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A major goal in robotics is to enable intelligent mobile robots to operate smoothly in shared human-robot
environments. One of the most fundamental capabilities in service of this goal is competent navigation in this
“social” context. As a result, there has been a recent surge of research on social navigation; and especially as
it relates to the handling of con!icts between agents during social navigation. These developments introduce
a variety of models and algorithms, however as this research area is inherently interdisciplinary, many of the
relevant papers are not comparable and there is no shared standard vocabulary. This survey aims at bridging
this gap by introducing such a common language, using it to survey existing work, and highlighting open
problems. It starts by de"ning the boundaries of this survey to a limited, yet highly common type of social
navigation—con!ict avoidance. Within this proposed scope, this survey introduces a detailed taxonomy of the
con!ict avoidance components. This survey then maps existing work into this taxonomy, while discussing
papers using its framing. Finally, this article proposes some future research directions and open problems
that are currently on the frontier of social navigation to aid ongoing and future research.
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1 INTRODUCTION
Enabling autonomous robots to navigate in the presence of people and/or other robots has been
studied for the past 70 years. One of the "rst examples of social navigation is Grey Walter’s work,
who built robotic “turtles” that could navigate on their own [169]. These robots, named Elmer and
Elsie, were an exercise in minimalism and demonstrated that a small number of brain cells could
give rise to complex behaviors. They each consisted of “two miniature radio tubes, two sense
organs, one for light and the other for touch, and two e#ectors or motors, one for crawling and
the other for steering”. Their power supply was a hearing aid battery. Nevertheless, these robots
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could navigate freely in an enclosed space and change their trajectory in response to light and
touch.

Modern mobile robots are much more sophisticated and complex. Most feature a variety of
sensors, intricate steering systems, and several layers of hardware and software to control their
movement. Despite these improvements, mobile robots are still not prevalent in our homes and
o$ces. One of the main reasons for this de"cit is that comprehensive autonomy is still achievable
only in controlled environments and is usually induced by hard-coded rules or learned from a rel-
atively clean dataset [18, 66, 142]. The problem of navigation in the presence of other robots and
humans is complex and cross-disciplinary in nature. Solutions draw from robotics, arti"cial intel-
ligence, engineering, psychology, biology, and other areas of study. As such, each of these commu-
nities has de"ned social navigation di#erently. In the multi-robot community [167]R1, social nav-
igation usually refers to robot navigation in the presence of additional robots. In human-robot
interaction (HRI), social navigation refers strictly to the task of navigating in a shared space
with people. Rios-Martinez et al. [132] gave a compact description of socially-aware navigation:
Socially-aware navigation is the strategy exhibited by a social robot that identi!es and follows social
conventions (in terms of management of space) to preserve a comfortable interaction with humans.
The resulting behavior is predictable, adaptable, and easily understood by humans. This de!nition im-
plies, from the robot’s point of view, that humans are no longer perceived only as dynamic obstacles
but also as social entities.

In the general social navigation setting, a social agent is an agent (either human or robot) that
is aware of the objectives of others (human or robot) and considers them in its behavior, either
by adjusting its policy or by indicating why it chose a potentially “anti-social” behavior. This
general de"nition is quite broad, encompassing a wide variety of multi-agent navigation scenarios,
including those that involve only robots. In practice, the term “social navigation” usually refers to
a more human-centric perspective. Thus, this survey focuses on three requirements, beyond the
collision avoidance itself, that separate human-centric social navigation from more general social
navigation. These requirements are:

(1) There exists an autonomously navigating agent. The agent has a speci"c, reachable naviga-
tional goal.

(2) There exists one (or more) humans or animals in the environment.
(3) The interaction takes place in the real world (either a controlled or natural environment),

not in simulation.
Many papers have discussed challenges that occur when only one or two of these requirements

are met. Teleoperation of robots is widely investigated within HRI, but it is not consistent with (1).
The multi-agent systems (MAS) and distributed planning communities focus on constructing
algorithms for multi-robot navigation, which do not meet requirement (2). Even within the HRI
community, many works describe progress in social navigation in simulations rather than in real-
world environments, so requirement (3) does not hold. Signi"cant work has been done in the
graphics community to model crowds and swarms, but these works also do not meet requirement
(3). Our main focus is on papers that meet all three requirements. This survey also cites some papers
for which not all of the above requirements hold, due to their contributions to our understanding
of social navigation. In cases where the underlying scope of a paper is not fully aligned with this
survey, we indicate the requirements that do hold on the "rst occasion that the paper is referenced.
For example: Walter [169]R1,R3 is a work in which there is an autonomous agent (R1)—a mechanical
“turtle” that navigates in the wild (R3)—but no human pedestrians are present (R2).

Even within the context of the three requirements discussed above, many behaviors could be
considered “social”: following, giving navigational instructions, waiting in line, and others; as dis-
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cussed later in this section. To limit the scope of this survey, we focus on one speci"c type of
social interaction with people which requires the robot to reason about an encounter, speci"cally
con"icts. A con!ict is a short-term interaction between a robot and a human in which there is a
chance that the robot and the human will collide. Note that this potential event can be objective,
meaning that if no party changes its course they will collide; or it could be that the passing of the
robot is perceived as being on a collision course by the human. Additionally, not all interactions
in social navigation are con!ict avoidance. For example, when a robot is designed to carry a per-
son’s luggage and follow them, the task is a social navigation task in which the robot needs to
detect the person, reason about the proper distance from them, and drive at a safe and comfortable
speed. These challenges, however, are orthogonal to the challenge of avoiding con!icts with other
pedestrians. Understanding con!icts in social navigation requires a de"nition of what a con!ict is
in this context:

De!nition 1. A con!ict between a robot and other mobile robots or pedestrians is a situation
in which if there is no change of direction or a change in speed by at least one of the parties, they
will collide.

By this de"nition, not all con!icts end in a physical collision, but every collision is preceded
by a con!ict. Moreover, as the interacting parties can falsely predict an upcoming collision (e.g., a
human feels that the robot will come too close and is risking a collision), the presence of a con!ict is
a subjective matter that depends on the interpretation of the interacting parties. This survey is not
the "rst to identify navigational con!icts as being separate from collisions. A footnote from Van
Den Berg et al. [164] implies a di#erence between reasoning about con!icts in motion planning
and avoiding collisions:

Note that the problem of (local) collision avoidance di#ers from motion planning,
where the global environment of the robot is considered to be known and a complete
path towards a goal con"guration is planned at once, and collision detection, which
simply determines if two geometric objects intersect or not.

However, in Van Den Berg et al. [164] they do not elaborate on this idea. Based on this scope, the
contributions of this survey are as follows:

(1) It surveys work in which the authors include con!ict avoidance in their models.
(2) It introduces a taxonomy of the attributes that vary between models and algorithms for

con!ict avoidance.
(3) Based on this taxonomy, it identi"es the attributes of existing works and categorizes these

works into tables.
(4) It summarizes the current state-of-the-art in con!ict avoidance in social navigation, includ-

ing a practical checklist to follow when introducing a new contribution to the body of
literature.

Previous works have presented ideas that overlap those in this survey but from di#erent per-
spectives. There are surveys on topics relating to social robotics [41]R1,R2; and to numerous related
navigation topics such as path planning [14]R1, vision for navigation [10, 31]R1, perception and
semantics [45] and localization and mapping [28, 43, 139]R1,R3. Many surveys on social naviga-
tion focus on elements such: as joint or group navigation [72, 104, 127, 174], giving navigational
instructions [156, 175]R1, detecting dynamic objects [35, 76]R1, social contexts such as waiting
in line [109]R1,R2 or distributing !yers [138]R1,R2, and other factors which are not discussed in
this survey [125]. None of these surveys, however, focus speci"cally on assisting in detecting or
avoiding con!icts. Here we provide details on the major related surveys, both to provide a refer-
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ence for readers who are interested in those di#erent points of view and to de"ne the scope of this
survey.

Kruse et al. [83]R1,R2 highlight a rising interest in the topic of social navigation since 2000, and
identify speci"c tasks and challenges that social navigation encompasses. Interest is still on the
rise, meaning that there are many new works on this topic; requiring this survey to narrow its
focus somewhat as we update their coverage of the topic. Our focus is on the narrower topic of
con!icts that arise between robots and pedestrians. Hoogendoorn and Bovy [61]R2,R3 introduced
a three-tiered model of navigation utility, decomposing it into strategic (high-level decision mak-
ing), tactical (global navigation), and operational (local navigation and event handling) levels. This
survey focuses mostly on the operational level: setting local goals and re-planning as needed. Re-
cently, Gao and Huang [44] provided a review of scenarios, datasets, and methods used in social
navigation. They described the main use cases as: passing, crossing, overtaking, approaching, fol-
lowing, leading, accompanying, and combinations thereof. Our survey’s perspective is di#erent
in that it does not categorize papers according to the aim of the navigating parties, but rather
according to situations in which these parties are (or will be) in con!ict. In this sense, Gao and
Huang [44] review a wider set of social navigation tasks, though they do not propose a taxonomy
of con!icts as introduced in this survey.

Charalampous et al. [22] present a survey in which they aim “to systemize the recent literature
by describing the required levels of robot perception, focusing on methods related to a robot’s social
awareness, the availability of datasets these methods can be compared with, as well as issues that
remain open and need to be confronted when robots operate in close proximity with humans.” This
survey extends their initial discussion on robot design for operation in close proximity to humans;
or as we refer to it, robots in con!ict situations. Speci"cally, we aim at providing basic de"nitions
to be used to standardize future works on the problem of robots that navigate in close proximity to
people. López et al. [88]R1,R3 provide a survey on turn prediction and how upper body kinematics
can signal upcoming turns. In their survey, they identi"ed that Gaze Yaw is the earliest predictor
of walking turns; but that existing data do not support quantifying how much—or how reliably—
timing and distance can be anticipated. They found, however, that Head Yaw was the most reliable
kinematic variable for predicting walking turns about 200ms from commencing to turn. Their sur-
vey can inform the design of con!ict resolution by enabling the robot to predict upcoming turns
using these signals. Another recent survey focuses on algorithmic requirements and methodolo-
gies for robot navigation [102]. Their survey revolves mostly around perception and trajectory
modeling rather than actuation. While the authors mention collision avoidance as an important
robot navigation task; they do not focus their survey on collision avoidance, as presented here.

The survey by Xiao et al. [172] reviews methods that use machine learning techniques for the
general problem of mobile robot navigation. Their survey focuses on the comparison between ma-
chine learning and classical approaches in terms of their scope and performance on real-world
navigation problems. In contrast, this survey is on social navigation, focusing speci"cally on con-
!ict avoidance, and the papers may use any (learning or non-learning) method in approaching the
problem. For a more general perspective on the current state of social navigation, Mavrogiannis
et al. [96] identi"ed three broad themes that are being investigated: planning, behavior design, and
evaluation. These themes impact all social navigation tasks rather than being speci"c to con!ict
avoidance, and thus their discussion does not focus on this aspect. This survey is more speci"c to
the context of collision avoidance in social navigation, and it drills down to provide an elaborate
taxonomy of models and algorithms for such scenarios.

