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Abstract—WiGig networks and 60 GHz frequency communica-
tions have a lot of potential for commercial and personal use. The
high-frequency bands can provide high transmission rates, but
their high amplitude makes it so the signal cannot go through
any walls or obstacles. The signal also has a strong path loss
element caused by the high frequency, significantly limiting the
reach of connections because the signal is too weak at moderate
distances. Due to these issues, users can easily lose connection
with the access point while moving and need to connect to a new
device, making WiGig systems unstable as they need to rely on
frequent handovers to maintain a high-quality service. However,
this solution is problematic as it forces users into bad connections
and downtime before they are switched to a better access point.
In this work, we use machine learning to identify patterns in
user behaviors and predict user actions. This prediction is used
to do proactive handovers, switching users to access points with
better future transmission rates and a more stable environment
based on the future state of the user. Results show that not
only the proposal is effective at predicting channel data, but the
use of such predictions improves system performance and avoids
unnecessary handovers.

Index Terms—WiGig, 60GHz, smart networking, convolutional
neural networks, network prediction, proactive handover

I. INTRODUCTION

W IGIG has been touted as the new revolutionary stan-

dard for WiFi since at least the announcement of

protocol IEEE 802.11ad in 2009. Its main benefits stem from

operating in the 60GHz spectrum. The higher frequency bands

allow it to provide transmission rates in the range of multiple

gigabits per second. These higher transmission rates can be

important to support, for example, 6G and its new applications

[1], [2]. However, despite the official addition of standard

802.11ad in 2012, WiGig never really took off in popularity

or usage. The main drawbacks also come from the use of

high-frequency communications. Signals in those bands have

high dissipation rates, causing their range to be significantly

shorter than more commonly used 2.4GHz and 5GHz bands,

and extremely poor penetration rates, being almost entirely
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negated by most obstacles [3]. This comparison is illustrated

in Fig. 1, where in the scenario on the top, although A receives

a high-speed connection, B cannot be reached due to the wall

separating it from the access point (AP). In comparison, in

the scenario on the bottom, both devices are able to connect,

but now A has a lower connection speed. Such issues limit

802.11ad APs to single, small rooms where line-of-sight is

guaranteed and communication distance is short [4].

In an attempt to improve on the shortcomings of 802.11ad,

IEEE 802.11ay was released in 2021. Compared to its prede-

cessor, 802.11ay introduces channel bonding, multiple-input

multiple-output (MIMO) capability, and higher modulation

schemes. These changes not only increase the transmission

rate (from a maximum of 7Gbps to 40Gbps) but also the

range of communication. With the application of low loss

and high output transmitters that are already available in the

market, WiGig, in the form of 802.11ay, has proven that it

can deliver wireless gigabit communications even with ranges

of 500 meters [5]. Nonetheless, problems still surround the

stability of connections, particularly with moving targets [3].

For starters, the issue with obstacles and penetrations persists,

and non-line-of-sight transmission without a relay of some

sort is nigh impossible. Additionally, even variations of a

1 dBm in the signal strength can significantly decrease the

achievable throughput [5]. To maintain a network connection

and take advantage of the highest throughput possible, multiple

WiGig APs are needed with frequent handovers between them.

However, handovers come with interruption time that cuts

off the connection for a short interval, degrading the quality

of experience [6]. This creates a complicated dilemma and

tradeoff, where handovers interrupt and de-stabilize service for

the users, but avoiding them means users are in a less-than-

optimal connection and may lose network access altogether.

It is in this context that we will propose a proactive

handover scheme for stable and efficient connection in a

WiGig environment. Our framework is based on utilizing deep

learning in the format of convolutional neural networks (CNN)

to predict the behavior of a user/device. Then, based on this

information, handover is performed in advance, before the

signal degrades or is lost. Moreover, the behavior prediction

allows our system to switch the connection to an AP that

provides a stable environment in the future, further decreasing

the need for handovers.

