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The third Benchmark Autonomous
Robot Navigation (BARN) Challenge
took place at the 2024 IEEE Internation-
al Conference on Robotics and Automa-
tion (ICRA 2024) in Yokohama, Japan
and continued to evaluate the perfor-
mance of state-of-the-art autonomous
ground navigation systems in highly con-
strained environments. Similar to the
trend in the first and second BARN
Challenges at ICRA 2022 and 2023 in
Philadelphia (North America) and Lon-
don (Europe), the third BARN Chal-
lenge in Yokohama (Asia) became more
regional, i.e., mostly Asian teams partici-
pated. The size of the competition has
slightly shrunk (six simulation teams,
four of which were invited to the physi-
cal competition). The competition
results, compared to the last two years,
suggest that the field has adopted new
machine learning approaches, while at
the same time slightly converged to a
few common practices. However, the
regional nature of the physical partici-
pants suggests a challenge to promote
wider participation all over the world and
provide more resources to travel to the
venue. In this article, we discuss the
challenge, the approaches used by the
three winning teams, and lessons
learned to direct future research
and competitions.

THE THIRD BARN CHALLENGE
OVERVIEW

The third BARN Challenge took place
as a conference competition at ICRA
2024 in Yokohama, Japan. As a contin-
uation of the first and second BARN
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Challenges at ICRA 2022 and 2023 in
Philadelphia and London, respectively,
the third challenge aimed to evaluate
the capability of state-of-the-art naviga-
tion systems to move robots through
static, highly constrained obstacle
courses, an ostensibly simple problem
even for many experienced robotics
researchers, but in fact, as the results
from the first two competitions sug-
gested, a problem far away from being
solved [1], [2].

Each team needed to develop an
entire navigation software stack for
a standardized and provided mobile
robot, i.e., a Clearpath Jackal with a 2D
270° field-of-view Hokuyo lidar for per-
ception and a differential drive system
with 2 m/s maximal speed for actua-
tion. The developed navigation software
stack needed to autonomously drive
the robot from a given starting location
through a dense obstacle field and to a
given goal without any collisions with
obstacles or any human interventions.
The team whose system could best
accomplish this task within the least
amount of time would win the compe-
tition. The third BARN Challenge had
two phases: a qualifying phase evalu-
ated in simulation and a final phase
evaluated in three physical obstacle
courses. The qualifying phase took
place before the ICRA 2024 conference
using the BARN dataset [3] (with the
recent addition of DynaBARN), which
is composed of 300 obstacle courses
in Gazebo simulation randomly gener-
ated by cellular automata. The top
four teams from the simulation phase
were then invited to compete in three
different physical obstacle courses
set up by the organizers at ICRA
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2024 in the PACIFICO Yokohama
conference center.

In this article, we report on the simu-
lation qualifier and physical finals of the
third BARN Challenge at ICRA 2024,
present the approaches used by the top
three teams, discuss lessons learned
from the challenge compared to the first
and second BARN Challenges at ICRA
2022 and 2023, and point out future
research directions to solve the problem
of autonomous ground navigation in
highly constrained spaces.

SIMULATION QUALIFIER
The simulation qualifier of the third
BARN Challenge started on 1 January
2024. The qualifier used the BARN
dataset [3], which consists of 300 5-m x
5-m obstacle environments randomly
generated by cellular automata (see
examples in Figure 1), each with a pre-
defined start and goal. These obstacle
environments range from relatively
open spaces, where the robot barely
needs to turn, to highly dense fields,
where the robot needs to squeeze
between obstacles with minimal clear-
ance. The BARN environments are
open to the public and were intended to
be used by the participating teams to
develop their navigation stack. Another
50 unseen environments, which are not
available to the public, were generated
to evaluate the teams’ systems. A ran-
dom BARN environment generator was
also provided to the teams so that they
could generate their own unseen test
environments (https://github.com/
dperille/jackal-map-creation).

