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Abstract

1,4-dioxane is an emerging water pollutant with high production volumes and a

probable human carcinogen. The inadequacy of conventional treatment processes demonstrates

a need for an effective remediation strategy. Crystalline nanoporous materials are cost-

effective adsorbents due to their high capacity and selective separation in mixtures. This

study explores the potential of all-silica zeolites for separation of 1,4-dioxane from water.

These zeolites are highly hydrophobic and can preferentially adsorb nonpolar molecules

from mixtures. We investigated six zeolite frameworks (BEA, EUO, FER, IFR, MFI,

MOR) using Monte Carlo simulations in the Gibbs ensemble. The simulations indicate

high selectivity by FER and EUO, especially at low pressures, which we attribute to

pore sizes and shapes with more affinity to 1,4-dioxane. We also demonstrate a Monte

Carlo simulation workflow using gauge cells to model the adsorption of an aqueous
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solution of 1,4-dioxane at 0.35 ppb concentration. We quantify 1,4-dioxane and water

coadsorption, and observe selectivities ranging from 1.1 x 105 in MOR to 8.7 x 106 in

FER. We also demonstrate that 1,4-dioxane is in the infinite dilution regime in both the

aqueous and adsorbed phases at this concentration. This simulation technique can be

extended to model other emerging water contaminants such as per- and polyfluoroalkyl

substances (PFAS), chlorofluorocarbons, and others, which are also found in extremely

low concentrations.

1 Introduction

Crystalline porous materials like metal-organic frameworks (MOFs), covalent organic

frameworks (COFs), carbon nanotubes, polyoxometalates, and zeolites, have revolutionized

mixture adsorption separations through control of pore size1, entropy2, and binding strength3.

Additionally, their stability, tunability, and low cost make them versatile4 – for example,

zeolites are used as catalysts5, adsorbents6, and ion exchangers7 in many chemical processes

and have an increasingly rising global market of multi-billion US dollars8. Water and

wastewater remediation methods also extensively use zeolites for purification from ammonia9,

heavy metals10, radioactive11, toxic12, and organic substances13, as well as for water softening14

and seawater desalination15.

The basic building block of zeolites is a TO4 tetrahedron where the T-atom is usually

silicon (Si) or aluminum (Al), forming an open crystal structure with a narrow distribution

of molecule-sized pores. The tetrahedrons can form different (6-, 8- or 12 rings) units

that give different topologies with the same chemical composition16. Over 40 naturally

occurring zeolite frameworks and 265 synthetic ones are recognized by the International

Zeolite Association (IZA) Structure Commission as of early 202417. Zeolites with a high

silicon content (approaching an infinite Si/Al ratio) can be synthesized;18,19 because this

class of zeolites doesn’t have acid sites or polar cations, they can be highly hydrophobic and

are exceptionally efficient as adsorbents in aqueous separations13,20.
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This study investigates the adsorption of 1,4-dioxane from water using all-silica zeolites

at environmental concentrations using molecular simulations. 1,4-dioxane is an emerging

contaminant and a probable human carcinogen21 that has received less regulatory attention

than other pollutants despite being frequently detected in high exceedance rates according to

the third unregulated contaminant monitoring rule (UCMR)22. It is a stable cyclic diether

with symmetrical ether connections. A negative octanol-water partitioning coefficient and

low carbon partitioning coefficient make leaching into the water from soil natural23. Recent

studies show that over 30 million Americans consume water exceeding the health-based

recommended threshold of 0.35 ppb24. To comply with the standards, several remediation

strategies, including chemical, physical, and biological processes, are being evaluated; however,

a practical solution for large-scale treatment is still in the works23. While enhanced oxidation

and bio-remediation techniques have potential, they are costly and complicated to execute in

practical settings25. As degradation technologies are still developing, considerable mitigation

efforts may well focus on treating surface and groundwater bodies to comply with the

increasingly stringent limits to drinking water supplies. While these methods might fail to

degrade water pollutants entirely, they can act as an interim that can potentially concentrate

contaminants for subsequent remedial actions needed.

Common adsorbents like synthetic resins26 and activated carbon27 have not been cost-

effective solutions for large-scale treatment of 1,4-dioxane due to their limited adsorptive

capacity. Meanwhile, in one study, titanium silicalite-1, a zeolite, has shown higher capacity

and faster adsorption kinetics due to its hydrophobicity28. Hydrophobic all-silica zeolites

with comparable pore sizes may help address this challenge, but more insight is needed

to determine its efficacy. For our investigation, we selected six frameworks (BEA, EUO,

FER, IFR, MFI, and MOR) from the International Zeolite Association database17 based on

their commercial availability29, crystallographic R-factor in high silica form30, and pore sizes

comparable to 1,4-dioxane28. The pore landscapes of the zeolites are shown in Figure 10,

and Table 5 summarizes their unit cell parameters.
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The optimal design of an adsorbent is a challenging task and requires a broad understanding

of the sorption process at the microscopic level. Molecular simulations complement and

provide invaluable access to thermodynamic phenomena occurring at the pore sites and thus

have significantly contributed to the synthesis and applications of zeolite16,31,32. Additionally,

adsorption systems with competition between complex adsorbates onto complex adsorbents

can be better understood and more clearly evaluated through computer simulations33,34. For

example, molecular dynamics has been used to study 1,4-dioxane transport and adsorption

into Ti-silicalite in the presence of organic contaminants28.

However, the traditional simulation approach for modeling such a system is not only

impractical but impossible since the concentrations of 1,4-dioxane in the environment are

typically in parts per billion ranges24. After all, a liquid simulation box with 1 solute molecule

at 1 ppb concentration will have on the order of 1 billion water molecules.

This work introduces a simulation workflow for thermodynamic extrapolation using the

gauge cell Monte Carlo (gcMC) technique to efficiently model the liquid phase adsorption

of extremely low-concentration species from mixtures. The gcMC method enables control of

density for each system component individually and has successfully modeled the thermodynamically

metastable and unstable systems that are typically inaccessible35–38. The method has been

successfully implemented to investigate the phase behavior of fluids in confined spaces,

including capillary condensation39, droplet formation37,40, and surfactant separation41.

