2024 IEEE/RS]J International Conference on Intelligent Robots and Systems (IROS) | 979-8-3503-7770-5/24/$31.00 ©2024 IEEE | DOI: 10.1109/IROS58592.2024.10802451

2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

October 14-18, 2024. Abu Dhabi, UAE

VANP: Learning Where to See for Navigation with
Self-Supervised Vision-Action Pre-Training

Mohammad Nazeri, Junzhe Wang, Amirreza Payandeh, and Xuesu Xiao

Abstract— Humans excel at efficiently navigating through
crowds without collision by focusing on specific visual regions
relevant to navigation. However, most robotic visual naviga-
tion methods rely on deep learning models pre-trained on
vision tasks, which prioritize salient objects—not necessarily
relevant to navigation and potentially misleading. Alternative
approaches train specialized navigation models from scratch,
requiring significant computation. On the other hand, self-
supervised learning has revolutionized computer vision and
natural language processing, but its application to robotic
navigation remains underexplored due to the difficulty of
defining effective self-supervision signals. Motivated by these
observations, in this work, we propose a Self-Supervised Vision-
Action Model for Visual Navigation Pre-Training (VANP).
Instead of detecting salient objects that are beneficial for tasks
such as classification or detection, VANP learns to focus only on
specific visual regions that are relevant to the navigation task. To
achieve this, VANP uses a history of visual observations, future
actions, and a goal image for self-supervision, and embeds them
using two small Transformer Encoders. Then, VANP maximizes
the information between the embeddings by using a mutual
information maximization objective function. We demonstrate
that most VANP-extracted features match with human navi-
gation intuition. VANP achieves comparable performance as
models learned end-to-end with half the training time and
models trained on a large-scale, fully supervised dataset, i.e.,
ImageNet, with only 0.08% data. '

I. INTRODUCTION

In recent years, imitation learning, particularly behavior
cloning [1], has become a leading approach for visual navi-
gation models [2]-[4]. However, the performance of these
models heavily relies on the visual features extracted by
the model’s visual encoder. Although the limited memory
and processing power onboard robots restrict the size of
models deployable in real time, with such limitations we still
need accurate and efficient onboard visual encoders, making
convolutional neural networks (CNNs) more desirable than
larger Vision Transformer models (ViTs) [5].

Training a visual navigation-specific encoder from scratch
requires a large amount of data, leading to high computa-
tional demands and extended training times [6]. To reduce
this computational burden, most approaches use pre-trained
vision models [3]. While these models provide a decent

All authors are with the Department of Computer Science, George
Mason University {mnazerir, jwang69, apayande, xiao}@gmu.edu.
This work has taken place in the RobotiXX Laboratory at George Mason
University. RobotiXX research is supported by National Science Foun-
dation (NSF, 2350352), Army Research Office (ARO, W911NF2220242,
WO11NF2320004, W911NF2420027), US Air Forces Central (AFCENT),
Google DeepMind (GDM), Clearpath Robotics, and Raytheon Technologies
(RTX).

IFull version: https://arxiv.org/abs/2403.08109

Fig. 1: Comparison of Activation Maps Learned by End-
to-End, ImageNet, and VANP. VANP can extract multi-
ple regions of interest for navigation without downstream
navigation supervision compared to single salient regions by
End-to-End and ImageNet pre-trained models.

scene representation, they specialize in extracting salient
features for vision tasks such as object classification and
detection [7]. These features may not always align with
what is crucial for navigation [8]. For example, following
sidewalks, avoiding grass, or navigating around stairs and
guardrails are essential for robots, but these features might
not be captured by encoders trained for generic vision
tasks. Consequently, pre-trained models, like those trained
on ImageNet, can sometimes lead to navigation failures by
focusing on irrelevant distractions.

Self-Supervised Learning (SSL) has shown success in
various computer vision tasks by extracting general fea-
tures adaptable to downstream tasks with/without fine-tuning.
However, a discrepancy exists between features extracted
from generic models and those specifically needed for navi-
gation. This leads us to ask the question: can we train visual
encoders that extract only navigation-relevant features using
self-supervision?