The remainder of this survey is organized as follows: Section 2 proposes a taxonomy for social
navigation, identifying important factors of the social navigation problem. Sections 3 and 4 present
a selection of relevant works that have contributed models and algorithms, respectively. Section 5
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Fig. 1. Study flow diagram showing the inclusion methodology used in this survey.

focuses on the evaluation metrics used in social navigation and refers to some existing benchmarks.
Finally, Section 6 highlights open problems in social navigation concerning the proposed taxonomy
and provides a checklist for researchers to consult when investigating a new social navigation
problem.

2 TAXONOMY
This section systematically describes a taxonomy used in this survey to categorize social naviga-
tion models (Section 3) and algorithms (Section 4). Here we describe the process used to collect
the papers used in this survey. We started with existing surveys on social navigation [21, 83] and
we collected all of their references, as well as papers that cite these works using Google Scholar. In
selecting which papers to include, we used the criteria speci"ed in Section 1 to guide the process.
Overall, this survey contains 63 (out of 175) citations that do not meet all three criteria outlined in
Section 1, but which nonetheless provide fundamental contributions to our understanding of the
social navigation problem; or which are surveys on topics relevant to social navigation. We iter-
ated through the process of collecting papers that cite, and are cited by, our current bibliography,
until doing so yielded no new papers meeting all of the outlined requirements. The only exception
to this process is when several papers have been published by the same group. Research groups
often publish multiple papers on the same project. In these cases, we include more than one paper
if they are categorized di#erently by our taxonomy. Otherwise, we include only the most recent
paper. Figure 1 summarizes the paper selection process for this survey.

For each of the resulting 112 papers on con!ict avoidance in social navigation, we identify seven
attributes, listed in Table 1. Below we discuss this list of attributes (in bold) and the values (in
italics) they can take. (Abbreviations for many values are used in tables in Sections 3 and 4. These
abbreviations appear in parentheses next to their corresponding value.). We acknowledge that not
all papers can be situated precisely within this taxonomy. In these cases, or if the value is not stated
in the relevant paper, we label the corresponding attribute with the value “None” or “Neither” (e.g.,
some of the papers do not provide any empirical analysis, and thus the experiment type attribute
is “None”). This taxonomy is constructed with the goal of encompassing as much work as possible,
such that any new contribution can be easily placed in a clear context.

2.1 Taxonomy A!ributes and Values
Some of the attributes and the values presented here are not intuitive. Here, we explain their
rationale.

Number of Agents Absolute Number (Abs)/Density (D). Some papers deal with a one-on-one
interaction whereas others deal with multiple agents in a shared space. We mention when
known, how crowded the environment is. Most works report either an Absolute Number of
participants or a Density (measured as #people/m2). When presenting an absolute number
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Table 1. The Social Navigation Taxonomy

Attributes Values

Robot Role Reactor (R)/Initiator (I)/Both (B)/Neither (N)
Number of Agents Absolute Number (Abs = # of agents)/Density (D = #/m2)
Observability Full/Partial/Depth/RGB
Motion Control SFM/ORCA/ROS/Human/Other
Communication None (N)/Indirect (I)/Direct (D)
Experiment Type Simulation (Sim)/In the Lab (Lab)/In the Wild (ItW)/Survey (Sur)

Agent Type Human-Robot (H-R)/Human-Agent (H-A)/Human-Human (H-H)/
Robot-Robot (R-R)/Homogeneous Agents (Hom)/Heterogeneous Agents (Het)

of pedestrians, we include the navigating robot in the count. This allows comparison with
multi-robot research where the number of agents includes multiple robots that are running
the same algorithm.
Observability Full/Partial/Depth/RGB. If the work is set up in simulation, the robot can have
either full or partial observability. Work that involves experiments or evaluations with real
robots usually reports speci"c type(s) of sensors that were used, such as depth sensors (e.g.,
LIDAR), or cameras (e.g., RGB, or RGBD). If more than one type of sensor is used, we mention
all of them.
Motion Control SFM/ORCA/ROS/Human/Other. Most robots in these papers rely on an ex-
isting motion controller, and the robot is augmented with a new component for social nav-
igation. This survey classi"es the main types of motion control used in these papers: the
Social Force Model (SFM), Optimal Reciprocal Collision Avoidance (ORCA), the ROS
move_base navigation stack (ROS),1 evaluation of human behavior without any existing ro-
bot (Human), and Other. The “other” category includes both papers in which the motion
control is not signi"cant (such as research projects that use cellular automata, point-based
navigation, Dijkstra’s algorithm, or other types of search for motion planning), and in which
the motion control is novel and is a major part of the paper’s contribution (such as Social Mo-
mentum [98] or LM-SARL [23]). We mention the speci"c motion control that is used when
possible.
Communication None (N)/Indirect (I)/Direct (D). This attribute refers to communication
that is conveyed by the robot, and not to communication that is conveyed by the other agents.
None means that the robot is not doing anything speci"cally to convey its navigational goal.
Indirect communication refers to situations where the robot uses whatever mechanisms it
already possesses to signal its intentions, such as legibility [34]R1 and stigmergy [9]R2. Direct
communication means that there is some mechanism that is added to the robot to allow
communication. See Figure 2 for examples.
Experiment Type Simulation (Sim)/Laboratory (Lab)/In the Wild (ItW)/Survey (Sur). Many
researchers run experiments in Simulation as part of their evaluation, either as the only type
of evaluation or in addition to real-world experiments. Laboratory experiments are de"ned
as experiments in the real world in a controlled environment such as a laboratory or using
a scripted scenario. In the Wild are real-world experiments in an unstructured environment
or with no prede"ned script for the pedestrians. All of these types of experiments can be
accompanied by post-interaction Surveys. When a paper reports on more than one type of
experiment, we include the details of one experiment, ordered in this prioritized order: In

1https://www.ros.org/
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Fig. 2. Various direct communication behaviors: (1) mechanical gaze [99], (2) virtual gaze [55], (3) sensor
rotation [39], (4) arrow signaling [140].

the Wild, Laboratory, Simulation, and Survey (when more than one methodology is used).
There are two exceptions to this policy: the "rst exception regards surveys, which are often
used as an additional metric for an experiment in the wild or the laboratory. Thus, if an
experiment is accompanied by a survey, the survey is also mentioned. The second exception
regards papers that report two or more experiment types, where one of them is a small-scale
in the wild experiment that does not report signi"cant results. In such cases, we report the
paper according to the experiment with reported results, but add a superscript + symbol
next to it to indicate that the paper also includes an in the wild experiment (e.g., Lab+).
Agent Type Human-Robot (H-R), Human-Agent (H-A), Human-Human (H-H), Robot-Robot
(R-R), Homogeneous Agents (Hom), Heterogeneous Agents (Het). This survey focuses on social
navigation involving a person and a robot (Human-Robot). Due to the di$culty of evaluating
such interactions, many models and algorithms are evaluated on a di#erent set of agents.
The most common approach is running a simulation in which the human counterparts are
controlled by a real human (Human-Agent) or by some other set of prede"ned or learned
behaviors (either Homogeneous Agents or Heterogeneous Agents). Several included papers
provide a fundamental understanding of human navigation and present evaluations that do
not involve robots at all (Human-Human) or that do not involve humans (Robot-Robot). These
papers are cited using the notation presented earlier (e.g., citationR1), highlighting that they
do not satisfy one or more of the inclusion criteria.
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Observability is important to consider, especially when discussing simulations. Simulations
explicitly model the observations that can be made by agents acting in a scene. Many simulations
assume that a robot (or pedestrians around it) has full (ground truth) observability. Other simula-
tions restrict observability in arti"cial ways, attempting to emulate realistic sensing capabilities
(partial observability). In the discussion of these papers, it is important to note that some obser-
vation modalities may be unrealistic to implement on real robots. The conclusions of such papers
may not translate to the context of real-world embodied social navigation.

With respect to the Communication attribute, we make a distinction between communication
that is indirect or direct and communication that is implicit or explicit. Implicit communication is
often used to describe any non-verbal communication that is conveyed by people (e.g., the inter-
pretation of eye gaze is implicit), and explicit communication is performed speci"cally with the
intention of communicating with others (e.g., speech is explicit) [29]R2,R3. Robots do not generally
naturally communicate implicitly (for example, not all robots have “eyes” and those that do not
necessarily need to turn them to “look” at something, or re!exively turn them to where they are
about to navigate). As such, we make the distinction between direct and indirect communication
as de"ned above and keep the implicit/explicit distinction as one re!ective of mimicking human
behavior. Using these de"nitions, the possible combinations for robot communication are implicit-
indirect (e.g., velocity change [164]R1), implicit-direct (e.g., gaze change on a virtual head [1]), and
explicit-direct (e.g., arrow projections on the !oor [170]).

Some papers present more than one set of experiments. An example would be presenting
both a Human-Robot laboratory study and a simulation of Heterogeneous agents. We choose to
highlight Human-Robot experiments; a particularly relevant format for studies in social naviga-
tion. In general, for papers that present more than one set of experiments we categorize them
by the values most relevant to HRI on the attributes of Experiment Type and Agent Type:
In the Wild > In the Lab > Simulation > Survey.

We also highlight that some of the taxonomy attributes are very concrete and de"ne low-level
components used in the interaction (e.g., the motion control used), while other attributes are more
abstract (e.g., robot role). Usually, the abstract attributes and their values depend on the concrete
attributes. Figure 3 presents the hierarchical structure of these attributes, in work that is consistent
with the three requirements outlined in Section 1. The bottom part represents the attributes that
are independent of other attributes. The values assigned to the attribute at the end of an edge
a#ect the values that can be assigned at its origin. For example, the values of the Communication
attribute will be directly a#ected by the Number of Agents in the environment and the robot’s
Observability. In turn, the choice of value for the Communication attribute directly a#ects the
Agent Types that can perceive the chosen communication channel.

2.2 Additional Concepts
There are some additional concepts that are worth mentioning, but which we decided to exclude
from our taxonomy. Here we list these concepts and explain why they are not included in the
taxonomy. As research and discussion on social navigation progresses, this taxonomy could be
extended to include these attributes.

One seemingly-important factor to consider in the taxonomy is collision type. When refer-
ring to collisions, most articles describe head-on collisions or side-on collisions, with rear-end
collisions as the least commonly investigated type. Among the articles in this survey, none explic-
itly discuss only one type of collision. There are several articles that propose ways to categorize
collisions according to the required response from pedestrians and/or the robot. Reynolds [130]
de"nes two types of collisions: unaligned collision avoidance and separation. Unaligned collision
avoidance is a behavior that “tries to keep characters which are moving in arbitrary directions from
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Fig. 3. The hierarchical structure of the taxonomy’s a!ributes.

running into each other [130].” Separation is similar to a rear-end collision and refers to a simpler
form of movement: “Separation steering behavior gives a character the ability to maintain a certain
separation distance from others nearby[130].” Mavrogiannis et al. [98] discuss the point in space and
time where agents collide, calling this point “entanglement.” This concept raises an additional ques-
tion about the concrete implementation of this collision point—what is considered close enough
to be an entanglement in a social context? For example, Mavrogiannis et al. [97] utilized a min-
imum distance of d ≤ 1 meter between the robot and the human. While it is simple to classify
the direction of a collision, it is more challenging to de"ne properly the minimal requirements
of an encounter to be considered a collision. Is entering a person’s personal space a collision? Is
brushing against their leg? Overall, the de"nition of collision varies between researchers and may
be a parameter that can be adjusted.

