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ABSTRACT Employing Reconfigurable Intelligent Surface (RIS) is an advanced strategy to enhance the
efficiency of wireless communication systems. However, the number and positions of the RISs elements
are still challenging and require a smart optimization framework. This paper aims to optimize the number
of RISs subject to the technical limitations of the average achievable data rate with consideration of
the practical overlapping between the associated multi-RISs in wireless communication systems. In this
regard, the Differential evolution optimizer (DEO) algorithm is created to minimize the number of RIS
devices to be installed. Accordingly, the number, positions, and phase shift matrix coefficients of RISs
are then jointly optimized using the intended DEO. Also, it is contrasted to several recent algorithms,
including Particle swarm optimization (PSO), Gradient-based optimizer (GBO), Growth optimizer (GO),
and Seahorse optimization (SHO). The outcomes from the simulation demonstrate the high efficiency of
the proposed DEO and GO in obtaining a 100% feasibility rate for finding the minimum number of RISs
under different threshold values of the achievable rates. PSO scores a comparable result of 99.09%, while
SHO and GBO attain poor rates of 66.36% and 53.94%, respectively. Nevertheless, the excellence of the
created DEO becomes evident through having the lowest average number of RISs when compared to the
other algorithms. Numerically, the DEO drives improvements by 5.13%, 15.68%, 30.58%, and 51.01%
compared to GO, PSO, SHO and GBO, respectively.

INDEX TERMS Reconfigurable intelligent surfaces, wireless communication, differential evolution
optimizer, achievable rate limitation.

. INTRODUCTION

HE GLOBAL employment of the 5th-Generation cel-

lular network (5G) wireless network continues, and
both the academic and industrial spheres have turned their
attention with great enthusiasm towards envisioning the post-
5G future, commonly referred to as Beyond 5G (B5G). The
spotlight is now on the prospective Sixth-generation cellular
networks (6G) wireless network, designed to fulfill even
more rigorous demands than its predecessor [1], [2], [3],

[4], [5], [6]. These demands encompass ultra-high data rates,
energy efficiency, seamless global coverage and connectiv-
ity, exceptional reliability, and minimal latency. However,
achieving these formidable requirements through current
technology trends tailored for flexible 5G services, such as
enhanced Mobile BroadBand (eMBB), Ultra Reliable Low
Latency Communications (URLLC), and massive Machine
Type Communications (mMTC), presents challenges that
warrant innovative solutions [4], [7], [8], [9]. One of
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these innovative solutions is using the RIS in wireless
communications [10].

Reconfigurable Intelligent Surface (RIS) is receiving
more and more attention as a ground-breaking innovation
for managing or modifying wireless communication chan-
nels [11], [12], [13]. With respect to the vision of 6G
of communications, it is seen to play a crucial part in
the realization of the smart radio environment (SRE) [14],
[15], [16], [17], [18]. According to the number of RISs
participating and the level of cooperation, a fascinating
classification of the linked work is provided in [19]. Even
in the face of obstacles or in situations when the received
power from the direct path is insufficient to establish a
reliable connection, RISs can help establish an Line-of-
Sight (LOS) link between the transmitter and the receiver
using arrays of antenna elements [20]. Through adeptly
controlling the reflection of signals by employing an array
of economically viable passive reflecting elements, RIS
exhibits the capability to modify wireless channels dynam-
ically, thus augmenting the performance of communication
systems [7], [21]. Consequently, the prospect emerges of
a novel amalgamation, where the hybrid wireless network
incorporates active and passive constituents enabled by RIS.
This hybridization holds significant promise, offering a
pathway to cost-effectively achieve substantial growth in
network capacity, ensuring sustainability in the future.

As the deployment of RIS gains momentum, the
optimization of RIS placement has become a crucial
endeavor [22], [23]. This involves strategically positioning
RIS elements to exploit their reflective properties and aug-
ment the wireless environment. The fundamental premise of
RIS placement optimization revolves around determining the
optimal locations for installing RIS elements within a given
environment. The goal is to manipulate signal propagation by
intelligently reflecting and refracting electromagnetic waves
to establish desired communication characteristics. By care-
fully placing RIS elements, wireless networks can potentially
overcome challenges posed by signal blockages, interference,
and coverage limitations [24]. To tackle this problem, several
optimization techniques have been developed, each of which
meets specific goals and conditions [25], [26]. One of these
algorithms is the Differential Evolution Optimizer which
constitutes a population-based optimization technique within
the algorithmic evolutionary class. After summarising the
pertinent literature, we move on to a brief discussion of
the research motivation, scope of the paper, and challenges
before presenting the main contributions.

A. RELATED WORK

Numerous studies have been conducted on the use of
optimization algorithms for RIS placement [27]. In the field
of RIS replacement optimization, the placement of RIS is
examined in [28], a common passive technique for locating
non cooperative Radio frequency (RF) transmitters stems
from the Time difference of arrival (TDOA) method is intro-
duced in [29]. However, this approach comes with significant
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challenges, including the need for precise synchronization
between sensors and high-throughput data transmission links.
One key consideration in TDOA systems is the configuration
of sensor placement. The farther apart the sensors are located,
the higher degree of accuracy the localization can be, but this
also increases the costs associated with synchronization and
data links. The authors introduced an innovative localization
system that leverages RIS to enhance accuracy while
reducing expenses. The research demonstrates that this new
setup, with the use of the beam-scanning capability of RIS
sensors, enhances the localization algorithm and surpasses
the performance of conventional methods. Furthermore, they
provide comparisons with the Cramér-Rao to validate the
efficiency of their proposed approach. The study depends
on two RISs only with some sensors that can increase the
overhead of the network.

The authors in [30] investigated the performance of
range estimation for a cellular user in a millimeter-wave
(mm-wave) network using Received signal strength indicator
(RSSI) measurements with the assistance of RISs. Initially,
they introduce an optimal strategy for deploying RISs to
minimize the combined probability of obstructing the user’s
connection to the base station (BS) and the connection to
the RIS. Subsequently, the authors presented an approach
to range estimation based on certain bounds, where the
BS calculates the user’s distance directly when there is a
LOS connection. In the event that the direct connection is
blocked, the BS estimates the user’s distance through the
reflected path facilitated by the RIS. In existing literature,
it is often recommended to position the RIS in close
proximity to the BS to enhance path gain. However, their
research challenges this notion by revealing that, in scenarios
involving obstructions, having the RIS and the BS in close
proximity is not the optimal configuration. But they depend
on only one RIS in their work.

In [31], the authors presented RIS as a solution to
a specific problem and explored localization algorithms
based on near-field (NF) resived signal strength (RSS). To
provide more details, they utilize a single RIS to create
simulated line-of-sight (SLOS) links between an anchor
node (AN) and an unidentified node (UN). This is done to
address scenarios where a direct line-of-sight path is not
available. Also, the authors introduced RIS phase adjustment
strategies to maximize the RSS at the UN. Building on this
foundation, they establish the correlation between azimuth
and phase parameters, leading to precise estimation of
the position of an unidentified node (UN) through the
application of weighted least squares (WLS) and alternate
iteration techniques. Additionally, they tackle the challenge
of dealing with both LOS and SLOS paths simultaneously
by modifying the reflection coefficients. In conclusion, they
suggest a technique to ascertain whether the unidentified
node is positioned in the far-field or near-field of the RIS
sub-segments, with the objective of minimizing positioning
errors. In various applications of location-based Internet
of Things (IoT) services, the simultaneous and accurate
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localization of numerous energy-constrained devices is a
critical requirement.

The authors in [32] addressed this challenge and proposed
a positioning method for multiple IoT devices assisted
by RIS. In this method, the signals transmitted by users
propagate to the BS via both a straightforward path and
a reflection path through the RIS. The key factor in their
triangulation-based localization approach is the estimation
of the propagation delay difference between these two
paths, which is accomplished using the cross-correlation
function of received signals. They aimed to use one RIS
to optimize a BS with multiple antennas to decrease the
total transmitted power of the IoT devices, taking advantage
of the orthogonality of transmitted signals. In scenarios
with orthogonal signals, utilizing the semidefinite relaxation
(SDR) method, they recast the non-convex optimization issue
for the RIS into a convex problem. In cases involving non-
orthogonal signals, they utilize zero-forcing (ZF) combining
vectors at the BS to mitigate interference from multiple users.
They employ the block coordinate descent (BCD) algorithm
to separate the optimization of the combining vectors and
the RIS phases.

