;X /

M.OT �X /

�˝CŒ��

�
�

�
�

��	
gr




˝CŒ��C

DbF.DX;�/ Db.D�;X /

Db.OT �X /

�˝CŒ��

�
�

�
�

��	
gr




L
˝CŒ��C

Example 16.5
Consider X D Gnm � Gm, with coordinates .x1; : : : ; xn; q/, and equipped with the
Gm-action

� � .x1; : : : ; xn; q/D .�x1; : : : ; �xn; �
nC1q/:

The ring CŒX� of Laurent polynomials has a corresponding gradation by homoge-
neous polynomials. The potential f D x1 C � � � C xn C q

x1���xn
has degree 1. The ring

of differential operators DX is filtered by the subspaces DX;i , which for each i 2 Z

are the linear span of the operators

x
a1

1

@b1

@x
b1

1

x
a2

2

@b2

@x
b2

2

� � �xan
n

@bn

@x
bn
n

qm
@`

@q`
; a1 C a2 C � � � C an C .nC 1/m� n`� i:

The DX -module DX=DX .d � df ^/ that we denote Ef is equipped with a natural
filtration and becomes an object ofMF.DX;�/. The ringD�;X is the graded noncom-
mutative ring generated by functions and differential operators �xk

, �q with notably
the relations
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Œ�xk
; xk�D �; Œ�q; q�D �:

The degrees are given by deg.xk/D 1, deg.�xk
/D 0, deg.q/D nC1, deg.�q/D �n,

deg.�/ D 1. One can think of �xk
as representing “� @

@xk
,” and �q as representing

“� @
@q

.” Applying the functor of Proposition 16.3, we have that Ef ˝ CŒ�� becomes

the D�;X -module Ef=� which we can describe as follows. We have that Ef=� is iso-
morphic to the quotient of D�;X by the left D�;X -ideal generated by the operators
�xk

� @f
@xk

and �q � @f
@q

. The operators are all homogeneous; hence Ef=� is an element
of MG.D�;X /, and moreover it is �-torsion-free, consistently with Proposition 16.3.

16.6. Pushforward functors
In this and the next subsection only, we write

R
�

to denote the pushforward func-
tor for D-modules, and we reserve �� for the pushforward functor of quasicoherent
sheaves. Let � WX ! Y be a Gm-equivariant morphism between complex irreducible
smooth varieties X and Y equipped with Gm-actions. We recall results concerning
the pushforward functors of DX -, D�;X -, and OT �X -modules under � . Though we
shall not need it, the functors of Proposition 16.4 are also compatible with pullbacks
under � .

Let !X (resp., !Y ) denote the canonical line bundles of X (resp., Y ). The sheaf
!X acquires a grading from the Gm-action so that it becomes a filtered right DX;�-
module. Define

DY X WD ��1.DY ˝OY
!�1Y /˝��1OY

!X ;

which is a .��1DY ;DX /-bimodule on X . The module DY X inherits a filtration
from the filtrations of DY , !Y , and !X . We obtain a filtered .��1DY;�;DX;�/-
bimodule DY X;� on X , satisfying ��1DY;j �DY X;i �DX;k �DY X;iCjCk . We
define the direct image functor byZ

�

M � WDR��.DY X;�
L
˝DX;�

M �/;

where M � 2DbF.DX;�/. Similarly, define
R
�

WDb.DX /!Db.DY / by forgetting
filtrations.

PROPOSITION 16.7 ([88, (5.6.1.1)])
The following diagram commutes:
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DbF.DX;�/ DbF.DY;�/

Db.DX / Db.DY /

�
R

�


 

�

R
�

where the vertical arrows are the natural forgetful functors.

Let T �Y �Y X be the pullback of the cotangent bundle T �Y to X , fitting into
the commutative diagram (see [88, (5.0.1)])

T �X T �Y �Y X X

T �Y Y

�…



N�

�p�



�

�
pY

We have

grDY X;� D ��OT �Y ˝OX
!X=Y ;

which has a natural structure of a graded .��OT �Y ;OT �X /-bimodule. We now define
a functor

R
�

WDb.OT �X /!Db.OT �Y / byZ
�

M �0 WD
�
R N�� ı…ŠŒd �

�
.M �0/; (16.7.1)

where d D dimX � dimY and …Š W Db.OT �X / ! Db.OT �Y�YX / denotes the
upper-shriek functor on derived categories of quasicoherent sheaves.

We will only use (16.7.1) when the map � WX ! Y is smooth, in which case we
have

…ŠŒd �.�/DL…�.�/˝OT �Y �Y X
p��!X=Y ; (16.7.2)

where L…� W Db.OT �X / !Db.OT �Y�YX / is the left derived functor of the usual
pullback functor …� of quasicoherent sheaves.

We have the following compatibility result of pushforwards.

