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Abstract—We propose VLM-Social-Nav, a novel Vision-
Language Model (VLM) based navigation approach to compute
a robot’s motion in human-centered environments. Our goal is to
make real-time decisions on robot actions that are socially compli-
ant with human expectations. We utilize a perception model to de-
tect important social entities and prompt a VLM to generate guid-
ance for socially compliant robot behavior. VLM-Social-Nav uses a
VLM-based scoring module that computes a cost term that ensures
socially appropriate and effective robot actions generated by the
underlying planner. Our overall approach reduces reliance on large
training datasets and enhances adaptability in decision-making. In
practice, it results in improved socially compliant navigation in
human-shared environments. We demonstrate and evaluate our
system in four different real-world social navigation scenarios with
a Turtlebot robot. We observe at least 27.38% improvement in
the average success rate and 19.05% improvement in the average
collision rate in the four social navigation scenarios. Our user
study score shows that VLM-Social-Nav generates the most socially
compliant navigation behavior.

Index Terms—Motion and path planning, task and motion
planning, integrated planning and control.

I. INTRODUCTION

MOBILE robots integrated into diverse indoor and outdoor
human-centric environments are becoming increasingly

prevalent. These robots serve various functions, ranging from
package and food delivery [1] to service [2] and home as-
sistance [3]. Overall, these roles necessitate interaction with
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Fig. 1. The trajectories of VLM-Social-Nav (red), DWA (blue), and BC
(yellow) approaches in the frontal encountering scenario (left) and the inter-
section scenario (right). The resulting trajectories show that VLM-Social-Nav
demonstrates more socially compliant behavior because it is instructed by a
prompt.

humans and navigating seamlessly through public spaces with
pedestrians. In such dynamic scenarios, it is important for the
robots to engage in socially compliant interactions and naviga-
tion [4], [5].

This letter focuses on the challenges of social navigation [5].
It addresses the ability of robots to navigate while adhering to
social etiquette, especially contextual appropriateness, which
requires robots to understand environment contexts, current
tasks, and interpersonal behaviors. Therefore, navigating so-
cially across varying contexts presents distinct challenges [4],
[5], [6], including ensuring safety, comfort, and politeness, as
well as adhering to social norms.

Inferring contextually appropriate navigation behaviors is
challenging: Humans have various behaviors and the environ-
mental or task contexts cannot be easily categorized [5]. A
common strategy to handle the challenge is by learning-based
approaches to learn the complicated contexts empirically. Imi-
tation Learning (IL) is a recent emerging paradigm for desired
navigation behavior [7], [8]. This approach enables autonomous
robots to navigate socially by learning from human demonstra-
tions. Other learning approaches, such as reinforcement learning
have also been used to address this problem [9]. While both
methods demonstrate promising results in real-world settings,
substantial datasets [10], [11], [12] for training and reward
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engineering are required for their successful application and it
is hard to generalize.

Language models are inherently well-suited for contextual
understanding but not well applied in social navigation: Recent
Large Language Models (LLMs) and Vision-Language Models
(VLMs) demonstrate a deep understanding of contextual infor-
mation and have the potential to perform chain-of-thought [13]
and common sense reasoning [14]. Those processes are inherent
to social navigation, especially the challenges of contextual
appropriateness and politeness, which require understanding
the task/environmental context and the behavior of humans.
This capability has also been evaluated across diverse domains
of robotics, including human-like driving scenarios [15] and
autonomous robot navigation [16]. However, using language
models for social navigation is not well explored, the language
models suffer from high latency for real-time navigation, and
the issue impedes the smoothness and efficiency of human-robot
social interaction.

Main Results: In this letter, we present VLM-Social-Nav, a
new approach that uses VLMs to interpret contextual informa-
tion from robot observation to help autonomous robots improve
their navigation abilities in human-centered environments. We
leverage a VLM to analyze and reason about the current social
interaction and generate an immediate preferred robot action to
guide an underlying motion planner. We formalize the concept of
social cost and the problem definition of social robot navigation
suitable for language descriptions. The social cost is defined
as how well a robot’s behavior aligns with socially acceptable
norms, i.e., the behavior a human would likely exhibit. Our
VLM-based scoring module computes the social cost, which
is used for a bottom-level motion planner to output appropriate
robot actions. To overcome the limitation of existing VLMs’
latency issue, we utilize a state-of-the-art perception model
(i.e., YOLO [17]) to detect key entities that are used for social
interactions (e.g., humans, gestures, and doors) and query a
VLM to generate socially compliant navigation behavior and
compute the social cost. We demonstrate VLM-Social-Nav in
four different indoor scenarios with human interactions. Un-
like previous social navigation approaches, VLM-Social-Nav
can better navigate through social scenarios by interpreting the
situation based on common sense without any dedicated training
on a large dataset. Some of our main results include:! We propose VLM-Social-Nav, a novel approach for social