In [33], a novel joint RIS location and passive beamform-
ing (J-LPB) optimization approach is presented to maximize
the secrecy rate while adhering to the RIS placement
restriction and the requirement that the modulus of the
reflecting coefficient at each RIS unit not exceed 1. They
specifically examine the RIS’s ideal position and conclude
that the sum of the source-to-RIS and RIS-to-destination
distances should be kept to a minimum. One of the articles
addressing and delving into the optimization challenges for
networks assisted by RISs is referenced as [34]. In that
research, the authors introduced novel criteria for selecting
optimal locations of RISs in wireless networks, enhancing
Signal-to-Noise Ratio (SNR) based on a path-loss power
model for outdoor communication and an exponential path-
loss model for indoor communication. The optimization
problem was composed and figured out under the assumption
that the coefficients of the channel for multiple RISs
were independent and identically distributed (i.i.d.) Rayleigh
random variables (RVs).

On the other hand, another significant difficulty in real-
world RIS-assisted systems [35], [36], [37], [38], [39], [40],
[41], [42] is optimizing the RIS phase shifts. To be able
to increase the channel capacity, the RIS setup of point-
to-point multiple-input multiple-output (MIMO) systems
has recently been improved in [35]. In [43] and [44],
the focus was on investigating the URLLC system. This
system featured a dedicated RIS assisting the Base Station
(BS) in transmitting short packets within a Frequency
Blockage Limited (Finite blocklength (FBL)) scenario. The
study also explored a Channel blocklength (CBL) allocation
and the RIS reflecting phase-shift Operating Point (OP),
with user grouping being addressed in [43]. The user
grouping challenge presented in [43] was resolved through
the application of a greedy algorithm, and the proposed
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Operating Points (OPs) were tackled using a semi-definite
relaxation technique. To optimize the total achievable rate
in the infinite block length regime, considering Shannon
capacity, [45] investigated a Multiple-Input Single-Output
(MISO) system aided by RISs. This involved adjusting the
Base Station (BS) transmit beamforming and the passive
beamforming at the RIS using Deep Deterministic Policy
Gradients (Deep deterministic policy gradient (DDPQG)).

The study in [46] compares half-duplex and full-duplex
operation modes for a MISO system with RIS support.
Additionally, in cooperative networks, research was con-
ducted on the joint optimization of relay selection and RIS
reflection coefficients [47]. For the effective implementation
of the metaverse in 6G networks, authors in [48] explored the
complementarity of digital twins (DTs) notion. To be more
precise, they examine how a DT-assisted RIS-based network
design can provide significant advancements in achieving the
network latency and dependability required for 6G metaverse
realization. A downlink communication system aided by
multiple aerial RISs (ARISs) and placed on RISs that is
energy-efficient is examined in [49]. The UEs and BS can
communicate more easily because of the implementation of
several ARISs. After that, the joint optimization issue of
the multiple ARISs-assisted communication system’s power
regulation, phase shift, and ARIS reflecting elements on/off
states is developed.

A blockchain-based architecture for information sharing
and storage that permits safe knowledge management in
intelligent IoT was presented by the authors in [50]. The
on-chain encrypted knowledge storage, and an enhanced
Delegated Proof of Stake (DPoS) consensus mechanism are
two components of their first permissioned blockchain-based
decentralized and trustworthy knowledge storage scheme. A
unique wirelessly powered edge intelligence (WPEG) archi-
tecture was presented in [51], with the goal of using energy
harvesting (EH) techniques to produce edge intelligence that
is stable, reliable, and sustainable. To protect the peer-to-
peer (P2P) energy and knowledge sharing in our system,
they first created a permissioned edge blockchain. By taking
into account the radiative characteristics of RIS, the authors
of [52] derived a general expression of the ergodic capacity
for RIS-aided communication systems, where both the LOS
and NLOS links are considered. This gives a new degree
of freedom in optimizing RIS-aided wireless channels. We
investigate the RIS deployment strategy, including RIS
rotation and placement optimizations, based on the channel
model. In [53], the authors suggested a conjugate gradient
and particle swarm optimization (CG-PSO) technique to
jointly optimize the RIS phase shifts and Aerial base station
(ABS) elevations. The Conjugate gradient (CG) under the
fixed ABS altitude and variable transmit power is used to
calculate an appropriate RIS phase shift. In the end, they
used PSO to determine the ideal ABS altitude, which leads
to an enhanced sum rate under the ideal RIS phase shift.

Using numerous RISs to help wireless communication
systems, the authors of [54] created a multiple access

VOLUME 5, 2024



‘IEEES IEEE Open Journal of the
Comdoc communications Society

strategy for next-generation multiple access (NGMA). They
initially looked at the interaction between the efficiency
and complexity of the RIS phase setup and the design
of NGMA schemes, taking into account the real-world
scenario of stationary users working alongside mobile ones.
They then created a medium access control (MAC) protocol
that incorporates RISs and suggested a multiple access
framework for RIS-assisted communication systems based
on this framework. Furthermore, a thorough performance
study of the RIS-assisted MAC protocol that was created
is provided. With a focus on the MAC schemes, the
authors of [55] provided four common RIS-aided multi-
user situations. Beyond that, they presented and discussed
MAC designs for RIS-assisted multi-user communications
systems that are centralized, distributed, and hybrid. In
conclusion, they discussed about certain RIS-related MAC
design problems, viewpoints, and possible uses. In [56], the
authors suggested a RIS-assisted transmission technique to
solve the coverage and connection performance issues of the
aerial-terrestrial communication system. Specifically, they
developed an adaptive RIS-assisted transmission protocol,
wherein within a frame, the data transfer, transmission
strategy, and channel estimate are all conducted separately.
Authors examined RIS-assisted MAC layer communications
in [57] and suggested a RIS-assisted MAC architecture.
Pre-negotiation and the multidimension reservation (MDR)
technique are specifically used to accomplish RIS-assisted
transmissions. They examined RIS-assisted single-channel
multiuser (SCMU) communications in light of this. A single
user can reserve the RIS as a whole to facilitate numerous
data transmissions, resulting in very efficient RIS-assisted
connections at the user’s location.

Recent research in [58] examined the use of distributed
proximal policy optimization (PPO) for active/passive beam-
forming at both the Base Station (BS) and RIS in a
multiuser scenario. It is important to highlight that the
problem addressed in this research was defined within the
infinite CBL regime based on the Shannon rate formula, and
the primary focus of the discussion did not center around
optimizing the CBL. The authors in [41] introduced an
innovative approach for grouping elements in centralized
RIS, where each group comprises a collection of adjacent
RIS elements that share the same reflection coefficient.
Using this grouping technique, they recommend an efficient
transmission protocol in which it is only necessary to
approximate the combined channel for each group. This
approach considerably lowers the overhead of training. The
authors in [59] aim to reduce the overall transmit power by
simultaneously optimizing the transmit beamforming vectors
at the BS and the reflection coefficient vector at the RIS
using a single RIS. In this regard, an efficient algorithm based
on second-order cone programming (SOCP) and alternating
direction method of multipliers (ADMM) is introduced to
arrive at a locally ideal outcome.

Additionally, to mitigate computational complexity, the
authors presented a lower-complexity suboptimal algorithm
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based on ZF principles. A practical scenario is investigated
in [60] where the BS only requires the large-scale fading
gain, and the finite-sized RIS can achieve a limited number of
phase shifts. The authors put forward a hybrid beamforming
approach to optimize the sum rate. This approach employs
continuous digital beamforming at the BS and discrete
analog beamforming using the RIS. They develop an iterative
algorithm for beamforming and provide theoretical analysis
to assess how the RIS size impacts the achievable data rate.
An innovative system involving multiple RIS with location
information assistance is introduced in [61]. The assumption
of imperfect user location information and proceeding to
approximate the effective angles from the RIS to the
users is addressed. These estimated angles are subsequently
employed in the design of the transmit beam and the
configuration of the RIS beam. The authors in [62] suggested
activating an RIS at the cell boundary of several cells by
jointly optimizing the active precoding matrices at the BSs
and the phase shifts at the RIS under the power and unit
modulus constraints placed on each BS to maximize the
weighted sum rate (WSR) of all users. By working together
to design the phase shifts and power distribution, the authors
of [63] optimized the energy efficiency of a RIS-assisted
downlink multi-user system.