Considering both the success of SSL on a variety of
computer vision tasks and the oftentimes mismatched fea-
tures provided by generic SSL models for navigation tasks,
we present Vision-Action Navigation Pretraining (VANP),
a non-contrastive self-supervised approach that completely
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relies on a navigation-specific pretext task to train the visual
encoder without the need for negative samples.

The core idea behind VANP is inspired by how humans
navigate in crowded spaces. We do not need to pay attention
to all the people and objects in the scene, but only the
ones that affect our navigation trajectory. To this end, VANP
embeds visual history, future actions, and visual goal as
self-supervision signals and leverages Transformers with
additional context tokens (inspired by Bert [9] and Vision-
Transformers [5]) to generate embeddings. Then, VANP
utilizes VICReg [10] as the pretext objective function to
maximize the mutual information between the embeddings.
The trained visual encoder can therefore discard redun-
dant features unnecessary for navigation and focus only on
navigation-relevant regions. For example, Fig. 1 shows the
activation map of the last layer of ResNet-50 [11] trained
with different methods. VANP learns navigation-relevant
visual features with the help of our navigation-specific self-
supervision signals.

Our experimental results suggest that VANP-extracted
features trained on a dataset [12] that only contains 0.08%
samples compared to ImageNet are as informative for a
downstream navigation task as using ImageNet features. The
contributions of this work can be summarized as follows:

e An SSL framework to train a visual encoder for robotic
navigation tasks;

o Insights into what is happening inside CNNs during
navigation using different approaches; and

o A benchmark on short and long-term navigation inter-
action to show the performance of different approaches.

II. RELATED WORK

Recent advances in natural language processing and com-
puter vision, particularly those driven by self-supervised
learning (SSL), motivate our work. In this section, we
compare SSL approaches for representation learning.

Codevilla et al. [3] demonstrated the value of pre-trained
models for training better policies in autonomous vehicles.
Subsequently, many works adopted pre-trained computer
vision models, often trained on ImageNet [3], [4]. However,
general-purpose “foundation models” pre-trained on pretext
tasks can achieve richer representations, enabling them to
generalize to various downstream tasks with minimal data in
a zero- or few-shot manner.

The literature has extensively studied foundation models
for robot manipulation [13], [14]. For example, R3M [15]
pre-trained a general visual encoder for manipulation tasks.
Dadashi et al. proposed AQuaDem [13], a framework to
learn quantized actions from demonstrations in continuous
action spaces, while VANP is doing the opposite by learning
visual features from continuous action spaces. Luo et al. [14]
improved AQuaDem by using VQ-VAE [16] for offline
reinforcement learning.

Shen et al. proposed conditioning visual demonstrations
like segmentation and depth maps on actions during fusion
rather than employing a naive fusion approach [17]. Yang
et al. [18] projected the visual cues for navigation on the

image space and then trained a policy on the augmented
image. STERLING [19] and CAHSOR [20] have explored
the concept of human preference learning and competence-
awareness in the context of off-road navigation using SSL.
These methods aligned sensor and visual embeddings by
maximizing the mutual information between embeddings by
leveraging VICReg [10] and BarlowTwins [21] respectively.

The work by Eftekhar et al. [22] presented the closest
approach to VANP, employing a learnable codebook module
to selectively filter visual observations based on the specific
task. However, relying on task-relevant information, e.g.,
picking up the key, requires additional information that is
not available without human annotation or using a simulator
while VANP does not need access to such information to
learn visual features. Another work closely related to VANP
is NavFormer [23], which utilized BYOL [24] on two input
images retrieved from a simulator. These images differ in the
presence of dynamic objects within the scene. However, this
approach confines NavFormer to the simulated environment,
limiting its applicability to simulation environments where
we have full control of the environment, e.g., making objects
invisible to learn the importance of the presence and absence
of the object as an obstacle. Conversely, VANP achieves
real-world data generalization without relying on the pre-
definition of specific rules only possible in simulation or
through human annotation.

III. METHODOLOGY

We formally define the visual navigation task and the
learning setting for VANP.