robot navigation, by integrating VLMs with optimization-
based or scoring-based motion planners and a state-of-the-
art perception model for better VLM efficiency.! We propose a VLM-based scoring module that translates
the current robot observation and textual instructions into
a relevant social cost term. This cost term is used for the
bottom-level motion planner to output appropriate robot
action.! We evaluate VLM-Social-Nav in four different real-world
indoor social navigation scenarios along with a user study
and compare the results with a Dynamic-Window Ap-
proach (DWA) [18] and Behavior Cloning (BC) [19]
method trained on a state-of-the-art large Socially Compli-
Ant Navigation Dataset (SCAND) [11]. VLM-Social-Nav

achieves at least 27.38% improvement in average suc-
cess rate and 19.05% improvement in average collision
rate in four scenarios. The user study score shows that
VLM-Social-Nav generates the most socially compliant
navigation behavior.

More related works and discussions can be found in the
technical report of our manuscript [20].

II. RELATED WORK

In this section, we give an overview of existing works related
to safety requirements and different challenges of contextual ap-
propriateness in social robot navigation, and Large Foundation
Models (LFMs) for robot navigation.

A. Safety Requirement of Social Navigation

For social navigation, safety is a basic requirement for inter-
acting with humans and navigating dynamic scenarios [21], [22].
DWA [18] is a well-known collision-free navigation method
that calculates collision constraints and selects the best feasible
action. Velocity-Obstacle (VO)-based approaches are more effi-
cient and can be used to simulate the actions of crowds [23],
but they do not take uncertainties into account. PRVO [24]
and OFVO [21] handle the perception uncertainties, but those
approaches require a hard threshold for planning. To deal with
this issue, learning-based methods empirically train the policies
by demonstrations [25] or use reinforcement learning to train
the robot in a simulator and implement it in real-world scenar-
ios [22], [26]. However, learning-based approaches require a
significant amount of data or realistic simulators to learn the
task.

B. Contextual Appropriateness of Social Navigation

Researchers have developed various methods to incorpo-
rate social awareness into mobile robot navigation. Creating
such systems is complex, requiring advanced perception and
reasoning to navigate environments shared with humans and
robots [4]. Defining social navigation varies across cultures and
platforms. Assessing social compliance, beyond safety, depends
on the scenario and requires contextual consideration. Various
methodologies are employed to address this challenge, with a
significant focus on enhancing learning methods through rein-
forcement learning, learning from demonstration (particularly
by analyzing examples of human trajectories or robots operated
by humans), and the utilization of simulated datasets [27], [28],
[29]. SCAND [11] and MuSoHu [12] are two recent large-
scale social human navigation datasets in many natural human-
inhabited public spaces for robots to learn similar, human-like,
socially compliant navigation behaviors. Although extensive
research has explored various machine learning techniques,
Vision-Language Models (VLMs) have not yet been applied to
the social navigation problem, despite their strong potential for
contextual analysis.
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C. Large Foundation Models for Navigation

Recent advancements in Language Foundation Models
(LFMs) [30], encompassing Vision-Language Models (VLMs)
and Large-Language Models (LLMs), show significant potential
in robotic navigation. SayCan [31] integrates LLMs for high-
level task planning. GPT-Driver [32] evaluates the performance
of GPT-3.5in simulation for autonomous driving, framing mo-
tion planning as a language modeling problem. L3MVN [33]
constructs semantic maps of environments and utilizes LLMs to
reach long-term goals, while LLaDA [34] enables autonomous
vehicles to adapt to diverse traffic rules across regions. LM-
Nav [16] utilizes GPT-3 and CLIP [35] to navigate outdoor
environments based on natural language instructions, combining
language and visual cues for optimal path planning. Despite
their strengths in contextual understanding and commonsense
reasoning, language models have not been investigated for social
navigation. Our approach proposes a novel method to navigate
robots in a socially compliant manner.