The authors of [64] suggested a hybrid beamforming
approach to increase the coverage range in the terahertz
frequency spectrum for multi-hop RIS-assisted communica-
tion systems. The authors of [65] examined how phase noise
affected the output power of RIS-assisted communication
systems using generalized fading channels. Additionally, the
authors of [66] showed that centralized RIS deployments
perform worse than uniformly dispersed deployments of the
same magnitude. Additionally, [67] investigated the single-
RIS and multi-RIS deployment strategies for RIS-aided relay
systems and demonstrated that the multi-RIS deployment
could achieve a higher system capacity. However, the study
in [68] showed that centralized deployment is superior to
the spread one by describing the capacity.

The algorithms DEO, PSO, GBO, SHO, and GO have
been subjected to a comparative evaluation in order to
address the suggested model. Table 1 shows the algorithms’
wide applicability. Further refinements have been introduced
to facilitate the adoption of these techniques. The fitness
function assesses how well a solution performs in reaching
the optimization goal. The number of RIS units to be
placed and their spatial distribution are the control variables
in the context of the model for the RIS-assisted wireless
communication system that is being presented. These control
variables come in two varieties: the continuous placement
of these units and the integer-based count of RIS units.
The count of RIS units is handled as a continuous range
and rounded to the closest integer since the compared
algorithms usually operate within a continuous framework.
Furthermore, in this study, adherence to the restrictions is
ensured by substituting a randomly picked number within
the practical boundaries of the variable when a control
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TABLE 1. Adopted algorithms, main features and successful applications.

Algorithm Ref. Main features Main features

. . . . Wireless communication [73], cyberattack of
DEO fundamentally mirrors the course of biological evolution by . .
. . K . cyber-physical power systems [74], allocation
gradually advancing a population of potential solutions throughout ; . . L
; . X of electric vehicles charging station in
several iterations. A starting group of randomly produced people, . . .
R . . L electrical networks [75], engineering
each of which indicates a prospective solution to the optimization . . .
. . . . design [76], unmanned aerial vehicle (UAV)
Storn and issue, forms the basis of the method. It is often represented in a . K . .
. . . . . stocktaking task-planning for industrial
DEO Price [69] high-dimensional search space as vectors [70], [71]. DEO’s efficiency . . .
. i K . O warehouses [77], reactive power dispatch in
(1995) in searching huge, complicated solution areas, which includes ones
. . . . . L power systems [78], parameter
with nondifferentiable, non-linear, or stochastic objective tasks, forms . . .
. X . . estimation [79] and electromagnetic
one of its main benefits. Due to its randomized character and the . .
. . . . problems [80] are just a few of the areas in
varied explorations made possible by mutations and crossover i .
L . ; K K which DEO has been effectively used to solve
procedures, it is also resistant to being caught in local optima [72]. . L
different optimization challenges.

PSO mimics the collective behavior of organisms where individuals
adjust their movements based on their own experiences and the

experiences of their neighbors to navigate through a solution space

Kennedy . . . X . i Load Frequency Control [83]; Reflux Power
efficiently. While each particle’s trajectory is shaped by its own . . . K
and . . o . Optimization in Triple Active Bridge [84];
PSO locally optimal position, it is also influenced by the global best-known . . .
Eberhart, . o . . . maximum power point tracking of fuel
positions within the search space, which evolve as superior solutions D
(1995) [81] cells [85]; Power system Optimization [86].

are discovered by other particles. This collective movement of
particles is designed to guide the swarm towards optimal
solutions [82].

GBO draws inspiration from Newton’s gradient-based methodology. It

integrates two key operators. First, the gradient search rule leverages Distributed generations integration in
L Ahmadi gradient-based techniques to intensify exploration and hasten electrical feeders [89]; Blockchain-assisted
. Ahmadi-
" convergence toward optimal positions. Second, the local escaping smart home management [90]; Automatic
anfar et
GBO L 187] operator empowers GBO to navigate away from local optima. The voltage regulator control [91]; Solar-assisted
al.
(2020) algorithm’s efficacy was assessed in [87] on 28 mathematical test combined heating, cooling and power
functions and six engineering problems. Results from both phases systems [92]; Energy losses
underscored GBO’s robust performance, demonstrating its effective minimization [93].
mitigation of local optima across various scenarios [88].
The SHO is a metaheuristic inspired by sea horses’ movement,
predation, and breeding behaviors. In the first two stages, SHO . .
- . . e DC motor control [95]; DC microgrid
mimics the spiral floating and drifting movement patterns and the i . . i
. . . X K islanding detection [96]; Tuning parameter
probabilistic predation mechanisms of sea horses. The third stage . . .
S. Zhao et X L. . power system stabilizer [97]; Engineering
leverages the unique male pregnancy characteristic to breed offspring . . .
SHO al. [94] . . ; ; . design problems including welded beam
while maintaining the beneficial traits of the male parent, enhancing . . i . . .
(2023) design, reducer design, industrial refrigeration

population diversity. In [94], SHO’s performance is evaluated on 23 . .
. . . system, vessel design, three-bar truss design,
well-known functions, CEC2014 benchmark functions, and five .
. . L . and cantilever beam problem [98].
real-world engineering problems, showing its high effectiveness and

adaptability compared to six state-of-the-art metaheuristic algorithms.

The design of the GO algorithm is primarily inspired by the human

capacity for reflection and learning in socially evolving activities. Just . . .
o . . . Gesture classification and recognition for
as individuals grow by learning from others and reflecting on their . . . .
R . . visually impaired persons [100]; Intrusion
Q. Zhang own shortcomings to improve, the GO approach embodies these . .
Lo i X detection systems for IoT [101]; Photovoltaic
GO et al. [99] principles. In reference [99], the GO algorithm was tested against .
K . . L cells and modules modelling [102]; soft open
(2023) various mathematical benchmarks, demonstrating significant . . o
point allocations in distribution

advantages over other comparative strategies. It surpassed alternative
networks [103].

metaheuristic methods in terms of solution effectiveness and avoiding

local optima.

variable is violated. Moreover, penalty terms have been restrictions are rewarded with high fitness ratings, reducing
used to include dependent variable limitations in the fitness the possibility that unworkable solutions will be carried over
function. Consequently, solutions failing to meet one or more to further rounds.
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B. RESEARCH MOTIVATION

Due to the RIS’s location, previous studies have only used
it to extend coverage; however, little research has been done
on how to deploy the RIS to further disperse cell coverage.
Furthermore, most research efforts in the literature focus on
solving traditional wireless communication problems under
the new assumption of an assisted metasurface solution,
ignoring the RIS domain. Finally, there hasn’t been enough
research done on how to deploy RIS as effectively as possible
in a situation where there are several users.

Our study advances the optimization of RIS deployment
in wireless communication systems through several novel
contributions. Firstly, we extend beyond optimizing the
number of RISs by focusing on strategic deployment strate-
gies aimed at enhancing coverage dispersion, particularly in
multi-user scenarios, addressing a notable gap in the existing
literature. Secondly, we introduce a facility placement
problem formulation to systematically determine optimal RIS
deployment locations, offering a structured approach that has
not been extensively explored before. Thirdly, our proposed
robust optimization approach jointly optimizes phase shift
coefficients, number, and locations of RISs to minimize the
total number revealed to the average permitted data rate, thus
enhancing deployment robustness in varying communication
environments. Finally, through extensive experimental vali-
dation in a multiRIS-assisted wireless communication system
set up, we empirically demonstrate the practical appli-
cability and performance improvements of our approach.
Collectively, these contributions distinguish our work and
significantly advance the understanding and implementation
of RIS-assisted wireless communication systems.

C. SCOPE AND RESEARCH QUESTION

In the rapidly evolving landscape of wireless communication
systems, the proliferation of IoT devices necessitates robust
solutions to overcome challenges posed by interference,
signal strength variations, and complex propagation envi-
ronments. RISs emerge as a promising technology to
address these challenges by offering dynamic control over
signal propagation, thereby enhancing connectivity and
communication quality. However, the optimal deployment
of RISs remains a complex optimization problem due to
considerations such as the number and positions of RIS
elements, technical limitations on achievable data rates, and
practical constraints in real-world deployment scenarios. This
paper seeks to bridge this gap by introducing a sophisticated
optimization framework aimed at determining the optimal
placement of RISs in wireless communication systems. By
strategically optimizing the number, locations, and phase
shift coefficients of RISs, our study aims to maximize
communication rates while addressing practical deployment
constraints, thus advancing the field of RIS-assisted wireless
communication technologies. Through this research, we aim
to provide insights into the importance of RIS deployment
optimization and contribute to the development of more
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efficient and reliable wireless communication systems for
IoT applications.