Another common discussion point is context awareness and semantic mapping. Many arti-
cles discuss the need for mobile social robots to be aware of their context [22]. A leading approach
to enable this is semantic mapping, where the robot constructs maps that represent not only a met-
ric occupancy grid but also other properties of the environment [79]R1,R3. This survey does not
focus on the mental model of the navigating robot (or of the other agents) in the environment, so
this is not included in the taxonomy. It is, however, an important factor to consider when designing
a robot for social navigation, as context awareness could greatly in!uence a robot’s behavior.

Another thing to consider when designing interactions between mobile robots and pedestrians
is how people react to humans vs. robotic counterparts. Will humans interacting with other
people produce a similar or di#erent response when interacting with robots? The assumption that
people will behave in the same way when encountering a robot as they would another human is
common in HRI and other research communities, though it is not unanimously agreed upon. In
their survey on proxemics for social navigation, Rios-Martinez et al. [132] stated that “This article
starts from the idea that people will keep the same conventions of social space management when
they interact with robots than when they interact with humans. Researchers in social robotics that
believe in that hypothesis can rely on the rich sociological literature to propose innovative models of
social robots.” As a counter opinion, Butler and Agah [13] indicate that people are most comfortable
when a robot moves at speeds that are between 0.254m/s and 0.381m/s , while the normal walking
speed for young humans is about 1m/s . This di#erence suggests that people prefer a robot that
moves more slowly than people do. Until there is a clear theory regarding the reactions of people
to other people vs. robots in social navigation—and until that theory is tested—it is reasonable to
exclude assumptions regarding whether people react to robots similarly or di#erently from how
they react to other people from this taxonomy.
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The distinction between social cues and social signals [168]R2,R3 is used in this survey, but
they are not included as attributes in the taxonomy. Cues are the low-level inputs that the robot
can receive or send, such as gaze, position, language, and so on. Signals, on the other hand, are
emotions, personality, and other traits that are more high-level. Signals discussed in the context of
social navigation usually serve a purpose in con!ict avoidance, and the way to implement them in
a robot (or detect them in a human) is through social cues. How a robot can best communicate with
humans is a rich and versatile research area; and is taken into consideration through the attributes
observability and communication in the taxonomy.

One attribute that is relevant in a broader context than social navigation is focused vs. unfo-
cused interaction. Go#man [49]R2,R3 de"nes these terms to categorize scenarios in which the
robot and the human share their focus (shared attention) vs. scenarios in which the robot and the
human share an environment, but not attention. Rios-Martinez et al. [132] use this attribute to iden-
tify di#erent types of navigational behaviors in robots: minimizing the probability of encounter,
avoiding collisions, passing people, staying in line, approaching humans, following people, and
walking side-by-side. Because the articles in this survey revolve around con!icts, the robot and
the human do not share focus, and hence all included articles involve strictly unfocused interac-
tions. Focused vs. unfocused interactions are not considered as part of the taxonomy.

Additionally, the topic of di#erences in navigation between independent pedestrians, groups,
and crowds has enjoyed recent popularity [51, 106, 174]. Most social navigation articles either con-
sider interactions with a single individual or with a crowd of individuals (as de"ned as Number of
Agents in our taxonomy). An early sociological study showed that people tend to move in small
groups rather than alone, but that group size distribution depends greatly on context (a casual
Saturday afternoon stroll vs. a workday morning commute) [27]R2,R3. Recent research has demon-
strated that in many contexts, more than 50% of pedestrians are traveling in groups [104]R2,R3.
Thus, the context in which navigation takes place determines whether it is necessary to consider
the surrounding crowd.

Lastly, we address a distinction that is relatively straightforward to understand intuitively but
is challenging to formalize: Con!ict Prevention vs. Resolution. Consider a person walking in a
crowded environment who is looking at their phone. Without watching the surrounding crowd,
two people might collide—which means they have reached a con!ict. If the person looks up early
enough, they might side-step abruptly without a change of speed—which means that a con!ict
was resolved. If the person decides to step away to a less crowded area, this behavior is preven-
tion. On one hand, it is clear that prevention and resolution are di#erent tasks that can direct the
robot’s behavior: prevention is the task of designing the robot’s motion to steer away from po-
tential con!icts, while resolution is the task of altering the robot’s motion and behavior when a
con!ict is already imminent. On the other hand, formalizing this distinction is challenging, as it
is non-trivial to de"ne what is an “imminent” con!ict. Whether a robot is designed to prevent or
resolve a con!ict, the premise of all of the covered work in this article is that the robot is always
attempting to avoid con!icts in social navigation. This requirement provides a crisp way to iden-
tify relevant articles that "t into this survey, without the need to explicitly cluster the interaction
into prevention or resolution.

3 MODELS
This section details various models used for social navigation. The discussion is grouped accord-
ing to three main underlying models: MAS, human-inspired models, and physics-based models
(speci"cally, the SFM and other force models). Each of these categories represents a di#erent set
of assumptions—as well as a di#erent research community—that each model stems from. Naviga-
tion in MAS is usually designed with the premise that agents navigating in an environment are
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homogeneous. These articles include multi-robot navigation models and crowd modeling. A
multiagent social navigation model generally reasons about agents with di#erent—sometimes
unknown—behaviors. Other models are inspired by insights about human navigation. These ar-
ticles provide measurements and rules that explain how people navigate among each other. Such
a social navigation model translates these rules into robot motion and perception. We taxonomize
articles using the social force model in their own category; inspired by physical force modeling.
Many models have been proposed which build upon the seminal work by Helbing and Molnar
[58]R2,R3, using additional forces. Finally, some papers sit at an intersection between two cate-
gories. In such cases, the paper is grouped with work that uses similar motion control.

3.1 Multiagent Systems
Two communities that have contributed signi"cantly to the study of social navigation are the multi-
robot navigation and graphics communities. Both of these communities have proposed di#erent
approaches to model the behavior of a crowd. The multi-robot community focuses more on safety
and feasibility in the real world, while the graphics community focuses on robustness. Multi-robot
work usually is based on a few interactions under realistic constraints. On the other hand, the
challenge of crowd modeling taken on by the graphics community is to model interactions between
hundreds and thousands of agents simultaneously. However, because the graphics community does
not need to implement these systems on real robots, the perception and movement restrictions on
those agents tend not to be grounded in the physical constraints that both robots and real people
must contend with.

Many researchers have approached the challenge of multi-robot navigation [173]R1,R3. This is a
fertile and active research area that deserves its own survey. We discuss only a few selected publi-
cations that have had a signi"cant in!uence on social navigation. Van Den Berg et al. [164] present
the principle of ORCA, which provides a su$cient condition for multiple robots to avoid collisions
among one another, and guarantees collision-free navigation. Chen et al. [23] model human-robot
and human-human interactions, then infer the relative importance of learned features through a
pooling module via a self-attention mechanism, and "nally planning motions.

Another branch of multi-robot research focuses on planning under uncertainty and leverages
Markov Decision Processes (MDPs). Foka and Trahanias [40] model a probabilistic prediction
of people’s destinations. They use a Partially Observable MDP (POMDP) solved online at each
time step to determine which actions the robot actually performs. Gupta et al. [51] recently pre-
sented an additional POMDP model for intention-aware navigation in crowds, where the model
can address decisions related both to the robot’s speed and its heading. Bandyopadhyay et al. [3]
model human intention with a Mixed Observability MDP (MOMDP), and then plan the motion
of a robot leveraging this model.

The graphics community has contributed several important models to social navigation, as well
as simulation environments that can be utilized to evaluate other models and algorithms (see more
about these simulation environments in Section 5). Musse and Thalmann [108] propose a model
of crowd behavior, where agent behavior is determined using a prede"ned set of rules. Strassner
and Langer [149] use behavioral rules for modeling each person’s behavior in a crowd. Such be-
haviors include perceiving, storing, and forgetting knowledge. Bonneaud and Warren [11] model
pedestrian behavior using an empirically-grounded emergent approach, where the local control
laws for locomotor behavior are derived experimentally, and the global crowd behavior is emer-
gent. Okal and Arras [117] present a model for crowd behavior in which groups are formed. Their
representation gives each individual an internal state, where under a set of prede"ned conditions
pedestrians can choose to walk together.

Table 2 summarizes the taxonomy values for models inspired by MAS research.

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 13. Publication date: March 2024.



13:12 R. Mirsky et al.

Table 2. An Overview of the Di"erent Multiagent-based Models Used in Social Navigation

Year Paper Role # Agents Obs. Motion Control Com. Exp.
Type

Agent
Type

1997 Musse and Thalmann [108] R Abs = 10 Full Other
(Hand Coded) N Sim Hom

2005 Strassner and Langer [149] N Abs = 2 Partial Other
(Hand Coded) N Sim Hom

2010 Foka and Trahanias [40] R Abs = 6 Depth Other
(POMDP) I ItW H-R

2011 Van Den Berg et al. [164] R Abs = 1000 Full ORCA I Sim Hom

2013 Bandyopadhyay et al. [3] R Abs = 4 RGB +
Depth SFM N Lab H-R

2014 Bonneaud and Warren [11] R Abs = 20 Full Other N Sim Hom
2014 Okal and Arras [117] R Abs = 176 Partial SFM N Sim Hom
2016 Godoy et al. [48] B Abs = 100 Full Other N Lab R-R

2019 Chen et al. [23] R Abs = 6 Full Other
(LM-SARL) N Sim+ Hom

2022 Gupta et al. [51] R Abs = 401 Partial Other
(POMDP) N Sim Hom

Role refers to the robot role, Obs. is observability, Com. refers to communication, and Exp. type is the experiment
type.

3.2 Psychology and Human-inspired Models
The contributions discussed so far have focused on multiagent or multi-robot navigation systems
that have been adapted to accommodate human pedestrians. A di#erent approach starts with the
modeling of human behavior, which then leverages these models to improve robot navigation. Cut-
ting et al. [30]R2,R3 empirically evaluates human behavior in situations of obstacle avoidance. Their
work investigates the relationship between object avoidance and "nding one’s aimpoint in a se-
ries of human studies. Their results are summarized as a decision tree to facilitate reasoning about
collision detection with other objects (static or moving) and Gaze-Movement Angle (GMA); the
angle between one’s gaze and one’s direction of movement. Their model can be used to estimate
where a collision might occur. As a di#erent way to estimate an expected collision point, Schewe
and Vollrath [15] de"ned τ to be the time to bypass a dynamic obstacle (human or not). Moussaïd
et al. [103] use τ to heuristically plan how to navigate in a way that avoids collisions. Park et al.
[122] claim that GMA-based collision prediction has several advantages over the time-to-contact
(τ ) approach. It is more robust to variations in the speed and the path of the other pedestrian. It
also does not assume either constant speed or a linear path, so the accuracy of the prediction is
not a#ected by these variations. Kitazawa and Fujiyama [78] investigate the Information Process
Space (IPS) of a navigating person when walking in a hallway in the presence of static objects and
other pedestrians. In this work, they identify the area that the observing pedestrian considers as
the one in which a collision with another pedestrian could occur in a short time (see Figure 4). In an
extension of this work, Park et al. [122] propose a collision avoidance behavior model that is based
on their empirical results about IPS to generate more human-like collision avoidance behaviors.