In addition to the 300 BARN envi-
ronments, six baseline approaches were
also provided for the participants’
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FIGURE 1. Four example BARN environments in the Gazebo simulator (ordered by ascending relative difficulty level).

reference, ranging from classical sam-
pling-based [4] and optimization-based
navigation systems [5], to end-to-end
machine learning methods [6], [7],
and hybrid approaches [8]. All base-
lines were implementations of different
local planners used in conjunction with
Dijkstra’s search as the global planner
in the robotic operating system (ROS)
move _ base navigation stack. Addi-
tionally, the winning teams’ navigation
stacks from the last two competitions
were also open sourced. To facilitate
participation, a training pipeline capa-
ble of running the standardized Jackal
robot in the Gazebo simulator with
ROS Noetic (in Ubuntu 20.04), with the
option of being containerized in Docker
or Singularity containers for fast and
standardized setup and evaluation,
was also provided (https://github.com/
Daffan/ros_jackal).

RULES

Each participating team was required
to submit their developed navigation
system as a (collection of) launchable
ROS node(s). The challenge utilized a
standardized evaluation pipeline (https:/
github.com/Daffan/nav-competition
-icra2022) to run each team’s naviga-
tion system and compute a standard-
ized performance metric that considers
navigation success rate (collision or not
reaching the goal counts as failure),
actual traversal time, and environment
difficulty (measured by optimal tra-

navigation goal without any collisions,
and evaluates to 0 otherwise. AT
denotes the actual traversal time,
while OT denotes the optimal travers-
al time, as an indicator of the environ-
ment difficulty and measured by the
shortest traversal time assuming the
robot always travels at its maximal
speed (2 m/s):

Path Length;
OT: = Maximal Speed *

The path length is provided by the
BARN dataset based on Dijkstra’s
search from the given start to goal. The
clip function clips AT within 2 OT and
8 OT to assure navigating extremely
quickly or slowly in easy or difficult
environments, respectively, won’t dis-
proportionally scale the score. Notice
that the lower-bound 2 OT was reduced
from the previous 4 OT used in the
last two challenges, considering the
performance upper bound, 0.25, has
been closely approached by multiple
teams. In the third BARN Challenge,
the upper bound has been increased
to 0.5 to encourage faster navigation
speed. The overall score of each team
is the score averaged over all 50 unseen
test BARN environments, with 10 tri-
als in each environment. Higher scores

indicate better navigation performance.
The six baselines score between 0.1656
and 0.4354.

RESULTS

The simulation qualifier started on 1
January 2024 and lasted through a soft
submission deadline (1 April 2024) and
a hard submission deadline (1 May
2024). Submitting by the soft deadline
guaranteed an invitation to the final
physical competition given good navi-
gation performance in simulation and
left sufficient time for invited partici-
pants to make travel arrangements to
Yokohama. The hard deadline was to
encourage broader participation, but
final physical competition eligibility
depended on the available capacity and
travel arrangements made beforehand.
In total, six teams, five from Asia and
one from Europe, submitted their navi-
gation systems. The performance of
each submission was evaluated by the
standard evaluation pipeline. The
results are shown in Table 1, with the
baselines shown in the fourth column as
a reference.

The top two simulation teams,
LiCS-KI from the Korea Advanced
Institute of Science and Technology
(KAIST) and AIMS from The Hong
Kong Polytechnic University (HKPU),

TABLE 1. Simulation results.

SCORE
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versal time). Specially, the score s for :
navigating each environment i was L Lol
computed as 2 AIMS

3 EIT-NUS
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outperformed all of last year’s win-
ning teams (KUL+FM, INVENTEC,
and University of Almeria). However,
there is still a gap between the new
performance upper bound (0.5) and the
top performance (0.4762). The top four
teams—LiCS-KI, AIMS, EIT-NUS
from the Eastern Institute of Technol-
ogy, Ningbo, China, and MLDA_EEE
from Nanyang Technological University
(NTU)—were invited to the physical
finals at ICRA 2024. The top simulation
(and also final winning) team, LiCS-
KI, was the only team that submitted
after the soft deadline but before the
hard deadline.

R

The BARN
ghallenge 2024

3

Challenge in Yokohama, Japan.

PHYSICAL FINALS

The physical finals took place at ICRA
2024 in the PACIFICO Yokohama con-
ference center on 15 and 16 May 2024
(Figure 2). Two physical Jackal robots
with the same sensors and actuators
were provided by the competition spon-
sor, Clearpath Robotics.