D. CHALLENGES AND LIMITATIONS

While our research aims to advance the understanding and
implementation of RISs in wireless communication systems,
it is essential to acknowledge the challenges and limitations
inherent in the proposed work. One significant challenge
lies in the complexity of optimizing RIS deployment, which
involves determining the optimal number, locations, and
phase shift coefficients of RIS elements. This optimization
process entails intricate trade-offs between communication
performance metrics such as rate, coverage, and energy
efficiency, further compounded by real-world constraints and
system requirements. Additionally, the scalability of our
proposed optimization framework may pose challenges in
adapting to diverse deployment scenarios and accommodat-
ing varying user densities, environmental conditions, and
system configurations. Furthermore, while our study con-
tributes valuable insights into RIS deployment optimization,
it is important to recognize that real-world deployment may
encounter practical challenges and limitations such as hard-
ware constraints, regulatory considerations, and deployment
costs. Despite these challenges, our research serves as a
crucial step towards unlocking the potential of RISs in
enhancing wireless communication systems, paving the way
for future advancements in this domain.

E. MAIN CONTRIBUTION

This study investigates the RIS deployment position
optimization for wireless communication systems supported
by several RISs and supporting numerous users in order to
close this gap. We define a facility placement problem as an
RIS deployment problem, which helps us determine the best
location for RIS deployment and maximizes the overall data
flow inside the wireless network. Additionally, we examine
the impact of different parameters on communications
enabled by RIS. In addition, a new robust approach is
suggested to jointly determine the phase shift coefficients,
number, and locations of RISs with the goal of minimizing
the total number of RISs exposed to the average permitted
data rate. Using a multiRIS-assisted wireless communication
system as a reference, the effectiveness of the suggested
method is confirmed.

The main contributions of this paper are as follows:

1) Develop DEO algorithm encompassing distinct types
of integer-based count of RIS units and their contin-
uous positioning. This proposed methodology seeks
to achieve the optimal quantity, locations, and phase
shift coefficients of RISs to maximize data rates while
minimizing the number of RIS units.

2) Demonstrate DEO’s superiority over a number of
contemporary optimization algorithms, including SHO,
PSO, GBO, and GO, in terms of determining the
fewest RISs that may be utilized in the network.
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TABLE 2. List of the main symbols.

Symbol Definition
K Number of single-antenna User Equipments
N Number of RISs
O, CM*XM matrix of phase shift coefficients for the RIS,
0., CMx*1 yector of phase shift coefficients for the RIS,
hy o, € CM X1 the channel vector from RIS 7 to the AP
hrp, uy, € CM*1 the channel vector from UE k to RIS n
Ny, € C'*1 the channel from UE k to the AP
Ly, The path-loss between RIS n and the AP
€ The Rician factor
an € CMX1 The array response of RIS n
¢n and v, | The azimuth angle and the elevation angle of departure for the link between RIS n and the AP
dy ., The direct components, and their elements are selected from CN(0, 1)
90;1 and w; The azimuth and elevation angles for the link between RIS n and User Equipment (UE) k&
Lp The path-loss between UE k and the AP
YAP The received signal at the AP
Pk The power of transmitted symbol
{zn,yn} The location of RIS n
L The size length of each RIS
Npin The minimum number of RISs
Nmax The maximum number of RISs
Rd A vector containing arbitrary continuous numbers that range from 0 to 1.
NDg The population size
Dim The total number of variables for every one of the solutions
fit fitness function
A1 and Ao Penalty factors

These optimization algorithms have been utilized for
similar optimization problems in previous studies
(such as DEO [28], [104], PSO [105], [106], and
GBO [107], [108]).

3) Use a variety of performance metrics, such as mini-
mum, maximum, average, and feasibility rate of the
number of RISs, to compare DEO’s effectiveness to
that of other optimization methods. This approach
comprehensively addresses real-world system con-
straints, including signal overlap and user distribution.

4) Propose a sophisticated model for a wireless com-
munication system leveraging RIS. This model
creates optimized reflecting pathways that significantly
enhance the received power at user equipment, partic-
ularly in multi-user environments.

The remaining sections of the paper are structured as
follows: Section II outlines the system model. Section III
introduces the development of (DEO) for the optimal
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placement of RIS elements. In Section IV, the simulation
setup and outcomes from the simulation are presented to
validate the performance of the proposed algorithm. Finally,
Section V offers conclusions drawn from the study.
Notation: 'We symbolize column vectors in boldface
lowercase as x and matrices in boldface uppercase as X.
For each X, the corresponding pseudo-inverse, transpose,
conjugate transpose (Hermitian), and inverse are represented
by the symbols X T, XT, XH and X!, respectively. The trace
function of a matrix X is denoted as tr(X). The Euclidean
norm is represented by |.||. x ~ CN'(u, ¢) is the notation
for a circularly symmetric complex Gaussian random vector
that is p for the mean and ¢ for the covariance matrix.
The entire set of complex numbers is symbolized by C. In
this notation, C¥N*! and CN*M refer to the generalizations
for vectors and matrices, respectively. The identity matrix
of size M x M is symbolized as Ij;. Besides, for ease of
reference, the main symbols used in this work are listed in
Table 2 and the list of abbreviations are listed in Table 3.
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TABLE 3. List of abbreviations.

RIS Reconfigurable Intelligent Surface UN unidentified node

DEO Differential Evolution Optimizer WLS weighted least squares

PSO Particle Swarm Optimization IoT Internet of Things

GBO Gradient-Based Optimizer SDR semidefinite relaxation

GO Growth Optimizer ZF zero-forcing

SHO Seahorse optimization BCD block coordinate descent

B5G Beyond 5G J-LPB | joint RIS location and passive beamforming
¢eMBB Enhanced Mobile Broadband SNR Signal-to Noise Ratio
URLLC Ultra Reliable Low Latency Communications iid. Independent and identically distributed
mMTC Massive Machine Type Communications FBL finite blocklength

SRE Smart radio environment CBL channel blocklength

LOS Line-of-Sight (0)3 Operating Point

RF Radio frequency MISO Multiple-Input Single-Output
TDOA Time difference of arrival DDPG Deep Deterministic Policy Gradients
CRLB Cramer-Rao lower bound * PPO proximal policy optimization

mm-wave millimeter-wave SOCP second-order cone programming

RSSI Received signal strength indicator ADMM alternating direction method of multipliers

BS base station WSR weighted sum rate

NF near-field UE user equipment

RSS Received signal strength AP Access Point
SLOS simulated line-of-sight Mv mutant vectors

AN anchor node fit fitness function

ceiling RISs

UEk

FIGURE 1. System model.

Il. SYSTEM MODEL

Our proposed system introduces a multi-RIS-aided wireless
communication setup designed for indoor environments
such as stadiums and large halls, as depicted in Figure 1.
In this configuration, K single-antenna User Equipments
(UEs) establish connections with a single-antenna Access
Point (AP) in distinct time slots, facilitated by N RISs
of uniform size. Each RIS, mounted on the ceiling, com-
prises a homogeneous planar array featuring M reflecting
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elements. The RISs are strategically positioned within the
indoor space to optimize signal propagation and coverage,
leveraging their ability to dynamically adjust the phase of
incident electromagnetic waves. The proposed setup aims
to enhance spectral efficiency and mitigate multipath fading
and interference typically encountered in indoor wireless
environments. By utilizing RISs as passive reflectors, the
system enables targeted beamforming and signal steering,
improving overall system performance and user experience.
The deployment of RISs in this manner provides a cost-
effective solution for improving wireless communication in
large indoor venues, addressing coverage challenges, and
optimizing network capacity.