III. APPROACH

In this section, we define the social navigation problem and
describe VLM-Social-Nav in detail.

A. Problem Definition

Navigation is the task of generating and following an efficient
collision-free path from an initial location to a goal [5]. In
general, the overall system consists of a global planner and a
local planner. A global planner is designed to find a collision-free
path to reach a goal, while a local planner aims to navigate
the robot through its immediate surroundings, making real-time
adjustments to deal with vehicle dynamics and surrounding
obstacles.

For social robot navigation, humans are no longer perceived
only as dynamic obstacles but also as social entities [4]. It
necessitates integrating social norms into robot behaviors. We
define the social robot navigation problem as a Markov Deci-
sion Process (MDP): 〈S,A, T , C〉, where s = (x, y, θ) ∈ S is a
state consisting of a robot pose, a = (v, w) ∈ A is an action
consisting of a linear and an angular velocity of the robot,
T : S ×A → S is the transition function characterizing the
dynamics of the robot, and C : S ×A → R is a cost function.
Given a cost function C, the motion planner finds (v∗, w∗)
that minimizes the expected cost. The cost function takes the
following form:

C(s,a) = α · Cgoal + β · Cobst + γ · Csocial, (1)

where Cgoal encourages movement toward the goal, Cobst discour-
ages collisions with obstacles, and Csocial encourages the robot
to follow the social norms. α, β, and γ are non-negative weights
for each cost term.

The social cost term Csocial encompasses various factors that
govern human-robot interactions in shared environments. Defin-
ing them mathematically poses challenges. For VLM-Social-
Nav, we define Csocial as:

Csocial = ‖B − Bh‖, (2)

whereB is a navigation behavior andBh is a navigation behavior
humans would adopt in accordance with social conventions.
Minimizing the deviation between them will encourage the
robot to emulate socially acceptable human behaviors. While
Bh can be obtained through various methods, including large
datasets [10], [11], [12], we leverage the power of a VLM to
compute appropriate behavior based on its rich contextual un-
derstanding and nuanced interpretations from perceived images
and given prompts. We elaborate further in Section III-C.

B. VLM-Based Social Navigation Architecture

Fig. 2 highlights the overview of VLM-Social-Nav. Our
approach is based on an autonomous navigation system that
integrates a perception layer with an optimization-based mo-
tion planner. The motion planner processes sensor inputs and
generates a robot action that minimizes the cost function C.

While LiDAR detects geometric information useful for ob-
stacle avoidance, RGB images provide contextual details of the
current environment. They contain rich information crucial for
social navigation. To enhance navigation capabilities within so-
cial contexts, we propose a VLM-based scoring module. VLMs
excel in contextual understanding, interpreting scenes not solely
based on visual features but also considering social dynam-
ics[36]. VLMs generate socially appropriate robot actions based
on current observations and input instructions. Our VLM-based
scoring module then calculates a cost term to be used by the
motion planner.

While VLMs can generate navigation behaviors that comply
with social norms, continuously querying large VLMs for new
responses is prohibitively computationally expensive for real-
time navigation. To address this challenge, we incorporate a
real-time perception model. This model identifies social entities
such as humans, gestures, and doors as the robot navigates its
environment. Our VLM-based scoring module activates only
when significant social cues are detected, ensuring that the social
cost term is integrated only when necessary, i.e., when there is
any human interaction involved. This approach reduces the VLM
queries and facilitates real-time navigation efficiency for our
approach. Algorithm 1 summarizes an overview of our VLM-
Social-Nav process.

C. VLM-Based Scoring Module

VLM plays a crucial role in VLM-Social-Nav in inferring
immediate socially compatible navigation behavior Bt+1

h based
on its pre-trained large internet-scale dataset:

Bt+1
h = VLM(It,P,at), (3)

where It is an RGB image from the robot view at time t, P is a
textual prompt, and at is a current robot action at time t. Inspired
by In-Context Learning (ICL), our promptP is designed to lever-
age the VLM’s reasoning abilities through zero-shot examples.
This approach offers an interpretable interface, mirroring human
reasoning and decision-making processes, without extensive
training [37].