Our main contributions are listed as follows:

• We provide a framework for collecting user data and
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The high frequency waves from the WiGig AP provide 
a high throughput connection to device A that is in 
line-of-sight of the AP

WiGig communications

However, the same high frequency waves cannot 
reliably transmit through the wall (as shown also on 
the right) and cannot offer a connection to device B

The low frequency waves are capable of penetrating 
through the wall (as shown also on the right) and 
thus can connect the AP with both devices A and B

Low frequency communications

However, the same low frequency waves have 
physically a lower maximum transmission capacity 
and cannot serve some applications

Fig. 1. Simplified comparison between WiGig and low frequency communi-
cations, and the tradeoff between speed and coverage.

training a CNN model capable of identifying patterns and

predicting the future behavior of user devices in a WiGig

environment.

• We propose a novel handover decision scheme capable

of choosing APs with stable and efficient connections for

each user device based on the predicted information.

• We provide simulation results based on experimental

measurements that attest to how our proposal is capable

of increasing the provided transmission rate and decreas-

ing the number of handovers needed.

The rest of this article is organized as follows. In the next

section, we review what are the existing works on network

prediction and handling handovers. After that, we present our

proposed architecture to provide users with WiGig network

access while simultaneously collecting the data needed to

improve system efficiency. Following that, we will propose

a framework that analyzes the collected data and smartly

performs handovers. Finally, we evaluate the performance of

our proposal and discuss some promising future directions

while concluding the article.

II. PROACTIVE HANDOVER AND NETWORK PREDICTION

Conventionally, networks and research on computer com-

munications utilize a reactive approach to handovers, where

the connection from the user to the network is only changed

to a new AP after the service is detected to have deteriorated

[7]. A big problem with this is that it forces the user to

remain in a low-quality connection until the handover is

completed. Such an issue is not ignored in the literature.

Existing works have pointed out that networks with mobile

users lead to frequent handovers and that using a deterministic

and reactive scheme to control such handovers causes poor

performance [8]. Especially in dense networks (which can

be seen in WiGig, since the AP reach is easily blocked), a

lot of redundant handovers (where a user is switched back

and forth between APs) can happen, leading to high signaling

overhead, handover latency, and service interruption, lowering

the stability of the service [9]. Current literature (e.g., [7],

[8], and [10]) addresses this by using a proactive handover

based on predicting future network states through machine

learning (ML). However, this is often done while ignoring the

application profile and requirements of the users [6].
The common ground of proactive handover research is

predicting future network states. This has been done through

user mobility and data transmission behavior, which are highly

predictable as users commonly follow a limited number of

patterns [8], [10]. This has also been done by predicting

signal strength, which is tied strongly with user mobility [6].

Luckily for this field, the prediction of network states is widely

studied, even unrelated to handover. The method is often the

collection of past user data (packets generated, location, speed,

signal strength, etc.) and identifying patterns for predicting

future actions [11], [12]. Additionally, the literature concludes

that ML is the best method for making these predictions

[11], [13]. The ML models are trained on past user data

and then used for predicting the future behavior of new

users, based on the assumption that new users follow similar

behaviors as past ones [10]. Moreover, the ML models are

also updated during live use of the system, through rein-

forcement learning, which allows the models to stay updated

even if the environment changes and continuously improve

their accuracy [14]. Particularly, CNN has been identified as

especially effective in finding patterns in network states and

predicting future network parameters [12]. However, many of

these works (e.g. [11] and [13]) focus on just providing better

predictions, without proposing any systems that can work on

these predictions to improve practical network performance.
In this work, we address the shortcomings of the literature

by providing a proactive handover scheme for WiGig net-

works. Our proposed system not only provides a method to

collect user data, analyze it for patterns, and predict future

network states but also how to use this prediction to pro-

vide practical performance improvement through better overall
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TABLE I
SELECT LITERATURE ON NETWORK PREDICTION AND PROACTIVE HANDOVER

References ML Methods Objectives Predicted Data WiGig?