Other methods of thermodynamic extrapolation include temperature extrapolation of

Henry’s Law constants42 and extrapolating free energy landscapes43; however, we need to

extrapolate in concentration, and these methods may be inaccurate if state points deviate

significantly from reference points. A related work by Cichowski et al.44 uses an expanded

ensemble Monte Carlo method with a transition matrix to estimate Henry’s Law constant

at infinite dilution, which aligns more closely with our research goals. In another study by

Luo and Farrel45, the adsorption of trichloroethylene (TCE) from water was examined using

Grand Canonical Monte Carlo (GCMC) simulations. They sampled TCE in aqueous solution
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at concentrations equivalent to 1% of its saturation concentration. Our study extends to

sampling water contaminants at parts-per-billion levels, which is typical of environmental

conditions. While we apply this approach using Gibbs ensemble simulations, we note that

it should also be compatible with simulations in the grand canonical ensemble, with a few

modifications. The thermodynamic reservoir fixing the chemical potential will replace the

gauge cells, and extrapolation will be performed by adjusting the chemical potential of the

solute accordingly after establishing the relationship between µ and concentration in infinite

dilution conditions. Performing GCMC simulations at the pressure of interest for the liquid

mixtures will require iteratively adjusting simulation settings until the target pressure is

reached, as GCMC fixes µV T and measures p, unlike our approach, which fixes NpT and

measures µ.

We performed Monte Carlo simulations in the Monte Carlo for Complex Chemical Systems-

Minnesota (MCCCS-MN) software46 using classical force fields. First, we reproduced the

vapor-liquid equilibrium properties of 1,4-dioxane for validation and then simulated the vapor

and liquid phase adsorptions of 1,4-dioxane into the selected zeolite frameworks. The pure

adsorption isotherms provided insight into the effects of pore size and shape on loading

capacities. Finally, we investigated the selectivity of 1,4-dioxane for mixture adsorption

from water at the health-based reference concentration (0.35 ppb), exploiting the gauge cell

method and constructing supercells for the zeolite frameworks.

2 Methods

2.1 Thermodynamic extrapolation approach

The gcMC method employs multiple simulation boxes, with one simulation box for the

system of interest in chemical equilibrium with gauge cells for each component. The addition

or removal of particles from the gauge cell instantly changes its chemical potential, and it is

this variation that enables us to measure the chemical potential of the species for the system

5

6!!� 
��3:7 :����� �
	�	�264��$7"����	�9��!��"���������6!!� 
��:�273 :�������������
�������
��:9!49!�9:!��44���4"74#43�1B��64�/$7" ��
�	��	������0�.��.-�	 �

https://doi.org/10.26434/chemrxiv-2024-n10tr-v3
https://orcid.org/0000-0002-6379-9206
https://creativecommons.org/licenses/by-nc-nd/4.0/


of interest and under conditions of our interest. The approach was initially developed to

construct the full-phase diagram of a confined fluid in the form of a van der Waals loop,

which includes stable, metastable, and unstable equilibrium states35. In this work, the

liquid simulation box is modeled as flexible with intermolecular interactions containing a

dilute solution of 1,4-dioxane, while the gauge cells for each component are modeled as rigid

and treated as ideal gas boxes. Simulations were set up in the isobaric–isothermal Gibbs

ensemble (NpT -Gibbs)47–49 where inter-box swaps were performed for the particles between

the simulation box representing the system of interest and gauge cell of each respective

component. Volume moves were only performed on the simulation box representing the

mixture solution. The Gibbs free energy of transfer, �G
ò0
14DX ,50,51 for 1,4-dioxane can then

be computed from the ratio of densities in the simulation boxes:

�G
ò0
14DX = kT�ln⇤⇢GC

14DX

⇢
mix

14DX

 
eq

� (1)

where k, T , ⇢GC

14DX , ⇢mix

14DX are the Boltzmann constant, temperature, and number densities

of 1,4-dioxane in the gauge cell and mixture cell respectively. A detailed derivation of Eq.

1 can be found in SI section 5.3. We used Eq. 1 to determine the free energy of transfer

for the dilute system of 1,4-dioxane. For extrapolation, we took the average �G
ò0
14DX of

low-concentration state points and computed the 1,4-dioxane concentration in gauge cell

that would correspond to 0.35 ppb24 in the environment. Since the concentration range is

exceptionally low, we used Henry’s Law to compute the corresponding partial pressure. Then,

we set up NpT -Gibbs ensemble simulations with zeolite frameworks to model adsorption from

low-concentrated liquid mixtures. In Figure 1, we briefly outline our method for the capture

of 1,4-dioxane from water.
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Figure 1: Thermodynamic extrapolation approach for dilute simulations. The first step
(A) involves gauge cell Monte Carlo simulations with a dilute solution of 1,4-dioxane and water in
the liquid simulation box, in chemical equilibrium, with two fixed ideal gas gauge cells that measure
the partial pressures of 1,4-dioxane and water. We adjust the size of the 1,4-dioxane gauge cell to
sample low concentrations in the liquid simulation box. The second step (B) involves obtaining
the free energy of transfer from low-concentration state points, demonstrating the solute is in the
Henry’s law regime, then assuming that �Gtransfer extrapolates to 0.35 ppb concentration. The
1,4-dioxane concentration in the gauge cell is calculated from Equation 1, and the ideal gas law
provides the extrapolated partial pressure. In the final step (C), NpT-Gibbs simulations use the
extrapolated pressure for 1,4-dioxane while keeping the water pressure constant, thus imposing the
equivalent chemical potentials of the dilute mixture onto a zeolite box.