Our VLM-based scoring module starts from the insight that
the action space of a mobile robot can be readily mapped to
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Fig. 2. The overall system architecture of VLM-Social-Nav. Our real-world perception (vision) model detects important social entities (e.g., humans, gestures,
and doors) in real time and prompts the VLM-based scoring module to compute social cost Csocial, which is used to generate socially compliant robot action.

Algorithm 1: VLM-Based Social Navigation.

linguistic terms. For example, the action “move forward at a
constant speed” can be linked to a linear velocity of vt m/s
and an angular velocity of 0. The heading direction on the
left indicates a positive value of wt, while the direction on the
right indicates a negative value. Leveraging this understanding,
we structure the output of the VLM into a linguistic format
comprising the heading and the speed. Subsequently, our scoring
module extracts Bt+1

h )→ (vt+1
h , wt+1

h ) ∈ A from these tokens;
vt+1
h = vt + δs, where δs is derived from the response for the

speed; wt+1
h = δd, where δd is derived from the response for the

heading. Thus, the social cost term for the next time step can be
calculated:

Ct+1
social = wl · ‖v − vt+1

h ‖+ wa · ‖w − wt+1
h ‖, (4)

where wl and wa are non-negative weights. Given all the cost
terms, our low-level optimization-based motion planner finds
the robot action (v∗, w∗) that minimizes the cost.

Fig. 3 shows an example prompt P used in our experiment.
We provide a high-level task description along with an image

Fig. 3. An example input image (It) and prompt (P) used in VLM-Social-Nav.
Parameterized inputs (at) are highlighted in blue. Formatted outputs specifying
the heading (δd) and the speed (δs) are highlighted in red. The example input
data is one of the frontal approach scenarios from MuSoHu [12].

It captured from the robot’s perspective. Furthermore, the cur-
rent robot action at = (vt, wt) ∈ A is provided. The angular
velocity is mapped into corresponding directional instructions
based on predefined categories (i.e., positive values correspond
to left, values near zero to straight, and negative values to right).
Supplementary instructions regarding walking etiquette are in-
cluded. Although the VLM demonstrates proficient navigation
abilities in the absence of explicit instructions, offering rea-
soning guidelines enhances its decision-making processes [37].
These guidelines not only facilitate comprehensive reasoning
and judgment within the VLM but also enable the robot to adapt
to specific rules more effectively. For example, in a country
where it’s customary to walk on the left, we can rephrase the
prompt as “Move to the left when passing by another person.”
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IV. EXPERIMENTS

In this section, we describe the details of the implementation
and qualitative and quantitative experimental results.

A. Implementation Details

VLM-Social-Nav is tested on a Turtlebot 2 equipped with a
Velodyne VLP16 LiDAR, a Zed 2i camera, and a laptop with an
Intel i7 CPU and an Nvidia GeForce RTX 2080 GPU. We use
YOLO [17] as our real-world perception model to detect key
objects. In our experiment, we focus on key social cues, i.e., hu-
mans, doors, and gestures, which are critical considerations
when navigating in socially rich environments [38]. Generative
Pre-trained Transformer 4 with Vision (GPT-4V) [14] is used as
our VLM to comprehend the social dynamics and output the im-
mediate preferred robot action. This follows a preliminary study
that compared its performance with other large and small VLMs.
GPT-4V was able to produce reliable results with high consis-
tency, achieving a reasonable average inference time of around
three seconds. We combined our approach with a low-level
motion planner DWA [18]. We compare VLM-Social-Nav with
DWA without social cost Csocial and BC [19] trained on a state-
of-the-art, large-scale social navigation dataset, SCAND [11].
The dataset contains various examples of socially compliant
navigation behaviors teleoperated by humans including sticking
to the right of the road and waiting for a human to pass. We expect
that the model can learn to output socially compliant navigation
behaviors like the human demonstrations.

Evaluating the social aspects of social robot navigation is
inherently challenging [39]. To validate VLM-Social-Nav, we
carefully follow the social robot navigation studies [6], [40],
which set up the benchmark scenarios and the metrics for
measuring social compliance. We present qualitative, quanti-
tative, and user study results in four different social navigation
scenarios:! Frontal Approach: A robot and a human approach each

other from two ends of a straight trajectory.! Frontal Approach with Gesture: A robot and a human
approach each other from two ends of a straight trajectory.
The human recognizes the robot and then gestures for it to
stop.! Intersection: A robot and a human cross each other on
perpendicular trajectories.! Narrow Doorway: A robot and a human cross each other’s
paths by moving through a narrow doorway.

