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ABSTRACT Employing Reconfigurable Intelligent Surface (RIS) is an advanced strategy to enhance the

efficiency of wireless communication systems. However, the number and positions of the RISs elements

are still challenging and require a smart optimization framework. This paper aims to optimize the number

of RISs subject to the technical limitations of the average achievable data rate with consideration of

the practical overlapping between the associated multi-RISs in wireless communication systems. In this

regard, the Differential evolution optimizer (DEO) algorithm is created to minimize the number of RIS

devices to be installed. Accordingly, the number, positions, and phase shift matrix coefficients of RISs

are then jointly optimized using the intended DEO. Also, it is contrasted to several recent algorithms,

including Particle swarm optimization (PSO), Gradient-based optimizer (GBO), Growth optimizer (GO),

and Seahorse optimization (SHO). The outcomes from the simulation demonstrate the high efficiency of

the proposed DEO and GO in obtaining a 100% feasibility rate for finding the minimum number of RISs

under different threshold values of the achievable rates. PSO scores a comparable result of 99.09%, while

SHO and GBO attain poor rates of 66.36% and 53.94%, respectively. Nevertheless, the excellence of the

created DEO becomes evident through having the lowest average number of RISs when compared to the

other algorithms. Numerically, the DEO drives improvements by 5.13%, 15.68%, 30.58%, and 51.01%

compared to GO, PSO, SHO and GBO, respectively.

INDEX TERMS Reconfigurable intelligent surfaces, wireless communication, differential evolution

optimizer, achievable rate limitation.

I. INTRODUCTION

THE GLOBAL employment of the 5th-Generation cel-

lular network (5G) wireless network continues, and

both the academic and industrial spheres have turned their

attention with great enthusiasm towards envisioning the post-

5G future, commonly referred to as Beyond 5G (B5G). The

spotlight is now on the prospective Sixth-generation cellular

networks (6G) wireless network, designed to fulfill even

more rigorous demands than its predecessor [1], [2], [3],

[4], [5], [6]. These demands encompass ultra-high data rates,

energy efficiency, seamless global coverage and connectiv-

ity, exceptional reliability, and minimal latency. However,

achieving these formidable requirements through current

technology trends tailored for flexible 5G services, such as

enhanced Mobile BroadBand (eMBB), Ultra Reliable Low

Latency Communications (URLLC), and massive Machine

Type Communications (mMTC), presents challenges that

warrant innovative solutions [4], [7], [8], [9]. One of
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these innovative solutions is using the RIS in wireless

communications [10].

Reconfigurable Intelligent Surface (RIS) is receiving

more and more attention as a ground-breaking innovation

for managing or modifying wireless communication chan-

nels [11], [12], [13]. With respect to the vision of 6G

of communications, it is seen to play a crucial part in

the realization of the smart radio environment (SRE) [14],

[15], [16], [17], [18]. According to the number of RISs

participating and the level of cooperation, a fascinating

classification of the linked work is provided in [19]. Even

in the face of obstacles or in situations when the received

power from the direct path is insufficient to establish a

reliable connection, RISs can help establish an Line-of-

Sight (LOS) link between the transmitter and the receiver

using arrays of antenna elements [20]. Through adeptly

controlling the reflection of signals by employing an array

of economically viable passive reflecting elements, RIS

exhibits the capability to modify wireless channels dynam-

ically, thus augmenting the performance of communication

systems [7], [21]. Consequently, the prospect emerges of

a novel amalgamation, where the hybrid wireless network

incorporates active and passive constituents enabled by RIS.

This hybridization holds significant promise, offering a

pathway to cost-effectively achieve substantial growth in

network capacity, ensuring sustainability in the future.

As the deployment of RIS gains momentum, the

optimization of RIS placement has become a crucial

endeavor [22], [23]. This involves strategically positioning

RIS elements to exploit their reflective properties and aug-

ment the wireless environment. The fundamental premise of

RIS placement optimization revolves around determining the

optimal locations for installing RIS elements within a given

environment. The goal is to manipulate signal propagation by

intelligently reflecting and refracting electromagnetic waves

to establish desired communication characteristics. By care-

fully placing RIS elements, wireless networks can potentially

overcome challenges posed by signal blockages, interference,

and coverage limitations [24]. To tackle this problem, several

optimization techniques have been developed, each of which

meets specific goals and conditions [25], [26]. One of these

algorithms is the Differential Evolution Optimizer which

constitutes a population-based optimization technique within

the algorithmic evolutionary class. After summarising the

pertinent literature, we move on to a brief discussion of

the research motivation, scope of the paper, and challenges

before presenting the main contributions.

A. RELATED WORK

Numerous studies have been conducted on the use of

optimization algorithms for RIS placement [27]. In the field

of RIS replacement optimization, the placement of RIS is

examined in [28], a common passive technique for locating

non cooperative Radio frequency (RF) transmitters stems

from the Time difference of arrival (TDOA) method is intro-

duced in [29]. However, this approach comes with significant

challenges, including the need for precise synchronization

between sensors and high-throughput data transmission links.

One key consideration in TDOA systems is the configuration

of sensor placement. The farther apart the sensors are located,

the higher degree of accuracy the localization can be, but this

also increases the costs associated with synchronization and

data links. The authors introduced an innovative localization

system that leverages RIS to enhance accuracy while

reducing expenses. The research demonstrates that this new

setup, with the use of the beam-scanning capability of RIS

sensors, enhances the localization algorithm and surpasses

the performance of conventional methods. Furthermore, they

provide comparisons with the Cramér-Rao to validate the

efficiency of their proposed approach. The study depends

on two RISs only with some sensors that can increase the

overhead of the network.

The authors in [30] investigated the performance of

range estimation for a cellular user in a millimeter-wave

(mm-wave) network using Received signal strength indicator

(RSSI) measurements with the assistance of RISs. Initially,

they introduce an optimal strategy for deploying RISs to

minimize the combined probability of obstructing the user’s

connection to the base station (BS) and the connection to

the RIS. Subsequently, the authors presented an approach

to range estimation based on certain bounds, where the

BS calculates the user’s distance directly when there is a

LOS connection. In the event that the direct connection is

blocked, the BS estimates the user’s distance through the

reflected path facilitated by the RIS. In existing literature,

it is often recommended to position the RIS in close

proximity to the BS to enhance path gain. However, their

research challenges this notion by revealing that, in scenarios

involving obstructions, having the RIS and the BS in close

proximity is not the optimal configuration. But they depend

on only one RIS in their work.

In [31], the authors presented RIS as a solution to

a specific problem and explored localization algorithms

based on near-field (NF) resived signal strength (RSS). To

provide more details, they utilize a single RIS to create

simulated line-of-sight (SLOS) links between an anchor

node (AN) and an unidentified node (UN). This is done to

address scenarios where a direct line-of-sight path is not

available. Also, the authors introduced RIS phase adjustment

strategies to maximize the RSS at the UN. Building on this

foundation, they establish the correlation between azimuth

and phase parameters, leading to precise estimation of

the position of an unidentified node (UN) through the

application of weighted least squares (WLS) and alternate

iteration techniques. Additionally, they tackle the challenge

of dealing with both LOS and SLOS paths simultaneously

by modifying the reflection coefficients. In conclusion, they

suggest a technique to ascertain whether the unidentified

node is positioned in the far-field or near-field of the RIS

sub-segments, with the objective of minimizing positioning

errors. In various applications of location-based Internet

of Things (IoT) services, the simultaneous and accurate
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localization of numerous energy-constrained devices is a

critical requirement.