A. COMMUNICATION CHANNEL MODEL

Let ®, = diag{efg"vl,e/"’"vz,...,e’g'lvM} is denoted as the
matrix of phase shift coefficients for the RIS-n, where 8, =
Bn,1, 602, - .,Gn,M)T is used to represent the phase shift
coefficient of RIS-n. Along with that, we also designate
hy,, € CMx1 a5 the channel vector from RIS 7 to the AP,
hy, 4, € CM*1 as the channel vector from UE k to RIS n,
and hyp 4, € C*! as the channel from UE k to the AP. Both
UE-RIS and RIS-AP lines employ the Rician fading channel
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model. Consequently, hj, ., is written as [28]

€ 1
hy.r, = Lp,p, (,/ man((pm Yn) + m%,r,,) @

where L ,, represents the path-loss between RIS n and
the AP, and € represents the Rician factor. The array
response of RIS n is indicated by a, € CMx1 " where ©n
denotes the azimuth angle and 1, signifies the elevation
angle of departure for the link between RIS n and the
AP. d, ,, signifies the direct components, and their ele-
ments are selected from CN(0, 1). Similarly, A,, ,, appears
as [28]

[ € [ 1
hrn,uk - Lr,,,uk< man((/’;,, lﬂ,/l) + mdrﬂ,uk> (2)

where ¢, and v, represent the azimuth and elevation angles,
respectively, for the link between RIS n and User Equipment
(UE) k. The direct channel between user k and the Access
Point (AP) is symbolized as

hb,uk = Lb,ukdb,uk (3)

where the path-loss between UE k and the AP is denoted
by Ly, . The received signal at the AP is expressed as

yap = (B, O,y + i )5+ 1 (4)

where x is the transmitted symbol with power py,
hg{ . ©,h,, 4, is the effective channel including RIS phase
shift and Ay, is the channel gain of the direct path, n
represents the noise with CN/(0, 02). The received SNR is
given by

N H
SNR = (pk”b’“khb’”k + Zn:] tb,rnhb,r,, @nhr,,,uk|2> “

o2

The achievable sum rate of user k is shown in (6), shown
at the bottom of the page.
where the parameters #,, and 1, satisfy
0 if the link between RIS n and

AP is blocked @)
1 otherwise
0 if the link between RIS n and

AP is blocked ®)
1 otherwise

r, =

tb,uk =

B. PROBLEM FORMULATION

In this paper, we introduce a method for concurrently
optimizing the quantity, distribution, and RIS reflection
patterns in an RIS-aided wireless communication system.
The resulting parameters are assessed with the aim of

showing the effectiveness of the proposed approach. The
suggested method reduces the quantity of RIS subject to
the feasible rate under certain system restrictions, which is
represented as

minimize N ©))
N, {xn,yn}.0n
subject to
1 K
rOILE (10a)
k=1
Xmin < Xn =< Xmax, Yn € {1:N} (10b)
Ymin < Yn = Ymax, Yn € {1:N} (10c¢)
min{|x, — x|, [yn — yel} = L, Vn, ¢ € {1:N}  (10d)
Nmin <N=< Nmax (106)

where {x,, y,} is the location of RIS n and L denote the
size length of each RIS. The constrain (10a) ensures that the
achievable rate for all users is larger than ¢, (10b) and (10c)
illustrate the location restrictions of the RISs. We use (10d)
to ensure that RISs are not overlapping, and (10e) ensures
that the number of RISs is between [Nuin, Nmax]-

lll. DEVELOPED DEO FOR OPTIMAL PLACEMENT OF
RIS ELEMENTS

A. DIFFERENTIAL EVOLUTION OPTIMIZER

An evolutionary algorithm known as the DEO is used
to address optimization issues, especially those that entail
optimizing a function in a continuous space. When dealing
with issues where the search space is high-dimensional and
the goal function is smooth and continuous, DEO works
well DEO is especially well-liked in a variety of domains,
including as computational biology, machine learning, engi-
neering design, and finance, where optimization issues are
common and usually display the aforementioned traits.

The population is gradually improved by DEO by com-
bining selection, crossover, and mutation operators. Thus,
with each generation that follows, DEO generates new
potential solutions. The process of mutation creates trial solu-
tions by upsetting the individuals based on the differences
between randomly selected population participants. Using the
crossover process, the trial participants are paired with the
outcomes of the trial solutions to produce offspring. In order
to determine which members of the population are retained
based on fitness, the selection process gives preference to
solutions that perform better in terms of the optimization
goal.

Ry = E{ log2(1 +

4194

pk|tb,ukhb,uk + nyzl tb,r,,hg{rn enhrn,uk|2
= ©)

VOLUME 5, 2024



,[EEES IEEE Open Journal of the
Comdoc communications Society

B. ADOPTION OF THE PROPOSED DEO FOR OPTIMAL
PLACEMENT OF RIS ELEMENTS

The objective function in the suggested optimization frame-
work, which is the minimization of the number of RISs
with N, x, and y as the design variables, is represented
by Equation (9). The variables in question are subject
to constraints, as indicated by Equations (10b), (10c),
and (10e), correspondingly. In contrast, restrictions on
inequality resulting from independent variables are managed
by Equation (10d) to guarantee that RISs do not overlap
and Constraint (10a) to guarantee that the achievable rate for
every user is greater than. To solve the given model using
the suggested DEO, the following improvements should be
put into practice:

1) INITIALIZATION

In DEO, the control variables per population are shown as
floating values. To be able to create a population P, they
are initially assigned by randomization individuals inside
their usage-appropriate computational range. The initial
generation might initialize each population member (Ds) as
follows:

Ds;2(0) = Ds™™ + Rd x (Ds?** — Ds?"®)i = 1 : NDy&z = 1 : Dim
(11

Rd represents a vector with Dim dimension containing
arbitrary continuous numbers that range from 0 to 1. NDy
refers to the population size while Dim denotes the total
number of variables for every one of the solutions, and the
superscripts min and max indicate the permissible boundaries
of the designed system model regarding each variable.

2) MUTATION

At each iteration (/) following population initialization, the
mutation phase produces mutant vectors (Ms). The suggested
mutation technique chooses a random member and interferes
with its solution vector with a variance of two additional
vectors chosen at random as follows:

MS; (It + 1) = Ds,, .(I1)
+ F X (Dsy, . (It) — Dsy, ,(I1))

i=1:NDs&z=1:Dim  (12)

where ri, rp, and r3 are three distinct numbers selected at
random within the set [1, ND;]. The scaling factor, or F, is a
real positive value that regulates how quickly the population
changes. F typically has a value in the [0.4 — 1] range.

3) CROSSOVER

The crossover phase follows to be able to broaden the
population’s variety. By switching out the elements of the
mutant (Ms) and target (Ds) vectors, it produces trial vectors
(Us) as follows:

Ms; (It + 1), if Rd* < C,

Ds; . (It), else (13)

Us; (It + 1) = {
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where C,, which is often chosen to fall between [0, 1],
represents the crossover factor. Binomial crossover is the
type of crossover method used here.

4) FITNESS EVALUATION

A solution’s performance with the optimization target is
quantified by the fitness function. At first, in the presented
model of the RIS-aided wireless communication system,
the control variables are the number of RIS to be installed
and their distributed positions. Such control variables are
two types where the number of RIS is an integer while
the installed positions are continuous. The DEO ordinarily
operates in the continuous framework, so the number of RIS
is treated in a continuous range, and then it is rounded to the
nearest integer. Second, a randomly selected number inside
the control variable’s practicable limits is employed in this
research to substitute the violated control variable. Thus, the
constraints represented in Equations (10c), (10d) and (10e)
are guaranteed.

Additionally, dependent variable restrictions represented
in Equations (10b) and (10e) have been incorporated into
the fitness function under consideration via penalty terms.
The fitness function (fit) is therefore generalized and stated
as follows:

N N
fit=N+1AGH+ Y Y 12AGK,

n=1 c=1

(14)

where A1 and A, are penalty factors, AGH and AGK are
defined as shown in equations (15) and (16).

. l K
AGH = {O’ N if K2k=1Rk2Q(15)
10 — % > r1 Ril, else
0, if min{|x, — x|, lyn —yel} = L
AGK, . = , 6
e { |L—mln{|‘x”l_x0|s |yn_yc|}|, else( )

Based on that model, impractical solutions, that fail to
achieve one or more constraints, will have a high fitness
score and so there is a slim possibility that the impractical
solutions will be passed on to the following iteration.

5) SELECTION

The process of selection contrasts the fitness scores of the
original member and its associated newly generated member
as shown in equation (17).