RULES

Physical obstacle courses were set up
using 120 cardboard boxes in the confer-
ence center. The organizers used the
same guidelines to set up three obstacle
courses as in the first two BARN Chal-
lenges, i.e., all courses aimed at testing a

e

FIGURE 2. Final physical competition participants and organizers at the third BARN

navigation system’s local planning and
therefore had an obvious passage but
with minimal clearance (a few centime-
ters around the robot) when traversing
this passage. Considering that KUL+FM
finished all three physical obstacle
courses in the second BARN Challenge,
the organizers intentionally increased the
difficulty this year, i.e., introducing
sharper turns and smaller clearances.

The organizers also used the same
competition rules agreed upon by all
of the physical competition partici-
pants: Each team has 20 min to set up
their navigation system after each
obstacle course was constructed. After
the 20-min setup time, each team had
the opportunity to run five timed tri-
als (after notifying the organizers to be
timed) within another 20-min period.
The fastest three of the five timed trials
were counted, and the team that had the
most successful trials (reaching the goal
without any collision) would be the win-
ner. In the case of a tie, the team with
the fastest average traversal time would
be declared the winner.

RESULTS

The four teams’ navigation perfor-
mance is shown in Table 2. Due to the
intentionally increased navigation diffi-
culty, the teams struggled more on
obstacle avoidance, similar to the first
BARN Challenge, and focused less on
increasing speed, as the teams did dur-
ing the second BARN Challenge. The
detailed results of all five timed trials
(in seconds, only the top three were
counted in the final score) are listed in
the last three columns of Table 2,
where “X” indicates failure.

The winner, LiCS-KI, successfully
and quickly finished all 10 trials in the
first two courses, but failed all five tri-
als in the third course, the extremely

TABLE 2. Physical results.

RANK. TEAM SUCCESS/TOTAL  AVERAGE TIME COURSE 1 COURSE 2 COURSE 3

1 LiCS-KI 6/9 30/35/NA 32/31/32/27/30 37/37/40/29/32 XIXIXIXIX

2 MLDA_EEE 5/9 (79) 72/89/NA 68/X/77/X/70 X/X/X/85/93 XIXIXIXIX

3 AIMS 5/9 (109) 90/NA/121 92/88/X/X/X XIXIXIXIX 119/118/126/X/X
4 EIT-NUS 0/9 NA/NA/NA XIXIXIXIX XIXIXIXIX XIXIXIXIX
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difficult one. MLDA_EEE also com-
pletely failed in the last, most difficult
course, but succeeded in three and two
trials in the first two courses. AIMS was
able to slowly but successfully finish
three trials in the last course, but did not
perform well in the first two, especially
the second course, possibly due to a bug
caused by sensor dimension mismatch.
As a result, LiCS-KI won the competi-
tion by the most successful trials (six of
nine), while the tie between MLDA_
EEE and AIMS was broken by the aver-
age traversal time (79 s versus 109 s).

TOP THREE TEAMS AND
APPROACHES

In this section, we report the approach-
es used by the three winning teams.

LICS-KI (KAIST)

The LiCS-KI team from KAIST intro-
duced an end-to-end local navigation
method for indoor navigation and
deployed their learned-imitation on
cluttered space (LiCS) framework. The
main innovation is the use of a trans-
former-based network trained using
behavior cloning (BC) with robust
expert demonstrations under controlled

noise. This method enables the robot to
navigate robustly and rapidly through
highly cluttered spaces. Additionally, a
safety-check layer is added to ensure
safe navigation in untrained environ-
ments, particularly during real-world
challenges.

NEURAL NETWORK

The neural network used by LiCS con-
sists of a transformer encoder and
decoder, as depicted in Figure 3. The
encoder employs a vision transformer
(ViT) model with class token omitted,
while the decoder is a standard trans-
former decoder without positional
embedding and masked multihead atten-
tion. During the encoding process, the
lidar input is segmented into N patches,
projected through a linear network, and
concatenated with learnable position
embedding. The decoder processes the
encoded lidar data alongside the nor-
malized local goal, provided by the
global planner, to predict the optimal
linear and angular velocities (v and ).