Another concept from psychology that has had a signi"cant impact on social navigation is that
of personal space [46, 53, 62]. While the original formulation of personal space is depicted by
Hall [53]R2,R3 as a concentric circle, later work extends that to an egg [56]R2,R3, ellipse [58], or as
asymmetrical (smaller on the dominant side) [46]R2,R3 shape. Closely related to personal space is
the concept of density in crowds. The average density of people in a non-crowded environment
has been evaluated to be 0.03 pedestrians perm2, whereas, in a moderately crowded environment,
there are 0.25 pedestrians perm2 [104]. Rios-Martinez et al. [131] incorporate both personal space
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Fig. 4. IPS—the visual processing coverage of pedestrians, as measured by [78] and depicted by Rios-
Martinez et al. [132].

and IPS-based constraints into an adaptive optimization algorithm to enable more human-like
navigation. Truong and Ngo [161] propose a comprehensive framework that reasons about pedes-
trians’ extended personal space and social interaction space to identify a Dynamic Social Zone
(DSZ); a concept which is incorporated into their motion planner.

Others have analyzed how gait and posture are a#ected by sudden trajectory changes, as one
might expect to see in con!ict avoidance. Patla et al. [123]R2,R3 analyzed head yaw, trunk yaw,
and foot position when turning due to an expected obstacle vs. turning abruptly due to an unex-
pected obstacle. To analyze the relationship between head pose and predicted walking trajectory,
Unhelkar et al. [163]R2,R3 discretized walking trajectories as a decision problem regarding which
target a person would walk toward. They incorporated this information into an anytime path
planner [110]R1 and evaluated this enhanced planner in simulation. Holman et al. [60]R2,3 extend
this predictive model to incorporate gaze. Senft et al. [137] identify and implement a navigational
pattern for making space in a hallway. Their model involves controlling the robot’s rotation and
sliding motion and consists of three steps: step, slide, and rotate.

All of the contributions above leverage insights from empirical studies on humans and robots to
manually construct models for social navigation. However, together with the improving abilities
of machine learning, di#erent learning techniques have been used to learn models of navigation in
social contexts. Lu et al. [90] propose a planning model that can be tuned to match di#erent social
navigation contexts. Bennewitz et al. [7] learn motion patterns of people that can be used for
trajectory prediction in social robots. Henry et al. [59] extend this approach by modeling partial
trajectories. More recently, Vasquez et al. [165] used Inverse Reinforcement Learning (IRL)
to infer a reward function for social navigation. They introduce a new software framework to
systematically investigate the e#ect of features and learning algorithms used in the literature. They
investigate the task of socially compliant robot navigation in crowds, evaluating two di#erent IRL
approaches and several feature sets in large-scale simulations. Karnan et al. [71] collected a large-
scale human demonstration dataset, containing socially compliant data of navigation behaviors in
natural indoor and outdoor spaces on a university campus. They used behavior cloning to learn a
global and local planner to mimic human navigation behaviors.

Table 3 summarizes the taxonomy values for models inspired by human behavior, physiology,
and psychology research.

3.3 Physics-based Models
Researchers have also used models inspired by physics to represent dynamics and interactions be-
tween di#erent moving agents. Helbing and Molnar [58] were the "rst to propose the SFM, a model
inspired by !uid dynamics that describes an agent’s motion using a set of repelling and attracting
forces. They evaluate this model in a simulation of homogeneous SFM-based agents. Many con-
tributions extend SFM models to handle additional forces: Karamouzas et al. [69] add an evasive

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 13. Publication date: March 2024.



13:14 R. Mirsky et al.

Table 3. An Overview of the Di"erent Human-inspired and Psychology-based Models
Used in Social Navigation

Year Paper Role # Agents Obs. Motion Control Com. Exp.
Type

Agent
Type

1995 Cutting et al. [30] R Abs = 2 Partial Other
(Hand Coded) I Sim + Sur H-H

1998 Je#rey and Mark [62] R Abs = 4+ Partial Human N Sim H-H
1999 Patla et al. [123] R Abs = 2 Partial Human N Lab H-H
1999 Reynolds [130] R Abs = 2 Full None N None Hom

2002 Bennewitz et al. [7] R Abs = 2 Depth Other
(Learned) N Lab H-R

2008 Gérin-Lajoie et al. [46] R Abs = 2 None Human N Lab H-H
2010 Henry et al. [59] R None Depth Other (A*) N Sim Hom
2010 Kitazawa and Fujiyama [78] R Abs = 4 Partial Human N Lab H-H

2011 Moussaïd et al. [103] R Abs = 96 Partial Other
(Hand Coded) N Lab Hom

2011 O’Callaghan et al. [115] R Abs = 2 Depth Other
(Planner) N ItW H-R

2012 Rios-Martinez et al. [131] R Abs = 6 RGB+Depth ROS N Sim Hom
2013 Lu et al. [90] R Abs = 2 Partial ROS N Sim Het

2013 Park et al. [122] R D = 0.1–1 Partial Other
(Hand Coded) I Sim Hom

2014 Charalampous et al. [21] R Abs = 2 RGB + Depth Other N ItW H-R
2014 Papadakis et al. [121] I Abs = 2 RGB + Depth None I Lab H-R

2014 Vasquez et al. [165] R Abs = 6+ Full Other
(Dijkstra) I Sim H-A

2015 Unhelkar et al. [163] R Abs = 2 Full Other
(SIPP) N Lab H-A

2016 Mead and Matari% [100] I Abs = 2 RGB None D Lab H-R
2016 Truong and Ngo [161] R Abs = 4 RGB+Depth Other (D*) N Lab H-R

2020 Senft et al. [137] R Abs = 2 Depth Other
(Hand Coded) I Lab H-R

2022 Karnan et al. [71] I Abs = 2 RGB + Depth Other
(Teleoperation) I ItW H-R

Role refers to the robot role, Obs. is observability, Com. refers to communication, and Exp. type is the experiment
type.

force that uses collision prediction and avoidance, which makes agents more proactive and antici-
patory than the classical SFM. Moussaïd et al. [104] propose several group-related forces that help
model pedestrians that walk in a group. Swo#ord et al. [151]R2,R3 use a Deep A"nity Network
(DANTE) to predict the likelihood that two individuals in a scene are part of the same conver-
sational group. They take into consideration the social context in which these interactions take
place. A di#erent type of force-inspired work uses potential "elds attached to moving pedestrians
[150]. This model has been leveraged in a modi"ed Rapidly-exploring Random Tree (RRT) for
navigation in human environments, though it assumes access to full state information.

Table 4 summarizes the taxonomy values of models inspired by physics and mechanical engi-
neering research.

4 ALGORITHMS
This section discusses contributions in the form of algorithms and hardware augmentations that
enhance social navigation. Most of the work presented here "ts our basic de"nition of social naviga-
tion, however, several papers are included that have not been evaluated in the context of navigating
around people. These papers are included if their contribution can be applied in the context of so-
cial navigation. Broadly speaking, this section is divided into three main approaches: Approaches
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Table 4. An Overview of the Di"erent Physics-inspired Models Used in Social Navigation

Year Paper Role # Agents Obs. Motion Control Com. Exp.
Type

Agent
Type

1995 Helbing and Molnar [58] R D = 0.3 Full SFM N Sim H-A

2003 Loscos et al. [89] R Abs = 6000 Partial Other
(Hand Coded) N Sim Hom

2009 Karamouzas et al. [69] R Abs = 1000 Full SFM N Sim Hom
2010 Moussaïd et al. [104] N D = 0.03-0.25 Full SFM N ItW H-H

2010 Svenstrup et al. [150] R Abs = 40 Full
Other
(Modi"ed
RRT)

I Sim Hom

2020 Swo#ord et al. [151] I Abs = 18 RGB ROS N Lab H-R
Role refers to the robot role, Obs. is observability, Com. refers to communication, and Exp. type is the experiment
type.

that infer the human’s trajectory and adapt to it; Approaches that convey the goal or trajectory
of the robot to the person it is interacting with before reaching a con!ict; and mixed approaches
which mediate between the inferred trajectory of the human and the desired goal of the robot.

4.1 Inferring Human Trajectories
Many social navigation contributions have been inspired by the way humans navigate in social
contexts. The majority of these papers can be split into two categories: online and o&ine inference.
Online inference means that a robot observes the behavior of a person during deployment and in-
corporates its inference about the person’s planned trajectory into its execution. O&ine inference
happens prior to the execution stage, usually on more than a single trajectory. The robot learns to
predict human trajectories or imitate them from a set of observed trajectories.

4.1.1 Online Inference. Cutting et al. [30] o#er an early attempt to evaluate the trajectory of a
passerby by calculating their GMA and reacting to it. The robot designed by Tamura et al. [155]
detects pedestrians by using a laser range "nder and tracks them using a Kalman "lter. They apply
an SFM to the observed trajectory to determine whether the pedestrian intends to avoid a collision
with the robot or not and select an appropriate behavior based on the estimation result. Gockley
et al. [47] discuss how to avoid rear-end collisions in the context of person following. They propose
a laser-based person-tracking method and evaluate two di#erent approaches to person-following:
direction-following, where the robot follows the current location of the person; and path-following,
where the robot tries to follow the exact path that the person took. They show that while no
signi"cant di#erence was found between the two approaches in terms of the distance or time
between tracking errors, participants rated the robot’s behavior as signi"cantly more natural and
human-like in the direction-following condition. In addition, participants felt that the direction-
following robot’s behavior was more similar to the participants’ expectations.

Others have leveraged the human gaze to infer the trajectory of pedestrians. Gaze is a very
strong communicative cue used by humans, in the context of collaborative settings in general
[19]R2,R3 and for navigation in particular [2]. It has been shown that humans are not the only
species that can partially understand gaze cues from a very young age, but also chimpanzees and
dogs [126, 147]R2,R3. Gaze and head pose have both been shown to be signi"cant indicators of
a person’s attention, which can be used to infer navigational goals. Stiefelhagen et al. [148]R2,R3

show that the visual focus of a person’s attention can be deduced from head pose when the vi-
sual resolution is insu$cient to determine eye gaze. Smith et al. [146]R2,R3 extend their work to
a varying number of moving pedestrians. Of course, this gaze behavior extends beyond walking
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and bicycling. Recent work has studied the use of gaze as a modality for plan recognition in games
[144] and as a cue for interacting with copilot systems in cars [63, 64], also to infer the driver’s
intended trajectory. Gaze is also often "xated on objects being manipulated, which can be lever-
aged to improve algorithms which learn from human demonstrations [134]R1,R2. Though the use
of instrumentation such as head-mounted gaze trackers or static gaze tracking cameras is limit-
ing for mobile robots, recent work in the development of gaze trackers that work without such
equipment [133]R1,R2 may soon allow us to perform the inverse of the robot experiments pre-
sented here, with the robot reacting to human gaze. Ratsamee et al. [128] propose to avoid colli-
sions with humans by considering a social model that takes into consideration body pose and face
orientation.