The authors in [32] addressed this challenge and proposed

a positioning method for multiple IoT devices assisted

by RIS. In this method, the signals transmitted by users

propagate to the BS via both a straightforward path and

a reflection path through the RIS. The key factor in their

triangulation-based localization approach is the estimation

of the propagation delay difference between these two

paths, which is accomplished using the cross-correlation

function of received signals. They aimed to use one RIS

to optimize a BS with multiple antennas to decrease the

total transmitted power of the IoT devices, taking advantage

of the orthogonality of transmitted signals. In scenarios

with orthogonal signals, utilizing the semidefinite relaxation

(SDR) method, they recast the non-convex optimization issue

for the RIS into a convex problem. In cases involving non-

orthogonal signals, they utilize zero-forcing (ZF) combining

vectors at the BS to mitigate interference from multiple users.

They employ the block coordinate descent (BCD) algorithm

to separate the optimization of the combining vectors and

the RIS phases.

In [33], a novel joint RIS location and passive beamform-

ing (J-LPB) optimization approach is presented to maximize

the secrecy rate while adhering to the RIS placement

restriction and the requirement that the modulus of the

reflecting coefficient at each RIS unit not exceed 1. They

specifically examine the RIS’s ideal position and conclude

that the sum of the source-to-RIS and RIS-to-destination

distances should be kept to a minimum. One of the articles

addressing and delving into the optimization challenges for

networks assisted by RISs is referenced as [34]. In that

research, the authors introduced novel criteria for selecting

optimal locations of RISs in wireless networks, enhancing

Signal-to-Noise Ratio (SNR) based on a path-loss power

model for outdoor communication and an exponential path-

loss model for indoor communication. The optimization

problem was composed and figured out under the assumption

that the coefficients of the channel for multiple RISs

were independent and identically distributed (i.i.d.) Rayleigh

random variables (RVs).

On the other hand, another significant difficulty in real-

world RIS-assisted systems [35], [36], [37], [38], [39], [40],

[41], [42] is optimizing the RIS phase shifts. To be able

to increase the channel capacity, the RIS setup of point-

to-point multiple-input multiple-output (MIMO) systems

has recently been improved in [35]. In [43] and [44],

the focus was on investigating the URLLC system. This

system featured a dedicated RIS assisting the Base Station

(BS) in transmitting short packets within a Frequency

Blockage Limited (Finite blocklength (FBL)) scenario. The

study also explored a Channel blocklength (CBL) allocation

and the RIS reflecting phase-shift Operating Point (OP),

with user grouping being addressed in [43]. The user

grouping challenge presented in [43] was resolved through

the application of a greedy algorithm, and the proposed

Operating Points (OPs) were tackled using a semi-definite

relaxation technique. To optimize the total achievable rate

in the infinite block length regime, considering Shannon

capacity, [45] investigated a Multiple-Input Single-Output

(MISO) system aided by RISs. This involved adjusting the

Base Station (BS) transmit beamforming and the passive

beamforming at the RIS using Deep Deterministic Policy

Gradients (Deep deterministic policy gradient (DDPG)).

The study in [46] compares half-duplex and full-duplex

operation modes for a MISO system with RIS support.

Additionally, in cooperative networks, research was con-

ducted on the joint optimization of relay selection and RIS

reflection coefficients [47]. For the effective implementation

of the metaverse in 6G networks, authors in [48] explored the

complementarity of digital twins (DTs) notion. To be more

precise, they examine how a DT-assisted RIS-based network

design can provide significant advancements in achieving the

network latency and dependability required for 6G metaverse

realization. A downlink communication system aided by

multiple aerial RISs (ARISs) and placed on RISs that is

energy-efficient is examined in [49]. The UEs and BS can

communicate more easily because of the implementation of

several ARISs. After that, the joint optimization issue of

the multiple ARISs-assisted communication system’s power

regulation, phase shift, and ARIS reflecting elements on/off

states is developed.

A blockchain-based architecture for information sharing

and storage that permits safe knowledge management in

intelligent IoT was presented by the authors in [50]. The

on-chain encrypted knowledge storage, and an enhanced

Delegated Proof of Stake (DPoS) consensus mechanism are

two components of their first permissioned blockchain-based

decentralized and trustworthy knowledge storage scheme. A

unique wirelessly powered edge intelligence (WPEG) archi-

tecture was presented in [51], with the goal of using energy

harvesting (EH) techniques to produce edge intelligence that

is stable, reliable, and sustainable. To protect the peer-to-

peer (P2P) energy and knowledge sharing in our system,

they first created a permissioned edge blockchain. By taking

into account the radiative characteristics of RIS, the authors

of [52] derived a general expression of the ergodic capacity

for RIS-aided communication systems, where both the LOS

and NLOS links are considered. This gives a new degree

of freedom in optimizing RIS-aided wireless channels. We

investigate the RIS deployment strategy, including RIS

rotation and placement optimizations, based on the channel

model. In [53], the authors suggested a conjugate gradient

and particle swarm optimization (CG-PSO) technique to

jointly optimize the RIS phase shifts and Aerial base station

(ABS) elevations. The Conjugate gradient (CG) under the

fixed ABS altitude and variable transmit power is used to

calculate an appropriate RIS phase shift. In the end, they

used PSO to determine the ideal ABS altitude, which leads

to an enhanced sum rate under the ideal RIS phase shift.

Using numerous RISs to help wireless communication

systems, the authors of [54] created a multiple access
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strategy for next-generation multiple access (NGMA). They

initially looked at the interaction between the efficiency

and complexity of the RIS phase setup and the design

of NGMA schemes, taking into account the real-world

scenario of stationary users working alongside mobile ones.

They then created a medium access control (MAC) protocol

that incorporates RISs and suggested a multiple access

framework for RIS-assisted communication systems based

on this framework. Furthermore, a thorough performance

study of the RIS-assisted MAC protocol that was created

is provided. With a focus on the MAC schemes, the

authors of [55] provided four common RIS-aided multi-

user situations. Beyond that, they presented and discussed

MAC designs for RIS-assisted multi-user communications

systems that are centralized, distributed, and hybrid. In

conclusion, they discussed about certain RIS-related MAC

design problems, viewpoints, and possible uses. In [56], the

authors suggested a RIS-assisted transmission technique to

solve the coverage and connection performance issues of the

aerial-terrestrial communication system. Specifically, they

developed an adaptive RIS-assisted transmission protocol,

wherein within a frame, the data transfer, transmission

strategy, and channel estimate are all conducted separately.

Authors examined RIS-assisted MAC layer communications

in [57] and suggested a RIS-assisted MAC architecture.