BEHAVIOR CLONING
The proposed network is trained using
BC to replicate the expert algorithm
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FIGURE 3. Transformer-based neural network used in LiCS.
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from the previous year’s winning team,
KUL+FM. To address the inherent per-
formance issues possessed by BC, a
Gaussian noise N(0, 0?) is injected to
the control inputs during expert demon-
strations. This noise augmentation
allows the demonstrations to cover a
variety of states for training, enhancing
the policy network’s robustness.

SAFETY-CHECK LAYER

The safety-check layer uses geomet-
ric calculations based on combined
lidar and costmap data to enhance
model safety. For linear motion
(|v|> 0, = 0), the robot travels along
its x axis. Safety is assessed by ensuring
no obstacles are within a predefined
rectangular safety zone extending from
the robot’s front [Figure 4(a)]. In radial
motion scenarios (|v|>0,|w|>0),
where the robot follows a circular trajec-
tory, the safety check involves ensuring
no obstacles are present within two
polygons that represent the robot’s foot-
print at the start and end of a movement
interval, connected by arcs defining the
robot’s outer and inner turning radii
[Figure 4(b)]. Imminent collisions
detected from this safety-check layer
trigger recovery actions, including speed
reduction, in-place rotation, and back-
ward movement.

IMPLEMENTATION

The training dataset was collected by
recording simulations of the KUL+FM
approach with injected Gaussian noise
(0 =0.25) across various scenarios.
The network, consisting of three layers
each in the ViT encoder and transform-
er decoder, was trained in a supervised
manner using the combined dataset over
100 epochs. In both simulated and real-
world challenges, an A* algorithm was
used as the global planner with dynamic
obstacle inflation parameters that are
adjusted based on velocity, Finfl = Fmin +
(V/vmax) X (Fmax — rmin). The safety layer
was implemented solely in the real-world
challenge, as the obstacle courses dif-
fered from the simulation environments.
hector _mapping simultaneous
localization and mapping SLAM was
also used during the real-world chal-
lenge to improve localization accuracy.



MLDA_EEE (NTU)

Team MLDA_EEE tackled the chal-
lenge using a classical approach with
model predictive control (MPC) with
mode-switching logic for different sce-
narios. The various modes all use MPC
formulation with different initialization
and constraints to bias the solver
toward a feasible solution.

FORMULATION

The optimization variables of the MPC
problem include the robot’s coordi-
nates and headings as the state variables,
x = [x, y, 6], and the velocity and accel-
eration of both left and right wheels as
the control, u=[vr,vl,ar,al]. The
MPC minimizes the objective function J
over the horizon of N steps, subject to
the constraints of the wheeled differen-
tial-drive model, the current odometry
readings, and other additional con-
straints, to make the robot follow a ref-
erence trajectory:

N-1
argmin Z J(x, u).
N
The objective function includes: 1)
error to the reference trajectory taken
from the global planner, 2) error refer-
ence velocity, and 3) acceleration:

J=wo(vi|— vref)2
F W[ (o = Xren) >+ (6 = Yre) ]
+ walar— 1)

IMPLEMENTATION

The global trajectory is given by the
global planner from ROS move _
base package. The map server
is updated using hector _map-
ping to increase the reliability of the
costmap. To reduce the computation
time in the MPC, we minimized the
number of obstacles considered in the
optimization process. A ROS node is
used to sample the raw lidar scan
every 15 points. The local _
costmap occupancy grid is used to
obtain obstacles in the blind spot of
the lidar, similar to INVENTEC [2].
These are published as point clouds
with (x, y) coordinates used in the
MPC, as shown in Figure 5. The local
plan is obtained from optimizing the

MPC problem using the nonlinear
solver CasADi.