4.1.2 O!line Inference and Learning. While the previous subsection focused on the recognition
of human trajectories during execution, some leverage these trajectories to learn and infer how a
human would react in a social navigation interaction. Pacchierotti et al. [119] designed a rule-based
strategy for people passing that was inspired by spatial behavior studies. This strategy intends to
mimic the way people avoid collisions once inside a person’s personal space.

One such successful approach uses IRL to elicit the explicit cost representation to imitate hu-
man’s social navigation behavior. Instead of hand-crafted functions, these papers use IRL to lever-
age data-driven approaches. IRL was extensively used to infer reward (cost) functions from human
demonstrations. The most straightforward application of IRL is by Kim and Pineau [74], to learn
a cost function that respects social variables over features extracted from an RGB-D sensor. This
work used IRL to infer cost functions in a social navigation context: navigational features were
"rst extracted from an RGB-D sensor, then represented as a local cost function learned from a set
of demonstration trajectories by an expert using IRL. The system still operated under the classical
navigation pipeline, with a global path planned using a shortest-path algorithm, and a local path
using the learned cost function to respect social variables. Obstacle avoidance was still handled by
a low-level controller. Okal and Arras [118] tackle cost function representation at a global level in
a social context: they developed a graph structure and used Bayesian IRL to learn the cost for this
representation. With the learned global representation, a traditional global planner (A*) planned a
global path over this graph, and the POSQ steer function for di#erential-drive mobile robots served
as a local planner. Henry et al. [59] use IRL to learn motion patterns of humans in simulation that
can later be used for planning in social navigation.

An alternative approach to IRL with a similar objective is to model social navigation trajecto-
ries using a Maximum Entropy Probability Distribution, where cost is also implicitly de"ned
by identifying an underlying model from demonstrated data. Maximum entropy probability dis-
tribution has been used by Pfei#er et al. [124] to model agents’ trajectories for planning and by
Kretzschmar et al. [80] to infer the parameters of the navigation model that matches the observed
behavior in expectation. Kuderer et al. [84] also use human demonstrations, but instead of using
an MDP, they elicit features from the human trajectories and then use entropy maximization to
determine the robot’s behavior. Luber et al. [92] use unsupervised learning from surveillance data
to learn motion patterns and augment a motion planner with this knowledge.

Sisbot et al. [145] create a human-aware motion planner (HAMP) that is explicitly given
a cost model for safety and legibility, and the robot reasons about the joint cost of these two
properties in its planning process. Costs were also implicitly de"ned by identifying an underlying
model from demonstrated data. Kirby et al. [75] model human social conventions at the global
planning stage. This enables it to mediate between di#erent, sometimes con!icting objectives. For
example, consider a goal that is down an intersecting hallway to the robot’s left. While the social
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norm in many places is to pass a pedestrian from the right side, the robot may choose to walk across
the hallway in front of an oncoming person, e#ectively passing them to the left of the corridor. This
behavior is the result of mediating between two objectives: complying with the right-alignment
social norm, and minimizing the time to the goal.

Many algorithms use hand-crafted behaviors to avoid con!icts, i.e., to realize collision avoidance.
As a continuation of previous Collision Avoidance Deep Reinforcement Learning (CADRL)
work [25], Chen et al. [24] further propose a hand-crafted reward function to incorporate the social
norm of left or right-handed passing in a DRL approach and enabled a physical robot to move at
human walking speed in an environment with many pedestrians, called Socially Aware CADRL
(SA-CADRL). Along the same line of research, but to relax the assumption of other agents’ dy-
namics, Everett et al. [36] propose GA3C-CADRL, using an LSTM to allow reasoning about an
arbitrary number of nearby agents and GPU to maximize the number of training experiences. Sim-
ilarly, the reward function by Jin et al. [65] accounts for ego-safety, to measure collision from the
robot’s perspective, and social-safety, to measure the impact of the robot’s actions on surrounding
pedestrians. Other options that utilize DRL include using a Hidden Markov Model (HMM) in
a higher hierarchy to learn to choose between target pursuing and collision avoidance using RL
[33]. Tai et al. [154] use Generative Adversarial Imitation Learning (GAIL) to learn contin-
uous actions and desired force toward the target. This improved safety and e$ciency over pure
BC. Li et al. [85] propose a new problem: socially concomitant navigation (SCN). In addition
to collision avoidance in traditional social navigation, in SCN the robot also needs to consider the
motion of its companion to maintain a sense of a$nity when they are traveling together towards
a certain goal. Taking features extracted from a LiDAR sensor along with the goal as input, a nav-
igation policy is trained by Trust Region Policy Optimization (TRPO) to output continuous
velocity commands for navigation. Bera et al. [8] created SocioSense, a social navigation algorithm
that categorizes pedestrians according to psychological traits (e.g., shyness, tense) and adjusts the
robot’s velocity according to the pedestrians around it. Lu et al. [91] incorporated a dynamic mea-
sure into their reward to reason about the density of the crowd when deciding on the distance from
other pedestrians. They then extended the deep neural network architecture from SARL [23] to
choose the optimal action with the shaped reward that reasons about the “uncomfortable distance”
between the robot and a pedestrian.

To observe social rules when navigating in densely populated environments, Yao et al. [174]
propose to utilize information about social groups to address the “naturalness” aspect from the
perspective of collective formation behaviors in the complex real world. They used a deep neural
network, called Group-Navi GAN, to track social groups and navigate the robot to join the !ow
of a social group by providing a local goal to the local planner. Other components of the existing
navigation pipeline, e.g., state estimation, collision avoidance, and so on, remained the same. The
classical navigation pipeline, with the assistance of a learned local goal, was capable of navigating
safely in a densely populated area following crowd !ows to reach the goal. Liang et al. [86] develop
CrowdSteer, an RL-based collision-avoidance algorithm that navigates in dense and crowded envi-
ronments. The algorithm is trained using PPO in simulation with simulated human agents and was
deployed in the real world. Martins et al. [95] propose ClusterNav, an algorithm that gets human
demonstrations using teleoperation, then uses Expectation Maximization to learn how to navigate
in an unsupervised manner. Their approach cannot reason about dynamic obstacles, hence it is
unable to reason about interactions with people during navigation, so it does not appear in our
tables.

Table 5 summarizes the taxonomy values for the inference algorithms for social navigation dis-
cussed in this subsection.
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Table 5. An Overview of the Di"erent Inference Algorithms Used in Social Navigation

Year Paper Role # Agents Obs. Motion Control Com. Exp.
Type

Agent
Type

2006 Pacchierotti et al. [119] R Abs = 3 Depth Other
(Hand Coded) N Sim Hom

2007 Gockley et al. [47] R Abs = 2 Depth Other
(CVM) D Lab H-R

2007 Sisbot et al. [145] R Abs = 2 RGB +
Depth

Other
(HAMP) I Lab H-R

2009 Kirby et al. [75] R Abs = 4 Depth Other (A*) N Sim Hom
2010 Ohki et al. [116] R Abs = 5 Full Other

(Hand Coded) N Sim Hom

2010 Pandey and Alami [120] R Abs = 2 Full Other
(Hand Coded) N Lab H-R

2010 Tamura et al. [155] R Abs = 2 Depth SFM N Lab H-R
2011 Diego and Arras [32] R Abs = 5 None Other

(Modi"ed TSP) N Sim Het
2012 Kuderer et al. [84] R Abs = 3 Full Other (learned) N Lab H-R
2012 Luber et al. [92] R Abs = 2 Full Other (RMP) N Sim H-A
2013 Ratsamee et al. [128] R Abs = 2 RGB +

Depth SFM N Lab H-R

2014 Gómez et al. [50] R Abs = 5 Full Other
(Planning) N Sim R-R

2016 Kim and Pineau [74] R Crowd RGB +
Depth

Other
(Costmap Search) I ItW H-R

2016 Kretzschmar et al. [80] R Abs = 3 Depth Other
(RPROP) I Lab H-R

2016 Okal and Arras [118] R Abs = 4 Depth ROS I Sim+ Hom
2016 Pfei#er et al. [124] R Abs = 891 RGB Other

(Max Entropy) I ItW Hom

2017 Bera et al. [8] R D< = 2 Full Other
(SocioSense) N Sim Het

2017 Chen et al. [24] R Abs = 10+ RGB Other
(Learned) N ItW H-R

2017 Chen et al. [25] R Abs = 6 Full Other
(Learned) N Sim R-R

2018 Ding et al. [33] R Abs = 20 Depth None N Sim R-R
2018 Everett et al. [36] R Abs = 10+ RGB +

Depth Crowd N Sim+ H-A

2018 Jiang et al. [63] B Abs = 2 RGB Other
(Hand Coded) N Sim H-A

2018 Li et al. [85] R Abs = 3+ Depth Other
(Learned) N Lab H-R

2018 Long et al. [87] R Abs = 100 Depth Other
(Learned) N Sim R-R

2018 Tai et al. [154] R Abs = 3 Depth Other
(Learned) N Sim+ H-A

2019 Jin et al. [65] R Abs = 4 Depth Other
(Learned) N Lab H-R

2019 Meng et al. [101] N Abs = 1 RGB None N Sim Hom
2019 Nardi and Stachniss [111] N Abs = 1 Full Other

(Hand Coded) N Sim R-R

2020 Liang et al. [86] R Abs = 10+ RGB +
Depth

Other
(Learned) N Lab H-R

2022 Lu et al. [91] R Abs = 5 Depth Other
(Learned) N Sim Hom

Role refers to the robot role, Obs. is observability, Com. refers to communication, and Exp. type is the
experiment type.
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4.2 Conveying the Robot’s Goal to the Human
Dragan et al. [34] formally de"ne the concepts of legibility (motion that allows the observer to
con"dently infer the correct goal) and predictability (motion that conforms with the observer’s
expectations) in robot navigation. They show that human-robot collaboration is a#ected by the
way the robot plans its motion, and to perform better, the robot design should switch from a focus
on predictability to a focus on legibility. This section presents several approaches to increase the
robot’s legibility and explicability, with an emphasis on interaction points where there is a con!ict
between the human pedestrian and the robot. More details about the speci"c mechanisms that are
activated in humans when interacting with a robot can be found in the work by Sciutti et al. [136],
who survey the concept of “motor resonance” between an acting robot and an observing human.
Kitagawa et al. [77] recently presented a motion planning algorithm for omnidirectional robots to
resemble human movements in a time-e$cient manner.

Many contributions use verbal signals for guidance [156]. Je#rey and Mark [62] investigate hu-
man navigational behavior in the context of two simulated environments. In these simulations,
people could communicate using either text messages or audio. Yedidsion et al. [175] investigate
how verbal instructions given by more than one robot can assist humans in navigation in a new
environment. However, for the social navigation task, verbal communication is considered less use-
ful, as the navigation is expected to take place seamlessly without demanding the high awareness
level that verbal communication requires [20]. To deal with this challenge, many contributions
take inspiration from the theory of proxemics [53] as a non-verbal way to convey intent or restric-
tion. Rios-Martinez et al. [132] investigate the comfort zone of people when a robot approaches
them and Torta et al. [158] identify speci"c values for this comfort zone (182 cm from a sitting
person and 173 cm from a standing person) or imitate them from a set of observed trajectories,
and uses the learned model for online planning.