Pre-negotiation and the multidimension reservation (MDR)

technique are specifically used to accomplish RIS-assisted

transmissions. They examined RIS-assisted single-channel

multiuser (SCMU) communications in light of this. A single

user can reserve the RIS as a whole to facilitate numerous

data transmissions, resulting in very efficient RIS-assisted

connections at the user’s location.

Recent research in [58] examined the use of distributed

proximal policy optimization (PPO) for active/passive beam-

forming at both the Base Station (BS) and RIS in a

multiuser scenario. It is important to highlight that the

problem addressed in this research was defined within the

infinite CBL regime based on the Shannon rate formula, and

the primary focus of the discussion did not center around

optimizing the CBL. The authors in [41] introduced an

innovative approach for grouping elements in centralized

RIS, where each group comprises a collection of adjacent

RIS elements that share the same reflection coefficient.

Using this grouping technique, they recommend an efficient

transmission protocol in which it is only necessary to

approximate the combined channel for each group. This

approach considerably lowers the overhead of training. The

authors in [59] aim to reduce the overall transmit power by

simultaneously optimizing the transmit beamforming vectors

at the BS and the reflection coefficient vector at the RIS

using a single RIS. In this regard, an efficient algorithm based

on second-order cone programming (SOCP) and alternating

direction method of multipliers (ADMM) is introduced to

arrive at a locally ideal outcome.

Additionally, to mitigate computational complexity, the

authors presented a lower-complexity suboptimal algorithm

based on ZF principles. A practical scenario is investigated

in [60] where the BS only requires the large-scale fading

gain, and the finite-sized RIS can achieve a limited number of

phase shifts. The authors put forward a hybrid beamforming

approach to optimize the sum rate. This approach employs

continuous digital beamforming at the BS and discrete

analog beamforming using the RIS. They develop an iterative

algorithm for beamforming and provide theoretical analysis

to assess how the RIS size impacts the achievable data rate.

An innovative system involving multiple RIS with location

information assistance is introduced in [61]. The assumption

of imperfect user location information and proceeding to

approximate the effective angles from the RIS to the

users is addressed. These estimated angles are subsequently

employed in the design of the transmit beam and the

configuration of the RIS beam. The authors in [62] suggested

activating an RIS at the cell boundary of several cells by

jointly optimizing the active precoding matrices at the BSs

and the phase shifts at the RIS under the power and unit

modulus constraints placed on each BS to maximize the

weighted sum rate (WSR) of all users. By working together

to design the phase shifts and power distribution, the authors

of [63] optimized the energy efficiency of a RIS-assisted

downlink multi-user system.

The authors of [64] suggested a hybrid beamforming

approach to increase the coverage range in the terahertz

frequency spectrum for multi-hop RIS-assisted communica-

tion systems. The authors of [65] examined how phase noise

affected the output power of RIS-assisted communication

systems using generalized fading channels. Additionally, the

authors of [66] showed that centralized RIS deployments

perform worse than uniformly dispersed deployments of the

same magnitude. Additionally, [67] investigated the single-

RIS and multi-RIS deployment strategies for RIS-aided relay

systems and demonstrated that the multi-RIS deployment

could achieve a higher system capacity. However, the study

in [68] showed that centralized deployment is superior to

the spread one by describing the capacity.

The algorithms DEO, PSO, GBO, SHO, and GO have

been subjected to a comparative evaluation in order to

address the suggested model. Table 1 shows the algorithms’

wide applicability. Further refinements have been introduced

to facilitate the adoption of these techniques. The fitness

function assesses how well a solution performs in reaching

the optimization goal. The number of RIS units to be

placed and their spatial distribution are the control variables

in the context of the model for the RIS-assisted wireless

communication system that is being presented. These control

variables come in two varieties: the continuous placement

of these units and the integer-based count of RIS units.

The count of RIS units is handled as a continuous range

and rounded to the closest integer since the compared

algorithms usually operate within a continuous framework.

Furthermore, in this study, adherence to the restrictions is

ensured by substituting a randomly picked number within

the practical boundaries of the variable when a control
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TABLE 1. Adopted algorithms, main features and successful applications.

variable is violated. Moreover, penalty terms have been

used to include dependent variable limitations in the fitness

function. Consequently, solutions failing to meet one or more

restrictions are rewarded with high fitness ratings, reducing

the possibility that unworkable solutions will be carried over

to further rounds.
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B. RESEARCH MOTIVATION

Due to the RIS’s location, previous studies have only used

it to extend coverage; however, little research has been done

on how to deploy the RIS to further disperse cell coverage.

Furthermore, most research efforts in the literature focus on

solving traditional wireless communication problems under

the new assumption of an assisted metasurface solution,

ignoring the RIS domain. Finally, there hasn’t been enough

research done on how to deploy RIS as effectively as possible

in a situation where there are several users.

Our study advances the optimization of RIS deployment

in wireless communication systems through several novel

contributions. Firstly, we extend beyond optimizing the

number of RISs by focusing on strategic deployment strate-

gies aimed at enhancing coverage dispersion, particularly in

multi-user scenarios, addressing a notable gap in the existing

literature. Secondly, we introduce a facility placement

problem formulation to systematically determine optimal RIS

deployment locations, offering a structured approach that has

not been extensively explored before. Thirdly, our proposed

robust optimization approach jointly optimizes phase shift

coefficients, number, and locations of RISs to minimize the

total number revealed to the average permitted data rate, thus

enhancing deployment robustness in varying communication

environments. Finally, through extensive experimental vali-

dation in a multiRIS-assisted wireless communication system

set up, we empirically demonstrate the practical appli-

cability and performance improvements of our approach.

Collectively, these contributions distinguish our work and

significantly advance the understanding and implementation

of RIS-assisted wireless communication systems.

C. SCOPE AND RESEARCH QUESTION

In the rapidly evolving landscape of wireless communication

systems, the proliferation of IoT devices necessitates robust

solutions to overcome challenges posed by interference,

signal strength variations, and complex propagation envi-

ronments. RISs emerge as a promising technology to

address these challenges by offering dynamic control over

signal propagation, thereby enhancing connectivity and

communication quality. However, the optimal deployment

of RISs remains a complex optimization problem due to

considerations such as the number and positions of RIS

elements, technical limitations on achievable data rates, and

practical constraints in real-world deployment scenarios. This

paper seeks to bridge this gap by introducing a sophisticated

optimization framework aimed at determining the optimal

placement of RISs in wireless communication systems. By

strategically optimizing the number, locations, and phase

shift coefficients of RISs, our study aims to maximize

communication rates while addressing practical deployment

constraints, thus advancing the field of RIS-assisted wireless

communication technologies. Through this research, we aim

to provide insights into the importance of RIS deployment

optimization and contribute to the development of more

efficient and reliable wireless communication systems for

IoT applications.