2.2 Model and algorithmic details

Transferable potentials for phase equilibria (TraPPE)52 force fields were used to model 1,4-

dioxane with TraPPE-UA53, and the zeolites were modeled using TraPPE-zeo54. Lennard-

Jones (LJ) potentials were used for short-range van der Waals interactions, and Coulomb

potentials were used for long-range electrostatic interactions with a spherical cutoff of 14

Å. Beyond this cutoff, analytical tail corrections were applied for LJ and Ewald summation

for Coulomb interactions. However, the vapor box was less dense for lower temperature

state points, and thus, a larger cutoff (approximately 30% of box length) was used to
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accommodate 10-20% of the molecules in the system. As Ewald convergence parameters

are set automatically based on rcut and simulation box length, modifying rcut is common

in low-temperature VLE simulations in the Gibbs ensemble55.

As with the standard TraPPE force fields, here the bond lengths were treated as fixed,

bend angles were modeled with the simple harmonic oscillator, and the dihedrals with a

cosine series (Eq. 2) of the form

utorsion(�) = c0 + c1 [1 + cos(�)] + c2 [1 � cos(2�)] + c3 [1 + cos(3�)] (2)

where � is the dihedral angle and c is constant.

The TraPPE-zeo model considers zeolites as a rigid framework with silicon and oxygen

atoms fixed on the original crystallographic positions. Their interaction potentials are

tabulated as grid points, which can be interpolated to give energy depending on the location

of adsorbent species in the simulation boxes. Additionally, TIP4P model was used for water56

in the mixture adsorption systems as it has been shown to work well with the TraPPE

force field for organic molecules54,57–61. All the model parameters used for this study are

summarized in Table 6 of SI section 5.2. The adsorption simulations were initialized with

an empty zeolite box to prevent overlap issues for both unary and mixture systems.

Simulations were performed in NV T -Gibbs ensemble for modeling the vapor-liquid equilibrium

properties, and NpT -Gibbs was used for both adsorption and gauge cell systems47–49. Monte

Carlo simulations generate a sequence of states as a Markov chain with sampling probabilities

corresponding to the ensemble’s configurational integral62,63. Intramolecular and intermolecular

energies are sampled efficiently using strategic Monte Carlo moves, which are constrained

by their alignment with the chosen ensemble and their adherence to the detailed balance

defined by the Metropolis acceptance criteria64.

Gibbs ensemble consists of two (or more) simulation boxes with a constant total number

of molecules without explicit interfaces. In such a system, the inter-box swap move is integral

to balance the chemical potentials in addition to the regular translation, rotation, and volume
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moves. Configurational-bias Monte Carlo (CBMC)65–67 moves were also employed to sample

configurations within each simulation box, as well as inter-box swap moves. In regular

CBMC, a molecule is grown bead by bead, with k trial positions generated based on the

internal energy for each bead, and the external energy is computed for each trial position j

of each bead i. One of these trial positions is selected and added to the existing chain with

a probability of:

Pi (j) = e
��Uext

i (i)
<k

l=1 e
��Uext

i (i) (3)

and � = 1/kBT where kB is the Boltzmann constant and T is the temperature68.

The process repeats until the entire molecule is grown. Various approaches to CBMC

exist in the literature66,67,69–72, each with a different method of bead growth tailored to

specific conformations of molecules. 1,4-dioxane, for instance, is challenging to grow with

regular CBMC because the ring structure constrains its conformational space. The growth

of such cyclic molecules requires an additional bias to nudge the growth toward positions

that will result in ring closures; here, we use the self-adapting fixed-endpoint (SAFE)

CBMC developed by Wick and Siepmann73. The bias was introduced through guiding

probabilities obtained from a short presimulation with only the translational and rotational

degrees of freedom. The probabilities are normalized ensemble averaged bead-bead distance

distributions that adapt during the simulation of the system of interest. Thus, the swap

moves for 1,4-dioxane were performed holding the ring conformation rigid while allowing

multiple trial orientations to be explored.

2.3 Super cell construction

Our cutoff radius in the zeolite box is 14 Å, so each zeolite box must be at least 28 Å in

each dimension. Since zeolite unit cells are typically smaller than this, we used the smallest

integer multiple in each dimension to construct the minimal simulation cell. For example,
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the FER (type 2) framework requires 2 unit cells in the x-direction, 4 in y, and 2 in z. Then,

we constructed larger supercells by multiplying all dimensions by factors of 2, 4, and 8.

Figure 2 shows the scheme of supercell construction for the FER framework. For simplicity,

we only show a single unit cell of FER, its minimal simulation cell, and the largest supercell

(minimal simulation cell ✓ 512) used as the zeolite simulation box in mixture adsorption

systems. As the interactions within the zeolite frameworks are pretabulated74, we can easily

increase the zeolite simulation box size to model the supercells without incurring additional

computational costs.

A unit cell of FER
with SiO4 tetrahedronsA minimal simulation cell 

containing 4 FER unit cells
(repeated y-dimensions is not visible) A supercell of FER with 83 replicates 

of a minimal simulation cell

Figure 2: Scheme of supercell construction

3 Results and Discussion

3.1 Force field validation for 1,4-dioxane

Before running adsorption simulations with 1,4-dioxane, we validated the force fields against

simulation53 and experimental data75 from literature (Figures 3a and 3b). To estimate

the statistical uncertainties in the coexistence properties, 16 independent simulations were

performed for temperatures ranging from 310 K to 565 K with 80k MC cycles for equilibration

and 100k MC cycles for production. The total volume of the two simulation boxes was

adjusted so that the vapor phase contained roughly 50 molecules, or about 10% of the total

system size of 500 molecules. Our findings closely resemble simulated data in the literature
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and reasonably agree with experimental data. The critical temperature is overestimated by

approximately 0.7%, and the normal boiling temperature is underestimated by 3.5%. The

underestimation of normal boiling temperature is systematic in TraPPE-UA models76 as

they also tend to predict higher saturated vapor densities and pressures.
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(a) Vapor-liquid coexistence curve
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(b) Clausius Clapeyron plot

Figure 3: Vapor-liquid coexistence curves and Clausius Clapeyron plot for 1,4-dioxane.
Experimental critical temperature (tTc) and data, including normal boiling temperature (ÇTb), are
shown in black symbols and solid lines. Simulation uncertainties are smaller than symbol size.