A. Problem Definition

We define visual navigation as the task of navigating
an environment with only RGB camera input, as explored
in previous works [2]-[4]. The visual navigation problem
can be formalized as follows. Input: The robot is given a
sequence of past and current images from its front-facing
camera, o = [I_rp, li—7pt1,--., 1] € O, where t is the
current time step, 7p is the number of past frames, and
O is the space of all possible image sequences. The robot
is also given its current goal e.g., GPS coordinates, pose,
image, or next local coordinate in 2D space, g € G, which
determines the direction it should move in the next time step.
Output: The robot must select an action a; € A consisting
of continuous linear and angular velocities. A = [—1,1]? is
the action space, where [—1,1] maps to the minimal and
maximal linear and angular velocity of the robot. Visual
Navigation: The goal is to learn a policy, mp : O x G — A,
where 6 represents the policy’s parameters, to determine
which action to take at each time step to reach its goal
efficiently while avoiding collisions with others.

End-To-End models: For end-to-end or holistic models,
we define the policy mg as follows: a = my(o,9) =
oc(pp(o) ® gqy(g)), where o is the controller policy
parametrized by (, p is the image encoder parameterized by
¢, q is the goal encoder parameterized by v, and & is the
aggregation of two vectors. To learn these parameters, two
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Fig. 2: VANP Architecture. VANP learns to embed temporal features into spatial features by using a sequence of images and
leveraging two TransformerEncoders with context tokens. VANP’s loss maximizes the mutual information between history,
future actions, and the goal (left). Then, by appending an MLP to the Transformer context token, VANP predicts future

trajectories during the downstream navigation task (right).

common approaches are (1) to learn all of them together
in an end-to-end manner which makes the training difficult
and time-consuming or (2) to pre-train the image encoder
separately and only fine-tune the goal encoder along with
the controller to reduce training time.

B. Vision-Action Model

VANP leverages VICReg [10] to maximize the informa-
tion between past observations, a future goal, and future
actions while maintaining the information collapse between
input heads to train the image encoder p. Unlike vision
SSL models that work on the joint embedding of augmented
images, VANP correlates the action space A and goal space
G with the pixel latent space O as shown in Fig. 2. We
define VANP pre-training as follows: We sample a batch of
(If_p:t> Qftsrpe» 91) from dataset D, where i is the sample
number, I;__ ., is a sequence of past visual observations
starting from ¢ — 7p and ending at ¢, a;, .. is a sequence
of future actions starting from ¢ and ending at ¢ + 7, and
gl is the current goal at time ¢ instantiated as an image in
the future I} trp- TF is the number of frames in the future
and 7p is the number of frames in the past. We then feed
IZ_TP:t to pg, typically a CNN, and all the embeddings to a
transformer encoder [25], as well as ag.;, ., to f¢ as part of
another transformer encoder, to learn image Z* and action Z¢
embeddings, respectively. Each transformer contains an ad-
ditional context token to capture the continuous information
among frames. We feed g; to ps to generate goal embedding
Z9. Finally, we use VANP’s objective function to learn ¢ and

&:

Lyane(Z°,29,2%) = Mvicree (2", Z9)

i a (1)
+ (]- - )\)ACVICReg(Z aZ )a

where A is the importance of each term, and Lyicre, is the
VICReg objective function [10] defined as:

EVICReg(Zlv ZQ) = MlS(Zlv Z2)
+ i’ [w(ZY) +v(Z%)] )
+181e(ZY) + e(Z27)).

s is the distance between embedding spaces, v and c are the
variance and covariance of each embedding respectively. p!,
p?, and p3 are hyper-parameters controlling the effective-
ness of each term. Leveraging VICReg’s objective function
offers the advantage of circumventing the need for negative
samples, which, as mentioned above, is challenging to define
within the action space for navigation tasks.

C. Implementation Details

We implement VANP with PyTorch and the training is
performed on a single A5000 GPU with 24GB memory>.