D. CHALLENGES AND LIMITATIONS

While our research aims to advance the understanding and

implementation of RISs in wireless communication systems,

it is essential to acknowledge the challenges and limitations

inherent in the proposed work. One significant challenge

lies in the complexity of optimizing RIS deployment, which

involves determining the optimal number, locations, and

phase shift coefficients of RIS elements. This optimization

process entails intricate trade-offs between communication

performance metrics such as rate, coverage, and energy

efficiency, further compounded by real-world constraints and

system requirements. Additionally, the scalability of our

proposed optimization framework may pose challenges in

adapting to diverse deployment scenarios and accommodat-

ing varying user densities, environmental conditions, and

system configurations. Furthermore, while our study con-

tributes valuable insights into RIS deployment optimization,

it is important to recognize that real-world deployment may

encounter practical challenges and limitations such as hard-

ware constraints, regulatory considerations, and deployment

costs. Despite these challenges, our research serves as a

crucial step towards unlocking the potential of RISs in

enhancing wireless communication systems, paving the way

for future advancements in this domain.

E. MAIN CONTRIBUTION

This study investigates the RIS deployment position

optimization for wireless communication systems supported

by several RISs and supporting numerous users in order to

close this gap. We define a facility placement problem as an

RIS deployment problem, which helps us determine the best

location for RIS deployment and maximizes the overall data

flow inside the wireless network. Additionally, we examine

the impact of different parameters on communications

enabled by RIS. In addition, a new robust approach is

suggested to jointly determine the phase shift coefficients,

number, and locations of RISs with the goal of minimizing

the total number of RISs exposed to the average permitted

data rate. Using a multiRIS-assisted wireless communication

system as a reference, the effectiveness of the suggested

method is confirmed.

The main contributions of this paper are as follows:

1) Develop DEO algorithm encompassing distinct types

of integer-based count of RIS units and their contin-

uous positioning. This proposed methodology seeks

to achieve the optimal quantity, locations, and phase

shift coefficients of RISs to maximize data rates while

minimizing the number of RIS units.

2) Demonstrate DEO’s superiority over a number of

contemporary optimization algorithms, including SHO,

PSO, GBO, and GO, in terms of determining the

fewest RISs that may be utilized in the network.
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TABLE 2. List of the main symbols.

These optimization algorithms have been utilized for

similar optimization problems in previous studies

(such as DEO [28], [104], PSO [105], [106], and

GBO [107], [108]).

3) Use a variety of performance metrics, such as mini-

mum, maximum, average, and feasibility rate of the

number of RISs, to compare DEO’s effectiveness to

that of other optimization methods. This approach

comprehensively addresses real-world system con-

straints, including signal overlap and user distribution.

4) Propose a sophisticated model for a wireless com-

munication system leveraging RIS. This model

creates optimized reflecting pathways that significantly

enhance the received power at user equipment, partic-

ularly in multi-user environments.

The remaining sections of the paper are structured as

follows: Section II outlines the system model. Section III

introduces the development of (DEO) for the optimal

placement of RIS elements. In Section IV, the simulation

setup and outcomes from the simulation are presented to

validate the performance of the proposed algorithm. Finally,

Section V offers conclusions drawn from the study.

Notation: We symbolize column vectors in boldface

lowercase as x and matrices in boldface uppercase as X.

For each X, the corresponding pseudo-inverse, transpose,

conjugate transpose (Hermitian), and inverse are represented

by the symbols X†, XT, XH, and X−1, respectively. The trace

function of a matrix X is denoted as tr(X). The Euclidean

norm is represented by ‖.‖. x ∼ CN (μ, ϕ) is the notation

for a circularly symmetric complex Gaussian random vector

that is μ for the mean and ϕ for the covariance matrix.

The entire set of complex numbers is symbolized by C. In

this notation, CN×1 and C
N×M refer to the generalizations

for vectors and matrices, respectively. The identity matrix

of size M × M is symbolized as IM . Besides, for ease of

reference, the main symbols used in this work are listed in

Table 2 and the list of abbreviations are listed in Table 3.
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TABLE 3. List of abbreviations.

FIGURE 1. System model.

II. SYSTEM MODEL

Our proposed system introduces a multi-RIS-aided wireless

communication setup designed for indoor environments

such as stadiums and large halls, as depicted in Figure 1.

In this configuration, K single-antenna User Equipments

(UEs) establish connections with a single-antenna Access

Point (AP) in distinct time slots, facilitated by N RISs

of uniform size. Each RIS, mounted on the ceiling, com-

prises a homogeneous planar array featuring M reflecting

elements. The RISs are strategically positioned within the

indoor space to optimize signal propagation and coverage,

leveraging their ability to dynamically adjust the phase of

incident electromagnetic waves. The proposed setup aims

to enhance spectral efficiency and mitigate multipath fading

and interference typically encountered in indoor wireless

environments. By utilizing RISs as passive reflectors, the

system enables targeted beamforming and signal steering,

improving overall system performance and user experience.

The deployment of RISs in this manner provides a cost-

effective solution for improving wireless communication in

large indoor venues, addressing coverage challenges, and

optimizing network capacity.

A. COMMUNICATION CHANNEL MODEL

Let �n = diag{ejθn,1 , ejθn,2 , . . . , ejθn,M } is denoted as the

matrix of phase shift coefficients for the RIS-n, where θn =

(θn,1, θn,2, . . . , θn,M)T is used to represent the phase shift

coefficient of RIS-n. Along with that, we also designate

hb,rn ∈ C
M×1 as the channel vector from RIS n to the AP,

hrn,uk ∈ C
M×1 as the channel vector from UE k to RIS n,

and hb,uk ∈ C
1×1 as the channel from UE k to the AP. Both

UE-RIS and RIS-AP lines employ the Rician fading channel
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model. Consequently, hb,rn is written as [28]

hb,rn = Lb,rn

(

√

ε

ε + 1
an(ϕn, ψn) +

√

1

ε + 1
db,rn

)

(1)

where Lb,rn represents the path-loss between RIS n and

the AP, and ε represents the Rician factor. The array

response of RIS n is indicated by an ∈ C
M×1, where ϕn

denotes the azimuth angle and ψn signifies the elevation

angle of departure for the link between RIS n and the

AP. db,rn signifies the direct components, and their ele-

ments are selected from CN (0, 1). Similarly, hrn,uk appears

as [28]

hrn,uk = Lrn,uk

(

√

ε

ε + 1
an

(

ϕ′
n, ψ

′
n

)

+

√

1

ε + 1
drn,uk

)

(2)

where ϕ′
n and ψ ′

n represent the azimuth and elevation angles,

respectively, for the link between RIS n and User Equipment

(UE) k. The direct channel between user k and the Access

Point (AP) is symbolized as

hb,uk = Lb,ukdb,uk (3)

where the path-loss between UE k and the AP is denoted

by Lb,uk . The received signal at the AP is expressed as

yAP =
(

hHb,rn�nhrn,uk + hb,uk

)

x+ n (4)

where x is the transmitted symbol with power pk,

hHb,rn�nhrn,uk is the effective channel including RIS phase

shift and hb,uk is the channel gain of the direct path, n

represents the noise with CN (0, σ 2). The received SNR is

given by

SNR =

(

pk|tb,ukhb,uk +
∑N

n=1 tb,rnh
H
b,rn

�nhrn,uk |
2

σ 2

)

(5)

The achievable sum rate of user k is shown in (6), shown

at the bottom of the page.

where the parameters ta,n and ta,k satisfy

tb,rn =

§

¨

©

0 if the link between RIS n and

AP is blocked

1 otherwise

(7)

tb,uk =

§

¨

©

0 if the link between RIS n and

AP is blocked

1 otherwise

(8)

B. PROBLEM FORMULATION

In this paper, we introduce a method for concurrently

optimizing the quantity, distribution, and RIS reflection

patterns in an RIS-aided wireless communication system.