3.2 Unary adsorption loadings for 1,4-dioxane

Single-component adsorption was studied at 300 K for 1,4-dioxane for a range of pressures,

with the upper limit for vapor phase adsorption set to 0.05 bar so as not to exceed the

saturation pressure (pvap) of 1,4-dioxane at 300 K, which is measured from simulations to be

0.1053 bar. Two state points beyond pvap were used to model adsorption from a liquid phase.

The fluid box was initialized as a low-density gas at low pressures (p < pvap), or as a high-

density liquid at higher pressures (p > pvap) to prevent nucleation issues. Eight independent

simulations were performed for each framework with at least 80k equilibration and 100k

production cycles. Some of the frameworks required more time to reach equilibration,

especially for higher pressure state points, but no simulations exceeded 500k MC cycles. We

used the automated equilibrium detection technique described by Chodera77 to determine
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which portion of the simulation runs from production cycles to use for reporting results.

The technique determines an optimal amount of initial data to be discarded as equilibration

while minimizing initial bias and variance. The pure 1,4-dioxane adsorption isotherms for

the six zeolite frameworks are plotted in Figure 4.

1×10 −7 1×10 −6 1×10 −5 1×10 −4 0.001 0.01 0.1

0

0.5

1

1.5

2

2.5
BEA
EUO
FER
IFR
MFI
MOR

P [bar]

q 
[m

ol
ec

/n
m

 3  ]

Figure 4: Predicted unary adsorption isotherms. The y-axis represents loadings (q) for six
zeolite frameworks with pressure in the x-axis (logarithmic scale). Open symbols indicate adsorption
from a liquid phase. Simulation uncertainties are smaller than symbol size.

Loading capacities for 1,4-dioxane at higher pressure follow the trend: BEA > IFR > FER

> MFI > EUO > MOR. Frameworks with high-loading capacities like BEA or IFR may seem

to be an optimal choice for an adsorbent as literature studies with other adsorbent materials

have reported that capacity is a limiting factor26–28.

However, our focus here is on modeling the adsorption behavior in environmental conditions

where 1,4-dioxane is found in low concentrations. Lower pressures correspond to low chemical

potentials and low concentrations, and we observe upon closer inspection (Figure 5) that FER

performs significantly better than the others in these low-pressure regions, with FER > EUO
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> IFR > BEA > MFI > MOR.
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Figure 5: Inset view of Figure 4. Here both
loading and pressure are plotted on a logarithmic
scale to visualize the data points clearly.

At lower pressures, adsorption is driven

by affinity between the adsorbate and

adsorbent. For all-Si zeolites, this is due to

physisorption interactions in the pores, and

governed by pore size and shape.

Trends in heats of adsorption and

entropy of adsorption follow loading trends

for the lowest state point (2.4 ✓ 10�7

bar), with MFI being the exception.

The thermodynamic properties in Table 1

indicate that MFI pores have a looser fit

than FER or EUO but a tighter fit when

compared to IFR, which exhibits a higher loading capacity.

In simulations, there are two ways to calculate the average property of a thermodynamic

system - ensemble average (<A>
<B>) and instantaneous average (<A

B
>). Both approaches can

result in different values. For some average calculations, it is problematic if B is sometimes

zero, as <A

B
> is an average of terms that sometimes divide by zero. In our case, we calculated

instantaneous measures of Free Energy of transfer (dG) for each frame, so our number is

using < ⇢zeo

⇢fluid
>. By defining dG to have ⇢zeo in the numerator (and, since ⇢fluid is never

zero), we avoid division by zero. However, when Nzeo is 0, we cannot compute enthalpy (dH)

using <Hfluid

Nfluid
> - <Hzeo

Nzeo
>. Therefore, we removed the data points in which Nzeo = 0 and still

obtained the correct enthalpies of transfer.
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Table 1: Thermodynamic properties at the lowest pressure

Framework Heat of adsorption Free Energy of Transfer Entropy of adsorption

�H �Gfluid�zeolite �TS

[kJ/mol] [kJ/mol] [kJ/mol]

FER �68.153 �38.874 �29.287

EUO �57.701 �37.061 �20.642

IFR �50.132 �33.971 �16.163

BEA �47.602 �31.621 �15.983

MFI �52.596 �31.003 �21.599

MOR �45.703 �29.642 �16.065

Simulation snapshots show that 1,4-dioxane preferentially adsorbs into the smaller 8-

membered ring of the FER framework at low pressures, as shown in Figure 6. The 8-ring

pore of FER and 1,4-dioxane form a snug fit, which is a crucial factor for selectivity in

adsorption of mixtures. An investigation on the adsorption of 1-butanol and water across

distinct pore channels demonstrated how water coadsorption is specifically related to pore

size78. Various other adsorption separation systems, including xylene isomers in MFI79 and

ethane/ethylene separations80, also show when pore size and adsorbate molecules exhibit

close conformity, the scope for coadsorption is considerably restricted. However, as the

Monte Carlo simulation trajectories are generated stochastically and include swap moves

that directly insert molecules into the pores, these simulations cannot verify whether 1,4-

dioxane molecules can diffuse through the surface to reach the smaller 8-ring pores of FER.
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Low pressure High pressure

MFI [0,1,0]

FER [1,0,0]

10-ring [001]

4.2

5.4
3.5

4.8

8-ring [010]

10-ring [010]

5.3

5.6

10-ring [100]

5.5

5.1

zigzag straight

Figure 6: Loading of 1,4-dioxane at pore sites. Snapshots illustrating the loading of 1,4-
dioxane in MFI (top row) and FER (bottom row) frameworks at low and high pressures.