LED and Arti#cial Signals. Baraka and Veloso [4] use an LED con"guration on their CoBot
to indicate some robot states—including turning—focusing on the design of LED animations to ad-
dress legibility. Their study shows that the use of these signals increases participants’ willingness
to aid the robot. Shrestha et al. [140] augment their robot with projection indicators to signal the
robot’s intended path. Sza"r et al. [153] equip quad-rotor drones with LEDs mounted in a ring at
the base, providing four di#erent signal designs along this strip. They found that their LEDs im-
prove participants’ ability to quickly infer the intended motion of the drone. Shrestha et al. [141]
perform a study in which a robot crosses a human’s path, indicating its intended path with an
arrow projected onto the !oor. They demonstrate their method to be e#ective in expressing the ro-
bot’s intended trajectory. Fernandez et al. [37] introduce the concept of a “passive demonstration”,
to disambiguate the intention of a robot’s LED turn signal. Watanabe et al. [170] evaluate a robotic
wheelchair that autonomously navigates the environment with and without intentional commu-
nication. They show that passengers and pedestrians found intentional communication intuitive
and helpful for passing-by actions.

Robot Gaze as Signal. Several contributions build on the fact that humans infer other people’s
movement trajectories from their gaze direction [114]R1,R2, and from the relationship between
head pose and gaze direction [68]R2,R3. Norman [113]R2,R3 speculates that bicycle riders know how
to avoid collisions with pedestrians since pedestrian motion can be predicted by gaze. Similarly,
Unhelkar et al. [163] found that head pose is a signi"cant predictor of the direction that a person
intends to walk.

Following a similar line of thought, Khambhaita et al. [73] propose a motion planner that co-
ordinates head motion to the path a robot will take 4 seconds in the future. In a video survey in
which their robot approaches a T-intersection in a hallway, they found that study participants are
signi"cantly more able to determine the intended path of the robot in terms of the left or right
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branch of the intersection when the robot uses the gaze cue as opposed to when it does not. Us-
ing a di#erent gaze cue, Lynch et al. [93]R1,R2 perform a study in a virtual environment in which
virtual agents establish mutual gaze with participants during path-crossing events in a virtual hall-
way, "nding no signi"cant e#ect in helping participants to disambiguate their paths from those of
the virtual agents.

Fiore et al. [39] propose an analysis of human interpretation of social cues in hallway navigation.
Their study design included di#erent proxemic and gaze cues that were implemented by rotating
the sensors of the robot. Their results show that cues associated with the robot’s proxemic behavior
were found to signi"cantly a#ect participant perceptions of the robot’s social presence while cues
associated with the robot’s gaze behavior were not found to be signi"cant. However, Fernandez
et al. [37] show that people can adapt to LED-based cues after watching a demonstration of its use,
and May et al. [99] present a robot that was able to convey its intention using a mechanical signal
but not using a gaze cue. Hart et al. [55] challenge these previous results by providing a di#erent
naturalistic gaze cue using a virtual agent head which is added to a mobile robot platform, and
compared its performance against a similar robot with an LED turn signal. The results of this
work suggest that people can perceive the naturalistic gaze cue and react to it. These con!icting
results can be attributed to the vast di#erences in signal implementation between the di#erent
experiments.

Table 6 summarizes the taxonomy values for algorithms that focus on conveying the robot’s
intention to a human.

4.3 Mediating Conflicts in Navigational Intentions
Karamouzas et al. [70] identify a power-law interaction that is based not on the physical separation
between pedestrians but on their projected time to a potential future collision and is therefore
fundamentally anticipatory in nature. This "nding highlights that there is value in understanding
and mediating between the human’s navigational goal and the robot’s.

Murakami et al. [107] propose to smooth a wheelchair’s trajectory to avoid colliding with
pedestrians. Kruse et al. [81, 82] investigate classic navigation algorithms that create erratic
trajectories near obstacles that make a robot look confused. To address this challenge, they use
context-dependent cost functions and directional cost functions that help a robot solve spatial
con!icts. One result, for example, is adjusting the robot’s velocity instead of its path. Silva and
Fraichard [143] tackle the mediation problem using the notion of motion e#ort and how it should
be shared between the robot and the person to avoid collisions. To that end, their approach learns a
robot behavior using Reinforcement Learning that enables it to mutually solve the collision avoid-
ance problem during simulated trials. Svenstrup et al. [150] propose a modi"ed RRT for naviga-
tion in human environments assuming access to full-state information. The proposed RRT planner
plans with a potential "eld representation of the world, with a potential model designed for mov-
ing humans. Alternatively, recent work by Truc et al. [160] focused on drone navigation around
people. This work introduced a human-aware 3D reactive planner for drone navigation. This plan-
ner is based on stochastic optimization of two criteria: discomfort due to the proximity of the drone
to pedestrians, and visibility of the drone.

A di#erent line of research combines social navigation and person following. This combina-
tion can work in several directions: both Müller et al. [105], Topp and Christensen [157] present
collision avoidance algorithms that are utilized in the context of following one particular person
through a populated environment. Alternatively, in Yao et al. [174], the robot leverages the plan-
ning of other pedestrians and follows them instead of searching for a solution on its own.

Table 7 summarizes the taxonomy values for mediation algorithms for social navigation dis-
cussed in this subsection.
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Table 6. An Overview of the Di"erent Intention-conveying Algorithms Used in Social Navigation

Year Paper Role # Agents Obs. Motion Control Com. Exp.
Type

Agent
Type

2009 Nummenmaa et al. [114] I Abs = 2 Partial Other
(Hand Coded) D Sim H-A

2013 Fiore et al. [39] I Abs = 2 Depth Other
(Hand Coded) I + D Sim H-A

2015 May et al. [99] I Abs = 2 RGB +
Depth

Other
(A*) D Lab H-R

2015 Sza"r et al. [153] I Abs = 2 RGB +
Depth

Other
(Hand Coded) D Lab + Sur H-R

2015 Unhelkar et al. [163] N Abs = 1 Full Other
(SIPP) N Sim Hom

2015 Watanabe et al. [170] I Abs = 2 Depth ROS D Lab H-R

2016 Khambhaita et al. [73] I Abs = 2 RGB +
Depth ROS D Lab + Sur H-R

2018 Baraka and Veloso [4] I Abs = 2 RGB +
Depth ROS D Lab + Sur H-R

2018 Fernandez et al. [37] I Abs = 2 Depth Other
(Hand Coded) D Lab H-R

2018 Lynch et al. [93] I Abs = 2 Full Other
(Hand Coded) D Sim H-A

2018 Shrestha et al. [140] I Abs = 2 Full Other
(Hand Coded) D Lab + Sur H-R

2020 Hart et al. [55] I Abs = 2 Depth Other
(Hand Coded) D Lab H-R

Role refers to the robot role, Obs. is observability, Com. refers to communication, and Exp. type is the experiment
type.

5 EVALUATING AN INTERACTION
The numerous di#erent metrics and evaluation methods used in social navigation make apparent
the need to standardize them. This section is meant to provide tools and metrics to evaluate new
research in social navigation concerning the existing literature and with our proposed taxonomy
to provide context for evaluation. As we are surveying an interdisciplinary area, many of the
metrics used so far for evaluation were adapted from other research areas (e.g., Human-Computer
Interfaces, psychology, physics, mechanical engineering, and more). To pinpoint the most common
and useful metrics, we discuss only the metrics that were used in the papers that were presented
in the tables in Sections 3 and 4. For each metric we present, we mention the taxonomy attributes
that are the most relevant and can directly a#ect the values of the metric. For example, measuring
group formation directly depends on the Number of Agents in the environment, since if there is
only one pedestrian it cannot form a group. Table 8 summarizes this evaluation according to the
di#erent aspects of the interaction: properties of the interaction itself, actions taken by the human
or the robot, emergent behaviors, algorithmic properties, and others. This last aspect includes
both qualitative evaluation and prediction accuracy, which is a very common metric to estimate
the pro"ciency of obstacle detection, a preliminary step before the actual interaction.

5.1 Interaction Properties
This subsection discusses measurements that are related to the nature of the interaction itself, and
are meant to evaluate how successful and e$cient an interaction is. These metrics are readily
apparent to an outside observer, and external to the robot and the human.
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Table 7. An Overview of the Di"erent Mediation Algorithms Used in Social Navigation

Year Paper Role # Agents Obs. Motion
Control Com. Exp.

Type
Agent
Type

2002 Murakami et al. [107] B Abs = 2 RGB +
Depth

Other
(Hand Coded) I Lab H-R

2005 Topp and Christensen [157] R Abs = 4 Depth
Other
(Person
Tracking)

N Lab H-R

2008 Müller et al. [105] R Abs = 7 Depth

Other
(A* +
Person
Tracking)

N Lab H-R

2010 Svenstrup et al. [150] R Abs = 39 Full
Other
(Modi"ed
RRT)

N Sim H-R

2013 Ferrer et al. [38] R Abs = 10 Depth SFM N ItW H-R

2013 Guzzi et al. [52] B Abs = 6 RGB Other
(Hand Coded) N R R-R

2014 Karamouzas et al. [70] R D = 0.27-2.5 Full Other
(Hand Coded) N Sim Hom

2014 Kruse et al. [82] B Abs = 2 Full Other
(Hand Coded) I Lab + Sur H-R

2017 Silva and Fraichard [143] B Abs = 2 Full ROS N Sim Hom

2019 Yao et al. [174] R Abs = 6 RGB +
Depth

Other
(Geometry
based)

N Lab H-R

2022 Truc et al. [160] R Abs = 2 Full Other
(Hand Coded) N Sim Het

Role refers to the robot role, Obs. is observability, Com. refers to communication, and Exp. type is the experiment
type.

Con"icts Count is one of the most common approaches to estimating the success of an interac-
tion. This measurement is quanti"ed in several ways: by counting desirable outcomes vs. undesir-
able outcomes, by counting accidents, or by counting interactions that ended without the robot
reaching its goal. In this category, we also consider experiments that counted how many times the
robot was required to replan [105] and how many targets it was able to reach in total [52]. This
measure is a#ected by the Number of Agents, the Experiment Type, and the evaluated Agent
Type.

Speed is another very common metric used to evaluate an interaction. In general, faster ve-
locities imply that the robot was able to navigate con"dently without slowing down. Many re-
searchers used this metric to complement con!ict count, to account for cases where a robot may
reach its goal quickly but frequently collides with walls. As a reference point, the robot’s speed
is usually compared to the average pedestrian speed (1.3 ± 0.2 m/s), but this value depends on
whether they walk alone or in a group, as group size a#ects speed more than density level [104].
Gérin-Lajoie et al. [46] measured similar results for natural walking around dynamic obstacles
(1.44 ± 0.17 m/s). Accordingly, this measurement is greatly a#ected by the Robot’s Role in the
interaction, the Number of Agents, the Experiment Type, and the Agent Type.