[6] Neural network Avoid handovers Signal strength No
[7] Recurrent neural network Improve prediction Signal strength No
[8] Markov model, long short term memory Improve prediction Transmitted data No
[9] Assumes complete data knowledge Improve data rate,

avoid handovers
User location No

[10] Bayesian additive regression tree Improve data rate,
avoid handovers

Signal strength and user location No

[11] Random forest, deep learning Improve prediction Signal strength, transmitted data,
and user location

No

[12] CNN Improve data rate Signal strength and transmitted
data

No

[13] Particle swarm optimization, long short
term memory

Improve prediction Transmitted data No

throughput. This is done while taking into consideration signal

strength and also traffic generated by user applications. Predic-

tion is done using CNN, following literature recommendation

[12]. Lastly, as far as we know, this is the first study on

network prediction-based handover management specifically

for WiGig networks, as evidenced in Table I, which sum-

marizes the key points of some works in the literature (this

is not an exhaustive list, due to space limitation, but it is a

faithful representation of the state-of-art). This is important as

WiGig has such high transmission and obstruction rates that

conventional solutions should not be applied without careful

investigation and adjustments [3], [4].

III. WIGIG ENVIRONMENT AND DATA COLLECTION

In this section, we will explain what is our assumed scenario

that will outline the design and implementation of our pro-

posed framework and handover scheme. Consider a room (or

any area where the network is to be established) with multiple

APs, all capable of offering WiGig access. The room also has

what we will define as ”points of interest” or PoIs. A PoI

is somewhere where users are likely to stop and stand still

for some time. For example, a bench in a park, a table in a

restaurant, and a cashier at a store are all possible PoIs since

users will probably walk toward those places and stop moving

for a while.
Users will enter this room following a Gaussian distribution

with a pre-determined average rate. Each user that enters the

room will have a set of PoIs it wants to ”visit” before leaving,

and thus will move to each of those PoIs in sequence. Addi-

tionally, once they reach a PoI, they will stand still in that place

for an amount of time, where the actual amount is influenced

by the PoI (some PoIs, like a cashier line, have short staying

time, while others, like a table in a restaurant, have long

staying time). Finally, each user is using an application that

fits into a pre-determined list of application types [2]. Think

of these types as video streaming, messaging, gaming, etc.

Each type has its own, particular profile of data downloaded,

data uploaded, and connection time. Additionally, we will also

assume that some users are not compatible with some PoIs due

to the application they are using and thus would not include

those PoIs in their set of places to ”visit”. For example, a user

watching a video or taking part in a video conference will

probably not stand in a cashier line.

The scenario described is not only a realistic one but

also provides a believable source of user behavior patterns.

Since applications have particular profiles of data transmission

and connection time [6], analysis of these features makes it

possible to identify the type of each user. Additionally, because

there are a limited number of PoIs, there is also a limited

number of paths between them. We can use user data to

infer the location of the user as it moves and identify the

path being taken [10]. Moreover, by knowing at which PoI

the user is through this location information, it is possible

to estimate how long the user will stay there due to the

nature of that PoI. Finally, because each application type has

a subset of compatible PoIs, the number of paths possible is

also similarly further limited by the application being used,

fortunately decreasing the number of possible patterns.
To finalize the assumed network system, we will consider

that there is a server of some sort connected to all APs [15]. At

periodical intervals, every WiGig AP in the room will collect

the following information: the signal strength between it and

each user in the room, and how much data users connected to

it have downloaded/uploaded in this time slot. The amount of

transmitted data can be logged easily during communication

with users. The signal strength does require an extra step,

but it is not a troublesome one: the APs can broadcast a

small message to all users that require a short acknowledg-

ment, and this acknowledgment will be used to measure the

signal strength (in fact, IEEE 802.11ay already has a similar

mechanism implemented for beamforming training that can be

adapted for this use). Note that the amount of transmitted data

is logged only for connected users, while signal strength is

logged for all users. This is done because the signal strength is

useful for determining the estimated location of the user and

having multiple data points allows for a rough triangulation

[12]. This is not exact, but an approximate position should

be useful in its own merit. All this collected information is

sent to the server, which will aggregate it in a single tuple

for each user for each time slot that contains: the amount of

data downloaded/uploaded, and the signal strength between

the user and each AP.