Model architecture: Considering the limited computation
resources onboard most mobile robots, we choose ResNet-
50 [11] without the classification head as a low-latency
image encoder for py and we call it VANP-50. We use two
TransformerEncoders with additional context vectors [5], [9]
with four layers and four heads as the final image and action
encoders to produce the embeddings of Z?, Z¢ € R?'2, Both
encoders are followed by MLPs with three layers as the
projection heads to generate the final Z'*, Z'® ¢ R10%4, We
apply the same py to the goal image to generate Z9 € R°12,
A critical challenge arises from the inherent differences in
modalities between the two networks generating the embed-
dings, leading to significant variations in their output ranges.
To address this discrepancy and ensure effective integration,
we initialize all deep networks using the Kaiming Normal
initialization [11] with a mean of zero and a variance of one.
In the context of the downstream model, an MLP is appended
to the Transformer’s context vector to predict trajectories at
three and five seconds into the future, enabling the evaluation
of how the extracted features influence both short-term and
long-term interactions.

Optimization: We use the ADAMW optimizer [26] and
train the model for 200 epochs with a batch size of 2048 and
a learning rate of 5e~*. We observe that large batch sizes
add more variation to the update stage and improve learning.
To ensure a fair comparison, all models are trained for 50
epochs using the same optimizer and hyperparameters during
downstream training. The sole exception is the end-to-end
model, which requires 100 epochs to guarantee convergence.

2Q) nttps://github.com/mhnazeri/VANP
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TABLE I: Downstream Performance. Comparison of the performance of the visual encoders with different pre-training
methods on unseen data. Models denoted by an & require double the training time compared to models with X .

Frozen % Fine-tuned ¢

Type Method Weight Single-frame = Multiple-frame 3s Ss 3s Ss
Resnet-50 Random v X - - 0.116 0.307
End-to-End X ResnetTransformer ~ Random X v - - 0.113 0.320
Backbone g Resnet-50 ImageNet v X 0.129 0.356 0.129 0.342
Supervised ResnetTransformer  ImageNet X v 0.169 0.435 0.107 0.292
Backbone g Resnet-50 VANP v X 0.144 0.374 0.103 0.272
Self-Supervised ResnetTransformer VANP X v 0.133 0.342 0.114 0.319

Input
End-To-End 44

ImageNet

VANP

Fig. 3: Qualitative Comparison. Comparison of the last
layer activation maps among different methods on unseen
scenarios.

Dataset: We leverage a selection of two unique datasets:
SCAND [12] and MuSoHu [27], both of which encapsu-
late robot and human navigation data from the egocentric
perspective. A fundamental limitation of SSL models is
their susceptibility to data quality. As we will discuss in
the limitations section (Sec. IV-D), VANP is similarly af-
fected, particularly in scenarios where there is no change
in a sequence of images as shown in Fig. 4. To minimize
data ambiguity and noise, a subset of the two datasets are
carefully curated, ensuring representation of both indoor and
outdoor scenes. The resulting dataset, comprising approx-
imately 11,000 samples, is used for both pre-training and
training phases. Additionally, a separate set of 8,000 unseen
samples are used for downstream navigation task evaluation.
For pretext task training, we set 7p and 77 to 6 and 20
respectively and use a sequence of images [;_,,i1:+ €
R7Px98x126 along with a goal image g, € R?%*126 and a
sequence of actions Qy4rn—1 € R7F %2 parsed at 4 Hz,
comprising of 1.5 seconds in the past and 5 seconds in
the future. For the downstream task, we use a sequence of
past observations I; ., 1.4 € R7PX98%126 along with the
polar coordinates of the next local goal g € R? parsed at 4
Hz, containing 1.5 seconds history as the network input to
produce the actions Ay .1 € R™#*2 for three and five
seconds in the future.

IV. EXPERIMENTAL RESULTS

We provide experimental results using VANP compared
against a ResNet-50 pre-trained on ImageNet and end-to-end
from scratch as baselines.

A. Results Discussion

We assess the efficacy of VANP pretext training by quan-
titatively comparing its performance with that of a ResNet-
50 model [11] pre-trained on the ImageNet ILSVRC-2012
dataset [7]. This serves as the baseline alongside another
ResNet-50 model trained end-to-end with randomly initial-
ized weights. To guarantee a fair comparison, the architec-
tures of all other components within the downstream task
remain unchanged. Table I presents the mean squared error
between the predicted and ground truth trajectories for short-
(three seconds) and long-term (five seconds) interactions
under two conditions. In the first condition, only the goal
encoder and controller are trained during the downstream
navigation task, while the image encoder weights are frozen.
In the second condition, we compare the performance by
unfreezing the image encoder weights to enable fine-tuning.