B. Qualitative Result

Based on the protocols and principles set by other studies [6],
[40], the robot is expected to behave in a socially compliant way
as follows:! Frontal Approach: The robot is expected to yield or slow

down and modify its original trajectory so that it does
not obstruct the human path. Like driving rules in North
America, it is conventional to keep on the right.

! Frontal Approach with Gesture: The robot is expected
to yield by interpreting the human gesture.! Intersection: The robot is expected to drive slowly when
it approaches the human. It may come to a complete stop
or modify its original trajectory to go behind the human to
not obstruct the path.! Narrow Doorway: The robot is expected to wait outside
the door and yield to the human.

Fig. 4 shows snapshots of the resulting robot motion using
VLM-Social-Nav in four different scenarios. We demonstrate
that VLM-Social-Nav follows the social convention and navi-
gates toward its goal as expected. Fig. 1 illustrates the result-
ing trajectories of VLM-Social-Nav in comparison to those of
DWA and BC methods. A notable observation is that, while
DWA also effectively avoids collisions with individuals, VLM-
Social-Nav generates trajectories that align more closely with
social norms. For instance, in the frontal approach scenario,
while DWA tends to maneuver around the person either to
the right or left, VLM-Social-Nav predominantly bypasses the
person on the right side. Similarly, in the intersection sce-
nario, whereas DWA occasionally obstructs the person’s path
by veering to avoid collision directly in front, VLM-Social-Nav
adjusts its trajectory to pass behind the individual, adapting
effectively to the human’s movement direction. Additionally,
BC avoids humans but fails to recover and follow the original
path. This leads to many failures in reaching the goal. The
accompanying supplementary video shows the resulting robot
motions.

C. Quantitative Result

To further validate VLM-Social-Nav, we evaluate the methods
using three different metrics. The success rate describes whether
the robot reaches the goal. For the frontal approach with gesture
scenario, we mark it as successful when the robot reacts to the
gesture. The collision rate describes whether the robot collided
with the human or other objects in the environment. We also
mark it as in collision when we manually intervene to avoid an
imminent collision with the human subject or surroundings. The
user study score is an average score we obtained from the user
study detailed in Section IV-D.

Table I reports the results averaged over 21 runs for each
method and scenario. The results demonstrate that VLM-Social-
Nav, DWA with social cost, outperforms other methods in every
metric. DWA excels at following a path smoothly, yet it faces
challenges in collision avoidance as it relies solely on the LiDAR
sensor and does not consider social compliance. Most of the
collisions occurred when DWA navigated in a way that interfered
with a person’s path, for example, going in front of the person
when intersecting. We also observe that the outcomes of BC
varied. At times, when attempting to avoid collisions, it failed to
return to its original path and failed to reach the goal. Conversely,
there were instances where it didn’t attempt collision avoidance
at all, resulting in collisions with the participants. For gesture
recognition, only our proposed method successfully responded
to the participants’ gestures. VLM-Social-Nav improves the
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Fig. 4. Qualitative Results: the robot navigation behaviors with VLM-Social-Nav for four social navigation scenarios: (a) Frontal Approach, (b) Frontal Approach
with Gesture, (c) Intersection, and (d) Narrow Doorway. The solid gray arrow shows the participant’s path. The solid red arrow shows the robot’s path. The red
and gray dashed arrows show the robot’s and participant’s paths respectively, after a stop motion. A caption on the top left shows the result from the VLM.

TABLE I
QUANTITATIVE RESULTS: PERFORMANCE COMPARISONS USING BC [19], DWA [18], AND VLM-SOCIAL-NAV

average success rate by 27.38% and reduces the average collision
rate by 19.05% across four social navigation scenarios.

D. User Study

To validate the social compliance of VLM-Social-Nav, we
conduct a user study. We ask the participants to walk along
the predefined trajectory and then to answer questionnaires
about the robot motion [40] (Table II). * denotes negatively

formulated questions, for which we reverse-code the ratings to
ensure comparability with the positively formulated ones. The
three methods are randomly shuffled and repeated three times.
Each scenario is tested on seven participants. We use a five-level
Likert scale to ask participants to rate their agreement with these
statements.