IV. PROPOSED WIGIG HANDOVER SCHEME

By accumulating and logging user information in our server,

we have created a suitable environment for learning-based
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1. The WiGig APs collect signal 
strength (all users) and traffic 
(connected users) data from the users

2. The APs send their newly collected 
user data to the server responsible 
for the room

3. The server make predictions with 
the CNN and user data, decide 
efficient AP/user associations based 
on the predictions, and train the 
CNN for better predictions

4. The associations are sent to the 
APs and users who can proactively 
enforce them to improve efficiency

User Data CNN User Prediction Association 
Algorithm

Efficient AP/User
Association SchemeBackpropagation Training

Fig. 2. The main loop of the proposed framework, showing how data is
obtained to train the ML model, and how decisions based on the model are
sent back to the agents.

analysis of the data collected from our network. The service

model is shown in Fig. 2, where we show two APs collecting

data from one user and sending that data to the server. The

server will use these data to train an ML model which is

then used to predict future user behavior. This prediction is

used for deciding how to realize handovers for the user, with

the handover scheme being relayed back to the APs and the

user so they can enact it. The chosen model for our proposed

system will be a CNN due to its proven capability in predicting

user behavior in networks and communication systems. CNNs

have mechanisms called convolution and pooling that allow the

learning model to intelligently select which features are more

relevant from the input and use those to generate the desired

output. In simple terms, CNNs can, better than human opera-

tors, identify which information is important to consider when

trying to predict future user actions [12]. This information is

fed into a regular neural network for generating the output

desired. The output generated by the CNN is compared with

what would be the correct output for the provided input and

the difference between the values is used to update the weights

of the whole model (neural network, pooling, and convolution

sections) to produce more accurate outputs in the future.

In more specific terms, in our proposed framework, at each

time slot, the server will, for each user, collect the most

recent X tuples of information to serve as input to the CNN.

The output of the CNN will be the predicted information for

the next Y tuples for that particular user. That is, the CNN

will output what it predicts will be the future signal strength

between the user and all APs as well as the transmission

data for that user in the next future Y time slots. The reason

such prediction is possible is that there is a limited number

of likely walking patterns that each user can take [10]. By

looking at a big enough sample X of historic data for that

user, the pattern of information can be matched to one of

the existing patterns, thus allowing for predicting the future

behavior of that user. The way the model will learn of these

patterns is through live training and reinforcement learning.

Weights are set randomly at first. Then, as users connect to

the system and information is collected, the model will make

predictions. Because information continues to be collected,

past predictions can eventually be compared with real collected

data. For example, a prediction made at time slot i will predict

data up until time slot i+Y . Then, if the system collects data

from the user up until time slot i+ Y , the prediction made at

i can be compared with the corresponding ”correct answer.”

This difference between the prediction and the correct result

will be the basis for backpropagation that adjusts the weights

[14]. Repeat the process enough times, with data from enough

users, and the weights will be set so that patterns in that room

can be identified.

The values for X and Y need to be chosen carefully. If they

are too big, then the complexity of the CNN model will be

big and may cause too much of a computational overhead to

the system, which is a problem as it may delay handovers and

defeat its initial purpose. Additionally, if Y is too large, then

it will be difficult to make accurate predictions, as predicting

farther into the future is a more daunting task since there are

more possibilities for the user to make choices to alter the

pattern it fits into. However, if Y is too small, then there

is little benefit to be gained, as we are not seeing enough

of the user’s future behavior to make the best decisions for

a stable association. Moreover, if X is too small, then we

risk not providing enough input data to properly identify the

user’s pattern. So, while CNN is a proven adequate model for

pattern prediction, it must be properly tuned. In this work,

we performed multiple experiments, under different scenarios,

to empirically determine not only the optimal values of X

and Y but also for all other CNN hyperparameters. These

values are explained in the performance evaluation section.

Note that the use of empirical experimentation to optimize

Machine Learning parameters is the conventional method used

in the literature [12].