The results in Table I demonstrate that VANP achieves
comparable performance to the end-to-end trained model
while requiring only half the training time. Furthermore,
VANP pre-trained model achieves comparable performance
to ImageNet model with only 0.08% of the data size required
by ImageNet, highlighting how informative the extracted
representations are for navigation.

When provided with a sequence of past observations,
VANP exhibits a superior ability (0.342) to utilize this
additional data compared to ImageNet model when frozen
(0.435). Although the ImageNet weights appear unable to
leverage the temporal features provided by the transformer
component when freezing its weights (Table I, row four
compared against row three), fine-tuning the ImageNet model
leads to performance improvement from 0.435 to 0.292,
suggesting that it can better capture underlying temporal
features provided by the Transformer through fine-tuning.

However, we do not see such an improvement in the
case of VANP. The negligible improvement in accuracy from
0.342 to 0.319 for VANP during fine-tuning can be attributed
to two reasons. First, the focus on multiple navigation-
related visual regions of VANP’s pre-trained weights (Fig. 3
last row) impedes adaptation/forgetting during fine-tuning
compared to the ImageNet weights. Second, the temporal
features from the Transformer are already in VANP weights
and therefore does not require much fine-tuning. Overall, it is
likely that forgetting/updating weights can be easier when the
visual encoder is trained using only one single scalar training
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Fig. 4: Failure Cases. Samples without any important intra-
frame changes cause the model to collapse.

TABLE II: Ablations. Ablation study on the role of each
module on the downstream navigation task performance.

Information 3s 5s

Actions 0.167 0.499
Goal 0.160 0.392
Actions+Goalln 0.155 0.386
Actions+GoalOut 0.144 0.383
Augmentations 0.133 0.342

loss rather than pre-trained on richer instructive signals, i.e.,
VANP’s pre-training objective signal.

Visual inspection of the learned activation maps on the last
layer of ResNet-50 (Fig. 3) reveals distinct characteristics
across the models. The last row on Fig. 3 shows that the
VANP pre-trained model exhibits activation maps with a
higher degree of relevance to navigation tasks, focusing on
features such as paths and obstacles while the ImageNet
pre-trained model (Fig. 3 third row) primarily focuses on
salient objects within the environment, which might not be
directly related to navigation. Another difference between
VANP and the end-to-end model (Fig. 3 second row) is that
the end-to-end model tends to concentrate on a single critical
region significantly impacting the trajectory, likely due to
its limited instructive signal during training, i.e., minimizing
the distance between predicted and ground truth trajectories.
Conversely, VANP demonstrates the ability to extract infor-
mation from multiple regions, potentially benefiting from the
richer information provided by the goal image and future
actions during the pre-training stage. However, as mentioned
above, this richness impedes adaptation during fine-tuning.

We observe instances where the attention of all models
shifts to seemingly irrelevant aspects. In the case of VANP,
we posit that this may be due to the robot’s sharp turns
temporarily obscuring the goal image from the current frame.

B. Ablations

To investigate the most effective approach for correlating
visual and action spaces, we conduct a series of ablation stud-
ies, in which we report the performance on the downstream
navigation task in Table II.

Role of Different Training Signals: We assessed the
individual contributions of various self-supervised training
signals by changing the value of A between O and 1 in
Eq. 1. Our findings reveal that while action signals provide
valuable navigational cues, their sparsity often hinders their

effectiveness in downstream navigation tasks, especially dur-
ing long-term interactions. Conversely, information derived
from the goal, while occasionally exhibiting redundancy,
improved performance from 0.499 to 0.392 during long-
term interactions over using only actions due to informa-
tive cues alongside the redundant elements. However, this
redundancy poses challenges for the policy network, which
can be remedied by more training epochs and a deeper
policy network. By combining these two embeddings as the
self-supervision signal, the final model can effectively learn
informative features while mitigating the impact of redundant
information within the embedding.