Chen and coworkers28 demonstrated, using FTIR spectra and molecular dynamics simulation,

that 1,4-dioxane fits tightly into the hydrophobic straight channels of TS-1 with a diameter

of 5.6 Å. They also estimate an approximate size of 1,4-dioxane molecule (5.2 ✓ 5.9 ✓

6.7 Å) through Van der Waal’s projection and indicate that even though pore diameters

are slightly smaller, he flexibility of either the adsorbate molecules or the zeolite structure

promotes adsorption into zeolite channels.

3.3 Mixture adsorption at environmental concentrations

We conducted a small test (NpT -Gibbs simulation with 120 1,4-dioxane and 600 water

molecules at 1 atm and 300 K) to determine if all-silica zeolites efficiently separate 1,4-

dioxane from water under environmentally relevant conditions. While the test results were

promising (we observed selective adsorption of 1,4-dioxane, with just about 14 molecules

remaining in the liquid phase), we quickly realized that our simulation conditions were

far from the parts per billion concentrations needed to model environmental conditions.

Replicating the concentration of 1,4-dioxane that is considered safe for human health, i.e.,

0.35 ppb (micrograms per liter of water), we would require approximately 100 million water
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molecules for every molecule of 1,4-dioxane. Sampling with a regular NpT -Gibbs ensemble

for such a system is not only impractical but also computationally inefficient, so we developed

an approach using gauge cells and extrapolation.

3.3.1 Gauge cells and thermodynamic extrapolation

We performed simulations with 30 1,4-dioxane and 1800 water molecules, and we obtained

different fluid concentrations by varying the 1,4-dioxane gauge cell volumes from 1003 Å3 to

3103 Å3. When we increased the simulation box side length beyond 310 Å, all of the 1,4-

dioxane left the liquid simulation box, so no statistically meaningful concentration remained.

We set the water gauge cell size to maintain approximately 4 water molecules in the gauge

cell. We then fixed this size (1603 Å3) for all the state points analyzed, only changing the

1,4-dioxane gauge cell. Since the system under investigation is at a low temperature (300

K), we faced sampling challenges in particle insertions. Using rigid swaps for 1,4-dioxane, we

had swap acceptance rates of about 0.001, even while considering 32 trials for insertion and

16 orientational trial positions. A drawback of using this gauge cell approach over traditional

NpT -Gibbs is we also can not implement identity switch moves to boost sampling efficiency.

N
mix

14DX ⇢
mix

14DX �G
ò0
14DX

[molec/nm3] [kJ/mol]

2.33 0.0355 �8.85
2.73 0.0425 �9.33
3.84 0.0607 �9.84
4.35 0.0677 �9.23
5.62 0.0874 �9.06
6.83 0.1064 �8.85

Table 2: Free energy of transfer for
the lowest six state points. The average
free energy is �Gò0

14DX
= �9.2 kJ/mol.

The subscripts report uncertainty to the last
significant figures of the mean values.

For each state point, eight independent

simulations were conducted with a minimum of

400k MC cycles; and some state points required

up to 500k cycles to equilibrate. While separate

production runs were not performed for this

setup, we used Chodera’s equilibration detection

method77 to determine the regime of the data

deemed to represent equilibrium. We determined

the mean free energy of transfer for 1,4-dioxane

at the six lowest concentrations in the liquid cell,

as shown by the data points to the left of the
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black dashed line in Figure 7 and Table 2. Using that free energy and health-based

reference concentration in Equation 1, we compute the 1,4-dioxane concentration in the

gauge cell. Applying Henry’s law for this concentration, we obtained a corresponding

pressure of 5.8 ✓ 10�11 bar for 1,4-dioxane. SI section 5.4 includes the plot of pressure

versus concentration, along with step-wise calculations for extrapolation. The pressure in

the gauge cell of water is the average across the state points and is 4.5✓10�2 bar. We finally

use these pressures for 1,4-dioxane and water to set up NpT -Gibbs simulations at 300 K and

model adsorption with 50 1,4-dioxane molecules and up to 1600 water molecules.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.001
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Figure 7: 1,4 dioxane concentration in gauge cell versus in the liquid simulation box.
The six lowest data points, to the left of the black dashed line, were used to calculate the change in
Gibbs free energy (�G). The red dashed line represents the point where the liquid simulation box
contains only one 1,4-dioxane molecule.

We used a series of gauge cell simulations to validate that the system is in the infinite

dilution regime. A more efficient approach would be to perform gauge cell simulations at just
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one concentration (as low as possible) and obtain free energy of transfer (�G) from this. By

using a series of simulations, however, we established that this system is in the Henry’s law

(infinite dilution) regime. While we do not have <1 molecule / simulation box, the linear

trend suggests 1,4-dioxane–1,4-dioxane interactions are not significant.

When we impose the extrapolated 1,4-dioxane partial pressure and the water partial

pressure on the zeolite box, our state point will be at a slightly lower total pressure than

the 1 atm that was fixed thermodynamically in the gauge cell simulations due to the loss

of some 1,4-dioxane. This should be a minor effect, given the extremely low concentrations.

Alternatively, the water partial pressure for the extrapolated system could be obtained

from a system of pure water; this assumes that the chemical potential of water with ppb

concentration of pollutant is nearer to pure water than it is to the water in our gauge cell

simulations (that have a few 1,4-dioxane molecules).

3.3.2 Selectivity in Mixture Adsorptions

Mixture adsorption simulations were conducted across all zeolite frameworks using four

different zeolite box sizes. The baseline size was the minimal simulation cell (with at

least 28 Å in x, y, and z), and box volumes were increased by factors of 23 to create

supercells, as shown in Figure. 2. The computational cost was managed by maintaining

a rigid zeolite framework and using tabulated potentials to describe the zeolite/adsorbate

interactions74. This approach enabled us to effectively sample adsorption of 1,4-dioxane at

ppb concentrations in water, using up to 8,192 zeolite unit cells in order to achieve reasonable

statistics at low loading.