It is worth pointing out that the ML model has no prior

knowledge about the scenario. There is no need to have pre-

determined data regarding the location of PoIs 1, details of the

applications, which application each user uses, etc. The CNN

will detect these features live, as the network is used and data

is collected. This results in a feasible deployment plan, as the

system can just be plugged in and learn the patterns by itself

[1]. Moreover, the server mentioned here just needs enough

processing capabilities to execute one forward run and one

backpropagation of the CNN for each currently connected user

1Note that PoIs are very important as they determine user movement and
are correlated to user behavior (i.e., data transmitted and application used).
Thus, they will affect handover as movement will force other APs to offer
better connection, and application requirements may necessitate migrating to
a different AP as well. Although the PoI information is not provided directly,
as that would not be realistic, the scheme still must infer and learn about
it through user behavior analysis based on the collected data to efficiently
perform handovers.
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Algorithm 1 AP association based on prediction.

start with all APs having 0 associated users

for user i from 0 to N − 1
for AP j from 0 to P − 1

calculate throughput of i with j based on prediction

update max throughput appropriately

if max throughput − current throughput > threshold

associate i with AP with max throughput

else

associate i with current AP

TABLE II
PARAMETERS USED IN THE PERFORMANCE EVALUATION

Parameter Names Parameter Values

Room Size 300m x 300m
Time Slot Length 1s
Number of APs 4

Number of Input Time Slots 25
Number of Output Time Slots 10

User Interarrival Time Rate 10s
Number of Application Types 3

User Data Generation 10 - 1000Mbps
User Movement Speed 0.1 - 2.0m/s
Total Number of PoIs 4

PoI Stay Time 1 - 100s
Number of PoIs per User 1 - 3

Throughput Threshold for Handover 200Mbps
Achieved Throughput Rate From IEEE 801.11ay [5]

per timeslot. If there are N users and the CNN has M values

to process, the total complexity is O(NM). Depending on the

size of the room and CNN, this can be done with a small-scale

server or even one of the APs standing in as a server.

Finally, it is important to explain how the predicted data is

used for deciding user/AP association and handover. In our

system, the output of the CNN for all users is fed into an

auxiliary algorithm. This algorithm, shown in Algorithm 1

(where P is the number of APs), receives as input the predicted

signal strength and transmitted data for each user and the

current AP association of each user, and greedily checks all

APs for the one that offers the highest transmission rate in

the future Y time slots. This is done iteratively, going through

each user and associating it with the best AP available based

on the user’s future behavior. As APs get connected to more

users, the actual throughput that can be provided to each user

decreases (since access is provided in a time-division way

in WiGig, more connected users mean less access time per

user, which leads to lower rates [4]). The algorithm will take

this, the number of connected users, alongside the predicted

future behavior into account when choosing the AP that offers

the highest rate for each user [15]. Lastly, the algorithm will

also refrain from making users change APs if the resulting

improvement in transmission rate is not significant. Overall,

considering the execution and training of the CNN, the whole

scheme has a complexity of O(NM +NY P ).

V. PERFORMANCE EVALUATION

Simulation tests were carried out to evaluate the perfor-

mance of the proposed solution. 10000 simulation runs were

0

10
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40

50

0 2000 4000 6000 8000 10000 12000 14000

Fig. 3. How the model improves in its prediction accuracy as it is allowed
to train and see more data from the environment.

done, with the random deployment of APs and PoIs, and

the results shown are the average across all runs. The users’

features, such as which application they use or which PoIs

they visit, are also determined randomly. Which PoIs are

available for each application is also determined randomly.

This is all done to achieve enough statistical relevance for

our results. Finally, the signal strength between users and APs

is determined by distance and was derived based on real-life

measurements performed using a ”Fujikura 60GHz mmWave

(millimeter wave) Wireless Communications Module” [5].

These experiments measured the signal strength while varying

the distance between the two devices. The values obtained

were used in the simulation to add more realism to the results

seen in this paper. Unless stated otherwise, the parameters

used for all graphs shown here are in Table II, which were

obtained from the literature [3], [4]. The CNN hyperparam-

eters come from extensive empirical studies looking for the

best performance, omitted here for brevity.

First, we measured what is the error value given by the

CNN when predicting signal strength between a user and

the APs. Signal strength is very important for determining

transmission rate and estimating user location, plus it can vary

significantly while the user is moving, which is why it was

selected to highlight the prediction performance [11]. Epoch

here is determined by one time slot, where on each time slot,

the most recent 25 tuples of each user are used as input to

determine the next 10 tuples. Results can be seen in Fig. 3.