BEHAVIOR OF DIFFERENT MODES
Different modes have different MPC
parameters, such as the weights of the
objective terms, control limits, and
additional constraints on the reference
global trajectory to allow safe maneu-
ver near obstacles. These parameters
are also fine-tuned in the physical runs.
The various modes include: 1) “safe’
the robot has high velocity; 2) “obstacle
present’ the obstacle is detected 1 m away

t=1s
v
i
t=0s
X
AN
L 1

from the robot; and 3) “close obstacle”
the obstacle is detected 0.5 m away.
Within the “close obstacle” mode, there
is a “reversing” mode, which is triggered
when the heading along the reference
trajectory is more than 90° from the
current heading [Figure 6(a)]. This hap-
pens when the robot encounters a dead-
end and the global plan suggests a new
trajectory. In this mode, the optimiza-
tion variables are initialized, such that
the heading points away from the goal,
priming the optimal solution to result
in the robot backtracking, instead of

FIGURE 4. (a) and (b) Safety zone illustration for the safety-check layer of LiCS during

linear and radial movement.

FIGURE 5. Rviz visualization of obstacles in the MPC. White squares: obstacle
coordinates sampled from raw lidar scan. Yellow squares: blind spot obstacle coordinates
obtained from local_costmap.
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performing a sudden rotation, to prevent
collision with nearby obstacles. When
the robot backtracks to a safe space, the
“obstacle present” parameters and the
constraints on the final MPC horizon step
allow the robot to regain the correct head-
ing toward the final goal [Figure 6(b)].

AIMS (HKPU)

To effectively address the highly con-
strained environments in the BARN
Challenge, the AIMS team developed
a local planner utilizing advanced
dynamic window-based methods. This
approach ensures collision-free naviga-
tion in narrow pathways by discretiz-
ing the sampling space into geometric
elements for rapid determination in
sensor space. It also incorporates back-
ward sampling to assist the vehicle in

adjusting its pose and extricating itself
from tight situations. Given the compe-
tition rules prohibiting premapping, the
strategy focuses on real-time path
planning rather than relying on real-
time mapping and localization. This
means that the vehicle must continu-
ously explore unknown areas while in
motion, with the global plan constantly
adjusted as exploration progresses. The
algorithm is designed to continuously
adapt to environmental changes and
respond quickly to maintain collision-
free navigation. The local planner
operates without the need for global
environmental data, allowing the vehi-
cle to navigate challenging courses
safely and efficiently, even without
comprehensive maps and detailed
localization information.

Towards the Final Goal

“Close Obstacle” Mode With “Reversing”

°
(@)
Constrained the Final Step
of the MPC Horizon ®

“Obstacle Present” Mode

(b)

<«— Initialized Headings

® Reference Positions from Global Planner

<+ Positions and Headings from MPC

202

FIGURE 6. Different modes with different initialization and limits. (a) “Close obstacle”
with “reversing” mode has the headings pointing away from the goal to allow safe
backtracking. (b) “Obstacle present” mode has normal heading initialization and
constraints allowing the robot to rotate to the correct heading.
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EFFICIENT GEOMETRY-BASED
OBSTACLE DETECTION
The method involves sampling poten-
tial trajectories with varying curvatures
and applying geometric constraints to
rapidly identify potential collision
points among these predicted paths.
This approach facilitates the selection
of the optimal collision-free trajectory.
Drawing inspiration from last year’s
winning team (KUL+FM), the local
planner is integrated directly with the
sensor data, thereby bypassing poten-
tial inaccuracies in the costmap and
accelerating obstacle detection.
Specifically, the anticipated driving
area is discretized into rectangles and
triangles, arranged by proximity. By
scanning these shapes for lidar-detected
points to identify obstacles, it quickly
determines whether the sampled areas
are collision-free. Before this scanning
process, a crucial step involves filter-
ing the lidar points within each geomet-
ric shape based on their distance and
angle relative to the sensor, significantly
reducing the search space required for
each geometric assessment. By leverag-
ing direct sensor integration and geo-
metric analysis, this enhanced method
ensures real-time adjustments and pre-
cise obstacle detection, making the nav-
igation solution robust against highly
constrained environments.

ADDITIONAL BACKWARD SAMPLING
A further enhancement to the tradition-
al sampling-based method is the imple-
mentation of sampling during both
forward and backward driving. This
backward sampling design assists the
vehicle in effectively adjusting its pose
to extricate itself when direct forward
movement is not possible.