Eight independent simulations were conducted for each zeolite framework setup, with

180k equilibration and 120k production cycles. Figure 8 illustrates the loading per unit

volume of zeolites across different unit cell sizes. FER exhibits the best performance among

all the zeolites, followed by EUO, IFR, BEA, MFI, and MOR. Notably, the smallest simulation

box (the minimal size that accommodates a 14 Å cutoff, typical of Monte Carlo simulations
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in zeolites, i.e. 2x4x2 unit cells for FER) and even the simulation box with 8x that volume

were inadequate for collecting reasonable statistics. Simulations with 64x the minimal cell

volume were sufficient to achieve accurate results for all zeolites; 512x did not demonstrate

improvement, and was thus not needed.

The mixture adsorption loadings follow the unary loadings trend when we extrapolate

the 1,4-dioxane loadings in the unary simulations using Henry’s Law down to the set pressure

of 5.8✓ 10�11 bar for mixture adsorption loadings (Table 3). While unary adsorption trends

alone could potentially identify the best framework for adsorption, our method provides

accurate estimates of selectivity and loadings under specific environmental conditions.

Framework Loading @Unary Loading @512
[molec/nm3] [molec/nm3]

FER 5.6 ✓ 10�6 8.1 ✓ 10�6

EUO 3.2 ✓ 10�6 3.9 ✓ 10�6

IFR 1.5 ✓ 10�6 1.1 ✓ 10�6

BEA 4.6 ✓ 10�7 4.5 ✓ 10�7

MFI 3.6 ✓ 10�7 4.1 ✓ 10�7

MOR 2.0 ✓ 10�7 2.1 ✓ 10�7

Table 3: 1,4-dioxane loadings are similar in
unary and mixture systems at extrapolated
pressure.

We define and consider two selectivity

measures: one based on number density

(Equation 4) and one based on number

ratio (Equation 5). Hypothetically,

consider two zeolites, each of which

increases the number density of 1,4-

dioxane by a factor of 106 between the

aqueous phase and the zeolite phase,

but one of them rejects water and the

other does not. They will have equal selectivities based on number density, but different

selectivities based on number ratio (because of different amounts of water rejection). Either

may be relevant depending on the application considerations.

Selectivity, Sads,vol =
⇤ N14DX

Volume zeolite
Rc

(4)

Selectivity, Sads =
⇤N14DX
Nwater

 
zeolite

Rc

(5)

The simulations with large zeolite supercells are feasible only because of the excellent
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hydrophobicity of these materials; if much water were to co-adsorb, the simulation would

require more water molecules and become computationally expensive.

BEA EUO FER IFR MFI MOR

1μ

2μ

4μ

8μ 1
8
64
512

Zeolite Frameworks

Lo
ad

in
g 

[m
ol

ec
/n

m
 3  ]

Figure 8: Predicted 1,4-dioxane loading from 0.35 ppb aqueous solution. The x-axis lists
the six zeolite frameworks for the four simulation box sizes (1, 8, 64, and 512 times the volume of
the minimal simulation box for each framework) with loading in the y-axis.

Table 4 summarizes the selectivity using number ratio (Equation 5) for 1,4-dioxane for

each zeolite framework investigated. Selectivity here defined as the ratio of 1,4-dioxane to

water in the zeolite simulation box (Supplementary section 5.5), normalized by the health-

based reference concentration of 1,4-dioxane in number ratio, that is:

Rc = 0.35 ppb = 0.35 µg/L = N14DX

Nwater
= 7.17 ✓ 10

�11 (6)
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Table 4: Selectivity of the frameworks at 13 (1), 23 (8), 43 (64), and 83 (512) times
the minimal simulation cell. All values were calculated from each of the eight independent
simulations and reported as mean, and uncertainties are reported in subscripts as the standard
error of the mean to last significant figures. Sads=0 indicates that negligible 1,4-dioxane were
adsorbed in the zeolite.

Frameworks Sads @1 Sads @8 Sads @64 Sads @512

(✓106) (✓106) (✓106) (✓106)

BEA 0 0.338 0.782 0.811

EUO 0 2.014 1.982 1.971

IFR 0 0.822 0.123 0.111

FER 0.755 8.762 8.702 8.724

MFI 0 0 0.241 0.231

MOR 0 0 0.111 0.111

All zeolites are extremely selective, with enrichment in the zeolite phase relative to the

water phase by at least a factor of 105. FER is even more selective, with Sads of 8.7✓106. The

volume-based selectivity (Equation 4) is calculated replacing the number of water molecules

in the zeolite with its framework volume in Equation 5. These results are displayed in Table

8 in SI section 5.5 and illustrate that these volume-based selectivities are also high with

the same trends. Additionally, Figure 9 showcases snapshots of mixture adsorption loadings

in FER, varying across different unit cell sizes. The selectivity trends at 512x are similar

to unary 1,4-dioxane loadings (Table 3), with FER > EUO > BEA > MFI > IFR ⌅ MOR.

However, these don’t exactly match the trends in unary adsorption because of different levels

of water rejection. IFR dropping two ranks indicates it relatively rejects less water than MFI

and BEA. Trends in selectivity with simulation box volume also indicate that 8x or 64x the

minimal cell were needed to accurately measure these.
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Minimal simulation cell @1 Minimal simulation cell  @512

MFI 
Unit cell (2,2,3)

FER 
Unit cell (2,4,2)

Figure 9: Simulation snapshots from mixture adsorptions show that FER rejects more
water than MFI. The water ratio in MFI to FER is 3.8 across the unit cell volumes; blue represents
water molecules, which is denser in MFI unit cells and, red represents 1,4-dioxane which was only
observed in a simulation frame for FER framework.