PROPOSITION 16.8 ([88, (5.6.1.2)])
The following diagram commutes:
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DbF.DX;�/ DbF.DY;�/

Db.OT �X / Db.OT �Y /

�
R

�




gr




gr

�
R

�

Finally, we describe the pushforward functor for DX;�-modules. We define
DY X;� WD DY X;� ˝ CŒ��, which is a graded .��1DY;�;DX;�/-bimodule. We
define the direct image functor

R
�

WDb.DX;�/!Db.DY;�/ byZ
�

M � WDR��.DY X;�
L
˝DX;�

M �/:

PROPOSITION 16.9
The following diagram commutes:

DbF.DX;�/ DbF.DY;�/

Db.DX;�/ Db.DY;�/

�
R

�




˝CŒ��




˝CŒ��

�
R

�

Proof
A direct comparison shows that

.DY X;�
L
˝DX;�

M �/˝CŒ��DDY X;�
L
˝DX;�

�
M �˝CŒ��

�
;

as graded ��1.DY;�/-modules. Similarly, ˝CŒ�� is an exact functor, so it commutes
with R��.

PROPOSITION 16.10
The following diagram commutes:

Db.DX;�/ Db.DY;�/

Db.OT �X / Db.OT �Y /

�
R

�




L
˝CŒ��C




L
˝CŒ��C

�
R

�

where the vertical arrows are the natural forgetful functors.
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Proof
Combine Proposition 16.4 with Propositions 16.8 and 16.9.

Example 16.11
Consider Y D Gm, graded by deg.q/D nC 1. The ring D�;Y D CŒq˙1;��h�qi satis-
fies the relation Œ�q; q�D �, and the gradation is given by deg.�q/D �n, deg.�/D 1.
The quantum differential operator .q�q/nC1 � q is homogeneous of degree n C 1.
It shall follow from the next subsection that it is isomorphic to the pushforwardR
p iE

f=�, where Ef=� is as in Example 16.5 and � W X ! Y is the projection onto
the second factor.

16.12. Application to the character D�-module
Let � W X ! Z.LP / denote the geometric crystal, and let f W X ! A1 denote the
superpotential. Recall that we defined Gm-actions on X and Z.LP / in Section 6.21.

PROPOSITION 16.13
The character .D�;Z.LP / ˝ Sym.t//-module WCr1=�

.G;P /
2Db.D�;Z.LP / ˝ Sym.t//

is �-torsion-free and concentrated in a single degree.

Proof
To simplify the notation, we will prove the proposition for Cr1=�

.G;P /
2Db.D�;Z.LP //

without the weight. Thus let

M � DD�;X=
�
� � .� � f /

�
denote the cyclic D�;X -module generated by a single section ef=�. Here � 2

�.X;‚X / denotes a vector field on X . We shall show that N � WD
R
�
M � 2

Db.D�;Z.LP // is isomorphic to an �-torsion-free DZ.LP /;�-module concentrated
in a single degree. The condition that N � is �-torsion-free and concentrated in one

cohomological degree is equivalent to the condition that the object N0 D N �
L
˝CŒ��

C 2 Db.OT �Z.LP // (see Section 16.1) is concentrated in a single cohomological
degree.

Let M0 DM � ˝CŒ�� C 2 M.OT �X /. Then M0 is isomorphic to OV , where V �

T �X is cut out by the equations � � .� � f /. By Proposition 16.10, we have N0 DR
�M0. Denote T �Z.LP /�Z.LP / X by Y . By (16.7.1) and (16.7.2), we haveZ

�

M0 DR� 0�
�
LF �.M0/˝OY

Q��!X=Z.LP /

�
;

where Q� W Y !X and � 0 W Y ! T �Z.LP / are the two projections and F W Y ! T �X

is the natural inclusion. We first show that LF �.M0/ 2 Db.OW / is concen-
trated in a single cohomological degree. This is equivalent to the condition that



166 LAM and TEMPLIER

ToriOT �X
.OY ;OV / D 0 for i > 0. It is easy to see that both V and Y are smooth

subvarieties of T �X , and hence Cohen–Macaulay.
The fiber of Y \ V under Y ! T �Z.LP / ! Z.LP / over a point q 2 Z.LP /

can be identified with the critical point set of f j��1.q/. Rietsch [107] showed that this
critical point set is 0-dimensional, and it follows that Y \ V is pure of dimension 1.
Since dimV D dimX and dimY D dimX C 1, it follows that the intersection Y \V

is proper.
If ToriOT �X

.OY ;OV / is nonzero, then it is nonzero after localizing to some
irreducible component of C of Y \ V . Applying [110, Corollary V.B.6], we obtain
ToriOT �X;C

.OY;C ;OV;C / D 0 for all i > 0, where OT �X;C (resp., OY;C , OV;C )

denotes the localization. Thus ToriOT �X
.OY ;OV /D 0 for i > 0, and we deduce that

LiF �.M0/D 0 for i > 0. Since � WX !Z.LP / is affine, the map � 0 is also affine,
so R� 0�.F

�.M0// is concentrated in a single degree.
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