To be specific, both forward and
backward driving involve sampling
the potential trajectory curvatures of
the vehicle. The difference lies in the
judgment logic for backward sampling,
which shifts from selecting samples that
are closer to the local goal to selecting
states that have more viable forward
sampling points. This means that for
each backward pose sampled, a second
round of forward sampling is performed
to find out those poses that have more



feasible forward driving paths. A back-
ward sampling result with more feasible
forward paths typically indicates a supe-
rior vehicle pose in highly constrained
environments, enabling better handling
of complex situations when the vehicle
reaches such a pose.

DISCUSSION

We discuss new findings and lessons
from the third BARN Challenge, not
only from the technical perspective,
but also from the competition organi-
zation side.

FIRST PHYSICAL COMPETITION WIN
OF END-TO-END LEARNING

In the first and second BARN Challeng-
es, the winning teams of the physical
competition used classical approaches
(UT AMRL and KUL+FM). However,
the winning team this year, LiCS-KI,
adopted an end-to-end imitation learning
approach, which is the first physical win
by end-to-end learning. One interesting
fact is that the expert used to provide
demonstration data are a classical
approach used by last year’s winning
team, KUL+FM, and LiCS-KI also
added Gaussian noise to perturb the
model input to achieve robustness, a clas-
sic data augmentation technique. Assist-
ed by a transformer architecture and
safety-check layer, LiCS-KI’s approach
outperformed its expert demonstrator,
KUL4FM, in the simulation qualifier. It
is worth noting that KUL+FM did not
participate in the physical competition
this year, so it is unclear whether the imi-
tator can outperform the demonstrator in
the physical runs.

FIRST USAGE OF TRANSFORMERS
IN THE CHALLENGE

LiCS-KI is the first team in the BARN
Challenge to use a transformer archi-
tecture as the main local planner, com-
pared to classical neural architectures
used in the past years. The power of
transformers is one potential reason of
LiCS-KI's win in both the simulation
qualifier and physical finals, along with
the data augmentation technique and
safety-check layer. The success of the
transformer architecture suggests the
potential of better neural architecture

for robot navigation tasks, not only to
address visual inputs, off-road condi-
tions, social contexts, kinodynamic
constraints, or multirobot navigation,
but also for purely geometric obstacle
avoidance. The revolutionary success
of transformers on computer vision and
natural language processing tasks may
also inspire future navigation research.

SUCCESSFUL SIM-TO-REAL
TRANSFER OF LEARNING
ALGORITHMS

Similar to the second BARN Challenge
[2], the third year of the competition
did not exhibit a significant sim-to-real
gap. The first-place winner of both sim-
ulation and physical course challenges,
the LiCS-KI team, utilized a learning-
based algorithm. Not only winning in
terms of success rate during the physi-
cal finals, the team performed with the
fastest average traversal time. This
result highlights a small sim-to-real
performance gap. It also suggests that
learning-based models, particularly
those trained in simulated environ-
ments, are becoming increasingly
effective at handling the unpredictable
nature of real-world settings when com-
bined with the strategic use of imitation
learning, specifically through BC, cou-
pled with advanced data augmentation
and neural architecture. This approach
also contrasts with the more commonly
used reinforcement learning in past
competitions. By employing imitation
learning, the team was able to quickly
deploy behaviors mimicking or even
surpassing expert demonstrations,
reducing the need for the trial-and-
error learning phases typical of rein-
forcement learning. Additionally, the
use of controlled noise during training
helped the algorithm account for
unforeseen variables and disturbanc-
es encountered.

STRONG CONNECTIONS TO
PREVIOUS YEARS

While last year’s second place winner,
INVENTEC, based their approach on
the strongest baseline, LfLH [7] along
the learning from hallucination (LfH)
line of work, the approaches developed
by this year’s teams started to show
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strong connections to previous years’
methods. LiCS-KI used the approach
of last year’s KUL+FM as expert to
generate demonstration data, while
AIMS also leveraged KUL+FM’s idea
of local planning directly in the sensor
space, instead of using costmaps, which
are susceptible to inaccuracies. Along
with the point in the following “Impor-
tance of a Hybrid Paradigm” section,
the community has started to form a
few common practices to address the
problem of navigation in highly con-
strained spaces, which also have real-
world implications when deploying
autonomous mobile robots in natural
obstacle-occupied spaces.