Despite being extremely selective adsorbents, these zeolites are nearly devoid of 1,4-

dioxane; in even the most selective framework, FER, <1 molecules are present among

8,196 unit cells (Table 9). This is not related to the selectivity/capacity tradeoffs often

discussed in gas adsorption81–83; Figure 4 and Figure 6 show each can accommodate >1

molecules/unit cell. Instead, this is an intrinsic characteristic (and challenge) for adsorbing

mixtures with ppb concentration. After all, increasing ppb concentration by 106 still leaves

a low concentration of 0.1%. Only when the adsorbent starts getting saturated will capacity

start playing a role; such may occur for materials with even higher selectivities than those

described here, or for materials in which adsorption is dominated by few active sites.

From the number of 1,4-dioxane and water molecules adsorbed in the zeolite framework

(Tables 9 and 10), we can perform mass balance calculations to determine its efficacy in

filtering 1 L of water to produce a 0.35 ppb outlet stream. For example, 1 gram of FER

removes 65% of 1,4-dioxane from a feed with a concentration of 0.99 ppb, while the same
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amount of MOR removes only 5% from a feed concentration of 0.37 ppb. Table 11 in SI

section 5.5 lists some predicted amounts of removal using 1, 10, and 100 grams of zeolite for

both FER and MOR frameworks.

4 Conclusions and Outlook

Accurately modeling water treatment systems is challenging due to the presence of numerous

unknown substances, which vary in their concentrations and often interact with each other.

This study addresses two key challenges: identifying effective adsorbents for an emerging

water pollutant and sampling the system under environmentally relevant concentrations.

This methodology sets the stage for further exploration of effective adsorbents for other

emerging contaminants, such as PFAS, arsenic, and chlorinated species. However, our

computational methodology is contingent upon both the adsorbent’s selectivity for the

target pollutant and its ability to reject solvent simultaneously. This limits the approach’s

applicability to certain adsorption systems (e.g. very hydrophobic sorbents).

These simulations identify FER as a promising material for 1,4-dioxane separation from

water. The unary adsorption simulations showed that the 8-member ring pores in FER snugly

accommodate 1,4 dioxane. Furthermore, our mixture adsorption simulations with water

indicate that FER possesses exceptional selectivity for low concentrations of 1,4-dioxane;

it particularly becomes more apparent in simulations with supercell construction of zeolite

frameworks. However, Monte Carlo simulations do account for diffusion, which may impose

transport barriers for 1,4-dioxane. Nonetheless, we think all-Si FER and all-Si EUO are

promising materials for further investigation.

The adsorbed concentration differs significantly from the environmental concentrations,

implying that hydrophobic all-silica zeolites are ultraselective adsorbents, as the latter can

be considered to be infinitely diluted. However, it is challenging to synthesize them without

defects19, which enable water coadsorption and would undermine selectivity. This work

23

6!!� 
��3:7 :����� �
	�	�264��$7"����	�9��!��"���������6!!� 
��:�273 :�������������
�������
��:9!49!�9:!��44���4"74#43�1B��64�/$7" ��
�	��	������0�.��.-�	 �

https://doi.org/10.26434/chemrxiv-2024-n10tr-v3
https://orcid.org/0000-0002-6379-9206
https://creativecommons.org/licenses/by-nc-nd/4.0/


aims to motivate the synthesis of these zeolites to be used in various separation processes,

particularly in water pollutant remediation, where these interactions can play a crucial role.

We also achieve large selectivities here while only involving physisorption interactions because

of the tight fit of 1,4-dioxane in FER. In other contexts, chemisorption is used to remove

trace contaminants from water84–86 as the means of providing the strong intrinsic interaction

to pull the dilute solute from the solution. Traditional Monte Carlo simulations do not have

interaction potentials or efficient sampling techniques for chemisorption; the development of

these could further extend the applicability of this approach.
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5 Supporting Information

5.1 Zeolite Frameworks
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Figure 10: The zeolite frameworks investigated in this study, with their pore size and structures
(not to scale).
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Table 5: Zeolite Unit Cell Parameters

Framework a [Å] b [Å] c [Å] ↵ [deg] � [deg] � [deg] unit cell [x,y,z] refs

BEA 12.6614 12.6614 26.4061 90.00 90.00 90.00 [3 ✓ 3 ✓ 2] 87

EUO 13.6950 22.3260 20.1780 90.00 90.00 90.00 [2 ✓ 2 ✓ 2] 88

FER 14.0703 7.4197 18.7200 90.00 90.00 90.00 [2 ✓ 4 ✓ 2] 89

IFR 18.6524 13.4960 7.6311 90.00 101.98 90.00 [2 ✓ 3 ✓ 4] 90

MFI 20.0220 19.8990 13.3830 90.00 90.00 90.00 [2 ✓ 2 ✓ 3] 91

MOR 18.2560 20.5340 7.5420 90.00 90.00 90.00 [2 ✓ 2 ✓ 4] 17
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5.2 Force field parameters

Table 6: Force field parameters of 1,4-dioxane, water and zeolite

parameters for non bonded potentials

type pseudo atom � [Å] ✏/kB [K] q [e] refs

CH2–[O]–CH2–CH2 O 2.39 155.0 �0.38 53

O–[CH2]–CH2–O CH2 3.91 52.5 0.19 53

H–[O]–H O 3.154 78.0 0 92

[H]–O–H H 0 0 0.52 92

H2O–[M] M 0 0 �1.04 92

[Si]–O Si 2.30 22.0 1.50 54

Si–[O] O 3.30 53.0 �0.75 54

parameters for bonded potentials

fixed bond length [Å] refs

CHx–CHy 1.5400 53

CH2–O 1.4100 53

H–O–H 0.9572 92

bend angle k✓/kB [K/rad2] ✓0 [deg] refs

CHx–(CHy)–O 25150 112 53

CHx–(O)–CHy 30200 112 53

torsion c0/kB [K] c1/kB [K] c2/kB [K] c3/kB [K] refs

O–(CH2)–(CH2)–O 13537 10876 5223 �123 53

CH2–(CH2)–(O)–CH2 7037 14958 7606 1546 53

5.3 Free Energy of Transfer
50

When examining phase separation, the most suitable thermodynamic parameter is the

chemical potential, µ, at equilibrium. In all phases, µ remains the same, and any change in
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µ will affect the flow from one phase to another. For two phases, ↵ and �, in which a solute

molecule, s, is distributed, if both phases are at the same temperature and pressure, the

chemical potential of s will be identical in both phases. This can be expressed as follows:

µ
↵

s = µ
�

s (7)

Applying the chemical potential formula for solvation where we impose very low concentrations

of s in both phases, we get

µ
ò↵
s + kT (ln ⇢↵s ) = µ

ò�
s + kT (ln ⇢�s ) (8)

Here k, T , and ⇢ are Boltzmann constant, temperature, and number density of s in each

phase. By rearrangement, we can write the solvation of Gibbs free energies as

�G
ò�
s ��G

ò↵
s = (µò�

s � µ
òig
s ) � (µò↵

s � µ
òig
s ) (9)

which is,

�G
ò�
s ��G

ò↵
s = µ

ò�
s � µ

ò↵
s = kT [ln ⇤⇢↵s

⇢
�

s

 
eq

] (10)

Now, when the phase ↵ is an ideal gas, �G
ò↵
s = 0, thus equation 10 reduces to:

�G
ò�
s = kT [ln ⇤⇢igs

⇢
�

s

 
eq

] (11)

For a system in which the vapor and liquid phases of a pure component are in equilibrium,

we can determine the solvation Gibbs energy of the component in its pure liquid state,

provided that the vapor pressure is sufficiently low to be considered an ideal gas.

If s is very dilute in phase �, the limiting form of the equation is:

�G
ò0
s = kT [ln ⇤⇢igs

⇢
�

s

 
eq

] (12)
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and therefore, the Gibbs free energy of transfer into the mixture of a dilute solution of

1,4-dioxane in water from the gauge cell (GC) is:

�G
ò0
14DX = kT [ln ⇤⇢GC

14DX

⇢
mix

14DX

 
eq

] (13)

5.4 Gauge Cell Extrapolation

The extrapolation from the gauge cell simulations is described here.

Table 7: Health-based reference concentration (Rc) in different units

Value Unit

0.35 ppb

0.35 µg/L

2.39 ✓ 10�9 molec/nm3

The mean free energy of transfer for the six state points with the lowest 1,4-dioxane

concentrations is:

�G
ò0
14DX

= �9.2 kJ/mol (14)

Using this value for �G
ò0
14DX and reference concentration 2.39 ✓ 10�9 molec/nm3 in

Equation 5.3, we get concentration in gauge cell at 300 K as:

⇢
GC

14DX = 6.11 ✓ 10
�11 molec/nm3 (15)

We then plot the pressure in the gauge cell versus the concentration in the liquid simulation

box.
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Figure 11: 1,4-dioxane concentration versus pressure in the gauge cell. Since the concentrations
are extremely low, and the relationship is linear within the uncertainty limits, we can equate the
slope as Henry’s constant for extrapolation.

To calculate the slope of the straight line in Figure 11, we fit the points using linear

regression and setting the intercept as zero. This gives us a slope of 0.0105 with units

of molec / (nm3 kPa). Using this slope, we then extrapolate the pressure for reference

concentration as:

⇢
GC

14DX = H ✓ P

P = ⇢
GC
14DX

H
(kPa)

P = 5.8 ✓ 10�9 kPa

P = 5.8 ✓ 10�11 bar

(16)

The pressure calculation in the gauge cell for water is straightforward, as it is just the
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average of all the simulation state points conducted, which is 4.5 kPa or 4.5 ✓ 10�2 bar.

5.5 Selectivity

Table 8: Selectivity based on zeolite framework volumes at 13 (1), 23 (8), 43 (64), and 83

(512) times the original unit cell. All values were calculated from each of the eight independent
simulations and reported as mean, and uncertainties are reported in subscripts as the standard error
of the mean to last significant figures.

Frameworks Sads,vol @1 Sads,vol @8 Sads,vol @64 Sads,vol @512

(✓1000) (✓1000) (✓1000) (✓1000)

BEA 0 2.66 6.22 6.31

EUO 0 561 55.12 55.11

IFR 0 112 15.42 15.81

FER 96 1123 1122 1131

MFI 0 0 5.81 5.51

MOR 0 0 2.92 2.91

Table 9: Mean number of 1,4-dioxane molecules inside zeolite simulation boxes from eight
independent simulations. Uncertainties are reported as the standard error of mean in subscript
for the last significant figure.

Frameworks N14DX@1 N14DX@8 N14DX@64 N14DX@512

BEA 0 0.000113 0.002174 0.017544

EUO 0 0.001593 0.012485 0.09992
FER 0.000021 0.002015 0.01603 0.12965

IFR 0 0.000295 0.003254 0.026697

MFI 0 0 0.001704 0.012918

MOR 0 0 0.000595 0.004903
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Table 10: Mean number of water molecules inside zeolite simulation boxes from eight independent
simulations. Uncertainties are reported as the standard error of mean in subscript for the last
significant figure.

Frameworks Nwater@1 Nwater@8 Nwater@64 Nwater@512

BEA 0.962 4.951 38.75 303.32
EUO 1.362 11.075 87.97 705.83
FER 0.4003 3.202 25.72 207.35
IFR 0.601 5.12 39.08 327.81
MFI 1.513 11.92 97.56 781.82
MOR 1.211 9.465 76.94 613.91

Table 11: Predicted fractional removal for different zeolite amounts and frameworks to output
health-based reference concentration of 0.35 ppb 1,4-dioxane filtering 1 L of contaminated water for
zeolite minimal simulation cell @64.

Framework Zeolite Weight Feed Stream Fraction removed Outlet

(g) Conc. (ppb) Conc. (ppb)

FER

1 0.99 0.645 0.35

10 6.71 0.948 0.35

100 64.0 0.995 0.35

MOR

1 0.37 0.048 0.35

10 0.53 0.336 0.35

100 2.12 0.835 0.35
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