The resulting parameters are assessed with the aim of

showing the effectiveness of the proposed approach. The

suggested method reduces the quantity of RIS subject to

the feasible rate under certain system restrictions, which is

represented as

minimize
N,{xn,yn},θn

N (9)

subject to

1

K

K
∑

k=1

Rk ≥ φ (10a)

xmin ≤ xn ≤ xmax,∀n ∈ {1:N} (10b)

ymin ≤ yn ≤ ymax,∀n ∈ {1:N} (10c)

min{|xn − xc|, |yn − yc|} ≥ L,∀n, c ∈ {1:N} (10d)

Nmin ≤ N ≤ Nmax (10e)

where {xn, yn} is the location of RIS n and L denote the

size length of each RIS. The constrain (10a) ensures that the

achievable rate for all users is larger than φ, (10b) and (10c)

illustrate the location restrictions of the RISs. We use (10d)

to ensure that RISs are not overlapping, and (10e) ensures

that the number of RISs is between [Nmin,Nmax].

III. DEVELOPED DEO FOR OPTIMAL PLACEMENT OF

RIS ELEMENTS

A. DIFFERENTIAL EVOLUTION OPTIMIZER

An evolutionary algorithm known as the DEO is used

to address optimization issues, especially those that entail

optimizing a function in a continuous space. When dealing

with issues where the search space is high-dimensional and

the goal function is smooth and continuous, DEO works

well DEO is especially well-liked in a variety of domains,

including as computational biology, machine learning, engi-

neering design, and finance, where optimization issues are

common and usually display the aforementioned traits.

The population is gradually improved by DEO by com-

bining selection, crossover, and mutation operators. Thus,

with each generation that follows, DEO generates new

potential solutions. The process of mutation creates trial solu-

tions by upsetting the individuals based on the differences

between randomly selected population participants. Using the

crossover process, the trial participants are paired with the

outcomes of the trial solutions to produce offspring. In order

to determine which members of the population are retained

based on fitness, the selection process gives preference to

solutions that perform better in terms of the optimization

goal.

Rk = E

{

log2

(

1 +
pk|tb,ukhb,uk +

∑N
n=1 tb,rnh

H
b,rn

�nhrn,uk |
2

σ 2

)

}

(6)
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B. ADOPTION OF THE PROPOSED DEO FOR OPTIMAL

PLACEMENT OF RIS ELEMENTS

The objective function in the suggested optimization frame-

work, which is the minimization of the number of RISs

with N, x, and y as the design variables, is represented

by Equation (9). The variables in question are subject

to constraints, as indicated by Equations (10b), (10c),

and (10e), correspondingly. In contrast, restrictions on

inequality resulting from independent variables are managed

by Equation (10d) to guarantee that RISs do not overlap

and Constraint (10a) to guarantee that the achievable rate for

every user is greater than. To solve the given model using

the suggested DEO, the following improvements should be

put into practice:

1) INITIALIZATION

In DEO, the control variables per population are shown as

floating values. To be able to create a population P, they

are initially assigned by randomization individuals inside

their usage-appropriate computational range. The initial

generation might initialize each population member (Ds) as

follows:

Dsi,z(0) = Dsminz + Rd ×
(

Dsmaxz − Dsmaxz

)

i = 1 : NDs&z = 1 : Dim

(11)

Rd represents a vector with Dim dimension containing

arbitrary continuous numbers that range from 0 to 1. NDs
refers to the population size while Dim denotes the total

number of variables for every one of the solutions, and the

superscripts min and max indicate the permissible boundaries

of the designed system model regarding each variable.

2) MUTATION

At each iteration (It) following population initialization, the

mutation phase produces mutant vectors (Ms). The suggested

mutation technique chooses a random member and interferes

with its solution vector with a variance of two additional

vectors chosen at random as follows:

MSi,z(It + 1) = Dsr1,z(It)

+ F ×
(

Dsr2,z(It) − Dsr3,z(It)
)

i = 1 : NDs & z = 1 : Dim (12)

where r1, r2, and r3 are three distinct numbers selected at

random within the set [1,NDs]. The scaling factor, or F, is a

real positive value that regulates how quickly the population

changes. F typically has a value in the [0.4 − 1] range.

3) CROSSOVER

The crossover phase follows to be able to broaden the

population’s variety. By switching out the elements of the

mutant (Ms) and target (Ds) vectors, it produces trial vectors

(Us) as follows:

Usi,z(It + 1) =

{

Msi,z(It + 1), if Rd∗ < Cr
Dsi,z(It), else

(13)

where Cr, which is often chosen to fall between [0, 1],

represents the crossover factor. Binomial crossover is the

type of crossover method used here.

4) FITNESS EVALUATION

A solution’s performance with the optimization target is

quantified by the fitness function. At first, in the presented

model of the RIS-aided wireless communication system,

the control variables are the number of RIS to be installed

and their distributed positions. Such control variables are

two types where the number of RIS is an integer while

the installed positions are continuous. The DEO ordinarily

operates in the continuous framework, so the number of RIS

is treated in a continuous range, and then it is rounded to the

nearest integer. Second, a randomly selected number inside

the control variable’s practicable limits is employed in this

research to substitute the violated control variable. Thus, the

constraints represented in Equations (10c), (10d) and (10e)

are guaranteed.

Additionally, dependent variable restrictions represented

in Equations (10b) and (10e) have been incorporated into

the fitness function under consideration via penalty terms.

The fitness function (fit) is therefore generalized and stated

as follows:

fit = N + λ1
GH +

N
∑

n=1

N
∑

c=1

λ2
GKn,c (14)

where λ1 and λ2 are penalty factors, 
GH and 
GK are

defined as shown in equations (15) and (16).


GH =

{

0, if 1
K

∑K
k=1 Rk ≥ Q

|Q− 1
K

∑K
k=1 Rk|, else

(15)


GKn,c =

{

0, if min{|xn − xc|, |yn − yc|} ≥ L

|L− min{|xn − xc|, |yn − yc|}|, else
(16)

Based on that model, impractical solutions, that fail to

achieve one or more constraints, will have a high fitness

score and so there is a slim possibility that the impractical

solutions will be passed on to the following iteration.

5) SELECTION

The process of selection contrasts the fitness scores of the

original member and its associated newly generated member

as shown in equation (17).

Dsi(It + 1) =

{

Usi(It + 1) if ψ ≤ η

Dsi(It) else
(17)

where ψ = fit(Usi(It + 1)) and η = fit(Dsi(It)). As a

result, the population either experiences an improvement

in the values of the fitness function or stays the same.

Once the maximum number of iterations has been achieved,

these phases are then repeated throughout generations. We

summarize the developed DEO for optimal placement of RIS

elements in the Appendix.

VOLUME 5, 2024 4195



KHALED et al.: PLACEMENT OPTIMIZATION AND POWER MANAGEMENT

TABLE 4. Parameter settings.