Path Time is a way to measure the velocity of the robot throughout a full interaction. As the
robot might accelerate or decelerate, recording the total time that it took the robot to reach its goal
is a simple way to measure its performance. One unique metric that is also relevant to throughput
is “social work”, de"ned by Ferrer et al. [38]. This metric measures the total work done by the robot
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Table 8. An Overview of the Di"erent Metrics Used in the Surveyed Papers
to Evaluate a Social Interaction

Evaluation Type Metric Evaluated Relevant Works

Interaction Properties

Con!icts Count

Murakami et al. [107], Pacchierotti et al. [119], Müller et al. [105],
Kirby et al. [75],Svenstrup et al. [150], Tamura et al. [155],
Diego and Arras [32],Bandyopadhyay et al. [3], Park et al. [122],
Ma et al. [94],Guzzi et al. [52], Unhelkar et al. [163],
Godoy et al. [48],Okal and Arras [118], Kretzschmar et al. [80],
Khambhaita et al. [73], Fernandez et al. [37], Li et al. [85],
Everett et al. [36],Ding et al. [33], Long et al. [87],
Lynch et al. [93], Jiang et al. [63], Yao et al. [174],
Jin et al. [65], Meng et al. [101], Chen et al. [23],
Hart et al. [55], Liang et al. [86], Lu et al. [91], Gupta et al. [51]

Speed
Helbing and Molnar [58], Gérin-Lajoie et al. [46], Karamouzas et al. [69],
Moussaïd et al. [103], Kruse et al. [82], Unhelkar et al. [163],
Kretzschmar et al. [80], Long et al. [87], Liang et al. [86]

Path Time

Helbing and Molnar [58], Pacchierotti et al. [119], Karamouzas et al. [69],
Foka and Trahanias [40], Bandyopadhyay et al. [3], Ferrer et al. [38],
Godoy et al. [48], Chen et al. [24], Chen et al. [25],
Tai et al. [154], Everett et al. [36], Ding et al. [33],
Long et al. [87], Jiang et al. [63], Jin et al. [65], Kanazawa et al. [67],
Chen et al. [23], Liang et al. [86], Lu et al. [91], Gupta et al. [51]

Path Length

Helbing and Molnar [58], Pacchierotti et al. [119], Karamouzas et al. [69],
Henry et al. [59], Luber et al. [92], Rios-Martinez et al. [131],
Lu et al. [90], Vasquez et al. [165], Okal and Arras [118],
Ding et al. [33], Jiang et al. [63], Long et al. [87],
Nardi and Stachniss [111], Liang et al. [86]

Acceleration Helbing and Molnar [58], Bonneaud and Warren [11]

Avoidance Distance
Luber et al. [92], Kruse et al. [82], May et al. [99],
Kim and Pineau [74], Kretzschmar et al. [80], Chen et al. [24],
Tai et al. [154], Lynch et al. [93], Jin et al. [65],
Kanazawa et al. [67], Lu et al. [91]

Smoothness
Helbing and Molnar [58], Gockley et al. [47], Karamouzas et al. [69],
Park et al. [122], Guzzi et al. [52], Vasquez et al. [165],
Karamouzas et al. [70], Okal and Arras [118], Truc et al. [160]

Robot/Human Actions

Degrees Turned Helbing and Molnar [58], Karamouzas et al. [69], Bonneaud and Warren [11],
Truong and Ngo [161]

Gaze Fixations Nummenmaa et al. [114], Kitazawa and Fujiyama [78]

Gaze-Movement Angle

Murakami et al. [107], Pacchierotti et al. [119], Müller et al. [105],
Kirby et al. [75],Svenstrup et al. [150], Diego and Arras [32],
Bandyopadhyay et al. [3], Ratsamee et al. [128], Park et al. [122],
Ma et al. [94],Guzzi et al. [52], Unhelkar et al. [163],
Godoy et al. [48],Okal and Arras [118], Kretzschmar et al. [80],
Khambhaita et al. [73],Fernandez et al. [37], Li et al. [85],
Everett et al. [36],Ding et al. [33], Long et al. [87],
Lynch et al. [93], Yao et al. [174],Jin et al. [65],
Meng et al. [101], Chen et al. [23],Hart et al. [55],
Liang et al. [86]

Head Orientation Patla et al. [123], Ratsamee et al. [128], Unhelkar et al. [163]
Body Position Patla et al. [123], Unhelkar et al. [163]

Emergent Behaviors
Lane Emergence Helbing and Molnar [58], Bennewitz et al. [7], Loscos et al. [89],

Van Den Berg et al. [164], Karamouzas et al. [70]
Group Formation Musse and Thalmann [108], Moussaïd et al. [104], Swo#ord et al. [151]
Maximal density Bandyopadhyay et al. [3], Ma et al. [94], Mead and Matari% [100]

Algorithmic Properties Computation Time Sisbot et al. [145], Moussaïd et al. [104], Van Den Berg et al. [164],
Silva and Fraichard [143], Ding et al. [33]

Model Prediction
Kuderer et al. [84], Okal and Arras [117], Kim and Pineau [74],
Kretzschmar et al. [80], Bera et al. [8], Silva and Fraichard [143],
Yao et al. [174], Nardi and Stachniss [111], Meng et al. [101]

User Experience
Attitude Je#rey and Mark [62], May et al. [99], Baraka and Veloso [4],

Senft et al. [137], Chen et al. [26]
Acceptance and
Social Presence

Gockley et al. [47],Kruse et al. [82], Sza"r et al. [153],
Watanabe et al. [170], Khambhaita et al. [73], Kretzschmar et al. [80],
Chen et al. [26]

Comfort Murakami et al. [107], Kruse et al. [82], Vasquez et al. [165],
Watanabe et al. [170], Shrestha et al. [140]

Trust Chen et al. [26]
No Interaction
Evaluation

Reynolds [130], Strassner and Langer [149], Topp and Christensen [157],
Ohki et al. [116], Pandey and Alami [120], O’Callaghan et al. [115],
Gómez et al. [50], Papadakis et al. [121], Charalampous et al. [21]
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and the summation of the work done by each person in the scene. Kanazawa et al. [67] examined
the total waiting time that the robot had experienced during the interaction. This measure depends
on the Robot’s Role, the Number of Agents in the environment, and the Experiment Type.

Path Length provides another perspective about the interaction, and is correlated with speed and
path time: by counting any two of these three metrics (Speed, Path Time, and Path Length) one can
get a reasonable estimation of the third. As such, this metric is also a#ected by the same attributes
as the other two metrics: the Robot’s Role, the Number of Agents, and the Experiment Type.

Acceleration is a way to measure the changes in the robot’s behavior throughout the interaction.
A robot that accelerates or decelerates several times in an interaction is an indication that it has
to replan or adjust to avoid a con!ict. This metric is highly a#ected by the Robot’s Role and the
Number of Agents.

Smoothness is a generalization for several metrics that measure the total energy that was put
into the interaction by the robot or the human. Successful interactions are expected to require
less energy than unsuccessful interactions, which force the robot to replan. Smoothness can be
evaluated in several ways, including acceleration/deceleration over time, total kinetic energy used
[122], path irregularity (how many unnecessary turns were taken) [52], cumulative heading change
[118], and the integral of the square of the curvature to measure the smoothness of a pedestrian’s
path [69]. This measure is in!uenced by the Robot’s Role, the Observability that can enable the
robot to plan better ahead, and the Motion Control used.

Avoidance Distance is a way to measure how close the robot came to a con!ict or a full collision
with a human. Usually, a robot that can avoid pedestrians from afar is considered more successful
than a robot that almost reaches collision [150]. However, this success sometimes creates a tradeo#
between the total length of the path the robot needs to take and the smoothness of the path. This
metric is a#ected by the Robot’s Role, the Number of Agents, and the Motion Control used
that might have its own prede"ned distance-keeping restrictions.

5.2 Robot/Human Actions
While the previous subsection considered measurements of the interaction as a whole, in this
subsection we discuss measures that evaluate the actions taken by the robot or the human.

Degrees Turned As part of an interaction, either the robot or the human (or both) turn to avoid
a collision. Evaluation which consists of this measurement usually tracks the degrees of the lane
change of either party. This measure will be highly a#ected by the Robot’s Role which will de-
termine who will turn, the Number of Agents in the environment, and the Motion Control
used.

Gaze is a general measurement, in which several di#erent aspects can be evaluated, including
"xation count and length [114], and the GMA [30]. Kitazawa and Fujiyama [78] investigated gaze
patterns in a collision avoidance scenario with multiple pedestrians moving in a wide hallway-
shaped area. They show that pedestrians pay much more attention to the ground surface to detect
potential immediate environmental hazards than "xating on obstacles. Therefore, most of their "x-
ations fall within a cone-shaped area rather than a semicircle, and the attention paid to approaching
pedestrians is not as high as that to static obstacles. Metrics that involve gaze are a#ected by the
Robot’s Role, Observability, Communication protocols that the human should be aware of,
the Experiment Type, and Agent Type which can all have great e#ects on gaze patterns.

Head Orientation and Body Positions are ways to capture some intermediate value between the
degrees turned in practice, and the changes in GMA. Recently, Kitagawa et al. [77] leveraged peo-
ple’s reliance on such cues and incorporated similar body rotations into an omnidirectional robot
to improve the way pedestrians perceive its performance. These metrics are highly a#ected by the
Robot’s Role in the interaction, the Communication channel used, and the Agent Type.
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5.3 Emergent Behaviors
Several experiments have been designed to identify speci"c movement patterns and !ow patterns
that emerge during the execution of social navigation algorithms or to mimic human movement
patterns that emerge in these contexts [7, 89]. In many cases, these patterns are in the form of
lanes [58] or group clusters.

Fig. 5. Levels of Service from A to F: How
crowded is the environment (taken from Fruin
[42]).

.

Lane Emergence is a phenomenon that exists
in human crowds—whenever an environment be-
comes crowded enough, people will likely follow
the path of others who are going in the same direc-
tion [47, 174]. For several algorithms deployed in
crowded environments, the researchers were able
to detect the emergence of lanes in a robotic nav-
igation context, and considered this behavior as a
sign of success, since lanes are usually an e$cient
way to navigate in crowds. This measure is a#ected
by the Number of Agents, the Experiment Type,
and the evaluated Agent Type.

Group Formation is another phenomenon whose
appearance implies the success of the interaction.
However, unlike lane emergence, group formation
is usually an explicit objective of a work that dis-
cusses these types of interactions: such work fo-
cuses on understanding how groups of pedestrians
move together [104], and investigating whether a

robot can seamlessly join such a group [108], bypass it [151], or disperse it [26]. This measure is
a#ected by the Number of Agents and the Agent Type.

Maximal Density is a metric frequently used in simulations to stress-test an agent’s ability to
navigate in an environment with multiple other agents. When shifting to the real world, Fruin
[42]R2,R3 proposed six levels of crowdness, which is referred to as Level of Service, as depicted
in Figure 5. When comparing to human-only navigation, the average density of people in a non-
crowded environment was evaluated to 0.03 pedestrians perm2, and in a moderately crowded en-
vironment, there are 0.25 pedestrians perm2 [104]. Notice that density, or the Number of Agents
is an attribute in this survey’s taxonomy—in this speci"c section, we only refer to evaluation that
uses density as a metric, rather than as a controlled variable.