Leveraging Goal Information: We further investigated
the optimal utilization of future goal information. Our find-
ings suggest that employing the goal solely as a supervision
signal (shown as Actions+GoalOut in Table II) proves more
effective in facilitating the model’s learning of visual features
compared to incorporating the goal directly within the Trans-
former architecture (shown as Actions+Goalln in Table II).
The Transformer’s ability to capture temporal changes from
the current to the goal frame is only helpful when the goal
is visible from the current frame.

Augmentations: Data augmentation is a standard tech-
nique employed to enhance model generalization by intro-
ducing variability into the dataset. We follow the augmenta-
tion scheme outlined by Bardes et al. [10] and the result is
shown as Augmentations in Table II. We observe that random
cropping is particularly critical for VANP, especially in
scenarios exemplified by Fig. 4, as it introduces inter-frame
variation. This augmentation strategy relaxes the assumption
of carefully curated data and enables an expansion of the
dataset from 11,000 to 26,042 samples to include even
ambiguous and noisy samples with a little performance hit.

C. Robot Deployment

To demonstrate the practical applicability of the learned
visual features for navigation, a proof-of-concept demonstra-
tion of VANP-18 with a moving goal objective is deployed on
a Clearpath Jackal robot. The obstacle avoidance capabilities
of VANP are evaluated under controlled conditions. In these
experiments, a static obstacle is initially positioned in the
robot’s path. Results indicate that VANP exhibits an ability
to detect and avoid both static and dynamic obstructions
in the majority of test cases. The supplementary video
provides a record of these experiments®. Despite VANP’s
intended versatility across diverse conditions, inherent limi-
tations considering safety only allow it to work in uncluttered
environments, as elaborated in the subsequent section.

D. Limitations

We identify multiple key limitations of the VANP pre-
training approach. First, our analysis of the learned kernels
suggests that VANP performs more effectively when the goal
image is directly visible from the current image, likely due
to its reliance on image correlation for learning. While this

3https://youtu.be/SEuD9hkwXxQ
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is helpful for Visual-Goal navigation task, it highlights a
potential limitation in generalizability to scenarios where the
goal location may not be directly visible from the starting
point. Second, in large-scale datasets likely with a significant
amount of noise, scaling VANP poses a potential challenge,
considering its need for high-quality self-supervision during
pre-training can result in many changes in learned activation
maps between epochs. As can be seen in Fig. 4, the VANP
objective is unable to learn from scenarios where there is
no intra-frame change as the time passes. This limitation
can be alleviated with augmentations, particularly random
cropping, but it does not eliminate it. Additionally, our
current findings are based on a static dataset and may not
directly translate to challenging real-world navigation tasks
that involve dynamic environments and unforeseen obstacles.
Further research is needed to evaluate VANP’s performance
in these more complex scenarios.

V. CONCLUSIONS AND FUTURE WORK

In this work, we propose a self-supervised learning ap-
proach to train visual encoder models specifically designed
for visual navigation. This approach is motivated by the
observation that humans only pay attention to specific
navigation-relevant regions of their frontal view to efficiently
make navigation decisions. By reversing this observation, we
use the navigation decisions to extract only visual features
that are relevant to the navigation task, unlike computer
vision models that mainly extract salient details, which are
potentially irrelevant to navigation tasks and can therefore
lead to confusion for neural-based controllers. To achieve
this, we leverage two Transformer Encoders to embed past
visual observation, future actions, and a goal image, then we
maximize the information between these embeddings using
VANP’s objective function to learn visual backbone weights.

Furthermore, the VANP objective function facilitates the
integration of additional embeddings derived from diverse
modalities, including depth data and semantic information
or inputs from other sensors such as LiDARs. Studying the
effectiveness of this enrichment of the embedding space with
supplementary information for downstream navigation tasks
can be a potential future work. Another future direction is to
merge datasets from different environments, such as indoor,
outdoor, off-road, and social environments, to extend the
generalizability of the proposed VANP approach. More real-
world experiments can support all these future directions and
scale up the model to larger datasets.
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