IMPORTANCE OF A HYBRID
PARADIGM

All teams adopted a hybrid paradigm in
terms of a finite-state machine setup,
which requires different components to
address different situations in the obsta-
cle courses, especially safety checking
of the actions produced by a main plan-
ner, differently parameterized MPC
planners, and specifically designed
reversing motions to back up the robot
from undesirable scenarios. Such a
pragmatic practice suggests that a single
stand-alone approach that is able to
address all variety of obstacle configura-
tions all together is still out of our reach.
Even for the end-to-end learning by
LiCS-KI, a separate safety-check layer
is still required during hardware imple-
mentation. Most teams also specifically
designed reversing or backtracking
behaviors to address situations where
the robot got stuck. However, more
complex systems may introduce extra
complications at the same time, e.g.,
proper parameter tuning for each com-
ponent and appropriate transition condi-
tions between different components.

TIE-BREAKING BY AVERAGE TIME
FOR SECOND AND THIRD PLACE
Qualitatively speaking, this year’s
physical obstacle courses were slightly
more difficult than last year’s. Unfortu-
nately, no team could finish all nine
physical trials. LiCS-KI outperformed
MLDA_EEE and AIMS by one more
successful trial, while MLDA_EEE
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and AIMS were tied in terms of suc-
cess rate. The tie was broken by aver-
age time. However, it is worth noting
that due to the different length and dif-
ficulty of the three physical obstacle
courses, it is difficult to make an abso-
lutely fair comparison using average
time of successful trials to break the
tie: AIMS succeeded in three trials in
the longest third obstacle course, but
didn’t finish one single trial in the
shorter second obstacle course.
MLDA_EEE’s performance was the
opposite, which presents an advantage.
Such a situation increases AIMS’s aver-
age traversal time compared to
MLDA_EEE, causing the rank of sec-
ond and third place.

MORE FINANCIAL SUPPORT FOR
PARTICIPATION IS NEEDED

One unfortunate fact about the third
BARN Challenge is that all four teams
that participated in the physical finals
are Asian teams. Considering that
ICRA 2024 took place in Yokohama,
Japan, not many teams from places far
away from Japan submitted their navi-
gation stack to participate in the com-
petition. The regional participation of
the competition is not ideal to evaluate
the entire field’s progress and com-
pare the performance of top teams all
over the world. The organizers will try
to reach out to more potential sponsors
to provide more financial support to
invite participants to travel from other
continents. Another potential solution
is to provide remote participation

options, which was attempted last year.
However, the need of fine-tuning the
navigation systems for real-world
deployment and to fit to every different
obstacle course makes it impractical for
the organizers to run the remote partic-
ipants’ systems and achieve reasonable
performance out-of-the-box. How to
remove the reliance on extensive sys-
tem tuning is still an open question for
robust obstacle avoidance in a variety
of real-world scenarios.

FUTURE PLANS

Based on the first three BARN chal-
lenges, the organizers plan to make the
following changes in the next BARN
challenge in ICRA 2025. First, dynam-
ic obstacles will be introduced to the
currently static obstacle courses. For
the first competition with dynamic
obstacles, the organizers will allow col-
lisions with dynamic obstacles and
only add a penalty, whereas collisions
with static obstacles will still be count-
ed as a total failure. The addition of
dynamic obstacles will stress-test the
robustness of obstacle avoidance and
also make the competition more inter-
esting to watch. Second, to further
encourage the teams to reduce the need
of on-site fine-tuning, the organizers
also plan to add a few “cold trials” at
the beginning of each obstacle course:
All teams will be required to directly
navigate through each obstacle course
without any fine-tuning of the system
first. Successful cold trials will be
rewarded by bonus points before the

teams are allowed to fine-tune their
systems and start their regular trials.
The organizers also plan on reducing
the allowed time to fine-tune the sys-
tem to discourage extensive depen-
dence on manual trial and error before
autonomous navigation.
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