Usit+ 1) if ¥ <1

Ds;(It) else a7

Dsi(It+1) = {
where ¥ = fit(Us;(It + 1)) and n = fit(Ds;(It)). As a
result, the population either experiences an improvement
in the values of the fitness function or stays the same.
Once the maximum number of iterations has been achieved,
these phases are then repeated throughout generations. We
summarize the developed DEO for optimal placement of RIS
elements in the Appendix.
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TABLE 4. Parameter settings.

Parameter Value
The coordinates of the AP [5, -10, 1] m

Number of RIS elements (M) 100

Length of each RIS element (L) 0.3 m
Rician factor (¢) 10

Transmitted power of each user (pg) 1 mW
SNR (dB) -23

Minimum number of RISs (Nyin) 1

Maximum number of RISs (Nypyqaz) 10
Number of single-antenna users (K) 20

IV. NUMERICAL RESULTS

To assess the DEO algorithm’s superiority over the other
algorithms, we run numerous simulations in this section. All
these algorithms were created to be able to jointly optimize
the quantity and location of RISs. Envision a wireless
communication system with multiple RISs, where users are
randomly distributed within a square defined by vertices
[0, O, 0], [0, 10, O], [10, 10, O], and [10, 10, O] meters. The
RISs are positioned within another square defined by vertices
[0, O, 10], [0, 10, 10], [10, O, 10], and [10, 10, 10] meters.
The wall’s location was defined by four vertices at [0, 0, 0],
[0, 0, 2.25], [10, O, 2.25], and [10, O, O] m (c.f. Figure 1).
The path-loss is modeling as PL = PLy — 108 log(%),
where PLy = 20dB is the path-loss at the reference distance
do = 1lm; d represents the distance between the transmitter
and the receiver, and the path-loss exponents for the UE-
RIS-AP link and the UE-AP link are assigned as § = 2.2
and B = 4, respectively.

A. SIMULATION SETUP

In this subsection, we describe the simulation setup used
to evaluate the performance of the proposed optimization
framework for RIS deployment in wireless communication
systems. The simulations were conducted with the following
parameters and methodologies:

1) Software Tool and Platform: We utilized MATLAB
for conducting the simulations. This software tool
provides robust capabilities for modeling wireless com-
munication scenarios and optimizing RIS deployment
strategies.

2) Simulation Environment: The simulation environment
was configured to mimic realistic wireless communi-
cation scenarios, taking into account factors such as
signal propagation, interference, and user distribution.
We considered an indoor environment to capture
diverse deployment scenarios.

3) Parameters: The parameters used in the simula-
tions shown in Table 4. These parameters were
carefully selected to represent typical real-world
wireless communication scenarios and enable a
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comprehensive evaluation of the proposed optimization
framework.

4) Methodology: The simulation methodology involved
the following steps:

a) Initialization: Setting up the simulation environ-
ment and configuring the parameters mentioned
above.

b) Optimization Framework  Implementation:
Implementing the proposed optimization
framework for determining the optimal number,
locations, and phase shift coefficients of RISs.

c) Performance  Evaluation:  Evaluating the
performance of the optimized RIS deployment in
terms of communication rate, energy efficiency,
and system robustness.

d) Comparison: Comparing the performance of the
proposed optimization framework with existing
algorithms and methodologies.

5) Assumptions and Constraints: In conducting our
research on optimizing RISs deployment in wireless
communication systems, we make several assumptions
and acknowledge certain constraints to streamline
our investigation and focus on specific aspects of
RIS deployment optimization. Firstly, we assume
a controlled simulation environment that accurately
represents real-world wireless communication scenar-
ios, considering factors such as signal propagation,
interference, and user distribution. Additionally, we
assume idealized conditions for RIS operation, such
as perfect knowledge of channel state information
(CSI) and precise control over phase shift coefficients.
Moreover, we acknowledge the constraints imposed by
practical considerations such as hardware limitations,
regulatory requirements, and deployment costs, which
may impact the feasibility and scalability of our
proposed optimization framework. Furthermore, we
recognize the inherent trade-offs between performance
metrics such as communication rate, coverage, and
energy efficiency, and acknowledge that optimizing
one metric may come at the expense of others. By
considering these assumptions and constraints, we aim
to ensure the rigor and relevance of our research
findings while providing a realistic assessment of the
potential challenges and limitations associated with
RIS deployment optimization in practical wireless
communication systems.

In jointly optimizing the number and position of RISs,
outcomes from simulation demonstrate the superiority of the
DE optimizer algorithm over the other optimization methods
(GO, SHO, GBO, and PSO). In this light, we simulate the
minimum (best), maximum (worst), and average number of
RISs to get a broad sense of the results after thirty cycles
of testing these techniques.

Comparative analysis of the DE algorithm with various
optimization methods reveals intriguing insights into the
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FIGURE 2. Lowest number of RISs found using the baselines over thirty runs and the suggested algorithm.
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(b) Cumulative number of RISs for each optimization algorithm.

FIGURE 3. The greatest number of RISs that the suggested method and the baselines could produce across thirty runs.

efficacy of different approaches in minimizing the number of
RISs required for deployment. As depicted in Figure 2, the
DE algorithm consistently yields the lowest number of RISs
across a spectrum of scenarios. Specifically, the simulation
results illustrate that the DE optimizer algorithm outperforms
other optimization techniques, including GO, PSO, SHO,
and GBO, across different thresholds of the rate cutoff (¢).
Notably, at ¢ = 1.2, the DE algorithm demonstrates superior
performance compared to all other methods, achieving the
minimum number of RISs necessary for optimal deployment.
Similarly, at threshold values of ¢ = 1.2,1.7 and ¢ = 1.7,
the DE algorithm consistently outperforms its counterparts,
exhibiting a more efficient allocation of RISs to maximize
data flow within the wireless network. Furthermore, across
all threshold values of ¢, the DE algorithm maintains its
superiority, underscoring its robustness and effectiveness in
minimizing the total number of RISs required while ensur-
ing optimal communication performance. These findings
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highlight the significant contribution of the DE algorithm in
addressing the complex optimization challenges associated
with RIS deployment in wireless communication systems.
The examination of the worst-case scenarios, as depicted
in Figure 3, sheds light on the maximum number of
RISs generated by each optimization approach, providing
insights into their performance under challenging conditions.
Notably, Figure 3(a) showcases the stark contrast between
the optimization techniques, with the DE algorithm demon-
strating the fewest RISs, while GBO and SHO yield the
highest numbers. This disparity underscores the varying
capabilities of different optimization methods in addressing
the complexities of RIS deployment. To offer a com-
prehensive overview, Figure 3(b) illustrates the cumulative
maximum number of RISs generated by each method across
all rate thresholds (¢), providing a holistic perspective
on their performance. The results depicted in Figure 3(b)
highlight the substantial improvements achieved by the
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FIGURE 4. The mean number of RISs acquired by the suggested algorithm and the baselines during thirty iterations.

DE optimizer method compared to alternative algorithms.
Specifically, the DE algorithm achieves enhancements of
8.19%, 26.32%, 48.62%, and 49.09% when contrasted
with GO, PSO, GBO, and SHO algorithms, respectively.
These findings underscore the superior performance of the
DE algorithm in mitigating the worst-case scenarios and
optimizing RIS deployment efficiency, further emphasizing
its efficacy in real-world wireless communication systems.

After comprehensively analyzing the minimum and max-
imum number of RISs generated by diverse optimization
algorithms, we further investigate the average number of
RISs in Figure 4. In Figure 4(a), we present the average
number of RISs produced by each optimization technique
across varying rate cutoffs (¢). Once again, the DE algo-
rithm stands out by yielding the fewest RISs, while GBO
exhibits the highest average number. Notably, our analysis
reveals that GO closely follows the performance of the
DE algorithm. To provide additional clarity, Figure 4(b)
replicates the total number of RISs to underscore the
significant benefit of employing the DE algorithm over GO.
Comparing the performance of DE with GO, PSO, SHO,
and GBO, respectively, reveals remarkable improvements
of 5.13%, 15.68%, 30.58%, and 51.0%. These findings
highlight the superior performance of the DE algorithm in
achieving optimal RIS deployment efficiency across various
scenarios, reaffirming its effectiveness in real-world wireless
communication systems.