5.4 Algorithmic Properties
The previous subsections focused on measuring physical quantities, either about the interaction
as a whole or about one of the parties. In this subsection, we focus on more algorithmic aspects of
the interaction. The metrics presented here can often be measured internally by the robot.

Computation Time in social navigation refers to the robot’s processing time. As the robot should
perform in real-time, there is a need to evaluate whether the robot can process the required in-
formation, plan, and execute its plan on time. Two di#erent components that are measured by
computation time are interaction processing, which is usually measured in milliseconds [164], and
learning (in data-driven approaches), which is usually measured in learning episodes for achieving
a desired behavior [33]. Computation time is in!uenced by the Number of Agents, Experiment
Type, and Agent Type.

Model Prediction is a crucial part of every social navigation interaction: to properly act, the robot
should "rst be able to accurately predict the behavior of other agents in the environment. Some
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contributions focus solely on improving the part of the interaction that involves understanding the
environment given sensor information, and accurately predicting trajectories [84, 101]R2,R3, while
others evaluate the prediction of pedestrian trajectories interleaved with robot execution [8, 111].
This metric is in!uenced by the Robot’s Role in the interaction, Observability, and Agent Type.

5.5 User Experience Evaluation
So far, the evaluation metrics discussed can be evaluated using quantitative measures. Some con-
tributions focus on analyzing an interaction and identifying theoretical concepts, thus having no
empirical evaluation, while others focus more on user reports (e.g., self-report measures of com-
fort level) or provide a qualitative evaluation of an interaction. Survey Questions are the most
common approach to elicit information from users about how they perceive an interaction with
an agent or a robot. These metrics consist of trust levels during the interaction and afterward [135],
social presence [5, 6, 54, 166], attitude towards the robot [12, 16, 158, 171], and more. The most
relevant attributes that a#ect the human’s reported experience during the interaction are Robot
Role, Communication, and Agent Type.

Attitude covers research that evaluates the emotions of the human in the interaction and in-
cludes some common surveys that measure attitude, such as the Godspeed series [171] and RoSAS
[16]. Acceptance and Social Presence refer to the evaluation of the agency of the robot during the in-
teraction, and it is evaluated using the Perceived Social Intelligence (PSI) Scales [5] and others.
Trust refers to the extent to which the human trusts the robot to behave socially. Comfort refers
to the perceived safety and legibility of the robot from the perspective of the human. Torta et al.
[158] identify speci"c values for this comfort zone (182 cm from a sitting person and 173 cm from
a standing person). Syrdal et al. [152] present an empirical evaluation of the role of video proto-
typing and evocation as a good way to evaluate non-functional aspects of HRI. Comfort is also
often evaluated through the lens of proxemics [118, 150], which is related to avoidance distance
that was discussed earlier, but can encompass additional information about the interaction. For ex-
ample, Hall [53] identi"es di#erent interaction ranges, as manifested in North American cultures:
intimate space (up to 0.45m), personal space (1.2m), social space (3.6m), and public space (7.6m).
These values are known to change when mapping these distances to HRIs [112]. The comfortable
distance from a robot is often considered 0.2m, and arrival tolerance 0.5m, as reported by Kruse
et al. [83] and Chen et al. [23].

5.6 Missing or Cursory Evaluation
is a category designated for papers that make only a theoretical contribution, such as classifying
di#erent abstract types of interactions [130] or ones that provide a limited qualitative analysis of
an interaction [157]. Accordingly, research with no empirical evaluation might be a#ected by all
attributes of the taxonomy, depending on the subject of the analysis.

5.7 Simulations and Resources
So far, this section discussed speci"c metrics and evaluation methods that have been used in social
navigation. One of the goals of this discussion is to promote better comparisons between di#erent
contributions in the "eld. Another way to promote this goal is by using existing simulations or
resources that can have a similar baseline. In this subsection, we identify some of the recent e#orts
to create social navigation benchmarks and evaluation frameworks.

Carton et al. [17] propose a framework for the analysis of human trajectories and show that
humans plan their navigation trajectories in a similar fashion when walking past a robot or a
human.
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Simulations are commonly used to evaluate a social navigation algorithm or model (39 of the
75 surveyed papers used simulations), either as a preliminary step to physical navigation or as a
completely independent task. Next, we point out several available simulation tools that can be used
to evaluate new contributions. Loscos et al. [89] created a rule-based simulation that can model up
to 10, 000 pedestrians in an urban environment. Treuille et al. [159] o#ered a real-time crowd model
based on continuum dynamics, which can facilitate large-scale simulations for navigation. Heigeas
et al. [57] presented a simulation platform where pedestrians act according to a physics-based
particle force interaction model. Recently, Khambhaita et al. [73] created a simulated benchmark
for social navigation tasks instead of physical experiments. This simulation is implemented with
OpenAI Gym. Tsoi et al. [162] presents a testing platform that combines ROS and Unity into a
social navigation testbed. In this platform’s current version, it can measure whether or not the
robot reaches its goal, time to goal, collisions with static objects, "nal distance to the goal, collisions
with pedestrians, and closest distance to pedestrians.

For various reasons, there are not many contributions that can be generalized to real-world
interactions: First, robots can only be tested under similar conditions, meaning that an evaluation
platform for large mobile robots will be di#erent from one for smaller robots. Explicitly identifying
how accurate a robotic design is ( 2D vs. 3D representation, joint movement, 3rd person vs. 1st
person evaluation, etc.) is a key component in the design of any real-world robot experiment [152].
In addition, real HRIs require human presence, which introduces a lot of variability and cannot be
just compiled into an algorithm that can be used repeatedly.

Mavrogiannis et al. [97] recently published a case study where people and robots navigated in
a shared space. The robots used three distinct navigation strategies, executed by a telepresence ro-
bot (two autonomous, one teleoperated). The "rst is ORCA, a local collision-free motion planner
for a large number of robots as proposed by Van Den Berg et al. [164] and the second is the so-
cial momentum (SM) planning framework, which estimates the most likely intended avoidance
protocols of others based on their past behaviors, superimposes them, and generates an expres-
sive and socially compliant robot action that reinforces the expectations of others regarding these
avoidance protocols [98]. These two chosen navigational strategies are agnostic to the fact that
the other agent is a human. This assumption leaves an opportunity for further investigation.

6 DISCUSSION
In this survey, we identi"ed speci"c components that comprise a social navigation interaction
and introduced a detailed taxonomy to provide researchers with a framework and a language for
comparing and contrasting research in social navigation (Section 2). We then compiled a compre-
hensive list of papers that contribute to social navigation and discussed them according to their
values given our taxonomy (Sections 3 and 4). Next, we surveyed the di#erent measurements used
to evaluate interaction in this context and highlighted the relations between these measurements
and the taxonomy attributes (Section 5).

Social navigation is a growing research area. While we expect that the attributes we chose for
the taxonomy will remain relevant in the years to come, additional attributes will be added and
the focus of speci"c work might shift to deal with new settings. However, any progress in the "eld
must be rooted in the fundamental components of social navigation as they are presented in this
survey. In addition, the proposed taxonomy can serve as a framework that enables researchers to
properly place their contributions with respect to other work and to provide better benchmarks,
which we hope will lead to additional growth in this research area.

To conclude this survey and to consolidate its contributions into a coherent guide, we o#er the
readers the following checklist to assist with the design of social navigation interaction between a
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human and a robot. When introducing a new contribution to social navigation, potential aspects
to consider include the following.

(1) Taxonomy: Identify the values your work has with respect to the taxonomy’s attributes
in this survey: Robot’s Role, Number of Agents, Observability, Motion Control, Communi-
cation, Experiment Type, and Agent Type. As shown in this survey, the values of these at-
tributes di#er greatly among di#erent papers; thus using this taxonomy is expected to help
place new contributions within useful contexts and scopes.

(2) Reliability: Provide as many details as possible about the choices made in the design of the
robot, and about the implementation details. For example, when reporting an absolute num-
ber of pedestrians, also report the size of the area in which the experiment was conducted.

(3) Human Presence: If your work consists of interaction with pedestrians, what is their level
of familiarity with the robot before the interaction? As presented in this survey, often ex-
periments with human subjects are conducted in the lab rather than in the wild, where the
subjects are often the roboticists who designed the robot.

(4) Context: Identify what is exactly the context in which the interaction takes place. As with
other decisions, the context in which the chosen design is utilized can a#ect the behavior of
pedestrians.

(5) Success: If your work consists of empirical evaluation, identify in advance what is consid-
ered a success in an interaction. For example, if your work introduces a new indirect com-
munication method, the success of the evaluation should properly isolate the e#ect of that
method.

(6) Evaluation: Detail which metrics will be used to evaluate this success, and what values
are these metrics expected to have. Based on the presented taxonomy and surveyed papers,
evaluation can be placed in comparison to other existing work.

While the presented taxonomy and the above checklist can be useful resources, in Section 2 we
mentioned some additional concepts that are not yet mature enough to be included in the taxon-
omy but might become more signi"cant as the "eld grows. These concepts include an analysis of
di#erent collision types, context awareness, and semantic mapping, reactions to a robot vs. to a
human, social cues and social signals, focused interaction, and navigating with groups of pedestri-
ans. We see a surge of work that breaks traditional assumptions about pedestrian behavior in the
context of social navigation [26, 106, 129], and these new settings may not be re!ected using the
existing attributes of the social navigation taxonomy. These papers are part of a fast-evolving "eld,
in which we predict immense growth in the next decade. It is hence a good time to gather and map
the knowledge that was already acquired, so it will also be easier to identify the di#erences when
attacking new problem domains.

There are numerous open problems related to social navigation, given our current understand-
ing and technological abilities: standardization of evaluation metrics and domains, context-aware
navigation (workday vs. weekend), group understanding (avoid collision with a group participant),
and adaptive navigation via machine learning (lifelong learning). Each problem o#ers many oppor-
tunities to leverage recent advances in machine learning, robotics, and HRIs and implement them
in a social navigation context. For those interested in contributing to this research area, the above
problems should serve as a promising starting point. More information about these problems can
be found in Section 2.2.

Additionally, given the evaluation review provided in Section 5, we take a broad perspective of
the "eld to highlight two existing gaps that provide an opportunity for researchers to make new,
signi"cant contributions to social navigation. First, most papers on social navigation focus on the
quanti"able and technologically-focused aspects of navigation rather than on the experience of
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the human in the interaction. This gap calls for researchers to add a user-experience component
to planned studies. Second, there is a consensus in social navigation papers that (perceived) con-
!icts are undesired. However, what precisely makes an interaction a con!ict remains open, with
di#erent studies using a variety of metrics to account for collisions and near-collisions. The in-
troduction of a set of clear, agreed-upon criteria that comprise a con!ict would constitute a big
advance for the social navigation community.

To conclude, we expect the "eld of social navigation to gain increased popularity and lead to
more real-world applications during the next decade. This survey aims at helping lay the ground-
work for these exciting developments by mapping existing approaches onto a novel taxonomy and
providing a context for new contributions to social navigation.
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