As expected, the error is high at the beginning since the CNN

is predicting randomly without any a priori learning. However,

this quickly changes. After 5000 epochs, the average error is

below 5 dBm. After 10000 epochs, the error is below 1 dBm.

This gives us two insights. First, it is better to not use the AP

association generated from the CNN predictions until learning

reaches an acceptable level. Second, the CNN is definitely

capable of learning the patterns of any room that follows our

assumed scenario and predicting future user behavior with

minimal error.
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Fig. 4. What are the transmission rates provided by all schemes for different
values of network workload represented by user interarrival time.

0

500

1000

1500

2000

2500

Fig. 5. The number of handovers that were performed with each method.

Next, we measured what is the average transmission rate

achieved by the proposal. For comparison, 3 other methods

are presented. First, we have a ”No Prediction” method, where

the system does not attempt to predict future user behavior.

Instead, user/AP association is decided at each time slot based

solely on the current signal strength and maximizing current

achievable transmission. In contrast, the proposal tries to

maximize the achievable transmission rate in the future 10 time

slots instead of the current one only. Additionally, for both the

proposal and the ”No Prediction” method, two variations were

tested. The greedy variation (represented by G in the graphs)

will always perform handovers if a better transmission can be

achieved, regardless of whether the improvement is big or not.

The conservative variant (represented by C in the graphs), on

the other hand, avoids making handovers unless the transmis-

sion rate can be improved by at least 200 Mbps. Results are

shown in Fig. 4, where we varied the user interarrival time

(high interarrival values mean more time between the arrival

of each user and thus fewer users in the system). As expected,

fewer users mean less competition for network access and

higher achievable transmission rates. The conservative variants

offer lower rates than their greedy counterparts. This shows

that, in WiGig, switching to the best AP, to some extent, offers

better performance as the system keeps trying to optimize the

offered service. However, some stability is needed, and this is

illustrated by how the proposal outperforms the No Prediction

method in both variants, offering upwards of 1 Gbps extra. To

explain why, we calculated how many handovers are done in

each method, shown in Fig. 5. As expected, the conservative

solutions do fewer handovers, since there is a more strict

trigger for changing APs. Moreover, the No Prediction method

has more handovers as it makes no effort to look for a stable

connection (just the best one at the moment). Meanwhile,

both figures tell us that the proposal not only is effective in

finding APs that demand fewer handovers and offer a more

stable environment (a reflection of how the CNN is capable

of predicting future user actions) but also that having fewer

handovers does have a significant impact in the performance of

the system. Moreover, the conservative methods seem to lean

too heavily toward avoiding handovers and the transmission

rates suffer as a result, behaving even worse than the greedy

No Prediction solution despite the high number of handovers.

This points toward a careful tradeoff between handovers and

transmission rate optimization. Nonetheless, it is clear from

all results that the proposal is the best solution for predicting

user behavior and finding optimal AP association.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we presented a new framework aimed toward

WiGig systems that improve the average transmission rate

through smart prediction of user behavior. A CNN was utilized

for learning user patterns in a room and then predicting

channel data surrounding a user in the form of signal strength

in relation to APs and transmitted data. This prediction was

used for choosing user/AP associations in a way that the

transmission rate is improved while handovers are avoided

and users are presented with stable connections. Additionally,

by predicting future user behavior, handovers could be done

proactively, before the connection degraded. Performance eval-

uation showed that not only the CNN effectively predicts user

behavior, but the proposed algorithm based on this prediction

is successful in improving the transmission rate and avoiding

unnecessary handovers.

There are still a lot of challenges for network prediction and

handover management in WiGig, however. This work assumed

a static room layout, including PoIs. In real life, the scenario

can change following a pattern (think of different routines in

a classroom depending on the subject being taught, or how a

restaurant environment can change between lunch hour and

the middle of the afternoon) or even permanently (adding

new furniture to a room, for example). This can also change

where line-of-sight can be achieved for each AP. ML models

have trouble with these scenario modifications, so future works

should focus on how to optimize learning so the handover and

prediction schemes can adapt in such situations.
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