The feasibility rate, which assesses the effectiveness of
optimization techniques in achieving the minimum number
of RISs under different threshold values of achievable
rates, serves as a critical metric for comparative analysis.
Mathematically, the feasibility rate is expressed as follows:

(18)

where the failure rate represents the proportion of times
the algorithm yields an incorrect number of RISs falling
outside the range defined by Ny, and N,.. In essence, a

Feasibility rate = 100 — failure rate%
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FIGURE 5. Feasibility Rate of the lowest number of RISs produced over thirty runs
using the baselines and the suggested procedure.

higher feasibility rate indicates a more reliable performance
of the optimization algorithm in achieving the desired
outcome. Figure 5 presents the feasibility rates for various
optimization algorithms across different values of the rate
threshold (¢). The simulation outcomes reveal that both
the DE and GO algorithms consistently achieve a 100%
feasibility rate across all rate threshold values, indicating
their robustness and reliability in minimizing the number of
RISs within the specified range. In contrast, GBO emerges
as the least viable option, demonstrating lower feasibility
rates compared to DE and GO. These findings underscore the
importance of considering feasibility rates as a key criterion
for evaluating the performance of optimization techniques in
RIS deployment optimization.

In summary, our comprehensive analysis demonstrates
that across all values of the rate thresholds (¢), the
DE optimizer method consistently outperforms all other
optimization algorithms in several key metrics related to
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FIGURE 6. Placements obtained by different algorithm for ¢ = 1.7.

the number of RISs. Firstly, the DE algorithm consistently
yields the lowest number of RISs required for optimal
deployment, indicating its superior efficiency in minimizing
infrastructure costs and complexity. Additionally, the DE
algorithm excels in mitigating the worst-case scenarios
by producing the maximum number of RISs among all
optimization techniques. Moreover, our analysis reveals that
the DE algorithm exhibits the lowest average number of
RISs across various rate thresholds, highlighting its ability
to achieve optimal performance under diverse operating
conditions. Furthermore, the DE algorithm demonstrates
a 100% feasibility rate across all rate threshold values,
underscoring its reliability and robustness in achieving the
desired outcome. Collectively, these findings underscore the
unparalleled effectiveness of the DE optimizer method in
optimizing the deployment of RISs in wireless communi-
cation systems, reaffirming its status as the superior choice
among the evaluated optimization algorithms.

Figure 6 provides a visual comparison of the RIS locations
determined using baseline techniques and the DE optimizer
algorithm under the condition where ¢ = 1.7. Notably, our
analysis reveals that the RIS positions generated by the DE
and SHO algorithms are relatively closer together compared
to other methods. This observation suggests that the DE opti-
mizer algorithm offers the additional benefit of practical ease
of deployment, as the proximity of RIS positions facilitates
more efficient installation and configuration processes. To
further investigate this advantage across different values of
the rate threshold (¢), Figure 7 illustrates the positioning of
RISs achieved by the DE optimizer algorithm across various
¢ values. Interestingly, our findings indicate that not all ¢
values equally benefit from this advantage, suggesting that
the practical ease of deployment may vary depending on
the specific rate threshold. This observation underscores the
importance of future research efforts aimed at enhancing the
DE optimizer method to ensure consistent and optimized
RIS positioning across all ¢ values. By addressing this
aspect, we can further optimize the practical deployment
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FIGURE 7. Placements obtained by DE algorithm for different ¢.

of RISs in wireless communication systems, maximizing
their effectiveness and usability across diverse operating
conditions.

The convergence properties displayed by different
optimization techniques are comprehensively compared in
Figure 8. In order to show how close an algorithm is to the
ideal answer, the convergence plot shows how many itera-
tions each method needs to reach the lowest fitness value.
This contrast is shown in Figures 8(a) to 8(d), discussing
algorithmic performance under various optimization situa-
tions, for a range of values of ¢, from 1.0 to 1.7. Figure 8,
shows the faster and suitable convergence of the applied
DEO in our proposed problem with better performance
compared to the other optimization algorithms. Although the
GO algorithm converges faster in the beginning, the DEO
reaches minimum convergence after several iterations. For
example, at ¢ = 1, the DEO reaches its lowest value after 12
iterations. And at ¢ = 1.4, 1.5, the DEO algorithm converges
after 22 and 25 iterations, respectively.

B. COMPLEXITY ANALYSIS

To compare the algorithms (GBO, PSO, DE, GO, SHO)
in terms of time and memory complexity based on the
provided data, Tables 5 and 6 illustrate their elapsed times
and memory usage.

To combine both time and memory complexities into a
single metric, we can use a weighted sum or a combined
efficiency score. This approach will help in assessing the
overall efficiency of each algorithm by considering both
elapsed time and memory usage. At first, both the elapsed
time and memory usage are normalized to a scale of O to 1,
where O is the best (least time/memory used) and 1 is the
worst (most time/memory used) as follows:

1 = lmin
tl(u)rm — (19)
Imax — Tmin
m; — Myy;
norm __ v nin
o = L T (20)

Mymax — Mpin
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FIGURE 8. Fitness value versus number of iterations obtained by different optimization algorithms DEO, PSO, GBO, SHO, and GO.

TABLE 5. Time and memory complexity of the compared algorithms (GBO, PSO, DE,
GO, SHO).

TABLE 6. Normalized time, memory, and combined scores of the compared
algorithms (GBO, PSO, DE, GO, SHO).

Algorithm | ¢7°7™ | m7°™™ | Combined Score
GBO 0.800 0.089 0.445
PSO 0.791 0.714 0.753
DEO 0.186 0 0.093
GO 1 0.964 0.982
SHO 0 1 0.5

. . Memory used
. Elapsed time Maximum
Algorithm . by MATLAB
@) possible array
(my)
141.441329
GBO 7723 MB 1711 MB
secs
141.058207
PSO 7624 MB 1746 MB
secs
116.667113
DEO 7699 MB 1706 MB
secs
149.706017
GO 7591 MB 1760 MB
Secs
109.215529
SHO 7660 MB 1762 MB
Secs

where £/°" and m{°™ are the normalized elapsed time

and memory usage regarding each algorithm (i) while the
superscripts min and max are the minimum and maximum
values. Then, the combined efficiency score is computed,
considering for simplicity equal weights to time and memory.
For each algorithm, normalize the elapsed time and memory
usage as follows:

norm
1

norm
+ wy X m;

ey

CombinedScore; = wy X t
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where, w; and w,, are the weights for time and memory,
respectively. Typically, w; + wy,, = 1. For equal weighting,
wy = 0.5 and w,, = 0.5.

From Table 5, for the elapsed time, the minimum value
(tmin) 18 109.215529 seconds (SHO), and the maximum value
(tmax) 1s 149.706017 seconds (GO). For memory usage, the
minimum value (m,,;;,) is 1706 MB (DE), and the maximum
value (m,,4,) is 1762 MB (SHO). Thus, the normalized time
and memory can be recorded in Table 6.

In Table 6, the recorded combined -efficiency score
provides a more holistic perspective of the algorithms’
performance by taking into account both time and memory
factors, resulting in a more complete evaluation of their effi-
ciency. As shown, the DEO indicates superior performance
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TABLE 7. Obtained best, mean, worst, and standard deviation for GO, PSO, GBO, SHO, and DEO for different value of ¢ = {1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,.1.9, 2}.