IV. NUMERICAL RESULTS

To assess the DEO algorithm’s superiority over the other

algorithms, we run numerous simulations in this section. All

these algorithms were created to be able to jointly optimize

the quantity and location of RISs. Envision a wireless

communication system with multiple RISs, where users are

randomly distributed within a square defined by vertices

[0, 0, 0], [0, 10, 0], [10, 10, 0], and [10, 10, 0] meters. The

RISs are positioned within another square defined by vertices

[0, 0, 10], [0, 10, 10], [10, 0, 10], and [10, 10, 10] meters.

The wall’s location was defined by four vertices at [0, 0, 0],

[0, 0, 2.25], [10, 0, 2.25], and [10, 0, 0] m (c.f. Figure 1).

The path-loss is modeling as PL = PL0 − 10β log( d
d0

),

where PL0 = 20dB is the path-loss at the reference distance

d0 = 1m; d represents the distance between the transmitter

and the receiver, and the path-loss exponents for the UE-

RIS-AP link and the UE-AP link are assigned as β = 2.2

and β = 4, respectively.

A. SIMULATION SETUP

In this subsection, we describe the simulation setup used

to evaluate the performance of the proposed optimization

framework for RIS deployment in wireless communication

systems. The simulations were conducted with the following

parameters and methodologies:

1) Software Tool and Platform: We utilized MATLAB

for conducting the simulations. This software tool

provides robust capabilities for modeling wireless com-

munication scenarios and optimizing RIS deployment

strategies.

2) Simulation Environment: The simulation environment

was configured to mimic realistic wireless communi-

cation scenarios, taking into account factors such as

signal propagation, interference, and user distribution.

We considered an indoor environment to capture

diverse deployment scenarios.

3) Parameters: The parameters used in the simula-

tions shown in Table 4. These parameters were

carefully selected to represent typical real-world

wireless communication scenarios and enable a

comprehensive evaluation of the proposed optimization

framework.

4) Methodology: The simulation methodology involved

the following steps:

a) Initialization: Setting up the simulation environ-

ment and configuring the parameters mentioned

above.

b) Optimization Framework Implementation:

Implementing the proposed optimization

framework for determining the optimal number,

locations, and phase shift coefficients of RISs.

c) Performance Evaluation: Evaluating the

performance of the optimized RIS deployment in

terms of communication rate, energy efficiency,

and system robustness.

d) Comparison: Comparing the performance of the

proposed optimization framework with existing

algorithms and methodologies.

5) Assumptions and Constraints: In conducting our

research on optimizing RISs deployment in wireless

communication systems, we make several assumptions

and acknowledge certain constraints to streamline

our investigation and focus on specific aspects of

RIS deployment optimization. Firstly, we assume

a controlled simulation environment that accurately

represents real-world wireless communication scenar-

ios, considering factors such as signal propagation,

interference, and user distribution. Additionally, we

assume idealized conditions for RIS operation, such

as perfect knowledge of channel state information

(CSI) and precise control over phase shift coefficients.

Moreover, we acknowledge the constraints imposed by

practical considerations such as hardware limitations,

regulatory requirements, and deployment costs, which

may impact the feasibility and scalability of our

proposed optimization framework. Furthermore, we

recognize the inherent trade-offs between performance

metrics such as communication rate, coverage, and

energy efficiency, and acknowledge that optimizing

one metric may come at the expense of others. By

considering these assumptions and constraints, we aim

to ensure the rigor and relevance of our research

findings while providing a realistic assessment of the

potential challenges and limitations associated with

RIS deployment optimization in practical wireless

communication systems.

In jointly optimizing the number and position of RISs,

outcomes from simulation demonstrate the superiority of the

DE optimizer algorithm over the other optimization methods

(GO, SHO, GBO, and PSO). In this light, we simulate the

minimum (best), maximum (worst), and average number of

RISs to get a broad sense of the results after thirty cycles

of testing these techniques.

Comparative analysis of the DE algorithm with various

optimization methods reveals intriguing insights into the
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FIGURE 2. Lowest number of RISs found using the baselines over thirty runs and the suggested algorithm.

FIGURE 3. The greatest number of RISs that the suggested method and the baselines could produce across thirty runs.

efficacy of different approaches in minimizing the number of

RISs required for deployment. As depicted in Figure 2, the

DE algorithm consistently yields the lowest number of RISs

across a spectrum of scenarios. Specifically, the simulation

results illustrate that the DE optimizer algorithm outperforms

other optimization techniques, including GO, PSO, SHO,

and GBO, across different thresholds of the rate cutoff (φ).

Notably, at φ = 1.2, the DE algorithm demonstrates superior

performance compared to all other methods, achieving the

minimum number of RISs necessary for optimal deployment.

Similarly, at threshold values of φ = 1.2, 1.7 and φ = 1.7,

the DE algorithm consistently outperforms its counterparts,

exhibiting a more efficient allocation of RISs to maximize

data flow within the wireless network. Furthermore, across

all threshold values of φ, the DE algorithm maintains its

superiority, underscoring its robustness and effectiveness in

minimizing the total number of RISs required while ensur-

ing optimal communication performance. These findings

highlight the significant contribution of the DE algorithm in

addressing the complex optimization challenges associated

with RIS deployment in wireless communication systems.

The examination of the worst-case scenarios, as depicted

in Figure 3, sheds light on the maximum number of

RISs generated by each optimization approach, providing

insights into their performance under challenging conditions.

Notably, Figure 3(a) showcases the stark contrast between

the optimization techniques, with the DE algorithm demon-

strating the fewest RISs, while GBO and SHO yield the

highest numbers. This disparity underscores the varying

capabilities of different optimization methods in addressing

the complexities of RIS deployment. To offer a com-

prehensive overview, Figure 3(b) illustrates the cumulative

maximum number of RISs generated by each method across

all rate thresholds (φ), providing a holistic perspective

on their performance. The results depicted in Figure 3(b)

highlight the substantial improvements achieved by the
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FIGURE 4. The mean number of RISs acquired by the suggested algorithm and the baselines during thirty iterations.

DE optimizer method compared to alternative algorithms.

Specifically, the DE algorithm achieves enhancements of

8.19%, 26.32%, 48.62%, and 49.09% when contrasted

with GO, PSO, GBO, and SHO algorithms, respectively.

These findings underscore the superior performance of the

DE algorithm in mitigating the worst-case scenarios and

optimizing RIS deployment efficiency, further emphasizing

its efficacy in real-world wireless communication systems.

After comprehensively analyzing the minimum and max-

imum number of RISs generated by diverse optimization

algorithms, we further investigate the average number of

RISs in Figure 4. In Figure 4(a), we present the average

number of RISs produced by each optimization technique

across varying rate cutoffs (φ). Once again, the DE algo-

rithm stands out by yielding the fewest RISs, while GBO

exhibits the highest average number. Notably, our analysis

reveals that GO closely follows the performance of the

DE algorithm. To provide additional clarity, Figure 4(b)

replicates the total number of RISs to underscore the

significant benefit of employing the DE algorithm over GO.