Fig. 5 and the user study scores in Table I show the study result.
The plot shows the per-question average scores for the three
methods in each scenario. Based on the results, it’s evident that
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TABLE II
SOCIAL COMPLIANCE QUESTIONNAIRE

Fig. 5. User Study Average Scores: the per-question average scores for the
three methods in each scenario. The results indicate that VLM-Social-Nav
earned the highest level of agreement from participants across all questions,
highlighting its robust alignment with social norms.

VLM-Social-Nav receives the highest level of agreement from
participants across all questions, indicating its strong adherence
to social norms. The standard error of the BC method was
large, indicating that the performance of the BC method was
not consistent. The score difference between VLM-Social-Nav
and DWA was not large in the narrow doorway scenario. This
is because, when attempting to enter the narrow doorway, DWA
often failed to find a plan and froze, resembling the result of
VLM-Social-Nav, a complete stop in front of the doorway.

E. Discussion

Real-time navigation with VLM: GPT-4 V and similar large
VLMs require several seconds to respond to prompts, making
continuous querying impractical for real-time navigation tasks.
To address this, we optimized VLM-Social-Nav in two ways:
first, by formatting prompts and providing predefined choices,
which resulted in reduced response times. Second, we minimize
queries by using a perception model to detect social cues,
allowing for timely VLM queries only when necessary. These
choices enable and allow average response times of 2-3 seconds,
sufficient for human interaction and navigation. While such a
limitation can be problematic in more dynamic scenarios that
require frequent interactions, future advancements in fast large
language models promise further extensions of our approach.

Socially aware navigation with VLM: We observe that
VLMs can analyze and reason about social interactions from
single images. Using various single images, including those
collected by ourselves and from social robot navigation
datasets [11], [12], VLMs accurately describe scenes and sug-
gest socially compliant navigation strategies with reasons. For
instance, for the image shown in Fig. 3, GPT-4 V describes
the scene as a person is walking towards the camera along a
sidewalk. To navigate this situation, GPT-4 V advises the robot
to yield the right of way because it is generally customary to
keep to the right side of the path when encountering someone
coming from the opposite direction, similar to driving rules.
However, despite their powerful capabilities, VLMs can still
make mistakes. Therefore, relying solely on VLMs for naviga-
tion decisions is not safe. Instead, we incorporate their output as
a cost term in our overall decision-making process.

More challenging scenarios: Although our robot experi-
ments were conducted only indoors, according to the example in
Fig. 3, VLM-Social-Nav can be extended to outdoor scenarios
in more complex environments. VLMs successfully retrieve
significant environmental information for outdoor social robot
navigation, such as sidewalks, zebra crossings, and cars. This
will be our immediate focus for future work, i.e., to advance into
global outdoor navigation. We also aim to extend our approach to
complex scenarios involving multiple individuals. When tested
with the scenario with one person, VLM-Social-Nav success-
fully outputs socially compatible actions, realizing the group of
people in the scene. However, when multiple groups are present,
simple directions like left or right may not suffice to describe
effective robot navigation.

V. CONCLUSION

We propose a novel social navigation approach based on
VLMs, focusing on real-time, socially compliant decision-
making in human-centric environments. We utilize the per-
ception model to detect important social entities and prompt
a VLM to generate guidance for socially compliant behavior.
VLM-Social-Nav features a VLM-based scoring that ensures
socially appropriate and effective robot actions. This minimizes
the dependence on extensive training datasets and eliminates the
necessity for explicit rules or hand-tuned parameters typically
associated with imitation learning approaches. By furnishing
textual instructions to VLM, we can instruct the robot to adhere
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to specific navigation rules, such as navigating on the right or left
according to cultural norms. However, interpreting social rules
and deriving appropriate actions from them based on raw robot
perception remains complex. VLMs interpret social situations
and determine actions based on these rules, offering a more
nuanced approach than simpler rule- or planning-based meth-
ods. We demonstrate and evaluate our system in four different
real-world social navigation scenarios with a Turtlebot robot.

One immediate future work is to explore visual prompting
methods [41], [42] to enhance spatial reasoning in VLMs by
marking the images. Another promising future direction is to
explore open-source VLMs, such as LLaVA [43]. Their access
to lower-level information, such as log probabilities could help
detect and address hallucinations. It is also interesting to develop
a VLM that generates high-level social navigation instructions
through chain-of-thought reasoning, and integrate it into an
autonomous navigation system.
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