Algorithm (Best/Mean/Worst/Standard Deviation values)

’ GO SHO GBO PSO DEO

1 2/2.83/4/0.59209 | 2/3.5/10/2.2552 3/5.3/10/1.822 2/2.8/4/0.664 2/2.77/3/0.4302
1.1 2/3.1/4/0.5477 2/3.27/10/1.337 4/6.03/9/1.671 2/3.07/5/0.6915 | 2/2.93/4/0.3651
1.2 3/3.3/4/0.4661 2/4.23/10/2.661 4/6.83/10/1.663 3/3.53/6/0.6814 2/3/4/0.2626
1.3 3/3.6/5/0.504 3/3.93/10/2.1324 | 4/7.07/10/1.892 3/3.87/5/0.6814 | 3/3.27/5/0.5208
1.4 | 3/3.73/6/0.9072 3/4.8/10/2.7088 | 5/8.73/10/1.7604 3/3.9/5/0.6618 3/3.57/4/0.504
1.5 | 3/4.33/6/0.7581 3/5.7/10/3.142 4/8/10/1.9119 3/4.5/6/0.82001 | 3/4.07/5/0.4498
1.6 | 3/4.43/6/0.8172 | 3/6.57/10/2.9558 5/8.9/10/1.748 3/5/8/1.2317 3/4.33/6/0.6065
1.7 | 3/4.87/6/0.7761 4/7.1/10/2.832 5/9.63/10/1.033 4/5.73/9/1.1427 3/4.7/6/0.7022
1.8 | 4/5.17/7/0.8339 4/7.5/10/2.9213 | 6/9.03/10/1.4259 4/5.9/8/0.9595 4/5.1/7/0.7588
1.9 | 4/5.33/6/0.6065 4/8.3/10/2.667 6/9.87/10/0.7303 | 4/7.13/10/1.776 | 4/5.03/6/0.6687
2 4/5.4/7/0.6746 4/8.1/10/2.617 8/9.87/10/0.9371 | 4/6.43/10/0.5074 | 4/4.97/6/0.6149

in both time and memory usage, where it provides the best
overall algorithm, possessing a combined efficiency score of
0.093. The GO algorithm, on the other hand, has the lowest
overall performance, with a combined score of 0.982, which
reflects its longer execution time and increased memory
utilization.

Table 7 includes numerical values for different algorithms
at varying ¢ values. Analyzing the results, it is evident that
increasing ¢ generally leads to better performance in terms
of the Best and Mean values obtained by the algorithms. The
DEO algorithm consistently achieves the least Best values,
with a maximum of 4 at ¢ = 2 and a minimum of 2 at ¢ = 1.
In terms of Mean values, DEO again performs the best, with
a maximum of 5.1 at ¢ = 1.8 and a minimum of 2.77 at
¢ = 1. Similarly, the DEO provides the best performance
by always achieving the smallest standard deviations for
all values of ¢. This different separate multiple times with
different initial conditions offers insights into its robustness.
The smallest standard deviation of all scenarios of the DEO
proves that it is the most robust algorithm. Therefore, the
DEO consistently converges to similar solutions across runs,
which derives more likely to find global optima.

C. IMPLICATIONS FOR REAL-WORLD DEPLOYMENT

Our research findings hold significant implications for real-
world scenarios in the deployment of RISs within wireless
communication systems. Firstly, our optimized deployment
framework offers practical insights into enhancing coverage
dispersion, particularly in scenarios with multiple users,
addressing a critical need in modern wireless networks.
By strategically deploying RISs, we can mitigate coverage
gaps, improve signal strength, and enhance overall network
performance in diverse environments such as urban, indoor,
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and outdoor settings. Additionally, our study contributes
valuable insights into the scalability and adaptability of RIS
deployment strategies, enabling their effective integration
into existing wireless communication infrastructure. This
scalability is particularly relevant in dynamic network envi-
ronments where user densities, environmental conditions,
and system configurations may vary over time. Moreover,
our cost-benefit analysis provides stakeholders with valuable
information on the economic implications of deploying RISs,
enabling informed decision-making regarding investment in
RIS technology. By considering these implications, our
research facilitates the practical implementation of RIS-
assisted wireless communication systems, paving the way for
more efficient, reliable, and cost-effective wireless networks
in real-world scenarios.

V. CONCLUSION

This paper looked towards multi-RIS-assisted wireless
communications placement optimization. A Differential
Evolution Optimizer was introduced to simultaneously
optimize the number, positions, and phase shift coefficients
of RISs with targeting to minimize the number of RISs
while maintaining a feasible rate. Comparisons with various
algorithms (including PSO, GBO, Go, and SHO) were used
to show the usefulness of the new algorithm. The findings
show how effective the proposed DEO is in determining
the lowest number of RISs under various threshold values,
yielding a 100% feasibility rate. While SHO and GBO
get subpar results of 66.36% and 53.94%, respectively,
PSO achieves a comparable result of 99.09%. However, the
proposed DEO clearly outperforms the other algorithms in
terms of having the lowest average number of RISs. When
compared to GO, PSO, SHO, and GBO, the DEO achieves
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Algorithm 1 DEO

1: procedure DEO

2: [Step 1: Define parameters] Insert Population size
(NDy); Dimension of each individual (Dim); Crossover
probability (C,); Scaling factor (F); Maximum number
of generations (G,,,); Penalty factors (11, A2); Problem-
specific parameters

3: for i =1 :ND, do > [Step 2: Initialization]

4: for z =1 :Dim do

5: Randomly initialize each population member
(Ds; ;) using Eq. (11)

6: end for

7: end for

8 for i =1 :ND, do > [Step 3: Evaluation]

9 Fitness[i] = Evaluate(P[i])

10 end for

11: Function Evaluate(individual)
variables from the individual

122 NumRIS = round(individual[1])
(rounded to nearest integer)

> Extract control
> Number of RIS

13: Positions = individual[2:Dim] > Positions of RIS
(continuous)

14: if NumRIS < MinRIS or NumRIS > MaxRIS then
> Ensure constraints are met by replacing violated

variables with random values within limits

15: NumRIS = Random value within [MinRIS,
MaxRIS]

16: end if

17: for j = 1 : length(Positions) do

18: if Positions[i,j] < PositionLowerBound[j] then

19: Positions[i,jj = Random value within
[PositionLowerBound[j], PositionUpperBound[j]]

20: else if Positions[i,j] > PositionUpperBound][j]
then

21: Positions[i,j)] = Random value within

[PositionLowerBound[j], PositionUpperBound][j]]

22: end if

23: end for

24: Calculate AGH using Eq. (15) > Calculate penalty
terms for dependent variable restrictions

25: for n =1 to NumRIS do

26: for ¢ = 1 to NumRIS do

27: Calculate AGK,, . using Eq. (16)
28: end for
29: end for

30: Calculate Fitness using Eq. (14)
31: EndFunction

32: generation = 0 > [Step 4: Evolution Loop]

33: while generation < Gy, do
34: for i=1: ND; do
35: Select three distinct individuals ry, 1, r3 from

the population where rq, 2, r3 and i are not equal
[Step 5: Mutation]

36: for z =1 to Dim do

37: Generate mutantVector (MS; (It + 1))
using Eq. (12)

38: end for

39: for z = 1 to Dim do > [Step 6: Crossover]

40: if Random(0, 1) < C, or j == Random
integer in [1, Dim] then

41: Generate trialVector (US; ;(It4+1) =
MS; (It 4+ 1))) using Eq. (13)

42 else

43: Generate trialVector (US; (It + 1) =
DS; (It + 1))

44 end if

45: end for

46: for i =1 toNDg; do > [Step 7: Selection]

47: Evaluate TrialFitness using Steps 11-31

48: if TrialFitness < Fitness[i] then

49: (DS; (It + 1) = trialVector)

50: Fitness[i] = TrialFitness

51: end if

52: end for

53: generation = generation + 1

54: end for

55: end while BestSolution = DS[individual with the
best fitness] > [Step 8: Result]

56: BestFitness =  Fitness[best individual] Return
BestSolution, BestFitness > Qutput the best solution
and its fitness

57: end procedure

numerical improvements of 5.13%, 15.68%, 30.58%, and
51.0%, respectively.

For future work, several avenues can be explored to
enhance the optimization of RIS deployment in wireless
communication systems. Firstly, incorporating real-world
constraints and practical considerations such as hardware
limitations, environmental factors, and deployment costs
into the optimization framework could yield more realis-
tic and applicable results. Additionally, investigating the
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dynamic adaptation of RIS configurations in response to
varying network conditions, user demands, and channel
characteristics could further improve system performance
and adaptability. Furthermore, exploring hybrid optimization
techniques that integrate the strengths of different algorithms,
such as combining DEO with machine learning or rein-
forcement learning approaches (such as Deep Reinforcement
Learning (DRL) algorithms and Self-Organizing Tree
Algorithm (SOTA)), may lead to even more efficient and
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robust optimization solutions. Moreover, extending the study
to consider multi-objective optimization objectives, such
as minimizing energy consumption or maximizing network
coverage alongside data rate optimization, could provide a
more comprehensive understanding of the trade-offs involved
in RIS deployment. Also, impressive extensions to this study
can be implemented by incorporating the following analyses
as future work, including varying the number of reflective
elements at each RIS and other benchmark tests.

APPENDIX
See Algorithm 1.
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