Comparing the performance of DE with GO, PSO, SHO,

and GBO, respectively, reveals remarkable improvements

of 5.13%, 15.68%, 30.58%, and 51.0%. These findings

highlight the superior performance of the DE algorithm in

achieving optimal RIS deployment efficiency across various

scenarios, reaffirming its effectiveness in real-world wireless

communication systems.

The feasibility rate, which assesses the effectiveness of

optimization techniques in achieving the minimum number

of RISs under different threshold values of achievable

rates, serves as a critical metric for comparative analysis.

Mathematically, the feasibility rate is expressed as follows:

Feasibility rate = 100 − failure rate% (18)

where the failure rate represents the proportion of times

the algorithm yields an incorrect number of RISs falling

outside the range defined by Nmin and Nmax. In essence, a

FIGURE 5. Feasibility Rate of the lowest number of RISs produced over thirty runs

using the baselines and the suggested procedure.

higher feasibility rate indicates a more reliable performance

of the optimization algorithm in achieving the desired

outcome. Figure 5 presents the feasibility rates for various

optimization algorithms across different values of the rate

threshold (φ). The simulation outcomes reveal that both

the DE and GO algorithms consistently achieve a 100%

feasibility rate across all rate threshold values, indicating

their robustness and reliability in minimizing the number of

RISs within the specified range. In contrast, GBO emerges

as the least viable option, demonstrating lower feasibility

rates compared to DE and GO. These findings underscore the

importance of considering feasibility rates as a key criterion

for evaluating the performance of optimization techniques in

RIS deployment optimization.

In summary, our comprehensive analysis demonstrates

that across all values of the rate thresholds (φ), the

DE optimizer method consistently outperforms all other

optimization algorithms in several key metrics related to
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FIGURE 6. Placements obtained by different algorithm for φ = 1.7.

the number of RISs. Firstly, the DE algorithm consistently

yields the lowest number of RISs required for optimal

deployment, indicating its superior efficiency in minimizing

infrastructure costs and complexity. Additionally, the DE

algorithm excels in mitigating the worst-case scenarios

by producing the maximum number of RISs among all

optimization techniques. Moreover, our analysis reveals that

the DE algorithm exhibits the lowest average number of

RISs across various rate thresholds, highlighting its ability

to achieve optimal performance under diverse operating

conditions. Furthermore, the DE algorithm demonstrates

a 100% feasibility rate across all rate threshold values,

underscoring its reliability and robustness in achieving the

desired outcome. Collectively, these findings underscore the

unparalleled effectiveness of the DE optimizer method in

optimizing the deployment of RISs in wireless communi-

cation systems, reaffirming its status as the superior choice

among the evaluated optimization algorithms.

Figure 6 provides a visual comparison of the RIS locations

determined using baseline techniques and the DE optimizer

algorithm under the condition where φ = 1.7. Notably, our

analysis reveals that the RIS positions generated by the DE

and SHO algorithms are relatively closer together compared

to other methods. This observation suggests that the DE opti-

mizer algorithm offers the additional benefit of practical ease

of deployment, as the proximity of RIS positions facilitates

more efficient installation and configuration processes. To

further investigate this advantage across different values of

the rate threshold (φ), Figure 7 illustrates the positioning of

RISs achieved by the DE optimizer algorithm across various

φ values. Interestingly, our findings indicate that not all φ

values equally benefit from this advantage, suggesting that

the practical ease of deployment may vary depending on

the specific rate threshold. This observation underscores the

importance of future research efforts aimed at enhancing the

DE optimizer method to ensure consistent and optimized

RIS positioning across all φ values. By addressing this

aspect, we can further optimize the practical deployment

FIGURE 7. Placements obtained by DE algorithm for different φ.

of RISs in wireless communication systems, maximizing

their effectiveness and usability across diverse operating

conditions.

The convergence properties displayed by different

optimization techniques are comprehensively compared in

Figure 8. In order to show how close an algorithm is to the

ideal answer, the convergence plot shows how many itera-

tions each method needs to reach the lowest fitness value.

This contrast is shown in Figures 8(a) to 8(d), discussing

algorithmic performance under various optimization situa-

tions, for a range of values of φ, from 1.0 to 1.7. Figure 8,

shows the faster and suitable convergence of the applied

DEO in our proposed problem with better performance

compared to the other optimization algorithms. Although the

GO algorithm converges faster in the beginning, the DEO

reaches minimum convergence after several iterations. For

example, at φ = 1, the DEO reaches its lowest value after 12

iterations. And at φ = 1.4, 1.5, the DEO algorithm converges

after 22 and 25 iterations, respectively.

B. COMPLEXITY ANALYSIS

To compare the algorithms (GBO, PSO, DE, GO, SHO)

in terms of time and memory complexity based on the

provided data, Tables 5 and 6 illustrate their elapsed times

and memory usage.

To combine both time and memory complexities into a

single metric, we can use a weighted sum or a combined

efficiency score. This approach will help in assessing the

overall efficiency of each algorithm by considering both

elapsed time and memory usage. At first, both the elapsed

time and memory usage are normalized to a scale of 0 to 1,

where 0 is the best (least time/memory used) and 1 is the

worst (most time/memory used) as follows:

tnormi =
ti − tmin

tmax − tmin
(19)

mnormi =
mi − mmin

mmax − mmin
(20)
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FIGURE 8. Fitness value versus number of iterations obtained by different optimization algorithms DEO, PSO, GBO, SHO, and GO.

TABLE 5. Time and memory complexity of the compared algorithms (GBO, PSO, DE,

GO, SHO).

where tnormi and mnormi are the normalized elapsed time

and memory usage regarding each algorithm (i) while the

superscripts min and max are the minimum and maximum

values. Then, the combined efficiency score is computed,

considering for simplicity equal weights to time and memory.

For each algorithm, normalize the elapsed time and memory

usage as follows:

CombinedScorei = wt × tnormi + wm × mnormi (21)

TABLE 6. Normalized time, memory, and combined scores of the compared

algorithms (GBO, PSO, DE, GO, SHO).

where, wt and wm are the weights for time and memory,

respectively. Typically, wt + wm = 1. For equal weighting,

wt = 0.5 and wm = 0.5.

From Table 5, for the elapsed time, the minimum value

(tmin) is 109.215529 seconds (SHO), and the maximum value

(tmax) is 149.706017 seconds (GO). For memory usage, the

minimum value (mmin) is 1706 MB (DE), and the maximum

value (mmax) is 1762 MB (SHO). Thus, the normalized time

and memory can be recorded in Table 6.

In Table 6, the recorded combined efficiency score

provides a more holistic perspective of the algorithms’

performance by taking into account both time and memory

factors, resulting in a more complete evaluation of their effi-

ciency. As shown, the DEO indicates superior performance
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TABLE 7. Obtained best, mean, worst, and standard deviation for GO, PSO, GBO, SHO, and DEO for different value of φ = {1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,.1.9, 2}.

in both time and memory usage, where it provides the best

overall algorithm, possessing a combined efficiency score of

0.093. The GO algorithm, on the other hand, has the lowest

overall performance, with a combined score of 0.982, which

reflects its longer execution time and increased memory

utilization.

Table 7 includes numerical values for different algorithms

at varying φ values. Analyzing the results, it is evident that

increasing φ generally leads to better performance in terms

of the Best and Mean values obtained by the algorithms. The

DEO algorithm consistently achieves the least Best values,

with a maximum of 4 at φ = 2 and a minimum of 2 at φ = 1.

In terms of Mean values, DEO again performs the best, with

a maximum of 5.1 at φ = 1.8 and a minimum of 2.77 at

φ = 1. Similarly, the DEO provides the best performance

by always achieving the smallest standard deviations for

all values of φ. This different separate multiple times with

different initial conditions offers insights into its robustness.

The smallest standard deviation of all scenarios of the DEO

proves that it is the most robust algorithm. Therefore, the

DEO consistently converges to similar solutions across runs,

which derives more likely to find global optima.

C. IMPLICATIONS FOR REAL-WORLD DEPLOYMENT

Our research findings hold significant implications for real-

world scenarios in the deployment of RISs within wireless

communication systems. Firstly, our optimized deployment

framework offers practical insights into enhancing coverage

dispersion, particularly in scenarios with multiple users,

addressing a critical need in modern wireless networks.

By strategically deploying RISs, we can mitigate coverage

gaps, improve signal strength, and enhance overall network

performance in diverse environments such as urban, indoor,

and outdoor settings. Additionally, our study contributes

valuable insights into the scalability and adaptability of RIS

deployment strategies, enabling their effective integration

into existing wireless communication infrastructure. This

scalability is particularly relevant in dynamic network envi-

ronments where user densities, environmental conditions,

and system configurations may vary over time. Moreover,

our cost-benefit analysis provides stakeholders with valuable

information on the economic implications of deploying RISs,

enabling informed decision-making regarding investment in

RIS technology. By considering these implications, our

research facilitates the practical implementation of RIS-

assisted wireless communication systems, paving the way for

more efficient, reliable, and cost-effective wireless networks

in real-world scenarios.

V. CONCLUSION

This paper looked towards multi-RIS-assisted wireless

communications placement optimization. A Differential

Evolution Optimizer was introduced to simultaneously

optimize the number, positions, and phase shift coefficients

of RISs with targeting to minimize the number of RISs

while maintaining a feasible rate. Comparisons with various

algorithms (including PSO, GBO, Go, and SHO) were used

to show the usefulness of the new algorithm. The findings

show how effective the proposed DEO is in determining

the lowest number of RISs under various threshold values,

yielding a 100% feasibility rate. While SHO and GBO

get subpar results of 66.36% and 53.94%, respectively,

PSO achieves a comparable result of 99.09%. However, the

proposed DEO clearly outperforms the other algorithms in

terms of having the lowest average number of RISs. When

compared to GO, PSO, SHO, and GBO, the DEO achieves
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Algorithm 1 DEO

1: procedure DEO

2: [Step 1: Define parameters] Insert Population size

(NDs); Dimension of each individual (Dim); Crossover

probability (Cr); Scaling factor (F); Maximum number

of generations (Gmax); Penalty factors (λ1, λ2); Problem-

specific parameters

3: for i = 1 :NDs do � [Step 2: Initialization]

4: for z = 1 :Dim do

5: Randomly initialize each population member

(Dsi,z) using Eq. (11)

6: end for

7: end for

8: for i = 1 :NDs do � [Step 3: Evaluation]

9: Fitness[i] = Evaluate(P[i])

10: end for

11: Function Evaluate(individual) � Extract control

variables from the individual

12: NumRIS = round(individual[1]) � Number of RIS

(rounded to nearest integer)

13: Positions = individual[2:Dim] � Positions of RIS

(continuous)

14: if NumRIS < MinRIS or NumRIS > MaxRIS then

� Ensure constraints are met by replacing violated

variables with random values within limits

15: NumRIS = Random value within [MinRIS,

MaxRIS]

16: end if

17: for j = 1 : length(Positions) do

18: if Positions[i,j] < PositionLowerBound[j] then

19: Positions[i,j] = Random value within

[PositionLowerBound[j], PositionUpperBound[j]]

20: else if Positions[i,j] > PositionUpperBound[j]

then

21: Positions[i,j] = Random value within

[PositionLowerBound[j], PositionUpperBound[j]]

22: end if

23: end for

24: Calculate 
GH using Eq. (15) � Calculate penalty

terms for dependent variable restrictions

25: for n = 1 to NumRIS do

26: for c = 1 to NumRIS do

27: Calculate 
GKn,c using Eq. (16)

28: end for

29: end for

30: Calculate Fitness using Eq. (14)

31: EndFunction

32: generation = 0 � [Step 4: Evolution Loop]

33: while generation < Gmax do

34: for i = 1 : NDs do

35: Select three distinct individuals r1, r2, r3 from

the population where r1, r2, r3 and i are not equal �

[Step 5: Mutation]

36: for z = 1 to Dim do

37: Generate mutantVector (MSi,z(It + 1))

using Eq. (12)

38: end for

39: for z = 1 to Dim do � [Step 6: Crossover]

40: if Random(0, 1) < Cr or j == Random

integer in [1, Dim] then

41: Generate trialVector (USi,z(It+ 1) =

MSi,z(It + 1))) using Eq. (13)

42: else

43: Generate trialVector (USi,z(It + 1) =

DSi,z(It + 1))

44: end if

45: end for

46: for i = 1 toNDs do � [Step 7: Selection]

47: Evaluate TrialFitness using Steps 11-31

48: if TrialFitness < Fitness[i] then

49: (DSi,z(It + 1) = trialVector)

50: Fitness[i] = TrialFitness

51: end if

52: end for

53: generation = generation + 1

54: end for

55: end while BestSolution = DS[individual with the

best fitness] � [Step 8: Result]

56: BestFitness = Fitness[best individual] Return

BestSolution, BestFitness � Output the best solution

and its fitness

57: end procedure

numerical improvements of 5.13%, 15.68%, 30.58%, and

51.0%, respectively.

For future work, several avenues can be explored to

enhance the optimization of RIS deployment in wireless

communication systems. Firstly, incorporating real-world

constraints and practical considerations such as hardware

limitations, environmental factors, and deployment costs

into the optimization framework could yield more realis-

tic and applicable results. Additionally, investigating the

dynamic adaptation of RIS configurations in response to

varying network conditions, user demands, and channel

characteristics could further improve system performance

and adaptability. Furthermore, exploring hybrid optimization

techniques that integrate the strengths of different algorithms,

such as combining DEO with machine learning or rein-

forcement learning approaches (such as Deep Reinforcement

Learning (DRL) algorithms and Self-Organizing Tree

Algorithm (SOTA)), may lead to even more efficient and
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robust optimization solutions. Moreover, extending the study

to consider multi-objective optimization objectives, such

as minimizing energy consumption or maximizing network

coverage alongside data rate optimization, could provide a

more comprehensive understanding of the trade-offs involved

in RIS deployment. Also, impressive extensions to this study

can be implemented by incorporating the following analyses

as future work, including varying the number of reflective

elements at each RIS and other benchmark tests.

APPENDIX

See Algorithm 1.
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